More gnashing of teeth

7 02 2017

The Über-Lie

By Richard Heinberg, Post Carbon Institute

heinbergNevertheless, even as political events spiral toward (perhaps intended) chaos, I wish once again, as I’ve done countless times before, to point to a lie even bigger than the ones being served up by the new administration…It is the lie that human society can continue growing its population and consumption levels indefinitely on our finite planet, and never suffer consequences.

This is an excellent article from Richard Heinberg, the writer who sent me on my current life voyage all those years ago. Hot on the heels of my attempt yesterday of explaining where global politics are heading, Richard (whom I met years ago and even had a meal with…) does a better job than I could ever possibly muster.  Enjoy……

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Our new American president is famous for spinning whoppers. Falsehoods, fabrications, distortions, deceptions—they’re all in a day’s work. The result is an increasingly adversarial relationship between the administration and the press, which may in fact be the point of the exercise: as conservative commentators Scott McKay suggests in The American Spectator, “The hacks covering Trump are as lazy as they are partisan, so feeding them . . . manufactured controversies over [the size of] inaugural crowds is a guaranteed way of keeping them occupied while things of real substance are done.”

But are some matters of real substance (such as last week’s ban on entry by residents of seven Muslim-dominated nations) themselves being used to hide even deeper and more significant shifts in power and governance? Steve “I want to bring everything crashing down” Bannon, who has proclaimed himself an enemy of Washington’s political class, is a member of a small cabal (also including Trump, Stephen Miller, Reince Priebus, and Jared Kushner) that appears to be consolidating nearly complete federal governmental power, drafting executive orders, and formulating political strategy—all without paper trail or oversight of any kind. The more outrage and confusion they create, the more effective is their smokescreen for the dismantling of governmental norms and institutions.

There’s no point downplaying the seriousness of what is up. Some commentators are describing it as a coup d’etat in progress; there is definitely the potential for blood in the streets at some point.

Nevertheless, even as political events spiral toward (perhaps intended) chaos, I wish once again, as I’ve done countless times before, to point to a lie even bigger than the ones being served up by the new administration—one that predates the new presidency, but whose deconstruction is essential for understanding the dawning Trumpocene era. I’m referring to a lie that is leading us toward not just political violence but, potentially, much worse. It is an untruth that’s both durable and bipartisan; one that the business community, nearly all professional economists, and politicians around the globe reiterate ceaselessly. It is the lie that human society can continue growing its population and consumption levels indefinitely on our finite planet, and never suffer consequences.

Yes, this lie has been debunked periodically, starting decades ago. A discussion about planetary limits erupted into prominence in the 1970s and faded, yet has never really gone away. But now those limits are becoming less and less theoretical, more and more real. I would argue that the emergence of the Trump administration is a symptom of that shift from forecast to actuality.

Consider population. There were one billion of us on Planet Earth in 1800. Now there are 7.5 billion, all needing jobs, housing, food, and clothing. From time immemorial there were natural population checks—disease and famine. Bad things. But during the last century or so we defeated those population checks. Famines became rare and lots of diseases can now be cured. Modern agriculture grows food in astounding quantities. That’s all good (for people anyway—for ecosystems, not so much). But the result is that human population has grown with unprecedented speed.

Some say this is not a problem, because the rate of population growth is slowing: that rate was two percent per year in the 1960s; now it’s one percent. Yet because one percent of 7.5 billion is more than two percent of 3 billion (which was the world population in 1960), the actual number of people we’re now adding annually is the highest ever: over eighty million—the equivalent of Tokyo, New York, Mexico City, and London added together. Much of that population growth is occurring in countries that are already having a hard time taking care of their people. The result? Failed states, political unrest, and rivers of refugees.

Per capita consumption of just about everything also grew during past decades, and political and economic systems came to depend upon economic growth to provide returns on investments, expanding tax revenues, and positive poll numbers for politicians. Nearly all of that consumption growth depended on fossil fuels to provide energy for raw materials extraction, manufacturing, and transport. But fossil fuels are finite and by now we’ve used the best of them. We are not making the transition to alternative energy sources fast enough to avert crisis (if it is even possible for alternative energy sources to maintain current levels of production and transport). At the same time, we have depleted other essential resources, including topsoil, forests, minerals, and fish. As we extract and use resources, we create pollution—including greenhouse gasses, which cause climate change.

Depletion and pollution eventually act as a brake on further economic growth even in the wealthiest nations. Then, as the engine of the economy slows, workers find their incomes leveling off and declining—a phenomenon also related to the globalization of production, which elites have pursued in order to maximize profits.

Declining wages have resulted in the upwelling of anti-immigrant and anti-globalization sentiments among a large swath of the American populace, and those sentiments have in turn served up Donald Trump. Here we are. It’s perfectly understandable that people are angry and want change. Why not vote for a vain huckster who promises to “Make America Great Again”? However, unless we deal with deeper biophysical problems (population, consumption, depletion, and pollution), as well as the policies that elites have used to forestall the effects of economic contraction for themselves (globalization, financialization, automation, a massive increase in debt, and a resulting spike in economic inequality), America certainly won’t be “great again”; instead, we’ll just proceed through the five stages of collapse helpfully identified by Dmitry Orlov.

Rather than coming to grips with our society’s fundamental biophysical contradictions, we have clung to the convenient lies that markets will always provide, and that there are plenty of resources for as many humans as we can ever possibly want to crowd onto this little planet. And if people are struggling, that must be the fault of [insert preferred boogeyman or group here]. No doubt many people will continue adhering to these lies even as the evidence around us increasingly shows that modern industrial society has already entered a trajectory of decline.

While Trump is a symptom of both the end of economic growth and of the denial of that new reality, events didn’t have to flow in his direction. Liberals could have taken up the issues of declining wages and globalization (as Bernie Sanders did) and even immigration reform. For example, Colin Hines, former head of Greenpeace’s International Economics Unit and author of Localization: A Global Manifesto, has just released a new book, Progressive Protectionism, in which he argues that “We must make the progressive case for controlling our borders, and restricting not just migration but the free movement of goods, services and capital where it threatens environment, wellbeing and social cohesion.”

But instead of well-thought out policies tackling the extremely complex issues of global trade, immigration, and living wages, we have hastily written executive orders that upend the lives of innocents. Two teams (liberal and conservative) are lined up on the national playing field, with positions on all significant issues divvied up between them. As the heat of tempers rises, our options are narrowed to choosing which team to cheer for; there is no time to question our own team’s issues. That’s just one of the downsides of increasing political polarization—which Trump is exacerbating dramatically.

Just as Team Trump covers its actions with a smokescreen of controversial falsehoods, our society hides its biggest lie of all—the lie of guaranteed, unending economic growth—behind a camouflage of political controversies. Even in relatively calm times, the über-lie was watertight: almost no one questioned it. Like all lies, it served to divert attention from an unwanted truth—the truth of our collective vulnerability to depletion, pollution, and the law of diminishing returns. Now that truth is more hidden than ever.

Our new government shows nothing but contempt for environmentalists and it plans to exit Paris climate agreement. Denial reigns! Chaos threatens! So why bother bringing up the obscured reality of limits to growth now, when immediate crises demand instant action? It’s objectively too late to restrain population and consumption growth so as to avert what ecologists of the 1970s called a “hard landing.” Now we’ve fully embarked on the age of consequences, and there are fires to put out. Yes, the times have moved on, but the truth is still the truth, and I would argue that it’s only by understanding the biophysical wellsprings of change that can we successfully adapt, and recognize whatever opportunities come our way as the pace of contraction accelerates to the point that decline can no longer successfully be hidden by the elite’s strategies.

Perhaps Donald Trump succeeded because his promises spoke to what civilizations in decline tend to want to hear. It could be argued that the pluralistic, secular, cosmopolitan, tolerant, constitutional democratic nation state is a political arrangement appropriate for a growing economy buoyed by pervasive optimism. (On a scale much smaller than contemporary America, ancient Greece and Rome during their early expansionary periods provided examples of this kind of political-social arrangement). As societies contract, people turn fearful, angry, and pessimistic—and fear, anger, and pessimism fairly dripped from Trump’s inaugural address. In periods of decline, strongmen tend to arise promising to restore past glories and to defeat domestic and foreign enemies. Repressive kleptocracies are the rule rather than the exception.

If that’s what we see developing around us and we want something different, we will have to propose economic, political, and social forms that are appropriate to the biophysical realities increasingly confronting us—and that embody or promote cultural values that we wish to promote or preserve. Look for good historic examples. Imagine new strategies. What program will speak to people’s actual needs and concerns at this moment in history? Promising a return to an economy and way of life that characterized a past moment is pointless, and it may propel demagogues to power. But there is always a range of possible responses to the reality of the present. What’s needed is a new hard-nosed sort of optimism (based on an honest acknowledgment of previously denied truths) as an alternative to the lies of divisive bullies who take advantage of the elites’ failures in order to promote their own patently greedy interests. What that actually means in concrete terms I hope to propose in more detail in future essays.





Feeding 9 billion

16 01 2017

I have just been tipped off to this fantastic Joel Salatin video…… I think it’s ironic that Eclipe, a fan of Polyface Farm, is in complete disagreement with Joel who is totally anti hi-tech farming. In fact, like me, Joel believes in walking away from the Matrix (exemplified in this video by McDonald’s), and he lets both barrels go at the establishment…..

Enjoy.





Final Warning Limits to Growth

24 11 2016

Just when I thought I knew it all regarding Limits to Growth, along comes this one year old little doco produced by DW. What I particularly liked about this one is its historical perspective on the complete lack of action during the past forty years…..

In 1972, the study ‘Limits to Growth’ warned against the impact of capitalism. Did anyone act on it? It shows that Capitalism lies at the root of problems such as overpopulation and environmental pollution, yet few seem to be aware of the connection.

After its publication in 1972, the Club of Rome’s study, “Limits to Growth,” came to epitomize a historical turning point. The book calls into question the fundamental principle of the American economic ideology of capitalism, with its insatiable pursuit of growth. However, the work did not just pillory contemporary practices. It also warned of the extremely diverse and massive consequences for all of humanity. Although there is scarcely any doubt as to the validity of the study and its 1992 successor, “Beyond the Limits,” governments worldwide have done very little to solve the major problems. Topics such as overpopulation, environmental pollution, depletion of resources, and consumption are now familiar to everyone, but few people are aware of the impact they can have in the context of exponential growth on Earth, and therefore on all of humanity. This documentary sheds light on the effect the work has had on public perceptions in the past four decades.

Date 25.11.2015 Duration 42:30 mins.





Limits to growth: policies to steer the economy away from disaster

14 09 2016

Samuel Alexander, University of Melbourne

Samuel Alexander

If the rich nations in the world keep growing their economies by 2% each year and by 2050 the poorest nations catch up, the global economy of more than 9 billion people will be around 15 times larger than it is now, in terms of gross domestic product (GDP). If the global economy then grows by 3% to the end of the century, it will be 60 times larger than now.

The existing economy is already environmentally unsustainable. It is utterly implausible to think we can “decouple” economic growth from environmental impact so significantly, especially since recent decades of extraordinary technological advancement have only increased our impacts on the planet, not reduced them.

Moreover, if you asked politicians whether they’d rather have 4% growth than 3%, they’d all say yes. This makes the growth trajectory outlined above all the more absurd.

Others have shown why limitless growth is a recipe for disaster. I’ve argued that living in a degrowth economy would actually increase well-being, both socially and environmentally. But what would it take to get there?

In a new paper published by the Melbourne Sustainable Society Institute, I look at government policies that could facilitate a planned transition beyond growth – and I reflect on the huge obstacles lying in the way.

Measuring progress

First, we need to know what we’re aiming for.

It is now widely recognised that GDP – the monetary value of all goods and services produced in an economy – is a deeply flawed measure of progress.

GDP can be growing while our environment is being degraded, inequality is worsening, and social well-being is stagnant or falling. Better indicators of progress include the Genuine Progress Indicator (GPI), which accounts for a wide range of social, economic and environmental factors.

Cap resources and energy

Environmental impact is driven by demand for resources and energy. It is now clear that the planet cannot possibly support current or bigger populations if developing nations used the same amount of resources and energy as developed nations.

Demand can be reduced through efficiency gains (doing more with less), but these gains tend to be reinvested in more growth and consumption, rather than reducing impacts.

A post-growth economy would therefore need diminishing “resource caps” to achieve sustainability. These would aim to limit a nation’s consumption to a “fair share” of available resources. This in turn would stimulate efficiency, technological innovation and recycling, thereby minimising waste.

This means that a post-growth economy will need to produce and consume in far less resource-intensive ways, which will almost certainly mean reduced GDP. There will of course be scope to progress in other ways, such as increased leisure time and community engagement.

Work less, live more

Growth in GDP is often defended on the grounds that it is required to keep unemployment at manageable levels. So jobs will have to maintained in other ways.

Even though GDP has been growing quite consistently in recent decades, many Westerners, including Australians, still seem to be locked into a culture of overwork.

By reducing the average working week to 28 hours, a post-growth economy would share the available work among the working population. This would minimise or eliminate unemployment even in a non-growing or contracting economy.

Lower income would mean we would have less stuff, reducing environmental impact, but we would receive more freedom in exchange. Planned degrowth is therefore very different to unplanned recession.

Redirect public spending

Governments are the most significant player in any economy and have the most spending power. Taking limits to growth seriously will require a fundamental rethink of how public funds are invested and spent.

Among other things, this would include a swift divestment from the fossil fuel economy and reinvestment in renewable energy systems. But just as important is investing in efficiency and reducing energy demand through behaviour change. Obviously, it will be much easier to transition to 100% renewable energy if energy demand is a fraction of what it is today.

We could fund this transition by redirecting funds from military spending (climate change is, after all, a security threat), cutting fossil fuel subsidies and putting an adequate price on carbon.

Reform banking and finance

Banking and finance systems essentially have a “growth imperative” built into their structures. Money is loaned into existence by private banks as interest-bearing debt. Paying back the debt plus the interest requires an expansion of the monetary supply.

There is so much public and private debt today that the only way it could be paid back is via decades of continued growth.

So we need deep reform of banking and finance systems. We’d also need to cancel debt in some circumstances, especially in developing nations that are being suffocated by interest payments to rich world lenders.

The population question

Then there’s population. Many people assume that population growth will slow when the developing world gets rich, but to globalise affluence would be environmentally catastrophic. It is absolutely imperative therefore that nations around the world unite to confront the population challenge directly.

Population policies will inevitably be controversial but the world needs bold and equitable leadership on this issue, because current trends suggest we are heading for 11 billion by the end of this century.

Anyone who casually dismisses the idea that there is a limit to how many people Earth can support should be given a Petri dish with a swab of bacteria. Watch as the colony grows until it consumes all of the available nutrients or is poisoned by its own waste.

The first thing needed is a global fund that focuses on providing the education, empowerment and contraception required to minimise the estimated 87 million unintended pregnancies worldwide every year.

Eliminating poverty

The conventional path to poverty alleviation is the strategy of GDP growth, on the assumption that “a rising tide will lift all boats”. But, as I’ve argued, a rising tide will sink all boats.

Poverty alleviation must be achieved more directly, via redistribution of wealth and power, both nationally and internationally. In other words (and to change the metaphor), a post-growth economy would eliminate poverty not by baking an ever-larger pie (which isn’t working) but by sharing it differently.

The richest 62 people on the planet own more than the poorest half of humanity. Dwell on that for a moment, and then dare to tell me that redistribution is not an imperative of justice.

So what’s stopping us?

Despite these post-growth policy proposals seeming coherent, they face at least four huge obstacles – which may be insurmountable.

First, the paradigm of growth is deeply embedded in national governments, especially in the developed world. At the cultural level, the expectation of ever-increasing affluence is as strong as ever. I am not so deluded as to think otherwise.

Second, these policies would directly undermine the economic interests of the most powerful corporations and institutions in society, so fierce resistance should be expected.

Third, and perhaps most challenging, is that in a globalised world these policies would likely trigger either capital flight or economic collapse, or both. For example, how would the stock markets react to this policy agenda?

Finally, there is also a geopolitical risk in being first to adopt these policies. Reduced military spending, for instance, would reduce a nation’s relative power.

So if these “top-down” policies are unlikely to work, it would seem to follow that if a post-growth economy is to emerge, it may have to be driven into existence from below, with communities coming together to build the new economy at the grassroots level.

And if we face a future where the growth economy grows itself to death, which seems to be the most likely scenario, then building up local resilience and self-sufficiency now will prove to be time and energy well spent.

In the end, it is likely that only when a deep crisis arrives will an ethics of sufficiency come to inform our economic thinking and practice more broadly.

The Conversation

Samuel Alexander, Research fellow, Melbourne Sustainable Society Institute, University of Melbourne

This article was originally published on The Conversation. Read the original article.





Deflationary Collapse Ahead?

24 07 2016

The big thing that is happening is that the world financial system is likely to collapse. Back in 2008, the world financial system almost collapsed. This time, our chances of avoiding collapse are very slim.

Posted on by

tverberg

Gail Tverberg

Both the stock market and oil prices have been plunging. Is this “just another cycle,” or is it something much worse? I think it is something much worse.

Back in January, I wrote a post called Oil and the Economy: Where are We Headed in 2015-16? In it, I said that persistent very low prices could be a sign that we are reaching limits of a finite world. In fact, the scenario that is playing out matches up with what I expected to happen in my January post. In that post, I said

Needless to say, stagnating wages together with rapidly rising costs of oil production leads to a mismatch between:

  • The amount consumers can afford for oil
  • The cost of oil, if oil price matches the cost of production

This mismatch between rising costs of oil production and stagnating wages is what has been happening. The unaffordability problem can be hidden by a rising amount of debt for a while (since adding cheap debt helps make unaffordable big items seem affordable), but this scheme cannot go on forever.

Eventually, even at near zero interest rates, the amount of debt becomes too high, relative to income. Governments become afraid of adding more debt. Young people find student loans so burdensome that they put off buying homes and cars. The economic “pump” that used to result from rising wages and rising debt slows, slowing the growth of the world economy. With slow economic growth comes low demand for commodities that are used to make homes, cars, factories, and other goods. This slow economic growth is what brings the persistent trend toward low commodity prices experienced in recent years.

A chart I showed in my January post was this one:

Figure 1. World Oil Supply (production including biofuels, natural gas liquids) and Brent monthly average spot prices, based on EIA data.

The price of oil dropped dramatically in the latter half of 2008, partly because of the adverse impact high oil prices had on the economy, and partly because of a contraction in debt amounts at that time. It was only when banks were bailed out and the United States began its first round of Quantitative Easing (QE) to get longer term interest rates down even further that energy prices began to rise. Furthermore, China ramped up its debt in this time period, using its additional debt to build new homes, roads, and factories. This also helped pump energy prices back up again.

The price of oil was trending slightly downward between 2011 and 2014, suggesting that even then, prices were subject to an underlying downward trend. In mid-2014, there was a big downdraft in prices, which coincided with the end of US QE3 and with slower growth in debt in China. Prices rose for a time, but have recently dropped again, related to slowing Chinese, and thus world, economic growth. In part, China’s slowdown is occurring because it has reached limits regarding how many homes, roads and factories it needs.

I gave a list of likely changes to expect in my January post. These haven’t changed. I won’t repeat them all here. Instead, I will give an overview of what is going wrong and offer some thoughts regarding why others are not pointing out this same problem.

Overview of What is Going Wrong

  1. The big thing that is happening is that the world financial system is likely to collapse. Back in 2008, the world financial system almost collapsed. This time, our chances of avoiding collapse are very slim.
  2. Without the financial system, pretty much nothing else works: the oil extraction system, the electricity delivery system, the pension system, the ability of the stock market to hold its value. The change we are encountering is similar to losing the operating system on a computer, or unplugging a refrigerator from the wall.
  3. We don’t know how fast things will unravel, but things are likely to be quite different in as short a time as a year. World financial leaders are likely to “pull out the stops,” trying to keep things together. A big part of our problem is too much debt. This is hard to fix, because reducing debt reduces demand and makes commodity prices fall further. With low prices, production of commodities is likely to fall. For example, food production using fossil fuel inputs is likely to greatly decline over time, as is oil, gas, and coal production.
  4. The electricity system, as delivered by the grid, is likely to fail in approximately the same timeframe as our oil-based system. Nothing will fail overnight, but it seems highly unlikely that electricity will outlast oil by more than a year or two. All systems are dependent on the financial system. If the oil system cannot pay its workers and get replacement parts because of a collapse in the financial system, the same is likely to be true of the electrical grid system.
  5. Our economy is a self-organized networked system that continuously dissipates energy, known in physics as a dissipative structureOther examples of dissipative structures include all plants and animals (including humans) and hurricanes. All of these grow from small beginnings, gradually plateau in size, and eventually collapse and die. We know of a huge number of prior civilizations that have collapsed. This appears to have happened when the return on human labor has fallen too low. This is much like the after-tax wages of non-elite workers falling too low. Wages reflect not only the workers’ own energy (gained from eating food), but any supplemental energy used, such as from draft animals, wind-powered boats, or electricity. Falling median wages, especially of young people, are one of the indications that our economy is headed toward collapse, just like the other economies.
  6. The reason that collapse happens quickly has to do with debt and derivatives. Our networked economy requires debt in order to extract fossil fuels from the ground and to create renewable energy sources, for several reasons: (a) Producers don’t have to save up as much money in advance, (b) Middle-men making products that use energy products (such as cars and refrigerators) can “finance” their factories, so they don’t have to save up as much, (c) Consumers can afford to buy “big-ticket” items like homes and cars, with the use of plans that allow monthly payments, so they don’t have to save up as much, and (d) Most importantly, debt helps raise the price of commodities of all sorts (including oil and electricity), because it allows more customers to afford products that use them. The problem as the economy slows, and as we add more and more debt, is that eventually debt collapses. This happens because the economy fails to grow enough to allow the economy to generate sufficient goods and services to keep the system going – that is, pay adequate wages, even to non-elite workers; pay growing government and corporate overhead; and repay debt with interest, all at the same time. Figure 2 is an illustration of the problem with the debt component.Figure 2. Repaying loans is easy in a growing economy, but much more difficult in a shrinking economy.

Where Did Modeling of Energy and the Economy Go Wrong?

  1. Today’s general level of understanding about how the economy works, and energy’s relationship to the economy, is dismally low. Economics has generally denied that energy has more than a very indirect relationship to the economy. Since 1800, world population has grown from 1 billion to more than 7 billion, thanks to the use of fossil fuels for increased food production and medicines, among other things. Yet environmentalists often believe that the world economy can somehow continue as today, without fossil fuels. There is a possibility that with a financial crash, we will need to start over, with new local economies based on the use of local resources. In such a scenario, it is doubtful that we can maintain a world population of even 1 billion.
  2. Economics modeling is based on observations of how the economy worked when we were far from limits of a finite world. The indications from this modeling are not at all generalizable to the situation when we are reaching limits of a finite world. The expectation of economists, based on past situations, is that prices will rise when there is scarcity. This expectation is completely wrong when the basic problem is lack of adequate wages for non-elite workers. When the problem is a lack of wages, workers find it impossible to purchase high-priced goods like homes, cars, and refrigerators. All of these products are created using commodities, so a lack of adequate wages tends to “feed back” through the system as low commodity prices. This is exactly the opposite of what standard economic models predict.
  3. M. King Hubbert’s “peak oil” analysis provided a best-case scenario that was clearly unrealistic, but it was taken literally by his followers. One of Hubbert’s sources of optimism was to assume that another energy product, such as nuclear, would arise in huge quantity, prior to the time when a decline in fossil fuels would become a problem.Figure 2. Figure from Hubbert's 1956 paper, Nuclear Energy and the Fossil Fuels.

    The way nuclear energy operates in Figure 2 seems to me to be pretty much equivalent to the output of a perpetual motion machine, adding an endless amount of cheap energy that can be substituted for fossil fuels. A related source of optimism has to do with the shape of a curve that is created by the sum of curves of a given type. There is no reason to expect that the “total” curve will be of the same shape as the underlying curves, unless a perfect substitute (that is, having low price, unlimited quantity, and the ability to work directly in current devices) is available for what is being modeled–here fossil fuels. When the amount of extraction is determined by price, and price can quickly swing from high to low, there is good reason to believe that the shape of the sum curve will be quite pointed, rather than rounded. For example we know that a square wave can be approximated using the sum of sine functions, using Fourier Series (Figure 4).

    Figure 3. Source: Wolfram Mathworld.

  4. The world economy operates on energy flows in a given year, even though most analysts today are accustomed to thinking on a discounted cash flow basis.  You and I eat food that was grown very recently. A model of food potentially available in the future is interesting, but it doesn’t satisfy our need for food when we are hungry. Similarly, our vehicles run on oil that has recently been extracted; our electrical system operates on electricity that has been produced, essentially instantaneously. The very close relationship in time between production and consumption of energy products is in sharp contrast to the way the financial system works. It makes promises, such as the availability of bank deposits, the amounts of pension payments, and the continuing value of corporate stocks, far out into the future. When these promises are made, there is no check made that goods and services will actually be available to repay these promises. We end up with a system that has promised very many more goods and services in the future than the real world will actually be able to produce. A break is inevitable; it looks like the break will be happening in the near future.
  5. Changes in the financial system have huge potential to disrupt the operation of the energy flow system. Demand in a given year comes from a combination of (wages and other income streams in a given year) plus the (change in debt in a given year). Historically, the (change in debt) has been positive. This has helped raise commodity prices. As soon as we start getting large defaults on debt, the (change in debt) component turns negative, and tends to bring down the price of commodities. (Note Point 6 in the previous section.) Once this happens, it is virtually impossible to keep prices up high enough to extract oil, coal and natural gas. This is a major reason why the system tends to crash.
  6. Researchers are expected to follow in the steps of researchers before them, rather than starting from a basic understudying of the whole problem. Trying to understand the whole problem, rather than simply trying to look at a small segment of a problem is difficult, especially if a researcher is expected to churn out a large number of peer reviewed academic articles each year. Unfortunately, there is a huge amount of research that might have seemed correct when it was written, but which is really wrong, if viewed through a broader lens. Churning out a high volume of articles based on past research tends to simply repeat past errors. This problem is hard to correct, because the field of energy and the economy cuts across many areas of study. It is hard for anyone to understand the full picture.
  7. In the area of energy and the economy, it is very tempting to tell people what they want to hear. If a researcher doesn’t understand how the system of energy and the economy works, and needs to guess, the guesses that are most likely to be favorably received when it comes time for publication are the ones that say, “All is well. Innovation will save the day.” Or, “Substitution will save the day.” This tends to bias research toward saying, “All is well.” The availability of financial grants on topics that appear hopeful adds to this effect.
  8. Energy Returned on Energy Investment (EROEI) analysis doesn’t really get to the point of today’s problems. Many people have high hopes for EROEI analysis, and indeed, it does make some progress in figuring out what is happening. But it misses many important points. One of them is that there are many different kinds of EROEI. The kind that matters, in terms of keeping the economy from collapsing, is the return on human labor. This type of EROEI is equivalent to after-tax wages of non-elite workers. This kind of return tends to drop too low if the total quantity of energy being used to leverage human labor is too low. We would expect a drop to occur in the quantity of energy used, if energy prices are too high, or if the quantity of energy products available is restricted.
  9. Instead of looking at wages of workers, most EROEI analyses consider returns on fossil fuel energy–something that is at least part of the puzzle, but is far from the whole picture. Returns on fossil fuel energy can be done either on a cash flow (energy flow) basis or on a “model” basis, similar to discounted cash flow. The two are not at all equivalent. What the economy needs is cash flow energy now, not modeled energy production in the future. Cash flow analyses probably need to be performed on an industry-wide basis; direct and indirect inputs in a given calendar year would be compared with energy outputs in the same calendar year. Man-made renewables will tend to do badly in such analyses, because considerable energy is used in making them, but the energy provided is primarily modeled future energy production, assuming that the current economy can continue to operate as today–something that seems increasingly unlikely.
  10. If we are headed for a near term sharp break in the economy, there is no point in trying to add man-made renewables to the electric grid. The whole point of adding man-made renewables is to try to keep what we have today longer. But if the system is collapsing, the whole plan is futile. We end up extracting more coal and oil today, in order to add wind or solar PV to what will soon become a useless grid electric system. The grid system will not last long, because we cannot pay workers and we cannot maintain the grid without a financial system. So if we add man-made renewables, most of what we get is their short-term disadvantages, with few of their hoped-for long-term advantages.

Conclusion

The analysis that comes closest to the situation we are reaching today is the 1972 analysis of limits of a finite world, published in the book “The Limits to Growth” by Donella Meadows and others. It models what can be expected to happen, if population and resource extraction grow as expected, gradually tapering off as diminishing returns are encountered. The base model seems to indicate that a collapse will happen about now.

Figure 5. Base scenario from 1972 Limits to Growth, printed using today's graphics by Charles Hall and John Day in "Revisiting Limits to Growth After Peak Oil" http://www.esf.edu/efb/hall/2009-05Hall0327.pdf

The shape of the downturn is not likely to be correct in Figure 5.  One reason is that the model was put together based on physical quantities of goods and people, without considering the role the financial system, particularly debt, plays. I expect that debt would tend to make collapse quicker. Also, the modelers had no experience with interactions in a contracting world economy, so had no idea regarding what adjustments to make. The authors have even said that the shapes of the curves, after the initial downturn, cannot be relied on. So we end up with something like Figure 6, as about all that we can rely on.

Figure 6. Figure 5, truncated shortly after production turns down, since modeled amounts are unreliable after that date.

If we are indeed facing the downturn forecast by Limits to Growth modeling, we are facing  a predicament that doesn’t have a real solution. We can make the best of what we have today, and we can try to strengthen bonds with family and friends. We can try to diversify our financial resources, so if one bank encounters problems early on, it won’t be a huge problem. We can perhaps keep a little food and water on hand, to tide us over a temporary shortage. We can study our religious beliefs for guidance.

Some people believe that it is possible for groups of survivalists to continue, given adequate preparation. This may or may not be true. The only kind of renewables that we can truly count on for the long term are those used by our forefathers, such as wood, draft animals, and wind-driven boats. Anyone who decides to use today’s technology, such as solar panels and a pump adapted for use with solar panels, needs to plan for the day when that technology fails. At that point, hard decisions will need to be made regarding how the group will live without the technology.

We can’t say that no one warned us about the predicament we are facing. Instead, we chose not to listen. Public officials gave a further push in this direction, by channeling research funds toward distant theoretically solvable problems, instead of understanding the true nature of what we are up against. Too many people took what Hubbert said literally, without understanding that what he offered was a best-case scenario, if we could find something equivalent to a perpetual motion machine to help us out of our predicament.





Harquebus’ latest newsletter….

30 06 2016

Howdy all.

The state and quality of main stream journalism (MSJ), including that at our own ABC and despite what they might think of themselves, has deteriorated to the point of being totally useless. Instead of news, we get stories about cats in schools, fanfares about stupid celebrities making stupid remarks and any other triviality that might distract their audiences from the real world and the little that does resemble credible news, is either government propaganda, incomplete, misleading or a combination of all three. The credibility of MSJ is now non existent.

The collapse of Venezuela, shattered climate records, the release of Arctic methane and CO2, unsustainable global debt, Bilderberg meetings and the sixth mass extinction event currently under way are never mentioned. Our environment continues to be destroyed, the oceans polluted and fished to exhaustion, finite resources are wasted on corporate profits while poverty and overcrowding due to unsustainable population growth continue unabated and the fault lies squarely with MSJ which, has failed to hold those responsible to account.
Tony Jones, Australia’s most popular TV journalist, is the worst of the lot. For decades he has reveled in his popularity while all that sustains us is destroyed in the pursuit of growth and profit. He and his MSJ peers must change or we can kiss our sorry little behinds goodbye and if they think that they and theirs are somehow going to be exempt from the bloody mess that will inevitably befall us then, they are even more stupid than the ignorant fools who govern us.
Aussie journalists are only slightly more trustworthy than the corporate bought and paid for politicians that they serve. How proud they must be.

https://au.finance.yahoo.com/news/top-10-most-untrustworthy-aussie-professions-050959497.html

“Sometimes I wonder whether the world is being run by smart people who are putting us on, or by imbeciles who really mean it.” — Mark Twain Here is my usual list of links which, also proves my point.

Cheers.

———————————

“As the economy unwinds, doctors are now stealing hospital food to feed their families.”
http://www.naturalnews.com/054383_Venezuela_starvation_food_shortage.html
“”We want food!” Looting and riots rock Venezuela daily”
http://www.reuters.com/article/us-venezuela-looting-idUSKCN0YY0IR
“With delivery trucks under constant attack, the nation’s food is now transported under armed guard. Soldiers stand watch over bakeries. The police fire rubber bullets at desperate mobs storming grocery stores, pharmacies and butcher shops. A 4-year-old girl was shot to death as street gangs fought over food.”
http://www.nytimes.com/2016/06/20/world/americas/venezuelans-ransack-stores-as-hunger-stalks-crumbling-nation.html

“Half of the world has passed the point of maximum energy consumption. This point is marked by large scale economic crisis. Asia Pacific is approaching that point now.”

http://wakeup.stubbornbull.com.au/the-environment/industrial-issues/have-we-reached-peak-oil/

Trans-Pacific Partnership will barely benefit Australia, says World Bank report”
The average Australian worker will not benefit in any way shape or form from this agreement.”
http://wakeup.stubbornbull.com.au/society/financial-system/trans-pacific-partnership-ttp-what-is-it/

“The EPA states that methane is a greenhouse gas that could have 25 times the impact of carbon dioxide over the next century.”
http://www.businessinsider.com/russian-exploding-permafrost-methane-craters-global-warming-2016-6

“The melting of the permafrost represents one of humanity’s greatest fears for it contains vast amounts of methane, a greenhouse gas much more potent than carbon dioxide.”
http://www.independent.co.uk/environment/gateway-to-the-underworld-siberia-batagaika-siberia-russia-permafrost-melting-a7063936.html
“we are now experiencing the highest level of relative and absolute global inequality at any point in human history.”
“the 21st Century will be a new dark age of luxury for a few and barbaric suffering for most. ”
http://www.greanvillepost.com/2016/06/07/planetary-crisis-we-are-not-all-in-this-together/
“the UN warns bluntly that world population, now well over seven billion ‘has reached a stage where the amount of resources needed to sustain it exceeds what is available
http://churchandstate.org.uk/2016/06/there-are-not-enough-resources-to-support-the-worlds-population/
“Mexico’s wells are running dry.
You would almost not know if you took your news from television or the mainstream media. It is like a closely guarded secret — the aunt in the attic.”
http://peaksurfer.blogspot.com.au/2016/06/the-aunt-in-attic.html

“We have forgotten the lessons of the 1760s, 1850s, and 1920s. We have let Economic Royalists hijack our democracy, and turn our economy into their money machine. Now the middle class is evaporating, infrastructure is crumbling, and pressure is reaching a breaking point. Anti-establishment candidates are on the rise, and no one knows how things will turn out.”
http://evonomics.com/trump-phenomenon-is-a-sign-of-oligarchy/

“Australian scientists report that many surviving corals affected by mass bleaching from high sea temperatures on the northern Great Barrier Reef are the sickest they have ever seen.
http://www.eurekalert.org/pub_releases/2016-06/acoe-hsc062016.php

“In 2009, Obama promised to help “rid the world of nuclear weapons” and was awarded the Nobel Peace Prize. No American president has built more nuclear warheads than Obama.”
https://newmatilda.com/2016/05/30/silencing-america-as-it-prepares-for-war-john-pilger/

“Thus, if tomorrow a war were to break out between the US and Russia, it is guaranteed that the US would be obliterated.”
“If attacked, Russia will not back down; she will retaliate, and she will utterly annihilate the United States.”
http://www.paulcraigroberts.org/2016/06/03/41522/

“Whether we believe that innovation and technology ultimately make the world better or worse, there is now overwhelming evidence that they are unsustainable in any case. Between economic over-extension, energy over-dependence, and the ruination of our atmosphere and other environments by our civilization and its technologies, it is now almost inevitable that we will soon see a collapse that will make the Great Depression, and perhaps even the five previous great extinctions of life on Earth, look like nothing.
“Modern technology requires cheap energy, and, notwithstanding the recent power games between the US and Russia temporarily and artificially driving down oil prices, we are quickly running out of it.”
http://howtosavetheworld.ca/2016/06/06/technologys-false-hope-and-the-wisdom-of-crows-repost/
“the evidence supports their theory that his death was in no possible way a suicide, as has been reported by police and the mainstream media.”
http://www.naturalnews.com/054302_Jeff_Bradstreet_murder_autism.html

“Having successfully used the EU to conquer the Greek people by turning the Greek “leftwing” government into a pawn of Germany’s banks, Germany now finds the IMF in the way of its plan to loot Greece into oblivion .”
http://www.paulcraigroberts.org/2016/05/25/we-have-entered-the-looting-stage-of-capitalism-paul-craig-roberts/

“All references to climate change’s impact on World Heritage sites in Australia have been removed from a United Nations report.”
“Australia’s Department of the Environment requested that Unesco scrub these sections from the final version.”
http://www.bbc.com/news/world-australia-36376226

Peak oil mates, peak oil. Those that deny it do not understand it.
“when oil companies (and governments) talk about oil supply, they include all sorts of things that cannot be sold as oil on the world market including biofuels, refinery gains and natural gas plant liquids as well as lease condensate.”
“If what you’re selling cannot be sold on the world market as crude oil, then it’s not crude oil.”
http://oilprice.com/Energy/Energy-General/The-Condensate-Con-How-Real-Is-The-Oil-Glut.html

“You’d think this would be pretty big news.  The Prime Minister of one of the biggest economies in the world just made a presentation saying we are on the brink of collapse not only in Japan but worldwide and it was mostly swept under the rug.
“The same globalist elites who are orchestrating the coming collapse own all the major media companies.  They don’t want Joe the Plumber and main street to get an inkling that something is wrong until it is too late… just like in 2008.”
https://www.dollarvigilante.com/blog/2016/06/01/now-japanese-prime-minister-abe-predicts-global-economic-catastrophe-imminent.html

“Neoliberalism hasn’t delivered economic growth – it has only made a few people a lot better off.”
http://www.theguardian.com/commentisfree/2016/may/31/witnessing-death-neoliberalism-imf-economists
“Ocean plastic has turned up literally everywhere. It has been found in the deep sea and buried in Arctic ice. It has been ingested with dire consequences by some 700 species of marine wildlife.”
http://news.nationalgeographic.com/news/2015/02/150212-ocean-debris-plastic-garbage-patches-science/
“inflate another bubble. In other words, do more of what failed spectacularly.
This process of doing more of what failed spectacularly appears sustainable for a time, but this superficial success masks the underlying dynamic of diminishing returns:”
http://www.oftwominds.com/blogjune16/collapse6-16.html
“If our leaders had made better decisions since the last crisis, things could have turned out differently.  But instead, they continued to conduct business as usual, and now we will reap what they have sown.”
http://theeconomiccollapseblog.com/archives/worst-jobs-report-in-nearly-6-years-102-million-working-age-americans-do-not-have-jobs

“The high-profit, low-risk nature of environmental crime is matched by the low funds and uncertain priorities given to fighting it by many decision-takers.”
http://www.theguardian.com/environment/2016/jun/03/value-eco-crimes-soars-26-with-devastating-impacts-natural-world

“That $1.3 trillion bubble was enough to bring down several major banks and cause cascading damage across the global financial system.
Today’s bubble is EIGHT TIMES the size of the last one”
https://www.sovereignman.com/trends/this-financial-bubble-is-8-times-bigger-than-the-2008-subprime-crisis-19590/

“The Arctic is on track to be free of sea ice this year or next for the first time in more than 100,000 years”
“Scientists have monitored greenhouse gas methane – once frozen on the sea bed – bubbling up to the surface at an alarming rate.”
“We’re on a runaway train, scientists are blowing the whistle, but politicians are still shovelling coal into the engine.”
http://www.independent.co.uk/environment/climate-change/arctic-could-become-ice-free-for-first-time-in-more-than-100000-years-claims-leading-scientist-a7065781.html

“A husband should be allowed to lightly beat his wife if she defies his commands and refuses to dress up as per his desires; turns down demand of intercourse without any religious excuse or does not take bath after intercourse or menstrual periods.”
http://www.shtfplan.com/headline-news/husbands-can-beat-their-wives-if-they-refuse-sex-according-to-islamic-council-of-clerics-and-scholars_06042016

“That has left economists and fund managers worried the unconventional measures are setting the stage for exactly what central banks are trying to prevent—another financial crisis.”
http://www.marketwatch.com/story/fund-managers-fear-central-banks-will-create-next-lehman-moment-2016-06-08

“Australia has amassed a huge pile of debt—over 120% of GDP—and most of it is mortgage debt on overvalued real estate. Now that Australia’s economy, which was driven by commodity exports to China, has tanked, a lot of this debt is being turned into interest-only loans, because Australians no longer have the money to repay any of the principal.”
“as conditions deteriorate further, the Australians will become unable to afford taxes and utilities.”
http://cluborlov.blogspot.com.au/2016/06/the-money-cult.html

“the internet has fallen into the hands of large corporations and governments and become the “world’s largest surveillance network”.”
http://www.theinquirer.net/inquirer/news/2460894/sir-tim-berners-lee-internet-has-become-world-s-largest-surveillance-network

“if you care to avoid vaporization and, assuming we do avoid it, live a life other than serfdom, you must wake up and realize that your most deadly enemy is Washington, not the hoax of “Russian aggression,” not the hoax of “Muslim terrorism,” not the hoax of “domestic extremism,” not the hoax of welfare bankrupting America, not the hoax of democracy voting away your wealth, which Wall Street and the corporations have already stolen and stuck in their pockets.”
http://www.paulcraigroberts.org/2016/06/09/where-do-matters-stand-paul-craig-roberts/

“We are heading into a very dark time…a time where technology will be used to enslave, not enlighten or uplift mankind.”
http://www.shtfplan.com/headline-news/economic-collapse-will-serve-one-purpose-global-governance-and-the-enslavement-of-mankind_06112016

“Its fast-growing stalk yields one of the strongest and most useful fibers known, used in superior paper, canvas, ropes, insulation, cardboard, clothing, shoes and plastic — plastic that is, by the way, biodegradable. This one plant can provide many of the products an industrial society needs, sustainably, while drastically reducing pollution, energy consumption, deforestation, fossil fuel use and providing income for millions of farmers”
“Both hemp and marijuana are cannabis plants. Hemp is cannabis sativa and marijuana is cannabis indica. So when regulators wanted to prevent people from getting high on cannabis indica, they criminalized cannabis, which included cannabis sativa, which made it illegal to use one of the most useful and sustainable crops the world has ever known.”
http://www.dailyimpact.net/2016/06/07/the-war-on-hemp/

“There is no such thing as sustainable agriculture. It does not exist.”
http://dark-mountain.net/blog/how-did-things-get-to-be-this-way/

“The economic reality, evident to anyone who isn’t a spin doctor for the Coalition or a journalist for The Australian, is that we have a weak economy, unable to finance our expected living standards.”
https://newmatilda.com/2016/06/06/australias-open-for-business-and-yet-incomes-are-down-and-were-basically-in-recession/

“The last station on Earth without a 400 parts per million (ppm) [CO2] reading has reached it.”
“That’s the first time it’s passed that level in 4 million years (no, that’s not a typo).”
“the planet as a whole has likely crossed the 400 ppm threshold permanently”
http://www.climatecentral.org/news/antarctica-co2-400-ppm-million-years-20451

“Seven climate records set so far in 2016”
https://www.theguardian.com/environment/2016/jun/17/seven-climate-records-set-so-far-in-2016

“What will corporations blame when they can’t use “tighter money supplies” as an excuse?”
http://imgur.com/bbwlZZF

———————————

Harry aka Harquebus
Salisbury North.
South Australia.
harrycebex@hotmail.com




No really, how sustainable are we?

28 02 2016

 

This is a most interesting piece I found on the interweb, written by Paul Chefurka almost three years ago.  Paul is happy for this article to be reproduced in full, no questions asked, and as I feel it needs to be widely read, the more internet presence it has the better, and now you DTM readers can share it too…

Paul, who is Canadian, has an interesting website chockablock full of insightful stuff you may also want to read.

Enjoy…….

 

Ever since the writing of Thomas Malthus in the early 1800s, and especially since Paul Ehrlich’s publication of “The Population Bomb”  in 1968, there has been a lot of learned skull-scratching over what the sustainable human population of Planet Earth might “really” be over the long haul.


This question is intrinsically tied to the issue of ecological overshoot so ably described by William R. Catton Jr. in his 1980 book “Overshoot:The Ecological Basis of Revolutionary Change”.  How much have we already pushed our population and consumption levels above the long-term carrying capacity of the planet?

This article outlines my current thoughts on carrying capacity and overshoot, and presents six estimates for the size of a sustainable human population.

Carrying Capacity

Carrying capacity” is a well-known ecological term that has an obvious and fairly intuitive meaning: “The maximum population size of a species that the environment can sustain indefinitely, given the food, habitat, water and other necessities available in the environment.” 

Unfortunately that definition becomes more nebulous and controversial the closer you look at it, especially when we are talking about the planetary carrying capacity for human beings. Ecologists will claim that our numbers have already well surpassed the planet’s carrying capacity, while others (notably economists and politicians…) claim we are nowhere near it yet!

This confusion may arise because we tend to confuse two very different understandings of the phrase “carrying capacity”.  For this discussion I will call these the “subjective” view and the “objective” views of carrying capacity.

The subjective view is carrying capacity as seen by a member of the species in question. Rather than coming from a rational, analytical assessment of the overall situation, it is an experiential judgment.  As such it tends to be limited to the population of one’s own species, as well as having a short time horizon – the current situation counts a lot more than some future possibility.  The main thing that matters in this view is how many of one’s own species will be able to survive to reproduce. As long as that number continues to rise, we assume all is well – that we have not yet reached the carrying capacity of our environment.

From this subjective point of view humanity has not even reached, let alone surpassed the Earth’s overall carrying capacity – after all, our population is still growing.  It’s tempting to ascribe this view mainly to neoclassical economists and politicians, but truthfully most of us tend to see things this way.  In fact, all species, including humans, have this orientation, whether it is conscious or not.

Species tend to keep growing until outside factors such as disease, predators, food or other resource scarcity – or climate change – intervene.  These factors define the “objective” carrying capacity of the environment.  This objective view of carrying capacity is the view of an observer who adopts a position outside the species in question.It’s the typical viewpoint of an ecologist looking at the reindeer on St. Matthew Island, or at the impact of humanity on other species and its own resource base.

This is the view that is usually assumed by ecologists when they use the naked phrase “carrying capacity”, and it is an assessment that can only be arrived at through analysis and deductive reasoning.  It’s the view I hold, and its implications for our future are anything but comforting.

When a species bumps up against the limits posed by the environment’s objective carrying capacity, its population begins to decline. Humanity is now at the uncomfortable point when objective observers have detected our overshoot condition, but the population as a whole has not recognized it yet. As we push harder against the limits of the planet’s objective carrying capacity, things are beginning to go wrong.  More and more ordinary people are recognizing the problem as its symptoms become more obvious to casual onlookers.The problem is, of course, that we’ve already been above the planet’s carrying capacity for quite a while.

One typical rejoinder to this line of argument is that humans have “expanded our carrying capacity” through technological innovation.  “Look at the Green Revolution!  Malthus was just plain wrong.  There are no limits to human ingenuity!”  When we say things like this, we are of course speaking from a subjective viewpoint. From this experiential, human-centric point of view, we have indeed made it possible for our environment to support ever more of us. This is the only view that matters at the biological, evolutionary level, so it is hardly surprising that most of our fellow species-members are content with it.


The problem with that view is that every objective indicator of overshoot is flashing red.  From the climate change and ocean acidification that flows from our smokestacks and tailpipes, through the deforestation and desertification that accompany our expansion of human agriculture and living space, to the extinctions of non-human species happening in the natural world, the planet is urgently signaling an overload condition.

Humans have an underlying urge towards growth, an immense intellectual capacity for innovation, and a biological inability to step outside our chauvinistic, anthropocentric perspective.  This combination has made it inevitable that we would land ourselves and the rest of the biosphere in the current insoluble global ecological predicament.

 

Overshoot

When a population surpasses its carrying capacity it enters a condition known as overshoot.  Because the carrying capacity is defined as the maximum population that an environment can maintain indefinitely, overshoot must by definition be temporary.  Populations always decline to (or below) the carrying capacity.  How long they stay in overshoot depends on how many stored resources there are to support their inflated numbers.  Resources may be food, but they may also be any resource that helps maintain their numbers.  For humans one of the primary resources is energy, whether it is tapped as flows (sunlight, wind, biomass) or stocks (coal, oil, gas, uranium etc.).  A species usually enters overshoot when it taps a particularly rich but exhaustible stock of a resource.  Like fossil fuels, for instance…

Population growth in the animal kingdom tends to follow a logistic curve.  This is an S-shaped curve that starts off low when the species is first introduced to an ecosystem, at some later point rises very fast as the population becomes established, and then finally levels off as the population saturates its niche.

Humans have been pushing the envelope of our logistic curve for much of our history. Our population rose very slowly over the last couple of hundred thousand years, as we gradually developed the skills we needed in order to deal with our varied and changeable environment,particularly language, writing and arithmetic. As we developed and disseminated those skills our ability to modify our environment grew, and so did our growth rate.

If we had not discovered the stored energy stocks of fossil fuels, our logistic growth curve would probably have flattened out some time ago, and we would be well on our way to achieving a balance with the energy flows in the world around us, much like all other species do.  Our numbers would have settled down to oscillate around a much lower level than today, similar to what they probably did with hunter-gatherer populations tens of thousands of years ago.

Unfortunately, our discovery of the energy potential of coal created what mathematicians and systems theorists call a “bifurcation point” or what is better known in some cases as a tipping point. This is a point at which a system diverges from one path onto another because of some influence on events.  The unfortunate fact of the matter is that bifurcation points are generally irreversible.  Once past such a point, the system can’t go back to a point before it.

Given the impact that fossil fuels had on the development of world civilization, their discovery was clearly such a fork in the road.  Rather than flattening out politely as other species’ growth curves tend to do, ours kept on rising.  And rising, and rising. 

What is a sustainable population level?

Now we come to the heart of the matter.  Okay, we all accept that the human race is in overshoot.  But how deep into overshoot are we?  What is the carrying capacity of our planet?  The answers to these questions,after all, define a sustainable population.

Not surprisingly, the answers are quite hard to tease out.  Various numbers have been put forward, each with its set of stated and unstated assumptions –not the least of which is the assumed standard of living (or consumption profile) of the average person.  For those familiar with Ehrlich and Holdren’s I=PAT equation, if “I” represents the environmental impact of a sustainable population, then for any population value “P” there is a corresponding value for “AT”, the level of Activity and Technology that can be sustained for that population level.  In other words, the higher our standard of living climbs, the lower our population level must fall in order to be sustainable. This is discussed further in an earlier article on Thermodynamic Footprints.

To get some feel for the enormous range of uncertainty in sustainability estimates we’ll look at six assessments, each of which leads to a very different outcome.  We’ll start with the most optimistic one, and work our way down the scale.

The Ecological Footprint Assessment

The concept of the Ecological Footprint was developed in 1992 by William Rees and Mathis Wackernagel at the University of British Columbia in Canada.

The ecological footprint is a measure of human demand on the Earth’s ecosystems. It is a standardized measure of demand for natural capital that may be contrasted with the planet’s ecological capacity to regenerate. It represents the amount of biologically productive land and sea area necessary to supply the resources a human population consumes, and to assimilate associated waste. As it is usually published, the value is an estimate of how many planet Earths it would take to support humanity with everyone following their current lifestyle.

It has a number of fairly glaring flaws that cause it to be hyper-optimistic. The “ecological footprint” is basically for renewable resources only. It includes a theoretical but underestimated factor for non-renewable resources.  It does not take into account the unfolding effects of climate change, ocean acidification or biodiversity loss (i.e. species extinctions).  It is intuitively clear that no number of “extra planets” would compensate for such degradation.

Still, the estimate as of the end of 2012 is that our overall ecological footprint is about “1.7 planets”.  In other words, there is at least 1.7 times too much human activity for the long-term health of this single, lonely planet.  To put it yet another way, we are 70% into overshoot.

It would probably be fair to say that by this accounting method the sustainable population would be (7 / 1.7) or about four billion people at our current average level of affluence.  As you will see, other assessments make this estimate seem like a happy fantasy.

The Fossil Fuel Assessment

The main accelerator of human activity over the last 150 to 200 years has been our exploitation of the planet’s stocks of fossil fuel.  Before 1800 there was very little fossil fuel in general use, with most energy being derived from the flows represented by wood, wind, water, animal and human power. The following graph demonstrates the precipitous rise in fossil fuel use since then, and especially since 1950.


Graphic by Gail Tverberg

This information was the basis for my earlier Thermodynamic Footprint analysis.  That article investigated the influence of technological energy (87% of which comes from fossil fuel stocks) on human planetary impact, in terms of how much it multiplies the effect of each “naked ape”. The following graph illustrates the multiplier at different points in history:


Fossil fuels have powered the increase in all aspects of civilization, including population growth.  The “Green Revolution” in agriculture that was kicked off by Nobel laureate Norman Borlaug in the late 1940s was largely a fossil fuel phenomenon, relying on mechanization, powered irrigation and synthetic fertilizers derived from fossil fuels. This enormous increase in food production supported a swift rise in population numbers, in a classic ecological feedback loop: more food (supply) => more people (demand) => more food => more people etc…

Over the core decades of the Green Revolution from 1950 to 1980 the world population almost doubled, from fewer than 2.5 billion to over 4.5 billion.  The average population growth over those three decades was 2% per year.  Compare that to 0.5% from 1800 to 1900; 1.00% from 1900 to 1950; and 1.5% from 1980 until now:

This analysis makes it tempting to conclude that a sustainable population might look similar to the situation in 1800, before the Green Revolution, and before the global adoption of fossil fuels: about 1 billion people living on about 5% of today’s global average energy consumption, all of it derived from renewable energy flows.

It’s tempting (largely because it seems vaguely achievable), but unfortunately that number may still be too high.  Even in 1800 the signs of human overshoot were clear, if not well recognized:  there was already widespread deforestation through Europe and the Middle East; and desertification had set into the previously lush agricultural zones of North Africa and the Middle East.

Not to mention that if we did start over with “just” one billion people, an annual growth rate of a mere 0.5% would put the population back over seven billion in just 400 years.  Unless the growth rate can be kept down very close to zero, such a situation is decidedly unsustainable.

 

The Population Density Assessment

There is another way to approach the question.  If we assume that the human species was sustainable at some point in the past, what point might we choose and what conditions contributed to our apparent sustainability at that time?

I use a very strict definition of sustainability.  It reads something like this: “Sustainability is the ability of a species to survive in perpetuity without damaging the planetary ecosystem in the process.”  This principle applies only to a species’ own actions, rather than uncontrollable external forces like Milankovitch cycles, asteroid impacts, plate tectonics, etc.

In order to find a population that I was fairly confident met my definition of sustainability, I had to look well back in history – in fact back into Paleolithic times.  The sustainability conditions I chose were: a very low population density and very low energy use, with both maintained over multiple thousands of years. I also assumed the populace would each use about as much energy as a typical hunter-gatherer: about twice the daily amount of energy a person obtains from the food they eat.

There are about 150 million square kilometers, or 60 million square miles of land on Planet Earth.  However, two thirds of that area is covered by snow, mountains or deserts, or has little or no topsoil.  This leaves about 50 million square kilometers (20 million square miles) that is habitable by humans without high levels of technology.


A typical population density for a non-energy-assisted society of hunter-forager-gardeners is between 1 person per square mile and 1 person per square kilometer. Because humans living this way had settled the entire planet by the time agriculture was invented 10,000 years ago, this number pegs a reasonable upper boundary for a sustainable world population in the range of 20 to 50 million people.

I settled on the average of these two numbers, 35 million people.  That was because it matches known hunter-forager population densities, and because those densities were maintained with virtually zero population growth (less than 0.01% per year)during the 67,000 years from the time of the Toba super-volcano eruption in 75,000 BC until 8,000 BC (Agriculture Day on Planet Earth).

If we were to spread our current population of 7 billion evenly over 50 million square kilometers, we would have an average density of 150 per square kilometer.  Based just on that number, and without even considering our modern energy-driven activities, our current population is at least 250 times too big to be sustainable. To put it another way, we are now 25,000% into overshoot based on our raw population numbers alone.

As I said above, we also need to take the population’s standard of living into account. Our use of technological energy gives each of us the average planetary impact of about 20 hunter-foragers.  What would the sustainable population be if each person kept their current lifestyle, which is given as an average current Thermodynamic Footprint (TF) of 20?

We can find the sustainable world population number for any level of human activity by using the I = PAT equation mentioned above.

  • We decided above that the maximum hunter-forager population we could accept as sustainable would be 35 million people, each with a Thermodynamic Footprint of 1.
  • First, we set I (the allowable total impact for our sustainable population) to 35, representing those 35 million hunter-foragers.
  • Next, we set AT to be the TF representing the desired average lifestyle for our population.  In this case that number is 20.
  • We can now solve the equation for P.  Using simple algebra, we know that I = P x AT is equivalent to P = I / AT.  Using that form of the equation we substitute in our values, and we find that P = 35 / 20.  In this case P = 1.75.

This number tells us that if we want to keep the average level of per-capita consumption we enjoy in today’s world, we would enter an overshoot situation above a global population of about 1.75 million people. By this measure our current population of 7 billion is about 4,000 times too big and active for long-term sustainability. In other words, by this measure we are we are now 400,000% into overshoot.

Using the same technique we can calculate that achieving a sustainable population with an American lifestyle (TF = 78) would permit a world population of only 650,000 people – clearly not enough to sustain a modern global civilization.

For the sake of comparison, it is estimated that the historical world population just after the dawn of agriculture in 8,000 BC was about five million, and in Year 1 was about 200 million.  We crossed the upper threshold of planetary sustainability in about 2000 BC, and have been in deepening overshoot for the last 4,000 years.

The Ecological Assessments

As a species, human beings share much in common with other large mammals.  We breathe, eat, move around to find food and mates, socialize, reproduce and die like all other mammalian species.  Our intellect and culture, those qualities that make us uniquely human, are recent additions to our essential primate nature, at least in evolutionary terms.

Consequently it makes sense to compare our species’ performance to that of other, similar species – species that we know for sure are sustainable.  I was fortunate to find the work of American marine biologist Dr. Charles W. Fowler, who has a deep interest in sustainability and the ecological conundrum posed by human beings.  The following three assessments are drawn from Dr. Fowler’s work.

 

First assessment

In 2003, Dr. Fowler and Larry Hobbs co-wrote a paper titled, Is humanity sustainable?”  that was published by the Royal Society.  In it, they compared a variety of ecological measures across 31 species including humans. The measures included biomass consumption, energy consumption, CO2 production, geographical range size, and population size.

It should come as no great surprise that in most of the comparisons humans had far greater impact than other species, even to a 99% confidence level.  When it came to population size, Fowler and Hobbs found that there are over two orders of magnitude more humans than one would expect based on a comparison to other species – 190 times more, in fact.  Similarly, our CO2 emissions outdid other species by a factor of 215.

Based on this research, Dr. Fowler concluded that there are about 200 times too many humans on the planet.  This brings up an estimate for a sustainable population of 35 million people.

This is the same as the upper bound established above by examining hunter-gatherer population densities.  The similarity of the results is not too surprising, since the hunter-gatherers of 50,000 years ago were about as close to “naked apes” as humans have been in recent history.

 

Second assessment

In 2008, five years after the publication cited above, Dr. Fowler wrote another paper entitled Maximizing biodiversity, information and sustainability.”  In this paper he examined the sustainability question from the point of view of maximizing biodiversity.  In other words, what is the largest human population that would not reduce planetary biodiversity?

This is, of course, a very stringent test, and one that we probably failed early in our history by extirpating mega-fauna in the wake of our migrations across a number of continents.

In this paper, Dr. Fowler compared 96 different species, and again analyzed them in terms of population, CO2 emissions and consumption patterns.

This time, when the strict test of biodiversity retention was applied, the results were truly shocking, even to me.  According to this measure, humans have overpopulated the Earth by almost 700 times.  In order to preserve maximum biodiversity on Earth, the human population may be no more than 10 million people – each with the consumption of a Paleolithic hunter-forager.

Addendum: Third assessment

After this article was initially written, Dr. Fowler forwarded me a copy of an appendix to his 2009 book, “Systemic Management: Sustainable Human Interactions with Ecosystems and the Biosphere”, published by Oxford University Press.  In it he describes yet one more technique for comparing humans with other mammalian species, this time in terms of observed population densities, total population sizes and ranges.

After carefully comparing us to various species of both herbivores and carnivores of similar body size, he draws this devastating conclusion: the human population is about 1000 times larger than expected. This is in line with the second assessment above, though about 50% more pessimistic.  It puts a sustainable human population at about 7 million.

Urk!

 

Conclusions

As you can see, the estimates for a sustainable human population vary widely – by a factor of 500 from the highest to the lowest.

The Ecological Footprint doesn’t really seem intended as a measure of sustainability.  Its main value is to give people with no exposure to ecology some sense that we are indeed over-exploiting our planet.  (It also has the psychological advantage of feeling achievable with just a little work.)  As a measure of sustainability, it is not helpful.

As I said above, the number suggested by the Thermodynamic Footprint or Fossil Fuel analysis isn’t very helpful either – even a population of one billion people without fossil fuels had already gone into overshoot.

That leaves us with four estimates: two at 35 million, one of 10 million, and one of 7 million.

The central number of 35 million people is confirmed by two analyses using different data and assumptions.  My conclusion is that this is probably the absolutely largest human population that could be considered sustainable.  The realistic but similarly unachievable number is probably more in line with the bottom two estimates, somewhere below 10 million.

I think the lowest two estimates (Fowler 2008, and Fowler 2009) are as unrealistically high as all the others in this case, primarily because human intelligence and problem-solving ability makes our destructive impact on biodiversity a foregone conclusion. After all, we drove other species to extinction 40,000 years ago, when our total population was estimated to be under 1 million.

 

So, what can we do with this information?  It’s obvious that we will not (and probably cannot) voluntarily reduce our population by 99.5% to 99.9%.  Even an involuntary reduction of this magnitude would involve enormous suffering and a very uncertain outcome.  It’s close enough to zero that if Mother Nature blinked, we’d be gone.

In fact, the analysis suggests that Homo sapiens is an inherently unsustainable species.  This outcome seems virtually guaranteed by our neocortex, by the very intelligence that has enabled our rise to unprecedented dominance over our planet’s biosphere.  Is intelligence an evolutionary blind alley?  From the singular perspective of our own species, it quite probably is. If we are to find some greater meaning or deeper future for intelligence in the universe, we may be forced to look beyond ourselves and adopt a cosmic, rather than a human, perspective.

 

Discussion

 

How do we get out of this jam?


How might we get from where we are today to a sustainable world population of 35 million or so?  We should probably discard the notion of “managing” such a population decline.  If we can’t even get our population to simply stop growing, an outright reduction of over 99% is simply not in the cards.  People seem virtually incapable of taking these kinds of decisions in large social groups.  We can decide to stop reproducing, but only as individuals or (perhaps) small groups. Without the essential broad social support, such personal choices will make precious little difference to the final outcome.  Politicians will by and large not even propose an idea like “managed population decline”  – not if they want to gain or remain in power, at any rate.  China’s brave experiment with one-child families notwithstanding, any global population decline will be purely involuntary.

Crash?


A world population decline would (will) be triggered and fed by our civilization’s encounter with limits.  These limits may show up in any area: accelerating climate change, weather extremes,shrinking food supplies, fresh water depletion, shrinking energy supplies,pandemic diseases, breakdowns in the social fabric due to excessive complexity,supply chain breakdowns, electrical grid failures, a breakdown of the international financial system, international hostilities – the list of candidates is endless, and their interactions are far too complex to predict.

In 2007, shortly after I grasped the concept and implications of Peak Oil, I wrote my first web article on population decline: Population: The Elephant in the Room.  In it I sketched out the picture of a monolithic population collapse: a straight-line decline from today’s seven billion people to just one billion by the end of this century.


As time has passed I’ve become less confident in this particular dystopian vision.  It now seems to me that human beings may be just a bit tougher than that.  We would fight like demons to stop the slide, though we would potentially do a lot more damage to the environment in the process.  We would try with all our might to cling to civilization and rebuild our former glory.  Different physical, environmental and social situations around the world would result in a great diversity in regional outcomes.  To put it plainly, a simple “slide to oblivion” is not in the cards for any species that could recover from the giant Toba volcanic eruption in just 75,000 years.

Or Tumble?

Still, there are those physical limits I mentioned above.  They are looming ever closer, and it seems a foregone conclusion that we will begin to encounter them for real within the next decade or two. In order to draw a slightly more realistic picture of what might happen at that point, I created the following thought experiment on involuntary population decline. It’s based on the idea that our population will not simply crash, but will oscillate (tumble) down a series of stair-steps: first dropping as we puncture the limits to growth; then falling below them; then partially recovering; only to fall again; partially recover; fall; recover…

I started the scenario with a world population of 8 billion people in 2030. I assumed each full cycle of decline and partial recovery would take six generations, or 200 years.  It would take three generations (100 years) to complete each decline and then three more in recovery, for a total cycle time of 200 years. I assumed each decline would take out 60% of the existing population over its hundred years, while each subsequent rise would add back only half of the lost population.

In ten full cycles – 2,000 years – we would be back to a sustainable population of about 40-50 million. The biggest drop would be in the first 100 years, from 2030 to 2130 when we would lose a net 53 million people per year. Even that is only a loss of 0.9% pa, compared to our net growth today of 1.1%, that’s easily within the realm of the conceivable,and not necessarily catastrophic – at least to begin with.

As a scenario it seems a lot more likely than a single monolithic crash from here to under a billion people.  Here’s what it looks like:


It’s important to remember that this scenario is not a prediction. It’s an attempt to portray a potential path down the population hill that seems a bit more probable than a simple, “Crash! Everybody dies.”

It’s also important to remember that the decline will probably not happen anything like this, either. With climate change getting ready to push humanity down the stairs, and the strong possibility that the overall global temperature will rise by 5 or 6 degrees Celsius even before the end of that first decline cycle, our prospects do not look even this “good” from where I stand.

Rest assured, I’m not trying to present 35 million people as some kind of “population target”. It’s just part of my attempt to frame what we’re doing to the planet, in terms of what some of us see as the planetary ecosphere’s level of tolerance for our abuse.

The other potential implicit in this analysis is that if we did drop from 8 to under 1 billion, we could then enter a population free-fall. As a result, we might keep falling until we hit the bottom of Olduvai Gorge again. My numbers are an attempt to define how many people might stagger away from such a crash landing.  Some people seem to believe that such an event could be manageable.  I don’t share that belief for a moment. These calculations are my way of getting that message out.

I figure if I’m going to draw a line in the sand, I’m going to do it on behalf of all life, not just our way of life.

 

What can we do? 


To be absolutely clear, after ten years of investigating what I affectionately call “The Global Clusterfuck”, I do not think it can be prevented, mitigated or managed in any way.  If and when it happens, it will follow its own dynamic, and the force of events could easily make the Japanese and Andaman tsunamis seem like pleasant days at the beach.

The most effective preparations that we can make will all be done by individuals and small groups.  It will be up to each of us to decide what our skills, resources and motivations call us to do.  It will be different for each of us – even for people in the same neighborhood, let alone people on opposite sides of the world.

I’ve been saying for a couple of years that each of us will do whatever we think is appropriate for the circumstances, in whatever part of the world we can influence. The outcome of our actions is ultimately unforeseeable, because it depends on how the efforts of all 7 billion of us converge, co-operate and compete.  The end result will be quite different from place to place – climate change impacts will vary, resources vary, social structures vary, values and belief systems are different all over the world.The best we can do is to do our best.

Here is my advice: 

  • Stay awake to what’s happening around us.
  • Don’t get hung up by other people’s “shoulds and shouldn’ts”.
  • Occasionally re-examine our personal values.  If they aren’t in alignment with what we think the world needs, change them.
  • Stop blaming people. Others are as much victims of the times as we are – even the CEOs and politicians.
  • Blame, anger and outrage is pointless.  It wastes precious energy that we will need for more useful work.
  • Laugh a lot, at everything – including ourselves.
  • Hold all the world’s various beliefs and “isms” lightly, including our own.
  • Forgive others. Forgive ourselves. For everything.
  • Love everything just as deeply as you can.

That’s what I think might be helpful. If we get all that personal stuff right, then doing the physical stuff about food, water, housing,transportation, energy, politics and the rest of it will come easy – or at least a bit easier. And we will have a lot more fun doing it.

I wish you all the best of luck!
Bodhi Paul Chefurka
May 16, 2013