Adding balance to the meat debate

18 02 2019

Of late, I have seen article after article, video after video, exposing ‘meat eating’ as a culprit for the exploding greenhouse emissions we are experiencing. And when I point out it’s all rubbish, I’m attacked as a climate denier….. ME!  A climate denier…?!

There’s so much to say about this topic, it’s hard to know where to start, but I will just say this; meat consumption is not the issue, the predicament is industrial agriculture, pure and simple…… so instead of blaming animal farming, commentators should be attacking the entrenched conventional farming system that needs to be destroyed.

If you are a vegan or vegetarian, the consumption of your diet is just as harmful as the consumption of unsustainable meat. Are you listening George Monbiot? George is one of those classic deniers of the truth. He recently wrote “76% of farmland is wasted on farming animals”. And what does George know about farming?  Zilch I’ll bet…… because farms that grow meat are incapable of growing anything else, otherwise meat would not be produced there.

When soil incapable of growing edible vegetable matter for people is converted to this use, it’s only possible because of the addition of untold chemicals which, since the beginning of the ‘green revolution’, a completely wrong use of the term ‘green’ by the way…..


This opinion piece by Richard Young was originally published by Triodos Bank here


Grazing animals have shaped the quintessentially pastoral British countryside for thousands of years and play a vital role in sustainable food systems. However, over the last decade or so we’ve been told by a succession of high-profile reports that we have to make drastic cuts in our consumption of meat in order to help limit global warming, biodiversity loss and other agriculture-related problems. This has left many people confused about what they should eat to be healthy and have a sustainable lifestyle.

The authors of these reports, such as the recent EAT-Lancet report, all correctly highlight the problems for humanity caused by a rapidly growing global population, high meat consumption in developed countries and an increasing appetite – or in some cases nutritional need – for meat in many developing countries. However, the focus is always put on cutting out red meat, rather than poultry, and no distinction is made in the way the meat is produced.

The basic reason for this is that all cattle, sheep and other ruminants emit the greenhouse gas methane, while chickens do not. They also convert grain to protein less efficiently than poultry or pigs.

It is predicted that by 2050 another billion tonnes of grain will be needed every year to produce enough meat to feed the global population, something which is clearly unsustainable, since continuous grain production is one of the biggest causes of soil degradation and loss. Indeed, globally, cropland soils continue to degrade as carbon is lost to the atmosphere – 24 billion tonnes of soil is lost annually, over three tonnes for every person on the planet.

However, what the researchers invariably overlook is that this is only an issue in relation to grain-fed cattle, such as those in US feedlots, whose rations consist of maize, soya meal and chopped straw.

In contrast, two-thirds of UK farmland is under grass, in most cases because the land is not suitable for growing crops. The only practical way to get food from this land without causing an environmental disaster is to graze it with livestock. Almost all cattle and sheep in the UK are predominantly fed on grass, grazed in the fields during summer and fed as hay or silage over winter – and the UK has one of the best climates in the world for growing grass. Some of these animals do also get grain, but in many cases this is waste grain, like Brewer’s grain (what’s left after beer making), which humans cannot eat.

Tragically, a high proportion of the UK’s most species-rich grasslands have in the past been ploughed for cropping or resown with ryegrass monocultures. However, all organic and most pasture-fed meat producers include legumes, multiple grass species and herbs in their grazing mixtures. Even many intensive farmers have now been persuaded by agri-environment schemes to restore grassland diversity, with wild flowers and delicate species getting a chance to recover once the use of synthetic fertilisers ceases. This in turn helps to revive the intricate web of life, which begins with microbes, soil spiders and other insects, embraces farmland birds and small mammals, and ultimately sustains us humans.

While over-grazing was encouraged by farm subsidies prior to the early 1990s, some grassland is now under-grazed due to falling demand for lamb. This is a problem because many bird and butterfly species have evolved in tandem with grazing livestock. In fact, both the RSPB and Natural England recognise that grazing animals are essential for sustaining healthy wildlife populations.

But what about methane? The high methane levels in the atmosphere are a significant cause of global warming, yet ruminants are responsible for only 5% of UK anthropogenic greenhouse gas emissions. What’s more, all the carbon in ruminant methane is recycled carbon – grazing animals can’t add more carbon to the atmosphere than the plants they eat take out by photosynthesis. In fact, fossil fuels are not only the main source of carbon dioxide emissions, they are also responsible for a third more methane than ruminants and all the methane from fossil fuels contains additional, ‘fossil’ carbon.

So what meat should we choose to help sustain the planet? It’s not a red versus white issue. The simple answer is that we should eat far less grain-fed meat, be it beef, pork or chicken, instead we should actively seek grass-fed meat and meat from animals supplemented with only small amounts of otherwise waste grain.

While few people yet realise it, we actually need to encourage increased production of grass-fed meat, since the most effective way to restore our degraded arable soils and wild pollinators is to re-introduce grass and grazing animals into cropland rotations.






It’s even worse than we are officially told….

12 10 2018

This is a guest post from my Scottish friend Jacqueline Fletcher who has taught in universities all over Europe, and even sent me a wwoofer from Finland some years ago….. she’s a permie and environmental activist beyond the call of duty. 

jacquelineYesterday evening I attended a meeting with a couple of researchers involved with IPCC reports. Dr Katarzyna Tokarska from the GeoSciences Institute at Edinburgh University and psychologist (and Scottish government advisor on mental health) Dr Nadine Andrews from Lancaster University. Tokarska explained the science, how much CO2 the atmosphere can take if we are to stay within the 1.5 degrees warming (X), how much is already in the atmosphere Y, and therefore X minus Y will tell us how much we can still emit before we lock ourselves ino the 1.5 degrees warming point (Z) and upwards towards 2 degrees.

The bad news is that in a BAU scenario, given the amount of CO2 emitted annually, globally, we will emit that amount (Z) in just three years.

We have to do something NOW. So what is on offer by way of suggestions about what to do?

A digression: In 2015 I was living in Paris and a member of the ‘social movement’ and degrowth group ATTAC. Because ATTAC was also one of the 130 or so groups that constituted CoalitionClimate21, I joined up with that too, to organise protests around the COP21 but also to collectively present a document to which all the global NGOs subscribed to the COP with our own suggestions for the transition to a low carbon society. Of course, there was a good deal more than protest; there were workshops, conferences, tribunals, a march was banned and became a human chain, smaller creative interventions and debates around energy etc and 2 colourful demos on the final day.

From the COP21 I took away a depressingly deep sense of the insurmountability of the crisis, not only were governments still trying to provide solutions that would best suit their corporations and chums in the banks, not only were the scientists watering down their reports to get governments on board, but equally the NGOs were so obsessed with fossil fuels that the Extinction Event which is wiping out the life that maintains Earth’s Biosphere was being ignored. Why is this?

I was well aware nothing significant would come out of the Paris Agreement. It was heralded as a triumph but it was a really only a triumph of PR.

Yesterday, I went to the evening organised by Transition Edinburgh feeling a bit more upbeat. This new IPCC report is very clear about how close to the edge we are. Surely, I thought, now the urgency is so obvious, something would be done, we’d get mobilsed, pressurise our government, take personal measures to change our lifestyles. But after the first speaker already, I felt severely depressed by the type of solutions on offer.

The first speaker was seemingly a proponent of BECCS (Biofuel Energy with Carbon Capture and Storage, which Pr Kevin Anderson literally claims is BS) or maybe these were the only statistics she had because the IPCC focuses on technological solutions. For the uninitiated, this entails growing more cash crop forests, burning them for ‘biofuels’, capturing the CO2 and storing it in holes in the ground, like old mines and oil reservoirs, and compressed into rock with technology that is not yet in existence (at scale) In other words yet another linear system, in which a resource is used, waste is produced, the waste is hidden out of sight…a bit like plastic (irony intended). She showed that this was more efficient for storing carbon than afforestation (basically, just not chopping down existing trees). Already this comparison carried a signicant slant.

No mention of the statistics for carbon sequestration through regenerative agriculture using biochar, no dig/till and continuous groundcover and/or holistic grazing. There are plenty of statistics out there, even reports from the UN Rapporteurs on the Right to Food, Food Security etc, and the FAO, the IPES-Food, UNCTAD on agroecology as well as statistics that can be gleaned from the growing number of small farmers doing Regen Ag. Why does agriculture never get into the mindset of people, scientists, governments etc dealing with the CO2 crisis?

I’m going to make my own comparison between BECCS and Regen Ag.

BECCS is a linear system with a waste product that is not organically disposable or recyclable. Is its use of resources really sustainable? It uses land then becomes unavailable for any other purpose and is eroded by the monoculture forestry, and which is also irreparably damaging for ecosystems.

Reg Ag on the other hand uses CO2 to grow soil, to replace the eroded soil that is yet another of our pressing crises (about 40% of the planet’s soil is already eroded). By sequestering CO2 in the living soil, the soil not only grows, but it produces healthy food (without pesticides) by maintaining a healthy soil microbiome. It is the microbial life in the soil that releases nutrients from the minerals to pass to plants and therefore creates nutrient-rich food (as opposed to the crap that comes from an agricultural system that kills the soil microbiome). It produces biomass in the soil that stores water to combat droughts and to allow water to filter naturally through to replenish the aquifers. Regen agroforestry and edible food forests also maintain healthy habitats and forage for wildlife with perennials, trees that also sequester carbon etc. It is a solution that also nurtures the ecosystems that are necessary too for our human survival. There is no waste product, everything is naturally and productively recyclable; biomass can even produce energy through biodigesting and still be returned to the soil. There is no wasteful use of land. BECCS takes land away from agriculture, carbon sequestration through regen ag integrates it.

Of course, the BECCS solution proposed isn’t about farming, it’s about energy. And what governments and corporations want to hear is something that produces energy, to continue to fuel an industrial, consumer-capitalist society at any cost for the sake of growth and profit. And if this remains the current thinking in political, commercial and financial spheres of influence, the old paradigm, the old mentality, then frankly, we really are f***ed.

Most of the 278 people who signed up for the speakers and discussion yesterday evening were young, students from Edinburgh University, from all over the world, and in reality we need to act NOW to save the world for them, and not to save a system of industrial production predicated on a mentality that is fundamentally antagonistic to all life on this planet, human and non-human.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

If the latest warnings contained in Monday’s report by the Intergovernmental Panel on Climate Change (IPCC)—which included pronouncements that the world has less than twelve years to drastically alter course to avoid the worst impacts of human-caused global warming and that nothing less than keeping all fossil fuels in the ground is the solution to avoid future calamities—have you at all frightened or despondent, experts responding to the report have a potentially unwelcome message for your already over-burdened heart and mind: It’s very likely even worse than you’re being told.

“The IPCC understates a key risk: that self-reinforcing feedback loops could push the climate system into chaos before we have time to tame our energy system.” 
—Mario Molina, Nobel Laureate

After the report’s publication there were headlines like: “We have 12 years to act on climate change before the world as we know it is lost. How much more urgent can it get?” and “Science pronounces its verdict: World to be doomed at 2°C, less dangerous at 1.5°C” and “A major new climate report slams the door on wishful thinking.”

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~`

Just two years ago, amid global fanfare, the Paris climate accords were signed — initiating what seemed, for a brief moment, like the beginning of a planet-saving movement. But almost immediately, the international goal it established of limiting global warming to two degrees Celsius began to seem, to many of the world’s most vulnerable, dramatically inadequate; the Marshall Islands’ representative gave it a blunter name, calling two degrees of warming “genocide.”

The alarming new report you may have read about this week from the UN’s Intergovernmental Panel on Climate Change — which examines just how much better 1.5 degrees of warming would be than 2 — echoes the charge. “Amplifies” may be the better term. Hundreds of millions of lives are at stake, the report declares, should the world warm more than 1.5 degrees Celsius, which it will do as soon as 2040, if current trends continue. Nearly all coral reefs would die out, wildfires and heat waves would sweep across the planet annually, and the interplay between drought and flooding and temperature would mean that the world’s food supply would become dramatically less secure. Avoiding that scale of suffering, the report says, requires such a thorough transformation of the world’s economy, agriculture, and culture that “there is no documented historical precedent.” The New York Times declared that the report showed a “strong risk” of climate crisis in the coming decades; in Grist, Eric Holthaus wrote that“civilization is at stake.”

If you are alarmed by those sentences, you should be — they are horrifying. But it is, actually, worse than that — considerably worse. That is because the new report’s worst-case scenario is, actually, a best case. In fact, it is a beyond-best-case scenario. What has been called a genocidal level of warming is already our inevitable future. The question is how much worse than that it will get.





Three Things We Don’t Understand About Climate Change

3 09 2017

ANOTHER great article from Ahmed Nafeez’ new Medium website…….  Please support his magnificent efforts.

This is the most honest item on Climate Change I hace seen in quite a while. It almost goes as far as saying what I’ve now concluded, we must de-industrialise. Almost.

Go to the profile of Aarne Granlund
Aarne GranlundFollow

 

 

Thinking about climate change is not something that comes natural to humans — or ‘consumers’ as we have been called for decades. It is not only emotionally unpleasant, but analytically extremely challenging.

I argue that most of us do not grasp how immediate this situation has become, how fast it is progressing and what the scale of change needed is to reach the stabilisation targets of the Paris Agreement.

I also argue that after individuals, nations and corporations understand the urgency and the rate, they should be honest about the scale of action needed in order to avoid collapse of the biosphere and thus civilisation.

North America on 29th of August 2017. Tundra and forest fires in the Arctic + British Columbia and Hurricane Harvey off the coast of South Texas (Terra / MODIS @ Nasa WorldView).

Human society is deeply and permanently coupled to the Earth System. In the geological epoch we have entered called the Anthropocene, that system is undergoing immediate, massive disruption. The previous epoch of Holocene gave us agriculture and settled living arrangements.

Since the onset of industrial production at an accelerating rate and scale, human society has had deep and far ranging influence on natural processes which it depends on. Climate change is only one of the manifestations — there are multiple large-scale indicators of our presence on this planet from erosion to nitrogen runoff, species extinction to uncontrolled population growth.

1. Urgency

The first misunderstanding about climate change is related to how we perceive its impacts in the temporal space. It is not (only) a future issue, not a polar bear issue and certainly not an issue which only affects a few remote parts of the world.

Situation has become dangerous during the last three years of 2014, 2015, 2016 and now continuing into 2017. Certain parts of the world see less immediate danger but systematic changes affect us all.

NASA GISS dataset on land and ocean temperature anomalies (2017).

How is it possible that the Earth System has taken up our presence on the surface so lightly even when we have changed the chemistry of the atmosphere and the ocean with our carbon pollution?

Ocean heat uptake has doubled since 1997 (Gleckler et al, 2016).

Most of the energy (heat) human carbon pollution creates ends up warming the world ocean, some 93% of our pyromania ends up there. Every passing year we pump 41 gigatons (that is a very big number) of carbon dioxide into the Earth System, where roughly half of it is absorbed by natural sink capabilities of the ocean and the land biosphere. Rest of it ends up in the atmosphere with all the other gases we put up, including aerosols and certain novel entities that have never occured in the natural state of the Earth System.

The fact that increasing greenhouse gas loading from human sources in the carbon cycle is cumulative makes this an extremely vicious political, economic and social problem. The increment which ends up in the atmosphere can only be drawn down by the natural climate system on time scales extending to tens or hundreds of thousands of years.

The Global Carbon Budget from GCP, 2017.

One component of urgency is that when surface temperatures increase after being buffered by the ocean — without the world ocean we would already be 36°C hotter on the surface of continents from the increased atmospheric forcing — they can do so in a non-linear fashion.

This creates immediate impacts. Single exceptional extreme weather events are not caused by climate change but happen in a distinctively new climate. Hotter atmosphere holds more moisture which increases precipitation. Extreme heatwaves become more common. Ice in all its forms melts.

Right now there are multiple imminent disasters occuring in various parts of the planet. Global fire situation has been exceptional in Siberia, Greenland, Canada and in other parts of North America. Tundra burns, forests burn, people suffer. Europe has been under severe heat waves and there have been mass casualties from forest fires in Portugal.

There is extreme flooding in South Asia, impacting multiple cities and the country of Bangladesh of which one third is currently under water. Hurricane Harvey just hit South Texas at Category 4 strength and produced record precipitation totals for many locations, including but not limited to the City of Houston. Tens of millions suffer from these impacts — right now.

Arctic climate change is proceeding at fast pace (AMAP SWIPA, 2017 http://www.amap.no/swipa2017).

2. Rate and Scale of Change

The Arctic, area located on the top of the planet from 66°N north, is a prime example of systematic exponential change. It is warming at least twice as fast as the rest of the planet. There is less inertia in the Arctic than there is in the general climate system.

But even the general climate system is being pushed in ways which have no previous analogue in natural climate changes going back tens of millions of years. It is about the rate of carbon dioxide and other greenhouse gases added. There have been periods in the deep geological past of Earth when greenhouse gas concentrations have been much, much higher than they are today but increases have never occured this rapidly.

Proxy measurements of carbon dioxide from ice cores (NOAA @ NASA Climate Change https://climate.nasa.gov/vital-signs/carbon-dioxide/).

Earth is a fluid, non-linear system capable of abrupt and total change. Earth System has been in a hothouse state and for a while was mostly covered by ice. At current pathways we are literally going to lose very large portions of both continental polar ice sheets, possibly in their entirety. This will take centuries but when we commit, the result will be permanent. Permafrost is thawing, threathening both the carbon cycle and our settled living arrangements in the Arctic.

When climate scientists project future climate change up to and beyond 2050 and 2100 they refer to scenarios. They are used in policy making to set stabilisation targets.

Tipping elements in the climate system (Schellnhuber et al, 2015).

What is worrying is that humanity is currently putting in place an atmospheric forcing comparable to something between the RCP4.5 and 8.5 (watts per square meter) end results. The choice between the Paris Agreement ‘well below 2°C’ framing and higher, 3–4°C level of warming is the choice of having a civilisation with global governance capability or losing it.

At any pathway we choose to follow, in order for the climate to stabilise at a higher level of change, emissions need to be zero. If new carbon pollution enters the climate system, temperatures will go up. This also applies to 2.5°C emissions budgets as well as 3°C budgets.

3. Stabilisation

What is to be done? Multiple actions are under way. Our energy system is changing with global energy demand growth continuing to rise due to industrialisation of developing nations, but new added electricity capacity in the form of solar and wind power only appear to offset some of the added growth. Electricity is only a portion of our energy use profile.

The massive use of fossil fuels is the prime driver of human-caused climate change. The fraction of low-carbon energy is the same now that it was a few decades ago. Fossil fuels absolutely dominate our energy system at >80% share in total final energy consumption. Deforestation and other land-use change also contribute significantly, but our profligate use of fossil energy commits us to possibly catastrophic breakdowns of the climate system.

For a reasonable chance of keeping warming under 2℃ we can emit a further 865 billion tonnes of carbon dioxide (CO2). The climate commitments to reduce greenhouse gas emissions to 2030 are a first step, but recent analyses show they are not enough (Canadell and Smith, 2017 http://bit.ly/2jRNjIK).

The trouble with negative emissions (Peters and Anderson, 2016 http://science.sciencemag.org/content/354/6309/182).

The carbon budget framing might seem like a radical socio-political construct but it is in fact the best depiction of the physical reality of climate change. Cumulative emissions dictate the mitigation outcome — there is absolutely no doubt about this as the Intergovernmental Panel on Climate Change has shown.

The relationship between temperature change and cumulative CO2 emissions (in GtCO2) from 1870 to the year 2100. (IPCC 2014 Synthesis Report).

It is indeed the fact that many applications of fossil energy are growing exponentially that is the problem for climate stabilisationAir travel, road freight, shipping. Exponential global growth. Based on sound understanding of the physical reality, their fossil carbon use should be declining exponentially.

Three years to safeguard our climate (Figueres at al, 2017 http://go.nature.com/2t1gwUD).

All of this is sadly true and supremely distressing. Emissions from fossil fuels and land use change are 60% higher than they were in 1990 when scientists established most of what has been shown above with high certainty. Only the resolution of understanding has increased along with worsening climate impacts.

F/ Honesty

Finding out the reality of this situation is a profound experience. It is a state shift in human cognition, comparable to expansion of internet and global connectivity.

What I argue as citizen is to stop lying to ourselves. We have to obey the ancient laws of nature. No amount of economic growth, green shift, denial or activism can negotiate with physical constraints of the Earth System.

Our energy system will never be able to transform fast enough to meet the Paris Agreement stabilisation target without mad assumptions of building a carbon draw down device on this planet three times the size of the current oil industry, capable of sequestering greenhouse gases from ambient air on the order of what the natural sinks like the world ocean and the land biosphere are currently doing.

Roughly 10% of us generate almost as much greenhouse gas emissions from our lifestyle as the rest of the people on this planet. Finnish household consumption added to territorial emissions at >15 tons CO2 equivalent per capita will breach the global carbon budget for lower stabilisation targets within a decade. This is a pragmatic, but also a moral issue. Nobody can escape it, no matter how much one tries.

Finnish emissions reductions and negative emissions to meet Paris Agreement framing (Climate Analytics, 2016.)

We have to transform our diets, mobility systems, energy production and conspicuous consumption within a decade to limit risks of profound magnitude. The first decade should cut all of our carbon pollution in half. The next one should halve the portion left and so on. We have to put in policies which enchance natural sinks and research artificial new sinks.

This is not an obligation just to protect future generations, poor people or animals anymore. It is a threat to huge amounts of people living in the present moment on this finite planet in our vast universe.

We have to push through this mentally, keeping focus on what there is to be done with resolute purpose against nearly impossible odds. We have to be honest to ourselves, respectful of others and lead by example in everything we do.

Everybody can enter this space with relatively little sacrifice. It might be very painful in the beginning but truth is, after all, one of the most precious things this world has to offer.

Do what comes naturally, but always remember three things: how immediate this is, what kind of rates it is progressing at and what the scale of change needed must be in order to limit risk.





Paris, climate and surrealism

27 07 2017

Speaker: Prof. Kevin Anderson, Professor of energy and climate change

Title: Paris, climate and surrealism: how numbers reveal an alternate reality

The Paris Agreement’s inclusion of “well below 2°C” and “pursue … 1.5°C” has catalysed fervent activity amongst many within the scientific community keen to understand what this more ambitious objective implies for mitigation. However, this activity has demonstrated little in the way of plurality of responses. Instead there remains an almost exclusive focus on how future ‘negative emissions technologies’ (NETs) may offer a beguiling and almost free “get out of jail card”.
This presentation argues that such a dominant focus reveals an endemic bias across much of the academic climate change community determined to voice a politically palatable framing of the mitigation landscape – almost regardless of scientific credibility. The inclusion of carbon budgets within the IPCC’s latest report reveals just how few years remain within which to meet even the “well below 2°C” objective.

Making optimistic assumptions on the rapid cessation of deforestation and uptake of carbon capture technologies on cement/steel production, sees a urgent need to accelerate the transformation of the energy system away from fossil fuels by the mid 2030s in the wealthier nations and 2050 globally. To put this in context, the national mitigation pledges submitted to Paris see an ongoing rise in emissions till 2030 and are not scheduled to undergo major review until 2023 – eight years, or 300 billion tonnes of CO2, after the Paris Agreement.

Despite the enormity and urgency of 1.5°C and “well below 2°C” mitigation challenge, the academic community has barely considered delivering deep and early reductions in emissions through the rapid penetration of existing end-use technologies and profound social change. At best it dismisses such options as too expensive compared to the discounted future costs of a technology that does not yet exist. At worst, it has simply been unprepared to countenance approaches that risk destabilising the political hegemony.

Ignoring such sensibilities, the presentation concludes with a draft vision of what an alternative mitigation agenda may comprise.





On Biochar

23 05 2017

Last weekend, as the threat of looming downpours for much of Tasmania was forecast, I went to a biochar workshop organised by the Huon Producers’ Network, and I reckon it was the best thirty five bucks I ever spent……. I’ve read quite a bit on the matter, and have always been fascinated by Terra Preta. Having cut down some fifty trees to make way and building material for our new house, I’m not exactly short of biomass to get rid of…. I had four huge piles of the stuff, and unfortunately, sometimes even the best laid plans have to yield to reality and two of them have been burned to make way for ‘development’ on the Fanny Farm. Each time I burned the piles, I got the guilts knowing all that resource was going to waste and contributing to climate change, but having inadvertently put several tonnes of wood in the wrong place (designing my patch is an evolutionary process) and having no quick means of moving them, I just put a match to it. At least, the ash went on the current market garden patch……Image result for biochar kiln

I had some expectations of what I was going to be shown, but they were all thrown out the window…. I had been expecting to see kilns such as the one at right which are all enclosed for the purpose of starving the fire of Oxygen so as to pyrolise the wood and make charcoal. My friend Bruce in Queensland has been making charcoal this way for thirty years to satisfy his blacksmithing habit (and those of many others I might add), and he has this down to a fine art. But it appears there’s a revolution underway…..

The presenter on the day was Frank Strie, who thirty years ago emigrated from Germany with his whole family to Tasmania. “We started to plant lots of different fruit trees” Frank says on his website, “such as Cherries, Apricots, Peaches, Plums, Prunes and various apple and pear trees. And of course, we wanted to grow our own vegetables. Also, about 20 years ago we established a Hazelnut Orchard, which covers nearly one third of the property.” It’s all organic of course, and he sounds like he’s pretty good mates with Peter Cundall, Tassie’s gardening guru…… See his Terra Preta website.

20170520_104408

“The baby”

The fact that he brought three kilns on a trailer and the back of a ute all the way from Launceston just shows how versatile and portable his gear is.

The new kilns are open topped, and most interestingly, funnel shaped. They make the process faster – like maybe half the time or better – and allow for activation of the charcoal (which is what turns it into biochar) all in one go. Being able to just tip the finished product onto the ground instead of laboriously shoveling it out of the kiln looks good to this old man with a bad back as well.

Andrew, a local also known as Stretch – and so tall he can’t fit in photos – was also there to ably assist Frank; he’d organised20170520_121304 lots of firewood and stacked it in piles of graded sizes along with cardboard and kindling. We actually got three kilns started; from a smallish one designed for hobby gardeners, to something that will make a cubic metre at a time (and double up as a BBQ!) to the farm sized device I could probably use but can’t afford….. though there is now talk of buying one as a community resource which is a darn good idea!

The idea of the funnel shape is that as the air outside is heated, it rises up the sides, and when it reaches the lip, a vortex effect is created causing the air to be sucked into the kiln speeding up the burn. The ‘big one’ even comes with a skirt that acts as a venturi, speeding up the air as it is squeezed between the kiln and skirt at the lip of the kiln. The effect was clearly visible, though nigh impossible to catch in a still photo.

20170520_12091720170520_120927

The ‘smothering’ effect is created by simply adding more and more firewood to the pile. Before combustion is complete, the fire is quenched (with water on this particular day, but normally a liquid fertiliser would be used) from the bottom up. The bottom of the kiln is plumbed to a pipe which can be used for both removing excess liquid, or adding it under pressure from an IBC on, say, the back of a ute. On the day, Frank used a garden hose, because we could not do what he normally does because of where we were….

20170520_135217

20170520_144712

On the day, the kiln was not filled to capacity due to location and time constraints, but you can clearly see the results. The big kiln even comes with a winch to tip the biochar out for easy work, and if it wasn’t for the fact I’m far too busy house building and counting my remaining pennies, I would buy one tomorrow,

To learn more about biochar, here is an interesting link supplied by Frank that anyone keen on this process would find enlightening. I think this is definitely the way of the future, a bright light among all the rubbish we see every day about renewable energy and electric cars. This has the potential to sequester huge amounts of Carbon, and even more importantly, prepare farm soil for the post oil era looming on the horizon.





Is eating no meat actually doing more harm than good?

18 05 2017

I spend more time on the internet arguing wih vegetarians/vegans than any other group of people……  I so wish they would get off their high horses and start supporting farmers who do the right thing…. and that goes for all you meat eaters out there who buy meat from supermarkets….  STOP IT!!

This opinion piece was originally published by Farmdrop on 4th May 2017.


The younger generation are positively redefining the way we see ourselves in relation to food and the environment.

I grew up in the late 1960s and so I consider myself a bit of a hippy. That decade marked a fundamental mind-set shift in the way people saw themselves in relation to the world. At the time, it was difficult to pinpoint where these ideas came from; many of them simply seemed to come through intuition.

I mention this because, for the first time since the late 1960s, I feel like another shift in consciousness is occurring among the younger generation, particularly amongst so called ‘millennials’.

There is a new field of scientific study called epigenetics which shows that all living organisms constantly interact with their external environment and that these influences can prompt changes in gene expression which can be passed down through the generations. Plants, for example, have epigenetic responses to the environment they grow in, as a result of which a plant may have a subtle difference in its genotype from its parents. Even more interestingly, certain epigenetic traits can stay dormant for several generations, only to find full expression at a later time.

So I suspect that the changing shift in consciousness towards food production and sustainability may actually be partly epigenetic. Perhaps the radical energy of the 1960s is now finding expression among millennials, albeit in a slightly different way.

For these reasons, as an organic farmer of almost 45 years, I have never been more optimistic about the future of farming. However, I am growing increasingly concerned about the large number of people turning to diets that may not necessarily be either healthy or sustainable.

If we are to move to a genuinely sustainable food system, then I think we all need to become much better informed about the sustainability or otherwise of different food systems. Only then we will be better placed to challenge the huge amounts of misinformation on so-called sustainable diets which are encouraging people to avoid all meats and animal products, despite the reality that in many (if not most climates and regions) it is difficult to farm in a truly sustainable way without livestock.

What is the problem with food and farming?

It has become a cliché but it’s true: supermarket food is not cheap and comes at a heavy price. The industrial application of nitrogen fertiliser has contaminated our water systems and atmosphere with dangerous nitrates; the subsidised production of fructose corn syrup has driven an increase in obesity and diabetes; and the excessive use of antibiotics in animals has caused a resistance to these drugs amongst humans.

The real problem is that none of the costs of all this damage is charged to the people who use it and, on the other hand, the positive effects of sustainable farming are not supported.

The current policy framework supports a dishonest economic food pricing system, as a result of which, the best business case is for farmers to grow using industrial methods and for retailers to buy the commodity products from industrial farms, process the hell out of them, package them so the consumer knows nothing about their backstory and then make a profit by turning that around.

So we need new incentives and disincentives, which ensure that the polluter pays and those who farm in a truly sustainable way are better rewarded for the benefits they deliver.

But what are the most sustainable farming methods?

There is no doubt that agriculture and farming is one of the most significant contributor towards climate change. Cutting back on the biggest pollutant (man-made fossil fuels) is very important but to actually reverse climate change – take CO2 out of the atmosphere – then we need to change the way we farm, particularly in relation to the way we look after the soil.

This is because organic matter in the soil is a store of carbon, thereby mitigating harmful emissions in the atmosphere. Britain’s soils store around 10 billion tonnes of carbon, which is more than total annual global emissions of carbon dioxide. Moreover, high levels of organic matter are also the basis for soil fertility, releasing nutrients for healthy plant growth and ultimately food. In other words, the amount of organic matter present in the soil is essential, both for combating climate change and ultimately improving our health.

The problem is that industrial farming methods have depleted organic matter in the soils. In the East of England, around 84% of the land’s carbon rich soil has been lost and continues to disappear at a rate of 1 to 2cm per year. That represents an enormous amount of CO2 released into the atmosphere.

Sustainable food systems are therefore about much more than simply avoiding nasty chemicals and antibiotics, they are about building organic matter in the soil through crop rotation and mixed farming practices.

It is possible for farmers to reduce the emissions from agriculture by re-introducing rotations in the way they use their land – introducing a grass and clover phase that builds soil organic matter, which is then grazed by ruminant animals on rotation, who fertilise the soil further, and results in an ability to grow healthy crops.

According to the International Panel on Climate Change, it is estimated that 89% of all agricultural emissions can be mitigated by improving carbon levels in the soil.

How can you have the most healthy and sustainable diet?

Everyone, at least in principle, wants to eat a healthy and sustainable diet, but we are all very confused about how to do it. If you asked 10 people what the most sustainable and healthy way to eat was then you would probably get 10 different answers. A few might say vegetarian or vegan (the numbers eating a vegan diet has increased by 360% in the last decade) but I think that a large scale switch towards vegetarianism may not necessarily be compatible with sustainability.

In my opinion, many people have been led astray by bad science. The tools used by scientific researchers in the past, and whose published papers have prompted changes in people’s diets, were not based on sound science. It was said that red meat and animal fats should be avoided, both because they are unhealthy and because ruminant animals (cows and sheep) are largely responsible for harmful methane emissions.

But it turns out that neither of those positions are necessarily true.

The study that prompted Governments in Britain and the United States to recommend people to reduce their intake of fats was not based on solid evidence. It is this study that encouraged the food industry to replace fats with added sugars, and we are only now understanding the damage these do to our health.

And the studies that recommended a reduction in red meat consumption on grounds of reducing its environmental impact only look at certain factors in isolation rather than the whole food system. Land-use is often considered as bad in all instances, even though raising livestock is sometimes the only productive land use option available. In roughly two thirds of the UK’s agricultural land area is grass and the only way we can turn that into a good soil that stores carbon and grows healthy crops is to have ruminant animals grazing on a rotation system to fertilise the ground.

These flawed assumptions have had significant consequences for the way people eat. Beef production has halved since the 1980s and the consumption of lamb, arguably the most sustainable grass-fed meat for the land, has plummeted. While new evidence is now showing that animals fats are good for our health and cattle grazed in the right way can actually reduce carbon emissions by creating fertile soils.

Where do we go from here?

My message is simple: a healthy diet should work backwards from the most sustainable way to farm, and that ideally means eating the foods produced by mixed farms using crop rotations which include a fertility building phase, usually of grass and clover grazed by cows and sheep, but also pastured pigs and poultry.

Industrial farming has been an extractive industry. We have dined out on the natural capital of the soil that previous generations have laid down for us. We need to fix that because the environment in which a plant or animal is produced goes a long way to determine its nutrient value when consumed by humans.





Beyond the Point of No Return

4 12 2016

Imminent Carbon Feedbacks Just Made the Stakes for Global Warming a Hell of a Lot Higher

Republished from Robert Scribbler’s excellent website……..

If EVER there was a need to start soil farming, this proves it beyond doubt.

“It’s fair to say we have passed the point of no return on global warming and we can’t reverse the effects, but certainly we can dampen them,” said biodiversity expert Dr. Thomas Crowther.

“I’m an optimist and still believe that it is not too late, but we urgently need to develop a global economy driven by sustainable energy sources and start using CO2, as a substrate, instead of a waste product.” — Prof Ivan Janssens, recognized as a godfather of the global ecology field.

“…we are at the most dangerous moment in the development of humanity. We now have the technology to destroy the planet on which we live, but have not yet developed the ability to escape it… we only have one planet, and we need to work together to protect it.” — Professor Stephen Hawking yesterday in The Guardian.

*****

The pathway for preventing catastrophic climate change just got a whole hell of a lot narrower.

For according to new, conservative estimates in a scientific study led by Dr. Thomas Crowther, increasing soil respiration alone is about to add between 0.45 and 0.71 parts per million of CO2 to the atmosphere every year between now and 2050.

(Thomas Crowther explains why rapidly reducing human greenhouse gas emissions is so important. Namely, you want to do everything you can to avoid a runaway into a hothouse environment that essentially occurs over just one Century. Video source: Netherlands Institute of Ecology.)

What this means is that even if all of human fossil fuel emissions stop, the Earth environment, from this single source, will generate about the same carbon emission as all of the world’s fossil fuel industry did during the middle of the 20th Century. And that, if human emissions do not stop, then the pace of global warming of the oceans, ice sheets, and atmosphere is set to accelerate in a runaway warming event over the next 85 years.

Global Warming Activates Soil Respiration Which Produces More CO2

This happens because as the world warms, carbon is baked out of previously inactive soils through a process known as respiration. As a basic explanation, micro-organisms called heterotrophs consume carbon in the soil and produce carbon dioxide as a bi-product. Warmth is required to fuel this process. And large sections of the world that were previously too cold to support large scale respiration and CO2 production by heterotrophs and other organisms are now warming up. The result is that places like Siberian Russia, Northern Europe, Canada, and Alaska are about to contribute a whole hell of a lot more CO2 (and methane) to the atmosphere than they did during the 20th Century.

When initial warming caused by fossil fuel burning pumps more carbon out of the global environment, we call this an amplifying feedback. It’s a critical climate tipping point when the global carbon system in the natural environment starts to run away from us.

Sadly, soil respiration is just one potential feedback mechanism that can produce added greenhouse gasses as the Earth warms. Warming oceans take in less carbon and are capable of producing their own carbon sources as they acidify and as methane seeps proliferate. Forests that burn due to heat and drought produce their own carbon sources. But increasing soil respiration, which has also been called the compost bomb, represents what is probably one of the most immediate and likely large sources of carbon feedback.

increase-in-carbon-dioxide-from-soils

(A new study finds that warming of 1 to 2 C by 2050 will increase soil respiration. The result is that between 30 and 55 billion tons of additional CO2 is likely to hit the Earth’s atmosphere over the next 35 years. Image source: Nature.)

And it is also worth noting that the study categorizes its own findings as conservative estimates. That the world could, as an outside risk, see as much as four times the amount of carbon feedback (or as much as 2.7 ppm of CO2 per year) coming from soil if respiration is more efficient and wide-ranging than expected. If a larger portion of the surface soil carbon in newly warmed regions becomes a part of the climate system as microbes activate.

Amplifying Feedbacks Starting to Happen Now

The study notes that it is most likely that about 0.45 parts per million of CO2 per year will be leached from mostly northern soils from the period of 2016 to 2050 under 1 C worth of global warming during the period. To this point, it’s worth noting that the world has already warmed by more than 1 C above preindustrial levels. So this amount of carbon feedback can already be considered locked in. The study finds that if the world continues to warm to 2 C by 2050 — which is likely to happen — then an average of around 0.71 parts per million of CO2 will be leached out of soils by respiration every year through 2050.

rates-of-soil-carbon-loss

(When soils lose carbon, it ends up in the atmosphere. According to a new study, soils around the world are starting to pump carbon dioxide into the atmosphere. This is caused by increased soil respiration as the Earth warms. Over the next 35 years, the amount of carbon dioxide being pumped out by the world’s soils is expected to dramatically increase. How much is determined by how warm the world becomes over the next 35 years. Image source: Nature.)

The upshot of this study is that amplifying carbon feedbacks from the Earth environment are probably starting to happen on a large scale now. And we may be seeing some evidence for this effect during 2016 as rates of atmospheric carbon dioxide accumulation are hitting above 3 parts per million per year for the second year in a row even as global rates of human emissions plateaued.

Beyond the Point of No Return

What this means is that the stakes for cutting human carbon emissions to zero as swiftly as possible just got a whole hell of a lot higher. If we fail to do this, we will easily be on track for 5-7 C or worse warming by the end of this Century. And this level of warming happening so soon and over so short a timeframe is an event that few, if any, current human civilizations are likely to survive. Furthermore, if we are to avoid terribly harmful warming over longer periods, we must not only rapidly transition to renewable energy sources. We must also somehow learn to pull carbon, on net, out of the atmosphere in rather high volumes.

Today, Professor Ivan Janssens of the University of Antwerp noted:

“This study is very important, because the response of soil carbon stocks to the ongoing warming, is one of the largest sources of uncertainty in our climate models. I’m an optimist and still believe that it is not too late, but we urgently need to develop a global economy driven by sustainable energy sources and start using CO2, as a substrate, instead of a waste product. If this happens by 2050, then we can avoid warming above 2C. If not, we will reach a point of no return and will probably exceed 5C.”

In other words, even the optimists at this time think that we are on the cusp of runaway catastrophic global warming. That the time to urgently act is now.

Links:

Quantifying Soil Carbon Losses in Response to Warming

Netherlands Institute of Ecology

Earth Warming to Climate Tipping Point

This is the Most Dangerous Time for Our Planet

Climate Change Escalating So Fast it is Beyond the Point of No Return

NOAA ESRL

Soil Respiration