A reality check on Renewable Energy

23 10 2018

Hat tip to my friend Shane who put me onto this TedX lecture…….  well worth sharing with your ecotopian friends! It does show how Australia – and Canada –  with very low population densities, are in not a bad position, except of course for the fact they are nowhere near the places with high densitity populations. You can’t beat arithmetics and physics…….

How much land mass would renewables need to power a nation like the UK? An entire country’s worth. In this pragmatic talk, David MacKay tours the basic mathematics that show worrying limitations on our sustainable energy options and explains why we should pursue them anyway. (Filmed at TEDxWarwick.) Lesson by David MacKay.





MASS IMMIGRATION IS A MASS ENVIRONMENTAL KILLER

28 09 2018

ianlowe

Ian Lowe

Professor Ian Lowe

August 9, 2018

“If we go on increasing the population at the current rate, we’ll go on damaging our environment at an ever increasing rate…”

Back in March, Dr Jonathan Sobels – a senior research fellow at the University of South Australia and the author of a key 2010 report prepared for the Department of Immigration entitled Long-term physical implications of net overseas migration: Australia in 2050 – (356 pages) gave a brilliant incisive interview on ABC’s Radio National warning of a huge reduction in Australian living standards if the federal government continues with its mass immigration ‘Big Australia’ policy:

“You end up with, in absolute terms, more pollution. You end up with more impacts on people’s personal time spent commuting, for example. You end up with less choice in even simple things…

And we are coming up towards physical limitations within our physical, built and natural environments that will lead to compromises in the quality of our life…
Not only are the dams not filling, but the ground water supplies are not filling. The only option you have open to you is water efficiency use and whacking up desal plants. But if your population keeps increasing at the rates we have seen in recent times, you won’t be able to afford putting up billion dollar desal plants, which also have their environmental impacts…

I think we have a problem with this notion of growth being the panacea to all our policy problems. Ultimately, growth in a finite environment becomes impossible. It’s a lazy policy prescription that says ‘oh, let’s have more people’ to drive the economy because essentially the growth in productivity over the last 30 years is a product of increasing population.

Our productivity per se hasn’t necessarily gone anywhere in the last 20 years despite technological development. We need to consider how we can actually structure our economy so that growth is not the aim. But in fact creating living spaces and economies that people can sustain over a longer period…

I believe that [the number for net migration] is the place where we should begin. All our issues to do with infrastructure stem from the number of people we have. If we are going to have a discussion about infrastructure, we first need to discuss how many people but also, most importantly, where they are located before we start planning what we want to do in terms of infrastructure…

I’m baffled on why we don’t have politicians with either the information or the political capital to talk about how many people can live in certain places. 80% of the immigration into Australia post WW2 has been into 20% of the local government areas, principally Sydney, Melbourne and Perth. Those are the places where the Commonwealth needs to be active in terms of ‘can we sustain the continuation of that intake’. Or, is there a way that we can ameliorate the pressure on these major cities in terms of where we encourage people to live…

I’m a little bit skeptical and sanguine about the political will of the Government and either side to actually engage people into what are difficult and contentious discussions. And it’s really quite a shame that we don’t see leadership in terms of establishing the vision of what Australia could be and then working back from that vision in terms of setting policy”.

This was an excellent interview from a genuine expert that clearly understands the key issues surrounding the immigration debate.

Dr Sobels’ 2010 report is also well worth reading and covers the above issues in much

sobels

Dr Jonathon Sobels

greater detail. One can only wonder why this report was completely ignored by the Immigration Department and federal government.

On Tuesday, Professor Ian Lowe – emeritus professor of science, technology and society at Griffith University, former President of the Australian Conservation Foundation (ACF), and author of the excellent book Bigger or Better?: Australia’s Population Debate – also gave an incisive interview on ABC Radio warning of the deleterious impacts of Australia’s mass immigration ‘Big Australia’ policy on Australia’s environment and living standards:

“The population in the last decade increased much faster than the most alarming of the ABS projections… Our population is increasing by one million every two-and-a-half years, and that’s causing the pressures people are seeing in the large cities…

No species can increase without limit in a closed system… My view is that we should have a coherent policy that aims to stabilise it [population] at a level that we can sustainably support, rather than have it increase until we see significant problems…
The more rapidly the population increases, the harder it is to provide the services that people expect. And I think the problem that the governments are facing is that people in particularly Sydney and Melbourne, and to a lesser extent Brisbane and Perth, quite accurately see that their quality of life is going backwards because the infrastructure hasn’t been expanded at the same rate as the population, so the roads are more crowded, the public transport is less adequate, it’s harder to get the recreational services that people want…

The population increase is putting the demands on infrastructure that we just don’t have the resources to provide. So a rational government would not simply say “bigger is better”, assuming the population growth is an unmitigated benefit. They should be reflecting on the fact that people don’t just judge their quality of life by how much money is in their pocket. They also judge it by how clean the air is, how easy they can get around, how easy their kids can get into school, and so on…

[15 million people] is about the level that could be sustainably supported at our current lifestyle. There’s no doubt that you can cram more people in, except that they will have to accept a lower standard of living and lower level of services.

The first national report on the State of the Environment more than 20 years ago said that we are not living sustainably, that we had 5 serious problems. And they are all more or less proportional to how many of us there are, and the material standard in which we live. And since then, every year the population has got larger. And every year on average our consumption per person has increased. So we are putting compounding pressure on natural systems. And we are seeing it in losing our biodiversity, the pressures on the coastal zone, rapidly increasing climate change, and so on. If we go on increasing the population at the current rate, we’ll go on damaging our environment at an ever increasing rate…

A population policy would have two components. One would be that we’d set the migration level based on the principle that we want to stabilise the population at a level that would be sustainably supported. And that wouldn’t mean pulling up the drawbridge, but it would mean lower levels of migration than we have at the moment”.

It’s a crying shame that environmental experts like Dr Sobels and Dr Lowe are completely ignored in the population debate in favour of paid shills from the ‘growth lobby’.





WHY DO POLITICAL AND ECONOMIC LEADERS DENY PEAK OIL AND CLIMATE CHANGE?

23 08 2018

By Alice Friedemann, originally published by Energy Skeptic

Since there’s nothing that can be done about climate change, because there’s no scalable alternative to fossil fuels, I’ve always wondered why politicians and other leaders, who clearly know better, feel compelled to deny it. I think it’s for exactly the same reasons you don’t hear them talking about preparing for Peak Oil.

1) Our leaders have known since the 1970s energy crises that there’s no comparable alternative energy ready to replace fossil fuels. To extend the oil age as long as possible, the USA went the military path rather than a “Manhattan Project” of research and building up grid infrastructure, railroads, sustainable agriculture, increasing home and car fuel efficiency, and other obvious actions.

Instead, we’ve spent trillions of dollars on defense and the military to keep the oil flowing, the Straits of Hormuz open, and invade oil-producing countries. Being so much further than Europe, China, and Russia from the Middle East, where there’s not only the most remaining oil, but the easiest oil to get out at the lowest cost ($20-22 OPEC vs $60-80 rest-of-world per barrel), is a huge disadvantage. I think the military route was chosen in the 70s to maintain our access to Middle East oil and prevent challenges from other nations. Plus everyone benefits by our policing the world and keeping the lid on a world war over energy resources, perhaps that’s why central banks keep lending us money.

2) If the public were convinced climate change were real and demanded alternative energy, it would become clear pretty quickly that we didn’t have any alternatives. Already Californians are seeing public television shows and newspaper articles about why it’s so difficult to build enough wind, solar, and so on to meet the mandated 33% renewable energy sources by 2020.

For example, last night I saw a PBS program on the obstacles to wind power in Marin county, on the other side of the Golden Gate bridge. Difficulties cited were lack of storage for electricity, NIMBYism, opposition from the Audubon society over bird kills, wind blows at night when least needed, the grid needs expansion, and most wind is not near enough to the grid to be connected to it. But there was no mention of Energy Returned on Energy Invested (EROEI) or the scale of how many windmills you’d need to have. So you could be left with the impression that these problems with wind could be overcome.

[ED: read this about the impossibility of California going 100% renewables]

I don’t see any signs of the general public losing optimism yet. I gave my “Peak Soil” talk to a critical thinking group, very bright people, sparkling, interesting, well-read, thoughtful, and to my great surprise realized they weren’t worried until my talk, partly because so few people understand the Hirsch 2005 “liquid fuels” crisis concept, nor the scale of what fossil fuels do for us. I felt really bad, I’ve never spoken to a group before that wasn’t aware of the problem, I wished I were a counselor as well. The only thing I could think of to console them was to say that running out of fossil fuels was a good thing — we might not be driven extinct by global warming, which most past mass extinctions were caused by.

3) As the German military peak oil study stated, when investors realize Peak Oil is upon us, stock markets world-wide will crash (if they haven’t already from financial corruption), as it will be obvious that growth is no longer possible and investors will never get their money back.

4) As Richard Heinberg has pointed out, there’s a national survival interest in being the “Last Man (nation) Standing“. So leaders want to keep things going smoothly as long as possible. And everyone is hoping the crash is “not on my watch” — who wants to take the blame?

5) It would be political suicide to bring up the real problem of Peak Oil and have no solution to offer besides consuming less. Endless Growth is the platform of both the Republican and Democratic parties. More Consumption and “Drill, Baby, Drill” is the main plan to get out of the current economic and energy crises.

There’s also the risk of creating a panic and social disorder if the situation were made utterly clear — that the carrying capacity of the United States is somewhere between 100 million (Pimentel) and 250 million (Smil) without fossil fuels, like the Onion’s parody “Scientists: One-Third Of The Human Race Has To Die For Civilization To Be Sustainable, So How Do We Want To Do This?

There’s no solution to peak oil, except to consume less in all areas of life, which is not acceptable to political leaders or corporations, who depend on growth for their survival. Meanwhile, too many problems are getting out of hand on a daily basis at local, state, and national levels. All that matters to politicians is the next election. So who’s going to work on a future problem with no solution? Jimmy Carter is perceived as having lost partly due to asking Americans to sacrifice for the future (i.e. put on a sweater).

I first became aware of this at the 2005 ASPO Denver conference. Denver Mayor Hickenlooper pointed out that one of his predecessors lost the mayoral election because he didn’t keep the snow plows running after a heavy snow storm. He worried about how he’d keep snow plows, garbage collection, and a host of other city services running as energy declined.

A Boulder city council member at this conference told us he had hundreds of issues and constituents to deal with on a daily basis, no way did he have time to spend on an issue beyond the next election.

Finally, Congressman Roscoe Bartlett told us that there was no solution, and he was angry that we’d blown 25 years even though the government knew peak was coming. His plan was to relentlessly reduce our energy demand by 5% per year, to stay under the depletion rate of declining oil. But not efficiency — that doesn’t work due to Jevons paradox.

The only solution that would mitigate suffering is to mandate that women bear only one child. Fat chance of that ever happening when even birth control is controversial, and Catholics are outraged that all health care plans are now required to cover the cost of birth control pills. Congressman Bartlett, in a small group discussion after his talk, told us that population was the main problem, but that he and other politicians didn’t dare mention it. He said that exponential growth would undo any reduction in demand we could make, and gave this example: if we have 250 years left of reserves in coal, and we turn to coal to replace oil, increasing our use by 2% a year — a very modest rate of growth considering what a huge amount is needed to replace oil — then the reserve would only last 85 years. If we liquefy it, then it would only last 50 years, because it takes a lot of energy to do that.

Bartlett was speaking about 250 years of coal reserves back in 2005. Now we know that the global energy from coal may have peaked last year, in 2011 (Patzek) or will soon in 2015 (Zittel). Other estimates range as far as 2029 to 2043. Heinberg and Fridley say that “we believe that it is unlikely that world energy supplies can continue to meet projected demand beyond 2020.” (Heinberg).

6) Political (and religious) leaders gain votes, wealth, and power by telling people what they want to hear. Several politicians have told me privately that people like to hear good news and that politicians who bring bad news don’t get re-elected. “Don’t worry, be happy” is a vote getter. Carrying capacity, exponential growth, die-off, extinction, population control — these are not ideas that get leaders elected.

7) Everyone who understands the situation is hoping The Scientists Will Come up With Something. Including the scientists. They’d like to win a Nobel prize and need funding. But researchers in energy resources know what’s at stake with climate change and peak oil and are as scared as the rest of us. U.C.Berkeley scientists are also aware of the negative environmental impacts of biofuels, and have chosen to concentrate on a politically feasible strategy of emphasizing lack of water to prevent large programs in this from being funded (Fingerman). They’re also working hard to prevent coal fired power plants from supplying electricity to California by recommending natural gas replacement plants instead, as well as expanding the grid, taxing carbon, energy efficiency, nuclear power, geothermal, wind, and so on — see http://rael.berkeley.edu/projects for what else some of UCB’s RAEL program is up to. Until a miracle happens, scientists and some enlightened policy makers are trying to extend the age of oil, reduce greenhouse gases, and so on. But with the downside of Hubbert’s curve so close, and the financial system liable to crash again soon given the debt and lack of reforms, I don’t know how long anyone can stretch things out.

8) The 1% can’t justify their wealth or the current economic system once the pie stops expanding and starts to shrink. The financial crisis will be a handy way to explain why people are getting poorer on the down side of peak oil too, delaying panic perhaps.

Other evidence that politicians know how serious the situation is, but aren’t saying anything, are Congressman Roscoe Bartlett’s youtube videos (Urban Danger). He’s the Chairman of the peak oil caucus in the House of Representatives, and he’s saying “get out of dodge” to those in the know. He’s educated all of the representatives in the House, but he says that peak oil “won’t be on their front burner until there’s an oil shock”.

9) Less than one percent of our elected leaders have degrees in science. They’re so busy raising money for the next election and their political duties, that even they may not have time to read enough for a “big picture view” of (systems) ecology, population, environment, natural resources, biodiversity / bioinvasion, water, topsoil and fishery depletion, and all the other factors that will be magnified when oil, the master resource that’s been helping us cope with these and many other problems, declines.

10) Since peak fossil fuel is here, now (we’re on a plateau), there’s less urgency to do something about climate change for many leaders, because they assume, or hope, that the remaining fossil fuels won’t trigger a runaway greenhouse. Climate change is a more distant problem than Peak Oil. And again, like peak oil, nothing can be done about it. There’s are no carbon free alternative liquid fuels, let alone a liquid fuel we can burn in our existing combustion engines, which were designed to only use gasoline. There’s no time left to rebuild a completely new fleet of vehicles based on electricity, the electric grid infrastructure and electricity generation from windmills, solar, nuclear, etc., are too oil dependent to outlast oil. Batteries are too heavy to ever be used by trucks or other large vehicles, and require a revolutionary breakthrough to power electric cars.

11) I think that those who deny climate change, despite knowing it is real, are thinking like chess players several moves ahead. They hope that by denying climate change an awareness of peak oil is less likely to occur, and I’m guessing their motivation is to keep our oil-based nation going as long as possible by preventing a stock market crash, panic, social disorder, and so on.

12) Politicians and corporate leaders probably didn’t get as far as they did without being (techno) optimists, and perhaps really believe the Scientists Will Come Up With Something. I fear that scientists are going to take a lot of the blame as things head South, even though there’s nothing they can do to change the laws of physics and thermodynamics.

Conclusion

We need government plans or strategies at all levels to let the air out of the tires of civilization as slowly as possible to prevent panic and sudden discontinuities.

Given history, I can’t imagine the 1% giving up their wealth (especially land, 85% of which is concentrated among 3% of owners). I’m sure they’re hoping the current system maintains its legitimacy as long as possible, even as the vast majority of us sink into 3rd world poverty beyond what we can imagine, and then are too poor and hungry to do anything but find our next meal.

Until there are oil shocks and governments at all levels are forced to “do something”, it’s up to those of us aware of what’s going on to gain skills that will be useful in the future, work to build community locally, and live more simply. Towns or regions that already have or know how to implement a local currency fast will be able to cope better with discontinuities in oil supplies and financial crashes than areas that don’t.

The best possible solution is de-industrialization, starting with Heinberg’s 50 million farmers, while also limiting immigration, instituting high taxes and other disincentives to encourage people to not have more than one child so we can get under the maximum carrying capacity as soon as possible.

Hirsch recommended preparing for peak 20 years ahead of time, and we didn’t do that. So many of the essential preparations need to be at a local, state, and federal level, they can’t be done at an individual level. Denial and inaction now are likely to lead to millions of unnecessary deaths in the future. Actions such as upgrading infrastructure essential to life, like water delivery and treatment systems (up to 100 years old in much of America and rusting apart), sewage treatment, bridges, and so on. After peak, oil will be scarce and devoted to growing and delivering food, with the remaining energy trickling down to other essential services — probably not enough to build new infrastructure, or even maintain what we have.

I wish it were possible for scientists and other leaders to explain what’s going on to the public, but I think scientists know it wouldn’t do any good given American’s low scientific literacy, and leaders see the vast majority of the public as big blubbering spoiled babies, like the spaceship characters on floating chairs in Wall-E, who expect, no demand, happy Hollywood endings.

References

If you want an article to send to a denier you know, it would be hard to do better than Donald Prothero’s “How We Know Global Warming is Real and Human Caused“.

Fingerman, Kevin. 2010. Accounting for the water impacts of ethanol production. Environmental Research Letters.

Heinberg, R and Fridley, D. 18 Nov 2010. The end of cheap coal. New forecasts suggest that coal reserves will run out faster than many believe. Energy policies relying on cheap coal have no future. Nature, vol 468, pp 367-69.

Patzek, t. W. & Croft, G. D. 2010. A global coal production forecast with multi-Hubbert cycle analysis. Energy 35, 3109–3122.

Pimentel, D. et al. 1991. Land, Energy, and Water. The Constraints Governing Ideal U.S. Population Size. Negative Population Growth.

Smil, V. 2000. Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production. MIT Press.

Urban Danger. Congressman Roscoe Bartlett youtube videos:

Zittel, W. & schindler, J. energy Watch Group, Paper no. 1/07 (2007); available at http:// go.nature.com/jngfsa





Catastrophic Agriculture

24 06 2018

Complete and slightly edited interview footage with Richard Manning in 2005 (which explains why he keeps talking about world population of 6 billion…), in preparation for the feature-length documentary What a Way to Go: Life at the End of Empire, from Timothy S. Bennett and Sally Erickson.

Nearly an hour long, so make sure you get a cup of your favourite poison before starting….





Can we save energy, jobs and growth at the same time ?

20 05 2018

I apologise in advance to anyone with a short attention span, this is a bit long at almost one and a half hours……  especially as if you are new to limits to growth, you might have to watch it more than once!
If you ever needed proof that economics is an imbecilic proposal, then this is it.

Published on 30 Jan 2018

Jancovici’s conference in ENS School of Paris – 08/01/2018 To download the Presentation : https://fr.slideshare.net/JoelleLecon… The depletion of natural resources, with oil to start with, and the need for a stable climate, will make it harder and harder to pursue economic growth as we know it. It has now become urgent to develop a new branch of economics which does not rely on the unrealistic assumption of a perpetual GDP increase. In this Colloquium, I will discuss a “physical” approach to economics which aims at understanding and managing the scaling back of our world economy. Biography : Jean-Marc Jancovici, is a French engineer who graduated from École Polytechnique and Télécom, and who specializes in energy-climate subjects. He is a consultant, teacher, lecturer, author of books and columnist. He is known for his outreach work on climate change and the energy crisis. He is co-founder of the organization “Carbone 4” and president of the think tank “The Shift Project”. Original video : https://www.youtube.com/watch?v=ey7_F… Facebook page : https://www.facebook.com/jeanmarc.jan… Website : https://jancovici.com/




The Bumpy Road Down, Part 3

17 01 2018

Irv Mills has now published the third episode in his “Bumpy Road Down” series. It’s gotten a lot of interest on Facebook, and I think his own blog is getting a lot of hits too, as the interest in collapse ramps up everywhere as more and more people are waking up to the fact most things are going awry in the world….

I’ve already told him I disagree with his collapse diagram. For starters, the carrying capacity line is neither straight nor flat. So much farm land, particularly in India and North America has been decimated by fossil fuled fertilisers, that re-instating them to their former organic glory will be a huge challenge that will require a long time during which a lot of people will unfortunately starve. On top of this, we have wrecked global fisheries, which were an important pre FF source of food…  My best take on this is Paul Chefruka’s diagram which I published with his article here…  It too shows a bumpy road down, and no carrying capacity limit. I think the post FF carrying capacity will be the same as the pre FF carrying capacity, only worse thanks to the ecological damage our insane use of FFs has caused. How one quatifies this, I don’t know, but I’m sure it would take a lot of research.

Anyhow, enjoy the read, and make sure you comment, I’m always interested in what you think. Leave comments at Irv’s site too….  I’m sure he’d like the feedback!

 

IrvMills

Irv Mills

In the last post in this series I talked about the next financial crash and how it may well be serious enough to spread into the non-financial sectors of the economy and effect supply chains and critical systems in ways that we did not see in the Global Financial Crisis of 2007-08. Systems that most of us depend on for the necessities of life may fail and many kollapsniks see this leading immediately and inevitably to a hard, fast and permanent crash of industrial civilization.

I disagree, seeing this as just one more bump on the road down, the cyclic pattern of crash and partial recovery that I believe will characterize the rest of the age of scarcity.

To understand why I hold this opinion, I said we need to do a couple of things:

1) take a systems dynamic approach to the events we are talking about. Specifically, we need to look at what happens when overshoot occurs in nature, in systems like the one we inhabit. Which is, after all, a subset of the ecosphere. Overshoot is a common enough phenomenon and usually works in fairly predictable ways.

2) look at the sort of things governments, communities and individuals can do to limit the damage of a financial crash and its spread to other critical systems.

Today we are going to do that.

(Note: all three of the graphs below are smoothed out, idealized and imprecise representations of the processes they illustrate. The point is to allow me to make some points visually. I hope not to get into much in the way of quibbling over minor details, of which no doubt a few are missing, inaccurate or outright wrong.)

So, first, let’s take a look at how overshoot works. Take moment or two with your favourite search engine and you will find a graph that looks something like this:

1) typical overshoot situation with constant carrying capacity

The green line shows the behaviour over time of the population of a species which finds itself initially at a level well below the carrying capacity of its environment (the dashed blue line). Because that environment provides lots of whatever the species need to grow, it does grow. This tendency to grow in response to favourable conditions seems to be an inhernet property of life. As is always the case, this is exponential growth—it starts out slowly but eventually reaches a point where it takes off and quickly exceeds the carrying capacity of the environment.

What happens then is interesting, especially since we currently find ourselves in just such a situation. You get some oscillation of the species population, above and below the carrying capacity, until it finally settles out somewhat below the carrying capacity.

First, let’s be clear that it is possible to exceed carrying capacity in the short run, at the cost of damaging the environment and reducing its capacity—overpopulation has a negative effect on that capacity. There is also some time delay built in to the effect of population growth, as newly born individuals add relatively little to the species impact on the environment compared to what they will add once they have grown up. The negative feedback and the time delay result in the oscillation shown in the graph.

Of course, the straight line representing carrying capacity would actually have some peaks and valleys, corresponding to how the environment responds to the stress of overpopulation and how it recovers when the population falls. If we idealized both the blue and green lines into something like a sine wave, we would see that the variation in the carrying capacity leads the variation in the population by about 90 degrees.

The red line, by the way, represents a fast and permanent collapse. In order for this to happen the carrying capacity has to fall all the way down to basically nothing. This can happen for a variety of reasons, but overshoot isn’t one of them, because as soon as the population falls off below the carrying capacity, the stress on the environment is relieved and it begins to recover.

There is, in fact, no such thing as a “balance of nature” and it is by no means inevitable that the oscillations damp out and the population settles down just below the carrying capacity. In many cases what we actually get is the situation in the next graph, where populations oscillate on an ongoing basis.

2) continual oscillation of predator and prey populations such as foxes and rabbits

You might think that the population of rabbits and foxes in an ecosystem would level out at steady values, but that is not in fact what is observed.

If we start at a moment when there are relatively few of each species, we see that the population of rabbits (the prey, dashed blue line) grows rapidly. It is well below the carrying capacity of the ecosystem for rabbits and there are relatively few foxes (the predators, green line). But the increasing number of rabbits make hunting easier for the foxes, and their population starts to increase too. Eventually there are enough foxes to overhunt the rabbits, resulting in a crash in the rabbit population. This is followed by a crash in the fox population, since there are no longer enough rabbits to support it. This brings us back to where we started and the cycle carries on.

The reason the cycle can carry on indefinitely is that the foxes limit the rabbit population so that it never exceeds the carrying capacity of the ecosystem for rabbits—the plants the rabbits are eating never get over grazed.

The situation for the human population of this planet is, as you might expect, more complex.

The impact (I) that the human population has on our environment is determined not just by the size of that population (P), but also by the level of affluence (A) we are living at and effectiveness of the technology (T) we are using to maintain that affluence.

This gives us the famous equation, I=PAT. Since I am going to be using the term “T” in another equation shortly, I’ll change this to I=PAD, where “D” stands for decoupling. Decoupling is the use of technology to produce affluence at a lower cost to thge environment and it is a number between 0 and 1, with 0 being the goal we would aim for, eliminating our impact altogether. In fact it is proving so difficult to get decoupling anywhere near zero that it is very unlikely to be the solution to our problems.

Carrying capacity (C) also works somewhat differently for human populations.

We can increase the size (S) of our environment by expanding into new areas of the world and habitats previously occupied by other species or by “indigenous” humans.

We can tap into forms of energy (E) beyond just food. For somewhere between two and three million years we’ve been using fire for landscaping, for cooking our food and for heating our shelters. In each case we were using the energy in burning biomass to increase the carrying capacity of our environment, increase the value of our food, and/or expand the range of environments that we can live in. For the last few hundred years we’ve been using the energy of fossil fuels to radically increase the carrying capacity of our environment in many seemingly clever ways.

Since whatever method we use to acquire energy consumes energy in the process, it’s actually the energy that is left over, available for use (the surplus energy) that’s important. This is best expressed as “Energy Returned on Energy Invested”, EROEI. This is a dimensionless number and the larger it is, the more surplus energy. When the EROEI is equal to one, the process is just breaking even and there is no point in doing it—we want a much higher EROEI.

Hunter-gatherer and pre-industrial agricultural societies managed average EROEI’s in the high single digits at best. Industrial societies based on fossil fuels in the twentieth century had EROEI’s many times that high, which made possible high levels of growth and the development and use of technologies which had previously been completely out of reach. Today the average global EROEI is around 11.

Which brings us to our use of tools and technology (T). With just Neolithic technology (fire, stone tools, weaving, tanning, pottery, boats, agriculture) we spread over the whole planet except for the Antarctic, occupying and thriving in environments very different from the ones where we evolved. Since the Renaissance, the Enlightenment and the Industrial Revolution our use of technology has exploded. And not just material technology, but financial, organizational and information technologies as well. All of which has enabled both our population and affluence to grow at heretofore unprecedented rates.

So, the carrying capacity of this planet for the human race can be represented by the equation C=SET. Clearly, I (Impact) must be less than C (carrying capacity) or we are in overshoot. And since sometime in the late 1970s we have indeed been in overshoot. Currently the level of overshoot is around 60%. That is, our impact on the environment is 1.6 times what can be sustained on an ongoing basis.

3) oscillating overshoot with declining carrying capacity

From left side of this graph to point “a” we see the long and very slow growth of the human population before the discovery of the New World. After point “a” the carrying capacity began to increase significantly as the size of our environment effectively took a large jump with the European settlement of the New World, as the use of fossil fuels greatly increased the amount of surplus energy available and as we developed numerous new technologies to use that energy. Human impact increased with the carrying capacity, as our population grew and affluence increased.

The growth of carrying capacity continued until the last quarter of the twentieth century, point “b”, when depletion of fossil fuels and reduction of their EROEI, diminishing returns on technological innovation and stress on the environment from human activities started to reduce the carrying capacity.

Human impact has continued to grow since then, and is now so far above carrying capacity that one has to expect a crash in the near future, point “c”. As I said in my last post, this is likely to start with a financial crash. The financial sector of the economy, since it deals largely with non-material things that don’t have much inertia, can change very quickly. It is currently under a lot of strain from huge amounts of risky debt. I favour a scenario where a spike in the price of oil, brought about as the current surplus of oil bottoms out, sets off a currency crash in one of more countries, leading to a wave of bankruptcies and governments defaulting on their debts. After point “c” human impact will start to decrease rapidly, primarily due to the effect of the financial crash on affluence.

Note that I have again included a red line (and a light blue line), which represent a fast and permanent crash of both carrying capacity and population. This is possible and some would argue that climate change and ocean acidification (among other things) may be damaging the environment enough to make it the most likely outcome. I don’t think so. The ecosphere is amazingly resilient, once human impact is reduced. People have gotten the wrong impression about this because we have been playing the silly game of upping our impact and then wondering why the situation keeps getting worse, as if it wasn’t our fault.

To the right is a little chart that contains some shocking information. The top 20% of the human population (in terms of affluence) is responsible for 76.6% of our impact. A financial crash will be very hard on those top 20% and in the process will drastically reduce human impact. Sadly, myself and most of my readers are in that top 20%.

Referring back to diagram 3, I expect that at point “d”, where “I” is finally less than “C”, the carrying capacity will begin to recover, and a while later at point “e”, human impact will begin to increase once again as well.

Remember also that carrying capacity is defined by C=SET, and there is much that humanity can do to change the value of “T” in that equation. I am by no means saying that we will find a “solution” to our problems based on material technology. What I mean is that a major factor in the big decrease in carrying capacity during the upcoming crash will be the failure of our financial and organizational technology to cope with the situation. And there is a lot we can do to reorganize our financial, economic and political systems to work better under the new conditions. Once we are forced to do it. So I do expect there will be a recovery after this crash.

It is very likely that during the crash the financial chaos will spread to the rest of the economy and that there will be some reduction in the growth rate of our population as the support structures provide by industrial civilization fail completely in some parts of the world. But it seems likely that human population will continue to grow until it once again outstrips carrying capacity, at point “f”. And then at point “g” we will have another crash. I suspect depletion of fossil fuels, water for irrigation and phosphorous for fertilizer, and the effects of climate change will lead to a collapse of agriculture in many parts of the world. Famine and epidemics will at that point start to rapidly reduce our population and eventually reduce it back below a once more reduced carrying capacity (point “h”) and another recovery will begin (point “i”).

Beyond point “i” it is hard to say much about exact details or how many more crashes will take place. But the trend of continued oscillation with decreases in both carrying capacity and human impact will continue. The downward trend is because our current system relies on non-renewable resources that we are using up. That trend will continue until our impact can be sustained solely by renewable resources. Along the way we will go through some very hard times (point “i” and subsequent valleys in the green line) because of the damage done to the planet in the process. But eventually, with our impact drastically reduced, the ecosystems will recover. I expect that at this point we will have retained some of our technology and because of this the overall carrying capacity and our population/impact will settle out a bit above what it was in pre-industrial times.

One further thing I want to emphasize is how uneven this whole process will be. Yes it is likely that the impending financial crash, because it involves systems that are highly interconnected and global in scale, will be felt to some extent over the whole planet. But the degree to which the financial chaos spreads to the rest of the economy will vary greatly from place to place. And subsequent crashes, once the high degree of global interconnection has been broken, will most likely occur at different times in different places.

Wherever people are not completely dependent on global supply chains, the effects will be less severe. To the extent that they are not ravaged by climate change, some parts of the developing world where subsistence agriculture is practiced may continue on with little change. Unfortunately many areas will suffer the ravages of climate change—droughts, flooding and heat waves. Many countries (particularly in Africa and the Middle East) do not produce enough food for their own populations. With supply chains broken and agriculture struggling everywhere, these areas will find it difficult to continue importing the food they rely on. Supplies of energy and water will also prove problematical.

I am well aware that all these graphs and explanations do not constitute a proof of my assertions about the bumpy road down. But I hope I have succeeded in making what I’m trying to say much clearer. It’s up to you to decide if there is anything to it or not, now that you know what “it” is.

The other area I wanted to touch on today is the sort of things governments, communities and individuals can do to limit the damage when a financial crash spreads to other critical systems.

As the financial crash starts to gain momentum, governments will (to whatever extent they can) use the same tools as they did in 2008 to get things under control— loans and bailouts for faltering businesses, and keeping interest rates very low. It also seems likely that, as the situation worsens, “bail-ins” will be used as well, where depositors are required to accept discounts on their deposits to reduce the pressure on failing banks. And “haircuts” where bond holders have to accept discounts on the value of those bonds in order to reduce the pressure on the governments that issued them.

These efforts will have mixed results and the crash will no doubt spread to the non-financial sectors of the economy. Many governments will try switching failing critical systems over to a direct command “martial law” economy. This will be done with varying degrees of skill (or ineptitude as the case may be) and varying degrees of co-operation from their citizens. Vital materials which are in short supply due to supply chain and production breakdowns will be placed under government control and rationed (food, energy—especially diesel fuel, water treatment and medical supplies), and attempts will be made to patch supply chains and production facilities back together with whatever comes to hand.

I have no doubt that this can be made to work, at least to some extent. It does require convincing the public that it is necessary and that it is being done fairly—applied equally to the rich and powerful as it is to the poor and weak. And inevitably there will be thriving black markets.

Governments that already operate some of these systems directly will be better prepared and experience greater success. System that have been contracted out to the lowest bidder—companies that are primarily responsible to their stock holders rather than their customers—may fail in a variety of ghastly ways.

On the other hand, I think there will also be quite a bit of quiet heroism on the part of companies and individuals in critical industries whose job it is to keep things working. These folks are for the most part competent and highly motivated, and their efforts will be more successful than you might think.

Some governments will be so successful that their citizens may hardly be aware that anything is going on. In other countries, people will be reduced to relying almost entirely on what can be done locally, with locally available resources. Right wing capitalist governments whose primary obligation is to the rich and power will begin to practice wholesale abandonment of the poor and unfortunate.

There are also things that can be done by local communities, families and individuals to be more self sufficient—to be able to carry on during those periods when industrial society fails to supply the necessities. Increasing local inventories in order to be more resilient in response to supply chain failures would be a good beginning. But just being clear about what the necessities are and not wasting resources try to maintain luxuries will be one of the biggest challenges. The first step is realizing that much of what we consider necessary is, in fact, not.

So, as I’ve already said, I’m expecting a recovery, or rather a series of recoveries after a series of crashes. These crises are going to cause some changes in the way things work, resulting in a very different world. We’ll have a look at the trends that will lead to that new world in my next post.





The Selfish Green

14 01 2018

Every now and again, a video pops up in my newsfeed that I really really look forward to watching. This was one of them…… but oh what a disappointment…..  Sometimes, and I know I am not, I start believing I am the only one who ‘gets it’ and sees the whole picture. Well 99% of it, I’m certain I’ve missed something.

While there’s no doubting the eminence of the panel of four, David Attenborough, Richard Dawkins, Jane Goodall, and Richard Leaky (of whom I hadn’t really heard of much before…), I thought they fell far short of understanding the issues – no, predicaments – we are facing.  None of them seem to know much about energy, or the monetary system, with the fat cat lookalike, that Leaky fellow I didn’t know much about, really displaying his ignorance of nuclear energy.

What’s plain to see after watching that lot is that we are truly stuffed, notwithstanding their collective optimism, which as you probably all know, I don’t share……  a pessimist is, after all, a well informed optimist…!

Leaky’s wish to monetise every aspect of the environment so it can be saved really takes the cake. Money is the problem after all, which thankfully Attenborough points out to him, even if it’s just as an aside.  I love Jane Goodall to bits (and her chimps – there’s a wonderful clip of a couple with a Jack in the Box), but she’s frankly a bit naïve.  Dawkins is interesting, as always, but has no grasp of the financial and energy problems at all, in fact says nothing whatever about it.  Attenborough is the best informed of all, he has after all seen how the planet has changed in the past 60 years more than anyone else, and at least he realises we are way overpopulated……..  at the end, they all roll around in hopium. I’d love to know what DTM followers think……

That this video has only had 187,634 views as I type says it all.  Does anybody care?