The Third Industrial Revolution

21 08 2018

I belong to a degrowth group on facebook. The owner of this group posted a link to a youtube video titled “The Third Industrial Revolution: A Radical New Sharing Economy”. I downloaded it sight unseen so that I could watch it on my TV while it’s Jeremy_Rifkinpissing down with rain outside and I frankly have nothing else better to do……. luckily for those up North in terrible drought, we’ll be sending some your way next weekend. I’ve never liked Jeremy Rifkin’s crazy ideas, and had I realised he was the star attraction of this film, I probably would not have downloaded it in the first place, but having done so, and under the abovemnetioned weather conditions, I went ahead anyway……

The first half hour was for me the best part, because he clearly explains – with some crucial left out items – why we’re in deep shit. What really leaves me flumoxed is how someone who clearly understands thermodynamics and entropy cannot come to grips with their repercussions.

A ‘Third Industrial Revolution’ Would Seal Our Fate — Why Jeremy Rifkin is Dead Wrong

For me, it was extraordinarily hard to find where to start my criticism — not because of the lack of strength of his arguments, but simply because it is just plain hard to even know where to start! Explaining in the face of such universal ignorance of simple ecological limits and boundaries, and for such a long (1 3/4 hours) presentation, I fear I may ramble a bit during this difficult essay.

While I hope this post won’t offend anyone, I just think that some of us have to speak up to show him and his admirers that our generation blindly following his progressivist ideas  – at least not in its entirety – is almost as dumb as doing nothing at all…..

His ideas are not ‘radically new’. they are just a new version of the same old ‘more is better’ paradigm — more technology, more energy, more people, more jobs, more work, more impact, more control. He is after all a business man, and his main problem is that he simply doesn’t get the growth problem…. Maybe we have to try something that really is completely new:

Small is better. Simple is better. Local is better. Independent is better.

Less technology, less pollution, fewer cars (to be fair, he does say we’ll reduce the number of cars by 85%), fewer airplanes,  highways, fewer shopping malls, less noise, less trade, less work, less destruction, less disruption, less control, less worries… This doesn’t sound so bad after all, does it? But it is the complete opposite of what Rifkin has in mind for this world……

He makes it quite clear that in his ‘radically’ new economy, everything is smart. Smart phones, smart vehicles, smart roads and smart houses…..  he talks of retrofitting houses, which I know from experience does not work. Once you’ve built a lemon, a lemon it remains. That’s why I’m going through all the hassles of building my own…

There are serious concerns, expressed many times in this very blog, about the environmental impact that such changes would bring about. As far as we know it is highly unlikely that we have sufficient reserves of resources for producing so called “green/clean” technologies, on a global scale, good enough to replace the current, all-encompassing, fossil fuel-based system……

From what I saw in the video, there will be markets, corporations, stocks, products, consumers, factories, roads, cars, drones, workers, bosses, currency, more debts, taxes, laws — which all seems an awful lot like the system we currently have…. A truly ‘radical’ new economy would, surely, not see the exact same elements as its predecessor?

Rifkin forgets that there already was a “sharing economy”, usually referred to as ‘gift economy’ by anthropologists, and that this original sharing economy lasted for over 95% of our species’ two-hundred-thousand-years existence here on Earth. Ironically, this ancient economic system happens to be the closest to a sustainable form of economy that we have ever known. No resource was overexploited, no ecosystem disrupted and absolutely no pollution resulted….  and most of that was the result of infinitesimally smaller population numbers.

While it’s obvious Rifkin has some understanding of science, he remains an economist after all! Here are some of his failings as I see them…..

Chemistry

Chemistry matters because when we look at the periodic table of elements, we see all there is in our world. In the whole Universe actually… There are only 118 elements available to us. And we will never find replacements for those elements, they simply do not exist…… Of increasing interest are 17 different Rare Earth Elements (REE’s), elements 57–71 (the lanthanides) and scandium and yttrium, most of which are used to create solar panels, batteries, magnets, displays and touchscreens, hardware and other advanced technological appliances.

Figure 1. Slide by Alicia Valero showing that almost the entire periodic table of elements is used for computers.

To obtain them we have to rape and pillage the biosphere. This puts us into a predicament that Rifkin fails to address.  Those elements are used because of their unique and desirable qualities, such as the ability to absorb certain wavelengths (particularly efficient in the case of solar panels), produce strong magnets for the massive generators used in wind turbines, and colorful lights for the displays of our mobile phones, computers and TV’s.

Of the 17 REE’s, the only one that is not found in smartphones is the radioactive promethium! I guess the line is drawn at putting radioactive stuff to one’s ear….. Modern smartphones contain almost three quarters of all the elements in the periodic table, and all of them are essential for those devices to function. It is chemically not possible to create something like a smartphone without certain elements; and it is impossible to obtain those elements without destroying vast swaths of the already battered environment.

Geology

From a geological point of view Rifkin’s plans are highly unlikely. We simply don’t have enough resources left to do any of his proposed ‘revolutions’ in the realms of energy and communication.

Biology

Overshoot is what happens when a species follows simple biological laws: if you increase the food availability of any species, its population will increase, period. This is what we humans have done for the past 10,000 years, since the widespread adoption of agriculture. As a result of the food surplus that industrial agriculture creates (as opposed to the “just-enough” food quantity obtained by foragers), human population exploded. The biggest increase in human population was directly caused by the “Green” Revolution, when fossil fuelled chemical fertilizers, pesticides and herbicides were first used on a continental scale. It was like agriculture on steroids…..

I didn’t realise Rifkin was a vegetarian/vegan activist until watching this. He yet again displays his ignorance of the difference between industrial animal husbandry and regenerative agriculture, which, in my not so humble opinion, will be the third revolution…. Maybe someone needs to invent smart cows! Just kidding…….

The fact that Rifkin fails to adequately address overpopulation is reason enough for me to question his competence.

Ecology

Ecosystems function best and are at their most stable, resilient and effective when all components stay within their naturally imposed limits. From an ecological view, anthropocentrism has no foundation whatsoever. Instead of controlling our environment, we would have to let go of all control and hand the reins back to Mother Nature…… Ecosystems are networks (Rifkin, fond of technological and digital metaphors, would probably call them an ‘Internet’!) that seem resilient even when they suffer severe damage. But once a ‘tipping point’ is reached, like human overshoot, collapse is rapid and ruthless. The first of those tipping points might be reached as soon as the 2020’s mark, with increasingly extreme weather events threatening breadbasket regions around the world. Rifkin’s assertion that we have forty years to fix the mess just blew me away…..

Like it or not, we are inevitably a part of the ecosystem surrounding us, whether we act like it or not. Everything we do – and nothing we do is sustainable – has a direct impact on our immediate environment. Thanks to globalization, ecosystems are now impacted on a global scale.

The extraction and processing of REM’s needed to produce all our technology is directlysamarco connected to the destruction of ecosystems all around the globe. Several major ecological catastrophes were directly caused by the mining and extraction of REE’s, such as the Samarco tailings dam collapse (2015) in Brazil or the silicon tetrachloride spill by a solar energy company in Henan province, China (2008). As implied by  recent, peer reviewed study (paywall) in the prestigious journal Nature, there is no reason to believe that this risk is going to decrease if global demand rises as predicted by all involved scholars and institutions.

Green Clean Smart technology

It should be obvious by now, especially to all followers of this blog, that neither solar panels, wind turbines, hydroelectric facilities, and electric cars, nor smartphones, computers and other high-tech gadgets come even close to being what might be termed “green” or “clean”. But what Rifkin proposes is nothing short of megalomania.

Smartphones (smart vehicles, smart roads, smart houses, smart toilets and any other ‘smart’ gadget), computers, televisions, electric cars, wind turbines, solar panels, lasers, camera lenses, missiles and numerous other technologies all contain a broad spectrum of rare earth elements (REE’s), without which the production of those gadgets would be utterly impossible (strictly chemically speaking). The production and use of ‘screens’ technology alone, according to Jancovici, consumes one third of all the electricity produced worldwide….. The growth of renewables cannot even keep up with the growth of the internet.

Rifkin makes much ado about a meeting he had with Angela Merkel – herself a scientist – and the amount of renewable energy deployed in Germany, claiming Germany gets 30% of its electricity from these technologies. This isn’t even true…. it might be correct on paper, and on perfect days even more might be generated, but his hopium filled rhetoric would have you believe his dream is already happening…..  it isn’t. The recent demolition of a historic church to clear the way for the expansion of an open-cast brown coal mine has outraged locals in western Germany and environmentalists, as politicians moot giving up their own clean energy targets…….

Many of the minerals needed to produce smartphones and electric vehicles are considered ‘conflict minerals’ and are mined under slave-like conditions in Congo and other ‘undeveloped’ countries. The most common conflict minerals, cassiterite (a byproduct of tin mining), wolframite (extracted from tungsten), coltan (extracted from tantalum), cobalt, and gold ore, are all mined in eastern Congo. There is ample evidence to assume that Western corporations have a high economic interest in the region remaining unstable, since they get much better prices for the minerals desperately needed for the production of mobile phones, laptops, and other digital technology

It is impossible to produce even a single smartphone without causing enormous damage to the biosphere in the process. As the graphic above shows (click on it for a larger view), the materials and compounds come from all corners of the world and have to be transported conveniently and cheaply for the industry to continue to function properly and profitably. Container vessels are the backbone of the global economy, and without them nothing would function. They can’t be replaced with anything “renewable”, since no electric engine has as yet been invented that can move such masses over distances longer than 80km!!  The 16 biggest container ships (out of a total of about 100,000 vessels) produce as much pollution as all the cars in the world….

In case you’ve never heard this before, the shipping lobby works hard to hide and downplay their impact on climate breakdown from the public.  The UN body that polices the world’s shipping business, the International Maritime Organization (IMO), has been absent without leave when it comes to avoiding or even addressing pollution caused by those ships.  By international law, nobody is allowed to burn the thick, sulphur-laden fuel  called bunker oil,  yet the shipping industry does not have to comply with that law. And sulphur is far from being the only pollutant. Every year it is estimated that container vessels belch out one billion tons of CO2 , as much as the entire aviation industry……. click on image for larger view.

Deindustrialise or perish

When we take a careful look at our species’ short history, it becomes obvious in which direction we must go. We got along quite well before people started thinking that they were better than other creatures, and better than their fellow men, the new mindset that emerged after the Agricultural Revolution……..entropy

If we want to stop pathological behavior, pollution, destruction, violence, chronic depression and mental health problems, discontent, and exploitation, if we want to share real things, communicate meaningfully, live in harmony with the biosphere, and nurture the world around us, we have to recognize our true Nature:  The Nature within us, the Wilderness that still lays deep in our heart, and the Nature and the Wilderness that are still around us, the biosphere, at the edges of the wastelands we’ve created and in between the cracks in the asphalt and the concrete we’ve coated the living Earth with, and that they are actually the same.

Advertisements




Solving secondary problems first

10 08 2018

Can you run a self-driving car on a desert island?

Of course not: There are no roads; and there is no fuel for the car.

Why do I mention this?  Because the received narrative around climate change and so-called “peak oil demand” is that new technologies like electric self-driving cars are going to ride to our rescue in the near future.  This is a nice fantasy; but I would draw your attention to the fact that while we still have roads, along with much of our infrastructure they are falling apart through neglect.  Without the enabling infrastructure, the proposed new technologies are going nowhere.

Energy, meanwhile, is a far greater problem.  Globally (remember most of the food we eat and the goods we buy are imported) 86 percent of our energy comes from fossil fuels – down just one percent from 1995.  Renewable energy accounts for nearly 10 percent; but most of this is from hydroelectric dams and wood burning.  The modern renewables – solar, wind, geothermal, wave, tidal, and ocean energy – that so many people imagine are going to save the day account for just 1.5 percent of the energy we use.

Modern renewables are a kind of Schrodinger’s energy because they are simultaneously replacements for (some of) the fossil fuel that we are currently using and the additional energy to power all of the new technologies that are going to save the day.  And rather like the benighted feline in Schrodinger’s experiment, so long as nobody actually looks at the evidence, they can continue to fulfil both roles.

Given the potentially catastrophic consequences of not having sufficient energy to continue growing our economy, it is psychologically discomforting even to ask why energy costs are spiralling upward around the world, and why formerly energy independent countries are resorting to difficult, expensive and environmentally toxic fuel sources like hydraulically fractured shale or strip mined bitumen sands.  This, perhaps, explains why so many people focus their attention on solving second order problems – something psychologists refer to as a “displacement activity.”

An example of this appeared in today’s news in the shape of an Australian attempt to revive hydrogen-powered cars.  In theory, hydrogen (which only exists in compounds in nature) is superior to (far less abundant) lithium ion batteries as a store of energy to power electric vehicles.  Crucially, unlike battery-powered electric vehicles, hydrogen cell electric vehicles do not need to be recharged, but can be refuelled in roughly the same time as it takes to refuel a petroleum vehicle.  And, of course, hydrogen vehicles do not require tax payers and energy consumers to foot the bill for the upgrade of the electricity grid needed for battery-powered cars.

hydrogen car

The drawback with hydrogen is that it is difficult to store.  Because hydrogen is the smallest atom, it can gradually corrode and seep out of any container; especially if it is compressed into liquid form.  It is this problem that the Australian researchers appear to have solved.  Using a new technology, they have been able to store hydrogen as ammonia, and then convert it back to hydrogen to fuel their cars.  As Lexy Hamilton-Smith at ABC News reports:

“For the past decade, researchers have worked on producing ultra-high purity hydrogen using a unique membrane technology.

“The membrane breakthrough will allow hydrogen to be safely transported and used as a mass production energy source.”

Unlike batteries, which have only succeeded imperfectly at replacing lightweight vehicles, hydrogen is already used around the world to power much heavier vehicles:

“Hydrogen powered vehicles, including buses, trucks, trains, forklifts as well as passenger cars are being manufactured by leading automotive companies and deployed worldwide as part of their efforts to decarbonise the transport sector.”

Step back for a moment and you will see that this is, indeed, a displacement activity.  Insofar as humans are currently imagining a far more electrified world, then there is a competition to be won on the best form of energy storage.  And there are good reasons for believing that hydrogen is a more versatile battery than lithium ion (which also has a tendency to burst into flames if not stored properly).  However, this competition is predicated on the highly unlikely possibility of our having a large volume of excess energy in future.

Currently, almost all of the hydrogen we use is obtained by chemically separating it out of natural gas.  Using electrolysis to separate hydrogen out of water is simply too expensive by comparison.  But gas reserves are shrinking (which is why fracking is being promoted) and are already required for agriculture, chemicals, for heating and cooking, and for generating much of the electricity that used to come from coal.  Given the Herculean efforts that were required to install the modern renewables that generate just 1.5 percent of our energy, the idea that these are about to deliver enough excess capacity to allow the production of hydrogen from water is fanciful at best.

And that’s the problem.  Until we can secure a growing energy supply both hydrogen and lithium ion cars are going to end up on a global desert island.  One where there is insufficient power and unrepaired infrastructure.  To make matters worse, climate change dictates that the additional power we need in future cannot come from the fuels that currently provide us with 86 percent of our energy.  And, of course, whatever we end up substituting for fossil fuels will have to provide sufficiently cheap energy that the population doesn’t rise up and produce something a great deal worse than Brexit or Donald Trump.





More on Nickel Iron batteries….

24 07 2018

You read a lot of rubbish on the internet about batteries. It’s usually written by people who have very little experience with them too… for instance…:

The BIG reason to NOT buy NiFe batteries is they are incredibly expensive, they are charging you 9x the price of a lead acid and guarantying you only 5x the life. 

In reality, a Nickel Iron battery costs about double the price of a good Lead Acid battery. For example, a 12V, 300Ah Giant Power Sealed AGM Lead Acid Battery cost $669.00 online. This battery is rated at 1,850 cycles @ 30% DOD, which is 5 years. A comparable Nickel Iron Battery would be an Ironcore 12V, 200Ah battery rated at 7200+ cycles, which is 20+ years. This battery will cost you $1480.00……  and in reality give you more capacity than the above. It’s difficult to make a proper comparison, because in truth we’re comparing apples with oranges here….

So, if you are off grid and using your battery everyday, over a 20 years period you would have to replace that lead acid battery bank 4 times, and maybe 5 times….. With Nickel Iron you will never have to replace the battery, so over a 20 or more year period, you would have definitely saved money. More importantly, there will come a time it will be impossible to even replace the batteries!

NiFe batteries are VERY inefficient, which means a significant fraction of the energy you put in, does not get stored, something like around 25%. 

I am going to break this down into 2 parts. First, we are going to talk about Nickel Iron Battery efficiency, and then we will talk about Lead Acid Battery efficiency.

Nickel Iron Batteries are about 75% Efficient. The cells have been tested at the National Renewable Energy Laboratory, and below are the results. Overall at normal temps, they out performed their rated capacity between 75-80% efficiency.

Lead Acid Battery Efficiency – Below is a link to the Sandia National Laboratories results on Lead Acid Battery Efficiency. According to this document, they found out that when you are only using the top 20-30% of a battery, it really only has a charge efficiency of 55%.

http://ironedison.com/images/Spec%20Sheets/Test%20Results/Sandia%20Labs%20Lead%20Acid%20Efficiency%20Test.pdf

So after looking at the actual data – the nickel iron battery is more efficient than a lead acid battery in daily off-grid charging, because you can discharge them as much as you like, and as often as you like without causing any damage whatever…. living with NiFe batteries is a completely different mindset that took me ages to get used to!

They are VERY VERY gassy, that is why there is such a huge head space on them to hold SO MUCH extra water, which MUST be distilled water ONLY. 

Nickel Iron Batteries do off-gas a little more than a lead acid battery, but this is because of the differences in the batteries’ chemistry. Both a wet lead acid and nickel iron battery require to be put in a battery box and I recommend using a vent fan or a whirly bird or two as I did in my container station.

The Nickel Iron Battery produces hydrogen when the battery pushes the oxygen from the water molecule to increase the oxygen concentration on the nickel plate. The head space is not huge on a nickel iron battery, but you do want an area for the electrolyte so you are not having to fill the battery with distilled water all the time. In my experience, I have to top my batteries up three times a year which takes about 20 minutes… 1 minute per cell.

A wet lead acid battery produces hydrogen through inefficient charging, when the electricity not used from charging is spent on splitting a water atom.

Both a wet Lead acid battery and Nickel Iron Battery use distilled water only. A sealed lead acid battery does not need water and does not off-gas, but has a much shorter shorter life if cycled everyday…..  or even if not cycled every day. I had sealed lead acid batteries in Cooran that were floated all day long that lasted just long enough to go out of warranty which was two years! A friend of mine in Queensland bought better quality ones that lasted six years….

They have a high rate of self discharge, so if you just leave them there, they can loose 10% or more of their charge PER DAY.

I reality, Nickel Iron Batteries have a 1% self discharge rate. If you are wanting a battery that will just sit there and not be used, then you might want a sealed lead acid battery. Sealed lead acid batteries are good for people that are not using their battery and want it to just sit there and hold its power in case the power goes out once a year or so…. personally, I think that’s a waste of time money and resources, last time I did this the batteries lasted just two years….

If you plan on using your battery every day, it really does not matter if it discharges 1%, because you are going to charge up the battery and use the batteries power next day. In my experience, that overnight loss is regained in the first twenty minutes after sunrise, so it’s a non argument……

edison EV

Thomas Edison with early EV

Of late, I have been thinking more and more about an eventual conversion of my trusty 4WD Bravo to electric drive. Never forget that NiFe batteries were originally invented for the very purpose of driving electric cars at the turn of the 20th Century……

Ironcore, from whom I bought the powerstation’s battery bank, sell 12V 10Ah batteries (actually 10 x 1.2V cells connected together) for $270. To achieve 120V por motor power, I’d need 10 of those giving me a capacity of 120V x 10 Ah = 1.2kWh or barely what’s in a litre of petrol! The old ute would go about 10km on that amount of fuel, but as electric motors are twice as efficient (or more) than ICE’s, it’s more likely it would go 20km. Furthermore, because NiFe batteries can be discharged far more than other types, it’s possible the ute would actually go farther, but of course that’s hard to predict…

Image result for 12V ironcore battery

10 of these connected together make a 12V battery

By having two such banks in parallel would double the range, which is probably about as far as I would need to go, especially after everything’s shut down from lack of fuel! Gathering firewood would almost certainly be its biggest task, and the forest is not very far away at all.

Out of the blue, an article about enthusiasts like me converting ICE cars to electric drives came up on out ABC internet website, which is what prompted me to write this while spending time in Queensland, supporting my better half looking after her 94 year old mother while the Tasmanian winter weather does its thing…. and the prime subject of these conversions is a ute, though unfortunately, while the batteries are mentioned, they are not shown, so I have no idea what this guy used… there’s a video at the link.

http://www.abc.net.au/news/2018-07-24/make-your-own-electric-car/9918964





The physics of energy and resulting effects on economics

10 07 2018

Hat tip to one of the many commenters on DTM for pointing me to this excellent video…. I have featured Jean-Marc Jancovici’s work here before, but this one’s shorter, and even though it’s in French, English subtitles are available from the settings section on the toutube screen. Speaking of screens, one of the outstanding statements made in this video is that all electronics in the world that use screens in one way or another consume one third of the world’s electricity…….. Remember how the growth in renewables could not even keep up with the Internet’s growth?

If this doesn’t convince viewers that we have to change the way we do EVERYTHING, then nothing will….. and seeing as he’s presenting to politicians, let’s hope at least some of them will come out of this better informed……

Jean-Marc Jancovici, a French engineer schools politicians with a sobering lecture on the physics of energy and the effects on economics and climate change





John Michael Greer: False Promises

16 05 2018





Not so renewables

12 05 2018

Lifted from the excellent consciousness of sheep blog…..

For all practical purposes, solar energy (along with the wind, waves and tides that it drives) is unending.  Or, to put it more starkly, the odds of human beings being around to witness the day when solar energy no longer exists are staggeringly low.  The same, of course, cannot be said for the technologies that humans have developed to harvest this energy.  Indeed, the term “renewable” is among the greatest PR confidence tricks ever to be played upon an unsuspecting public, since solar panels and wind (and tidal and wave) turbines are very much a product of and dependent upon the fossil carbon economy.

Until now, this inconvenient truth has not been seen as a problem because our attention has been focussed upon the need to lower our dependency on fossil carbon fuels (coal, gas and oil).  In developed states like Germany, the UK and some of the states within the USA, wind and solar power have reduced the consumption of coal-generated electricity.  However, the impact of so-called renewables on global energy consumption remains negligible; accounting for less than three percent of total energy consumption worldwide.

A bigger problem may, however, be looming as a result of the lack of renewability of the renewable energy technologies themselves.  This is because solar panels and wind turbines do not follow the principles of the emerging “circular economy” model in which products are meant to be largely reusable, if not entirely renewable.

dead turbine

According to proponents of the circular economy model such as the Ellen MacArthur Foundation, the old fossil carbon economy is based on a linear process in which raw materials and energy are used to manufacture goods that are used and then discarded:

 

This approach may have been acceptable a century ago when there were less than two billion humans on the planet and when consumption was largely limited to food and clothing.  However, as the population increased, mass consumption took off and the impact of our activities on the environment became increasingly obvious, it became clear that there is no “away” where we can dispose of all of our unwanted waste.  The result was the shift to what was optimistically referred to as “recycling.”  However, most of what we call recycling today is actually “down-cycling” – converting relatively high value goods into relatively low value materials:

 

The problem with this approach is that the cost of separating small volumes of high-value materials (such as the gold in electrical circuits) is far higher than the cost of mining and refining them from scratch.  As a result, most recycling involves the recovery of large volumes of relatively low value materials like aluminium, steel and PET plastic.  The remainder of the waste stream ends up in landfill or, in the case of toxic and hazardous products in special storage facilities.

In a circular economy, products would be designed as far as possible to be reused, bring them closer to what might realistically be called “renewable” – allowing that the second law of thermodynamics traps us into producing some waste irrespective of what we do:

 

Contrary to the “renewables” label, it turns out that solar panels and wind turbines are anything but.  They are dependent upon raw resources and fossil carbon fuels in their manufacture and, until recently, little thought had been put into how to dispose of them at the end of their working lives.  Since both wind turbines and solar panels contain hazardous materials, they cannot simply be dumped in landfill.  However, their composition makes them – at least for now – unsuited to the down-cycling processes employed by commercial recycling facilities.

While solar panels have more hazardous materials than wind turbines, they may prove to be more amenable to down-cycling, since the process of dismantling a solar panel is at least technically possible.  With wind turbines it is a different matter, as Alex Reichmuth at Basler Zeitung notes:

“The German Wind Energy Association estimates that by 2023 around 14,000 MW of installed capacity will lose production, which is more than a quarter of German wind power capacity on land. How many plants actually go off the grid depends on the future electricity price. If this remains as deep as it is today, more plants could be shut down than newly built.

“However, the dismantling of wind turbines is not without its pitfalls. Today, old plants can still be sold with profit to other parts of the world, such as Eastern Europe, Russia or North Africa, where they will continue to be used. But the supply of well-maintained old facilities is rising and should soon surpass demand. Then only the dismantling of plants remains…

“Although the material of steel parts or copper pipes is very good recyclable. However, one problem is the rotor blades, which consist of a mixture of glass and carbon fibers and are glued with polyester resins.”

According to Reichmuth, even incinerating the rotor blades will cause problems because this will block the filters used in waste incineration plants to prevent toxins being discharged into the atmosphere.  However, the removal of the concrete and steel bases on which the turbines stand may prove to be the bigger economic headache:

“In a large plant, this base can quickly cover more than 3,000 tons of reinforced concrete and often reach more than twenty meters deep into the ground… The complete removal of the concrete base can quickly cost hundreds of thousands of euros.”

It is this economic issue that is likely to scupper attempts to develop a solar panel recycling industry.  In a recent paper in the International Journal of Photoenergy, D’Adamo et. al. conclude that while technically possible, current recycling processes are too expensive to be commercially viable.  As Nate Berg at Ensia explains:

“Part of the problem is that solar panels are complicated to recycle. They’re made of many materials, some hazardous, and assembled with adhesives and sealants that make breaking them apart challenging.

“’The longevity of these panels, the way they’re put together and how they make them make it inherently difficult to, to use a term, de-manufacture,’ says Mark Robards, director of special projects for ECS Refining, one of the largest electronics recyclers in the U.S. The panels are torn apart mechanically and broken down with acids to separate out the crystalline silicon, the semiconducting material used by most photovoltaic manufacturers. Heat systems are used to burn up the adhesives that bind them to their armatures, and acidic hydro-metallurgical systems are used to separate precious metals.

“Robards says nearly 75 percent of the material that gets separated out is glass, which is easy to recycle into new products but also has a very low resale value…”

Ironically, manufacturers’ efforts to drive down the price of solar panels make recycling them even more difficult by reducing the amount of expensive materials like silver and copper for which there is demand in recycling.

In Europe, regulations for the disposal of electrical waste were amended in 2012 to incorporate solar panels.  This means that the cost of disposing used solar panels rests with the manufacturer.  No such legislation exists elsewhere.  Nor is it clear whether those costs will be absorbed by the manufacturer or passed on to consumers.

Since only the oldest solar panels and wind turbines have to be disposed of at present, it might be that someone will figure out how to streamline the down-cycling process.  As far more systems come to the end of their life in the next decade, volume may help drive down costs.  However, we cannot bank on this.  The energy and materials required to dismantle these technologies may well prove more expensive than the value of the recovered materials.  As Kelly Pickerel at Solar Power World concedes:

“System owners recycle their panels in Europe because they are required to. Panel recycling in an unregulated market (like the United States) will only work if there is value in the product. The International Renewable Energy Agency (IRENA) detailed solar panel compositions in a 2016 report and found that c-Si modules contained about 76% glass, 10% polymer (encapsulant and backsheet), 8% aluminum (mostly the frame), 5% silicon, 1% copper and less than 0.1% of silver, tin and lead. As new technologies are adopted, the percentage of glass is expected to increase while aluminum and polymers will decrease, most likely because of dual-glass bifacial designs and frameless models.

“CIGS thin-film modules are composed of 89% glass, 7% aluminum and 4% polymers. The small percentages of semiconductors and other metals include copper, indium, gallium and selenium. CdTe thin-film is about 97% glass and 3% polymer, with other metals including nickel, zinc, tin and cadmium telluride.

“There’s just not a large amount of money-making salvageable parts on any type of solar panel. That’s why regulations have made such a difference in Europe.”

Ultimately, even down-cycling these supposedly “renewable” technologies will require state intervention.  Or, to put it another way, the public – either as consumers or taxpayers – are going to have to pick up the tab in the same way as they are currently subsidising fossil carbon fuels and nuclear.  The question that the proponents of these technologies dare not ask, is how far electorates are prepared to put up with these increasing costs before they turn to politicians out of the Donald Trump/ Malcolm Turnbull stable who promise the cheapest energy irrespective of its environmental impact.





Who killed the electric car…….

28 11 2017

Anyone who’s seen the film (I still have a DVD of it lying around somewhere…) by the name “Who killed the electric car” will remember the outrage of the ‘owners’ (they were all only leasing the vehicles) when GM destroyed the cars they thought were working perfectly well.  The problem was, the EV1 was an experiment. It was an experiment in technology and economics, and by the time the leases ran out, all the batteries needed replacing, and GM weren’t about to do that, because the replacement cost was higher than the value of the vehicles. Never let economics get in the way of a good story…. nor profit!

Anyhow, here is another well researched article Alice Fridemann pointed me to regarding the senseless travesty of the big switch to EVs…..  It’s just too little too late, and we have the laws of physics to contend with.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

alice_friedemannThe battery did it.  Batteries are far too expensive for the average consumer, $600-$1700 per kwh (Service). And they aren’t likely to get better any time soon.  Sorry to ruin the suspense so quickly, guess I’ll never be a mystery writer.

The big advances in battery technology happen rarely. It’s been more than 200 years and we have maybe 5 different successful rechargeable batteries,” said George Blomgren, a former senior technology researcher at Eveready (Borenstein).

And yet hope springs eternal. A better battery is always just around the corner:

  • 1901: “A large number of people … are looking forward to a revolution in the generating power of storage batteries, and it is the opinion of many that the long-looked-for, light weight, high capacity battery will soon be discovered.” (Hiscox)
  • 1901: “Demand for a proper automobile storage battery is so crying that it soon must result in the appearance of the desired accumulator [battery]. Everywhere in the history of industrial progress, invention has followed close in the wake of necessity” (Electrical Review #38. May 11, 1901. McGraw-Hill)
  • 1974: “The consensus among EV proponents and major battery manufacturers is that a high-energy, high power-density battery – a true breakthrough in electrochemistry – could be accomplished in just 5 years” (Machine Design).
  • 2014 internet search “battery breakthrough” gets 7,710,000 results, including:  Secretive Company Claims Battery Breakthrough, ‘Holy Grail’ of Battery Design Achieved, Stanford breakthrough might triple battery life, A Battery That ‘Breathes’ Could Power Next-Gen Electric Vehicles, 8 Potential EV and Hybrid Battery Breakthroughs.

So is an electric car:

  • 1911: The New York Times declares that the electric car “has long been recognized as the ideal solution” because it “is cleaner and quieter” and “much more economical.”(NYT 1911)
  • 1915: The Washington Post writes that “prices on electric cars will continue to drop until they are within reach of the average family.”(WP 1915)
  • 1959: The New York Times reports that the “Old electric may be the car of tomorrow.” The story said that electric cars were making a comeback because “gasoline is expensive today, principally because it is so heavily taxed, while electricity is far cheaper” than it was back in the 1920s (Ingraham 1959)
  • 1967: The Los Angeles Times says that American Motors Corporation is on the verge of producing an electric car, the Amitron, to be powered by lithium batteries capable of holding 330 watt-hours per kilogram. (That’s more than two times as much as the energy density of modern lithium-ion batteries.) Backers of the Amitron said, “We don’t see a major obstacle in technology. It’s just a matter of time.” (Thomas 1967)
  • 1979: The Washington Post reports that General Motors has found “a breakthrough in batteries” that “now makes electric cars commercially practical.” The new zinc-nickel oxide batteries will provide the “100-mile range that General Motors executives believe is necessary to successfully sell electric vehicles to the public.”(Knight, J. September 26, 1979. GM Unveils electric car, New battery. Washington Post, D7.
  • 1980: In an opinion piece, the Washington Post avers that “practical electric cars can be built in the near future.” By 2000, the average family would own cars, predicted the Post, “tailored for the purpose for which they are most often used.” It went on to say that “in this new kind of car fleet, the electric vehicle could pay a big role—especially as delivery trucks and two-passenger urban commuter cars. With an aggressive production effort, they might save 1 million barrels of oil a day by the turn of the century.” (WP 1980)

Lithium-ion batteries appear to be the winner for all-electric cars given Elon Musk’s new $5 billion dollar li-ion battery factory in Nevada. Yet Li-ion batteries have a very short cycling life of 5 to 10 years (depending on how the car is driven), and then they’re at just 70% of initial capacity, which is too low to drive, and if a driver persists despite the degraded performance, eventually the batteries will go down to 50% of capacity, a certain end-of-life for li-ion (ADEME).

One reason people are so keen on electric cars is because they cost less to fuel.  But if electricity were $0.10 per kWh, to fill up a 53 kWh Tesla battery takes about 4 hours and costs $5.30. 30 days times $5.30 is $159. I can fill up my gas tank in a few minutes for under $40.  I drive about 15 miles a day and can go 400 miles per fill up, so I only get gas about once a month.  I’d have to drive 60 miles a day to run the cost up to $159. If your electricity costs less than ten cents, it won’t always.  Shale gas is a one-time-only temporary boom that probably ends around 2020.  Got a dinkier battery than the Tesla but go 80 miles or less at most?  Most people won’t consider buying an electric car until they go 200 miles or more.

So why isn’t there a better battery yet?

The lead-acid battery hasn’t changed much since it was invented in 1859. It’s hard to invent new kinds of batteries or even improve existing ones, because although a battery looks simple, inside it’s a churning chaos of complex electrochemistry as the battery goes between being charged and discharged many times.

Charging and recharging are hard on a battery. Recharging is supposed to put Humpty Dumpty back together again, but over time the metals, liquids, gels, chemicals, and solids inside clog, corrode, crack, crystallize, become impure, leak, and break down.

A battery is like a football player, with increasing injuries and concussions over the season. An ideal battery would be alive, able to self-heal, secrete impurities, and recover from abuse.

The number of elements in the periodic table (118) is limited. Only a few have the best electron properties (like lithium), and others can be ruled out because they’re radioactive (39), rare earth and platinum group metals (23), inert noble gases (6), or should be ruled out: toxic (i.e. cadmium, cobalt, mercury, arsenic), hard to recycle, scarce, or expensive.

There are many properties an ideal Energy Storage device would have:

  1. Small and light-weight to give vehicles a longer range
  2. High energy density like oil (energy stored per unit of weight)
  3. Recharge fast, tolerant of overcharge, undercharging, and over-discharge
  4. Store a lot of energy
  5. High power density, deliver a lot of power quickly
  6. Be rechargeable thousands of times while retaining 80% of their storage capacity
  7. Reliable and robust
  8. A long life, at least 10 years for a vehicle battery
  9. Made from very inexpensive, common, sustainable, recyclable materials
  10. Deliver power for a long time
  11. Won’t explode or catch on fire
  12. Long shelf life for times when not being used
  13. Perform well in low and high temperatures
  14. Able to tolerate vibration, shaking, and shocks
  15. Not use toxic materials during manufacture or in the battery itself
  16. Take very little energy to make from cradle-to-grave
  17. Need minimal to no maintenance

For example, in the real world, these are the priorities for heavy-duty hybrid trucks (NRC 2008):

  1. High Volumetric Energy Density (energy per unit volume)
  2. High Gravimetric Energy Density (energy per unit of weight, Specific Energy)
  3. High Volumetric Power Density (power per unit of volume)
  4. High Gravimetric Power Density (power per unit of weight, Specific Power)
  5. Low purchase cost
  6. Low operating cost
  7. Low recycling cost
  8. Long useful life
  9. Long shelf life
  10. Minimal maintenance
  11. High level of safety in collisions and rollover accidents
  12. High level of safety during charging
  13. Ease of charging method
  14. Minimal charging time
  15. Storable and operable at normal and extreme ambient temperatures
  16. High number of charge-discharge cycles, regardless of the depth of discharge
  17. Minimal environmental concerns during manufacturing, useful life, and recycling or disposal

Pick Any Two

In the real world, you can’t have all of the above. It’s like the sign “Pick any two: Fast (expensive), Cheap (crappy), or Good (slow)”.

So many different properties are demanded that “This is like wanting a car that has the power of a Corvette, the fuel efficiency of a Chevy Malibu, and the price tag of a Chevy Spark. This is hard to do. No one battery delivers both high power and high energy, at least not very well or for very long,” according to Dr. Jud Virden at the Pacific Northwest National Laboratory (House 114-18 2015).

You always give up something. Battery chemistry is complex. Anode, cathode, electrolyte, and membrane separators materials must all work together. Tweak any one of these materials and the battery might not work anymore. You get higher energy densities from reactive, less stable chemicals that often result in non-rechargeable batteries, are susceptible to impurities, catch on fire, and so on. Storing more energy might lower the voltage, a fast recharge shorten the lifespan.

You have to optimize many different things at the same time,” says Venkat Srinivasan, a transportation battery expert at Lawrence Berkeley National Laboratory in California. “It’s a hard, hard problem” (Service).

Conflicting demands. The main job of a battery is to store energy. Trying to make them discharge a lot of power quickly may be impossible. “If you want high storage, you can’t get high power,” said M. Stanley Whittingham, director of the Northeast Center for Chemical Energy Storage. “People are expecting more than what’s possible.”

Battery testing takes time. Every time a change is made the individual cells, then modules, then overall pack is tested for one cycle and again for 50 cycles for voltage, current, cycle life (number of recharges), Ragone plot (energy and power density), charge and discharge time, self-discharge, safety (heat, vibration, external short circuit, overcharge, forced discharge, etc.) and many other parameters.

Batteries deteriorate.  The more deeply you discharge a battery, the more often you charge/recharge it (cycles), or the car is exposed to below freezing or above 77 degree temperatures, the shorter the life of the battery will be. Even doing nothing shortens battery life: Li-ion batteries lose charge when idle, so an old, unused battery will last less long than a new one.  Tesla engineers expect the power of the car’s battery pack to degrade by as much as 30% in five years (Smil). [ED. the exception of course being Nickel Iron batteries….. but they are not really suitable for EVs, even if that’s what they were originally invented for]

Batteries are limited by the physical laws of the universe.  Lithium-ion batteries are getting close to theirs.  According to materials scientist George Crabtree of Argonne National Laboratory, li-ion batteries are approaching their basic electrochemical limits of density of energy they can store. “If you really want electric cars to compete with gasoline, you’re going to need the next generation of batteries.” Rachid Yazami of Nanyang Technological University in Singapore says that this will require finding a new chemical basis for them. Although engineers have achieved a lot with lithium-ion batteries, it hasn’t been enough to charge electric cars very fast, or go 500 miles (Hodson 2015).

Be skeptical of battery breakthroughs. It takes ten years to improve an existing type of battery, and it’s expensive since you need chemists, material scientists, chemical and mechanical engineers, electrochemists, computer and nanotechnology scientists. The United States isn’t training enough engineers to support a large battery industry, and within 5 years, 40% of full-time senior engineering faculty will be eligible for retirement.

Dr. Virden says that “you see all kinds of press releases about a new anode material that’s five times better than anything out there, and it probably is, but when you put that in with an electrolyte and a cathode, and put it together and then try to scale it, all kinds of things don’t work. Materials start to fall apart, the chemistry isn’t well known, there’s side reactions, and usually what that leads to is loss of performance, loss of safety. And we as fundamental scientists don’t understand those basic mechanisms. And we do really undervalue the challenge of scale-up. In every materials process I see, in an experiment in a lab like this big, it works perfectly. Then when you want to make thousands of them-it doesn’t.” (House 114-18).

We need a revolutionary new battery that takes less than 10 years to develop

“We need to leapfrog the engineering of making of batteries,” said Lawrence Berkeley National Lab battery scientist Vince Battaglia. “We’ve got to find the next big thing.”

Dr. Virden testified at a U.S. House hearing that “despite many advances, we still have fundamental gaps in our understanding of the basic processes that influence battery operation, performance, limitations, and failures (House 114-18 2015).

But none of the 10 experts who talked to The Associated Press said they know what that big thing will be yet, or when it will come (Borenstein).

The Department of Energy (DOE) says that incremental improvements won’t electrify cars and energy storage fast enough. Scientists need to understand the laws of battery physics better. To do that, we need to be able to observe what’s going on inside the battery at an atomic scale in femtoseconds (.000000000000001 second), build nanoscale materials/tubes/wires to improve ion flow etc., and write complex models and computer programs that use this data to better predict what might happen every time some aspect of the battery is meddled with to zero in on the best materials to use.

Are you kidding? Laws of Physics? Femtoseconds? Atomic Scale? Nanoscale technology — that doesn’t exist yet?

Extremely energy-dense batteries for autos are impossible because of the laws of Physics and the “Pick any Two” problem

There’s only so much energy you can force into a black box, and it’s a lot less than the energy contained in oil – pound for pound the most energy density a battery could contain is only around 6 percent that of oil. The energy density of oil 500 times higher than a lead-acid battery (House), which is why it takes 1,200 pounds of lead-acid batteries to move a car 50 miles.

Even though an electric vehicle needs only a quarter of the energy a gasoline vehicle needs to deliver the same energy to turn the wheels, this efficiency is more than overcome by the much smaller energy density of a battery compared to the energy density of gasoline.  This can be seen in the much heavier weight and space a battery requires.  For example, the 85 kWh battery in a Tesla Model S weighs 1,500 pounds (Tesla 2014) and the gasoline containing the equivalent energy, about 9 gallons, weighs 54 pounds.  The 1500 pound weight of a Tesla battery is equal to 7 extra passengers, and reduces the acceleration and range that could otherwise be realized (NRC 2015).

Lithium batteries are more powerful, but even so, oil has 120 times the energy density of a lithium battery pack. Increased driving ranges of electric cars have come more from weight reduction, drag reduction, and decreased rolling resistance than improved battery performance.

The amount of energy that can be stored in a battery depends on the potential chemical energy due to their electron properties. The most you could ever get is 6 volts from a Lithium (highest reduction) and Fluorine (highest oxidation).  But for many reasons a lithium-fluoride or fluoride battery is not in sight and may never work out (not rechargeable, unstable, unsafe, inefficient, solvents and electrolytes don’t handle the voltages generated, lithium fluoride crystallizes and doesn’t conduct electricity, etc.).

The DOE has found that lithium-ion batteries are the only chemistry promising enough to use in electric cars. There are “several Li-ion chemistries being investigated… but none offers an ideal combination of energy density, power capability, durability, safety, and cost” (NAS 2013).

Lithium batteries can generate up to 3.8 volts but have to use non-aqueous electrolytes (because water has a 2 volt maximum) which gives a relatively high internal impedance.

They can be unsafe. A thermal runaway in one battery can explode into 932 F degrees and spread to other batteries in the cell or pack.

There are many other problems with all-electric cars

It will take decades or more to replace the existing fleet with electric cars if batteries ever do get cheap and powerful enough.  Even if all 16 million vehicles purchased every year were only electric autos, the U.S. car fleet has 250 million passenger vehicles and would take over 15 years to replace.  But only 120,000 electric cars were sold in 2014. At that rate it would take 133 years.

Electric cars are too expensive. The median household income of a an electric car buyer is $148,158 and $83,166 for a gasoline car. But the U.S. median household income was only $51,939 in 2014. The Tesla Model S tends to be bought by relatively wealthy individuals,  primarily men who have higher incomes, paid cash, and did not seriously consider purchasing another vehicle (NRC 2015).

And when gasoline prices began to drop in 2014, people stopped buying EVs and started buying gas guzzlers again.

Autos aren’t the game-changer for the climate or saving energy that they’re claimed to be.  They account for just 20% of the oil wrung out of a barrel, trucks, ships, manufacturing, rail, airplanes, and buildings use the other 80%.

And the cost of electric cars is expected to be greater than internal combustion engine and hybrid electric autos for the next two decades (NRC 2013).

The average car buyer wants a low-cost, long range vehicle. A car that gets 30 mpg would require a “prohibitively long-to-charge, expensive, heavy, and bulky” 78 kWh battery to go 300 miles, which costs about $35,000 now. Future battery costs are hard to estimate, and right now, some “battery companies sell batteries below cost to gain market share” (NAS 2013). Most new cathode materials are high-cost nickel and cobalt materials.

Rapid charging and discharging can shorten the lifetime of the cell. This is particularly important because the goal of 10 to 15 years of service for automotive applications, the average lifetime of a car. Replacing the battery would be a very expensive repair, even as costs decline (NAS 2013).

It is unclear that consumer demand will be sufficient to sustain the U.S. advanced battery industry. It takes up to $300 million to build one lithium-ion plant to supply batteries for 20,000 to 30,000 plug-in or electric vehicles (NAE 2012).

Almost all electric cars use up to 3.3 pounds of rare-earth elements in interior permanent magnet motors. China currently has a near monopoly on the production of rare-earth materials, which has led DOE to search for technologies that eliminate or reduce rare-earth magnets in motors (NAS 2013).

Natural gas generated electricity is likely to be far more expensive when the fracking boom peaks 2015-2019, and coal generated electricity after coal supplies reach their peak somewhere between now and 2030.

100 million electric cars require ninety 1,000-MWe power plants, transmission, and distribution infrastructure that would cost at least $400 billion dollars. A plant can take years to over a decade to build (NAS 2013).

By the time the electricity reaches a car, it’s lost 50% of the power because the generation plants are only 40% efficient and another 10% is lost in the power plant and over transmission lines, so 11 MWh would be required to generate enough electricity for the average car consuming 4 MWh, which is about 38 mpg — much lower than many gasoline or hybrid cars (Smil).

Two-thirds of the electricity generated comes from fossil fuels (coal 39%, natural gas 27%, and coal power continues to gain market share (Birnbaum)). Six percent of electricity is lost over transmission lines, and power plants are only 40% efficient on average – it would be more efficient for cars to burn natural gas than electricity generated by natural gas when you add in the energy loss to provide electricity to the car (proponents say electric cars are more efficient because they leave this out of the equation). Drought is reducing hydropower across the west, where most of the hydropower is, and it will take decades to scale up wind, solar, and other alternative energy resources.

The additional energy demand from 100 million PEVs in 2050 is about 286 billion kWh which would require new generating capacity of ninety 1,000 MW plants costing $360 billion, plus another $40 billion for high-voltage transmission and other additions (NAS 2013).

An even larger problem is recharge time. Unless batteries can be developed that can be recharged in 10 minutes or less, cars will be limited largely to local travel in an urban or suburban environment (NAS 2013). Long distance travel would require at least as many charging stations as gas stations (120,000).

Level 1 charging takes too long, level 2 chargers add to overall purchase costs.  Level 1 is the basic amount delivered at home.  A Tesla model S85 kWh battery that was fully discharged would take more than 61 hours to recharge, a 21 kWh Nissan Leaf battery over 17 hours.  So the total cost of electric cars should also include the cost of level 2 chargers, not just the cost itself (NRC 2015).

Fast charging is expensive, with level 3 chargers running $15,000 to $60,000.  At a recharging station, a $15,000 level 3 charger would return a profit of about $60 per year and the electricity cost higher than gasoline (Hillebrand 2012). Level 3 fast charging is bad for batteries, requires expensive infrastructure, and is likely to use peak-load electricity with higher cost, lower efficiency, and higher GHG emissions.

Battery swapping has many problems: battery packs would need to be standardized, an expensive inventory of different types and sizes of battery packs would need to be kept, the swapping station needs to start charging right away during daytime peak electricity, batteries deteriorate over time, customers won’t like older batteries not knowing how far they can go on them, and seasonal travel could empty swapping stations of batteries.

Argonne National Laboratory looked at the economics of Battery swapping  (Hillebrand 2012), which would require standardized batteries and enough light-duty vehicles to justify the infrastructure. They assumed that a current EV Battery Pack costs $12,000 to replace (a figure they considered  wildly optimistic). They assumed a $12,000 x 5% annual return on investment = $600, 3 year battery life means amortizing cost is $4000, and annual Return for each pack must surpass $4600 per year. They concluded that to make a profit in battery swapping, each car would have to drive 1300 miles per day per battery pack!  And therefore, an EV Battery is 20 times too expensive for the swap mode.

Lack of domestic supply base. To be competitive in electrified vehicles, the United States also requires a domestic supply base of key materials and components such as special motors, transmissions, brakes, chargers, conductive materials, foils, electrolytes, and so on, most of which come from China, Japan, or Europe. The supply chain adds significant costs to making batteries, but it’s not easy to shift production to America because electric and hybrid car sales are too few, and each auto maker has its own specifications (NAE 2012).

The embodied energy (oiliness, EROEI) of batteries is enormous.  The energy to make Tesla’s lithium ion energy batteries is also huge, substantially subtracting from the energy returned on invested (Batto 2017).

Ecological damage. Mining and the toxic chemicals used to make and with batteries pollute water and soil, harm health, and wildlife.

The energy required to charge them (Smil)

An electric version of a car typical of today’s typical American vehicle (a composite of passenger cars, SUVs, vans, and light trucks) would require at least 150 Wh/km; and the distance of 20,000 km driven annually by an average vehicle would translate to 3 MWh of electricity consumption. In 2010, the United States had about 245 million passenger cars, SUVs, vans, and light trucks; hence, an all-electric fleet would call for a theoretical minimum of about 750 TWh/year. This approximation allows for the rather heroic assumption that all-electric vehicles could be routinely used for long journeys, including one-way commutes of more than 100 km. And the theoretical total of 3 MWh/car (or 750 TWh/year) needs several adjustments to make it more realistic. The charging and recharging cycle of the Li-ion batteries is about 85 percent efficient, 32 and about 10 percent must be subtracted for self-discharge losses; consequently, the actual need would be close to 4 MWh/car, or about 980 TWh of electricity per year. This is a very conservative calculation, as the overall demand of a midsize electric vehicle would be more likely around 300 Wh/km or 6 MW/year. But even this conservative total would be equivalent to roughly 25% of the U.S. electricity generation in 2008, and the country’s utilities needed 15 years (1993–2008) to add this amount of new production.

The average source-to-outlet efficiency of U.S. electricity generation is about 40 percent and, adding 10 percent for internal power plant consumption and transmission losses, this means that 11 MWh (nearly 40 GJ) of primary energy would be needed to generate electricity for a car with an average annual consumption of about 4 MWh.

This would translate to 2 MJ for every kilometer of travel, a performance equivalent to about 38 mpg (6.25 L/100 km)—a rate much lower than that offered by scores of new pure gasoline-engine car models, and inferior to advanced hybrid drive designs

The latest European report on electric cars—appropriately entitled How to Avoid an Electric Shock—offers analogical conclusions. A complete shift to electric vehicles would require a 15% increase in the European Union’s electricity consumption, and electric cars would not reduce CO2 emissions unless all that new electricity came from renewable sources.

Inherently low load factors of wind or solar generation, typically around 25 percent, mean that adding nearly 1 PWh of renewable electricity generation would require installing about 450 GW in wind turbines and PV cells, an equivalent of nearly half of the total U.S. capability in 2007.

The National Research Council found that for electric vehicles to become mainstream, significant battery breakthroughs are required to lower cost, longer driving range, less refueling time, and improved safety. Battery life is not known for the first generation of PEVs.. Hybrid car batteries with performance degradation are hardly noticed since the gasoline combustion engine kicks in, but with a PEV, there is no hiding reduced performance. If this happens in less than the 15 year lifespan of a vehicle, that will be a problem. PEV vehicles already cost thousands more than an ICE vehicle. Their batteries have a limited warranty of 5-8 years. A Nissan Leaf battery replacement is $5,500 which Nissan admits to selling at a loss (NAS 2015).

Cold weather increases energy consumption

cold weather increases energy consumption

 Source: Argonne National Laboratory

On a cold day an electric car consumes its stored electric energy quickly because of the extra electricity needed to heat the car.  For example, the range of a Nissan Leaf is 84 miles on the EPA test cycle, but if the owner drives 90% of the time over 70 mph and lives in a cold climate, the range could be as low as 50 miles (NRC 2015).

 

References

ADEME. 2011. Study on the second life batteries for electric and plug-in hybrid vehicles.

Batto, A. B. 2017. The ecological challenges of Tesla’s Gigafactory and the Model 3. AmosBatto.wordpress.com

Birnbaum, M. November 23, 2015. Electric cars and the coal that runs them. Washington Post.

Borenstein, S. Jan 22, 2013. What holds energy tech back? The infernal battery. Associated Press.

Hillebrand, D. October 8, 2012. Advanced Vehicle Technologies; Outlook for Electrics, Internal Combustion, and Alternate Fuels. Argonne National Laboratory.

Hiscox, G. 1901. Horseless Vehicles, Automobiles, Motor Cycles. Norman Henley & Co.

Hodson, H. Jully 25, 2015. Power to the people. NewScientist.

House, Kurt Zenz. 20 Jan 2009. The limits of energy storage technology. Bulletin of the Atomic Scientists.

House 114-18. May 1, 015. Innovations in battery storage for renewable energy. U.S. House of Representatives.   88 pages.

NAE. 2012. National Academy of Engineering. Building the U.S. Battery Industry for Electric Drive Vehicles: Summary of a Symposium. National Research Council

NAS 2013. National Academy of Sciences. Transitions to Alternative Vehicles and Fuels. Committee on Transitions to Alternative Vehicles and Fuels; Board on Energy and Environmental Systems; Division on Engineering and Physical Sciences; National Research Council

NAS. 2015. Cost, effectiveness and deployment of fuel economy tech for Light-Duty vehicles.   National Academy of Sciences. 613 pages.

NRC. 2008. Review of the 21st Century Truck Partnership. National Research Council, National Academy of Sciences.

NRC. 2013. Overcoming Barriers to Electric-Vehicle Deployment, Interim Report. Washington, DC: National Academies Press.

NRC. 2015. Overcoming Barriers to Deployment of Plug-in Electric Vehicles. National  Research Council, National Academies Press.

NYT. Novermber 12, 1911. Foreign trade in Electric vehicles. New York Times C8.

Service, R. 24 Jun 2011. Getting there. Better Batteries. Science Vol 332 1494-96.

Smil, V. 2010. Energy Myths and Realities: Bringing Science to the Energy Policy Debate. AEI Press.

Tesla. 2014. “Increasing Energy Density Means Increasing Range.”
http://www.teslamotors.com/roadster/technology/battery.

Thomas, B. December 17, 1967. AMC does a turnabout: starts running in black. Los Angeles Times, K10.

WP. October 31, 1915. Prophecies come true. Washington Post, E18.

WP. June 7, 1980. Plug ‘Er In?”. Washington Post, A10.

Please follow and like us: