Book review of Failing states, collapsing systems biophysical triggers of political violence by Nafeez Ahmed

6 06 2017

I have written at length about the collapse of Egypt over the years, and Syria too. I’ve also discussed Nafeez Ahmed’s views on the unraveling now happening in the Middle East, and my most recent item here from the Doomstead Diner has attracted a lot of attention….. including from Alice Friedemann who pointed out to me that she has published an extensive review of Ahmed’s new book “Failing states, collapsing systems biophysical triggers of political violence”. It’s a long read (the references alone are almost as long as the article and would keep you busy for weeks!), but I was totally riveted by it and felt the compulsion to republish it here as it needs to be read as widely as possible. In fact, this review is so good, you may not need to buy the book……. as I’ve been saying for a very long time now, 2020 is when things start to get really ugly, all the way to 2030, by which time it’s likely the state of the world will be unrecognisable.

The overview of biophysical factors table below is alone really telling……

If after reading this latest piece you are not convinced collapse is indeed underway, then there’s no hope for you….!

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

alice_friedemann[ In this post I summarize the sections of Nafeez’s book about the biophysical factors that bring nations down (i.e. climate change drought & water scarcity, declining revenues after peak oil, etc.) The Media tend to focus exclusively on economic and political factors.

My book review is divided into 3 parts: 

  • Why states collapse for reasons other than economic and political
  • How BioPhysical factors contribute to systemic collapse in Syria, Yemen, Iraq, Saudi Arabia Egypt, Nigeria
  • Predictions of when collapse will begin in Middle East, India, China, Europe, Russia, North America

In my opinion, war is inevitable in the Middle East where over half of oil reserves exist.  Oil is life itself.  If war happens,  collapse of the Middle East, India, and China could happen well before 2030.  If nuclear weapons are used, most nations collapse from the nuclear winter and ozone depletion that would follow.   Indonesia blew up their oil refineries to keep Japan from getting oil in WWII. If Middle Eastern governments or terrorists do the same after they’re attacked, that brings on the energy crisis sooner.  Although this would leave some high EROI oil in the ground, the energy to rebuild refineries, pipelines, oil rigs, roads, and other infrastructure would lower the EROI considerably.

Alice Friedemann   www.energyskeptic.com  author of “When Trucks Stop Running: Energy and the Future of Transportation”, 2015, Springer and “Crunch! Whole Grain Artisan Chips and Crackers”. Podcasts: Practical Prepping, KunstlerCast 253, KunstlerCast278, Peak Prosperity , XX2 report ]

Ahmed, Nafeez. 2017. Failing States, Collapsing Systems BioPhysical Triggers of Political Violence. Springer.

1) Why states collapse for reasons other than economic and political

Since the 2008 financial crash, there’s been an unprecedented outbreak of social protest: Occupy in the US and Western Europe, the Arab Spring, and civil unrest from Greece to Ukraine, China to Thailand, Brazil to Turkey, and elsewhere. Sometimes civil unrest has resulted in government collapse or even wars, as in Iraq-Syria and Ukraine- Crimea. The media and experts blame it on poor government, usually ignoring the real reasons because all they know is politics and economics.

In the Middle East, experts should also talk about geology.  Oil-producing nations like Syria, Yemen, Egypt, Nigeria, and Iraq have all reached peak oil and declining government revenues after that force rulers to raise the prices of food and oil.  This region was already short on water, and now climate change (from fossil fuels) is making matters much worse with drought and heat waves causing even greater water scarcity, which in turn lowers agricultural production.  Many of these nations have some of the highest rates of population growth on earth at a time when resources essential to life itself are declining.

The few nations still producing much of the oil – Russia, Saudi Arabia, and the U.S. are about to join the club and stop exporting oil so they can provide for their domestic population.

Ahmed points out that “because these and other factors are so nested and interconnected, even small perturbations and random occurrences in one can amplify effects on other parts of the system, sometimes in a feedback process that continues.  If thresholds are reached, these tipping points can re-order the whole system”.  These ecological and geological factors result in social disorder, which makes it even harder for government to do anything, such as putting more money into water and food production infrastructure, which accelerates climate change and energy decline impacts, which leads to even more violence at an accelerating rate until state failure.

2) How BioPhysical factors contribute to systemic collapse in Syria, Yemen, Iraq, Saudi Arabia Egypt, Nigeria

 

Table 1. Overview of biophysical factors (water scarcity, peak oil, population) for nations Ahmed discusses in this book

The UN defines a region as not having water scarcity above 1700 cubic meters per capita (green).  Water stressed nations have 1000 to 1700 cubic meters per capita (yellow).  Water scarcity is 500-1000 per capita (orange) and absolute water scarcity 0-500 (red).  Countries already experiencing water stress or far worse include Egypt, Jordan, Turkey, Iraq, Israel, Syria, Yemen, India, China, and parts of the United States. Many, though not all, of these countries are experiencing protracted conflicts or civil unrest (Patrick 2015).

SYRIA

The media portray warfare in Syria as due to the extreme repression of President Bashar al-Assad and the support he receives from Russia.  Although there has been awareness that climate change drought played a role in causing conflict, there is no recognition that peak oil was one of the main factors.

Here’s a quick summary of how peak oil and consequent declining revenues from oil production, rising energy and food prices, drought, water scarcity, and population growth led to social unrest, violence, terrorism and war.

It shouldn’t be surprising that peak oil in 1996 triggered the tragic events we see today.  After all, the main source of Syrian revenue came from their production of 610,000 barrels per day (bpd).  By 2010 oil production had declined by half. Falling revenues caused Syria to seek help from the IMF by 2001, and the onerous market reform policies required resulted in higher unemployment and poverty, especially in rural Sunni regions, while at the same time enriching and corrupting ruling minority Alawite private and military elites.

In 2008 the government had to triple oil prices resulting in higher food prices. Food prices rose even more due to the global price of wheat doubling in 2010-2011. On top of that, the 2007-2010 drought was the worst on record, causing widespread crop failures. This forced mass migrations of farming families to cities (Agrimoney 2012; Kelley et al. 2015). The drought wouldn’t have been so bad if half the water hadn’t been wasted and overused previously from 2002 to 2008 (Worth 2010). All of these violence-creating events were worsened by one of the highest birth rates growth on earth, 2.4%.  Most of the additional 80,000 people added in 2011 were born in the hardest-hit drought areas (Sands 2011).

Rinse and repeat.  Social unrest and violence led to war, oil production dropped further, so there is even less money to end unrest with subsidized food and energy or more employment, aid farmers, and build desalination plants.

Syria, once able to feed its people, now depends on 4 million tonnes of grain imports at a time when revenues continue to drop.  Syrian oil production didn’t really take off until 1968 when there were 6.4 million people.  Since oil revenues allowed their population to explode, another 13.6 million have been born.

IRAQ

Like Syria, Iraq’s agricultural production has been reduced by heat, drought, heavy rain, water scarcity, rapid population growth, and the inability of government to import food and provide goods and services as oil revenues decline.  ISIS has worsened matters and filled in the gaps of state-level failure.  Peak oil is likely by 2025.  Or sooner given the ongoing war, lack of investment to keep existing production flowing, and low oil prices (Dipaola 2016).

YEMEN 

Like Syria, Iraq, and Iran, Yemen has long faced serious water scarcity issues. The country is consuming water far faster than it is being replenished, an issue that has been identified by numerous experts as playing a key background role in driving local inter-tribal and sectarian conflicts (Patrick 2015).

Yemen is one of the most water-scarce countries in the world. In 2012, the average Yemeni had access to just 140 cubic meters of water a year for all uses and just three years later a catastrophic 86 m3, far below the 1000 m3 level minimum requirement standards.    Cities often only have sporadic access to running water— every other week or so.  Sanaa could become the first capital in the world to run out of water (IRIN 2012).

Yemen reached peak oil production in 2001, declining from 450,000 barrels per day (bpd) to 100,000 bpd in 2014, and will be zero by 2017 (Boucek 2009).   This has led to a drastic decline in Yemen’s oil exports, which has eaten into government revenues, 75% of which had depended on oil exports. Oil revenues also account for 90% of the government’s foreign exchange reserves. The decline in post-peak Yemen state revenues has reduced the government’s capacity to sustain even basic social investments. When the oil runs out … the capacity to sustain a viable state-structure will completely collapse.

Yemen has 25 million people and an exorbitantly high growth rate and predicted to double by 2050. In 2014 experts warned that within the next decade, these demographic trends would demolish the government’s ability to meet the population’s basic needs in education, health and other essential public services. This is already happening to over 15 million people (Qaed 2014).  Over half the Yemeni population lives below the poverty line, and unemployment is at 40% (60% of young people).

To cope, too many people have turned to growing qat (a mild narcotic) on 40% of Yemen’s irrigated land, increasing water use to 3.9 billion cubic meters (bcm), but the renewable water supply is just 2.5 bcm. The 1.4 bcm shortfall is made up by pumping water from underground water reserves that are starting to run dry.

Energy, overpopulation, drought, water scarcity, poverty, and a government unable to do much of anything without oil revenue is in a downward loop of social tensions, local conflicts and even mass displacements.  This in turn adds to the dynamics of the wider sectarian and political conflicts between the government, the Houthis, southern separatists and al-Qaeda affiliated militants.

Violence undermines food security, feeding back into the downward spiraling loop.  Making matters worse is that rain-fed agriculture has dropped by about 30% since 1970, making Yemen ever more food import dependent at a time when revenues are shrinking. The country now imports over 85% of its food, including 90% of its wheat and all of its rice (World Bank 2014). Most Yemenis are hungry because they can’t afford to buy food, which also rises in price when global prices rise.  The rate of chronic malnutrition as high as 58%, second only to Afghanistan (Arashi 2013).

Epidemic levels of government corruption, mismanagement and incompetence, have meant that what little revenue the government receives ends up in Swiss bank accounts.  With revenues plummeting in the wake of the collapse of its oil industry, the government has been forced to slash subsidies while cranking up fuel and diesel prices. This has, in turn, cranked up prices of water, meat, fruits, vegetables and spices, leading to fuel and food riots (Mawry 2015).

Is Saudi Arabia Next?

Summary: Within the next decade, Saudi Arabia will become especially vulnerable to the downward feedback loop of peak oil.  The most likely date for peak oil is 2028 (Ebrahimi 2015). But because the Saudi exports have been going down since 2005 at 1.4% a year as their own population rises and consumes more and more, world exports could end as soon as 2031 (Brown and Foucher 2008).

Saudi revenues will decline to zero, so the Saudis will be less able to buy their way out of food shortages.  Their own food production will drop as well from drought and water scarcity — the kingdom is one of the most water scarce in the world, at 98 m³ per inhabitant per year.

Most water comes from groundwater, 57% of which is non-renewable, and 88% of it goes to agriculture. Desalination plants produce 70% of the kingdom’s domestic water supplies. But desalination is very energy intensive, accounting for more than half of domestic oil consumption. As oil exports run down, along with state revenues, while domestic consumption increases, the kingdom’s ability to use desalination to meet its water needs will decrease (Patrick 2015; Odhiambo 2016).

According to the Export Land Model (ELM) created by Texas petroleum geologist Jeffrey J Brown and Dr. Sam Foucher, the key issue is the timing of when there will be no more exports because the domestic population of oil producing nations is using it all for domestic consumption.   Brown and Foucher showed that the tipping point to watch out for is when an oil producer can no longer increase the quantity of oil sales abroad because of the need to meet rising domestic energy demand.

Saudi Arabia is the region’s largest energy consumer. Domestic demand has increased 7.5% over the last 5 years, mainly due to population growth. Saudi population may grow from 29 million people now to 37 million by 2030, using ever more oil and therefore less available for export.

Declining Saudi peak oil exports will affect every nation on earth that imports Saudi oil, especially top customers China, Japan, the United States, South Korea, and India.  As Saudi oil declines, there will be few other places oil for importing nations to turn to, since other exporting nations will also be using their oil domestically.

A report by Citigroup predicted net exports would plummet to zero in the next 15 years. This means that 80% of money from oil sales the Saudi state depends on are trending downward, eventually terminally (Daya 2016). In this case, the peak oil production date could happen well before 2028, as well as violent social unrest, since so far, Saudi Arabia’s oil wealth, and its unique ability to maintain generous subsidies for oil, housing, food and other consumer items, has kept civil unrest at bay. Energy subsidies alone make up about a fifth of Saudi’s gross domestic product. But as revenues are increasingly strained by decreasing exports after peak oil, the kingdom will need to slash subsidies (Peel 2013).  Even now a quarter of the Saudi’s live in poverty, and unemployment is 12%, especially young people who have a 30% unemployment level. [Saudi Arabia recently started taxing fuel at the bowsers]

Saudi Arabia is experiencing climate change as temperatures rise in the interior and far less rainfall occurs in the north.  By 2040, local average temperatures are expected to increase by as much as 4 °C at the same time rain levels are falling, resulting in more extreme weather events like the 2010 Jeddah flooding when a year of rain fell in 4 hours.  The combination could dramatically impact agricultural productivity, which is already facing challenges from overgrazing and unsustainable industrial agricultural practices leading to accelerated desertification (Chowdhury 2013).

80% of Saudi Arabia’s food requirements are purchased through heavily subsidized imports.  Without the protection of oil revenue subsidies, and potential rises in the global prices of food (Taha 2014), the Saudi population would be heavily impacted. But with net oil revenues declining to zero—potentially within just 15 years—Saudi Arabia’s capacity to finance continued food imports will be in question.

EGYPT

Like Syria, Egypt has had increasing problems paying for food, goods, and services after peak oil in 1993 while at the same time population keeps growing.   Worse yet, there are no oil revenues at all, because since 2010 the population has been using more oil than what is produced and has had to import oil, with no oil revenues to pay for food, goods, and services.  Two-thirds of Egypt’s oil reserves have likely been depleted and oil produced now is declining at 3.4% a year.

Nor are there revenues coming from natural gas sales made up for the loss of oil revenues.  Over the past decade domestic use nearly doubled to consumption of nearly all the production (Kirkpatrick 2013a).

The Egyptian population since 2000 has grown 21% to 88 million people and isn’t slowing down, with 20 million more expected over the next 10 years.  A quarter are children half of them living in poverty and unemployed  (EI 2012) at the same time the elites have grown wealthier from IMF and World Bank policies.

In the 1960s there were 2800 cubic meters of water per capita, now just 660 – well below the international standard of water poverty of 1000 per person (Sarant 2013).   Water scarcity and population growth lave led to tens of thousands of hectares of farmland to be abandoned.  There is some water that can be obtained, but most farmers can’t afford the price of diesel fuel to power pumps  (Kirkpatrick 2013b)

Egypt was self-sufficient in food production in the 1960s but now imports 70% of its food (Saleh 2013). One of the many reasons Mubarak fell was the doubling of wheat prices in 2011 since half of Egypt’s people depend on food rations.  But the democratically-elected Muslim Brotherhood party and their leader Morsi couldn’t alleviate declining government revenues due to the biophysical realities of food, water, and energy shortages either.  Morsi desperately tried to get a $4.8 billion IMF loan by slashing energy subsidies and raising sales taxes, but the economic crisis made it hard to make the payments and wheat imports dropped to a third of what was imported a year ago.

This led to Morsi being ousted by army chief Abdul Fateh el-Sisi in a coup.  Like his predecessors, El-Sisi has also been unable to meet IMF demands for increased hydrocarbon production and has resorted to unprecedented levels of brutal force to crush protests. He has also rationed electricity, which led to key industries cutting production, leading to further economic losses, declining exports and foreign reserves.  Without more money, energy companies can’t be paid, so energy production continues to drop, and debt goes up, reducing the value of Egyptian currency and higher costs for imports and shortages of energy for industrial production. Egypt’s energy and economy find themselves caught in an amplifying feedback loop (Barron 2016).

How Boko Haram arose in Nigeria

Nigeria’s climate change has led to water and land shortages from desertification, which in turn has led to illness, hunger, and unemployment followed by conflict (Sayne 2011).

Perhaps the Boko Haram wouldn’t have arisen, if the Maitatsine sect in northern Nigeria hadn’t been hit so hard by ecological disasters.  To survive they fanned out to search for food, water, shelter, and work (Sanders 2013).  Niger and Chad refugees from drought and floods also became Boko Haram foot soldiers, some 200,000 displaced farmers and herdsmen.

In northern Nigeria, where Boko Haram is from, about 70% of the population subsists on less than a dollar a day. As noted by David Francis, one of the first western reporters to cover Boko Haram: “Most of the foot soldiers of Boko Haram aren’t Muslim fanatics; they’re poor kids who were turned against their corrupt country by a charismatic leader” (Francis 2014)

The Nigerian military sees a correlation between regional climatic events, and an upsurge in extremist violence: “It has become a pattern; we saw it happen in 2006; it happened again in 2008 and in 2010. President Obasanjo had to deploy the military in 2006 to Yobe State, Borno State and Katsina State. These are some of the states bordering Niger Republic and today they are the hotbeds of the Boko Haram” (Mayah 201).

Drought caused desertification is decreasing food production, in turn leading to “economic decline; population displacement and disruption of legitimized authoritative institutions and social relations.” The net effect was an acceleration of the attractiveness of groups like “Boko Haram and other forms of Jihadi ideology,” resulting in escalating “herder-farmer clashes emanating from the north since 1980s” (Onyia 2015).

The rapid spread of Boko Haram also coincided with Lake Chad’s shrinking from 25,000 square km in 1963 to less than 2500 square km today, mainly due to climate change. At this rate, Lake Chad is will dry up in 20 years, and has already caused millions of people to lose their livelihoods.

The government has exacerbated problems by cutting fuel subsidies, which led to fuel shortages, angering the public who engaged in civil unrest  (Omisore 2014).

A senior Shell official said that crude oil production decline rates are as high as 15–20%.  But Nigeria doesn’t have the money to explore to find more oil to offset this high decline rate. Nigeria’s petroleum resources department said that Nigeria had reached a plateau of production in the Niger Delta and were already going down (Ahmed 2014).

About $15 billion of investment is required just to maintain current production levels and compensate for a natural decline in production of about 250,000 b/d each year. A 2011 study by two Nigerian scholars concluded that “there is an imminent decline in Nigeria’s oil reserve since peaking could have occurred or just about to occur (Akuru and Okoro 2011). A 2013 report backs this up, finding that Nigeria’s crude oil production has decreased since its peak in 2005, largely due to the impact of internal conflicts, leading to the withdrawal of oil companies and lack of investments. Since then production has fluctuated along a plateau. The UK Department for International Development report noted that new offshore fields might bring additional oil on-stream, surpassing the 2005 peak—but also noted that rising domestic demand “at some point in the future may cut into the amount of oil available for export” (Hall et al. 2014).

POPULATION. With Nigeria’s population expected to rise from 160 to 250 million by 2025 and oil accounting for some 96% of export revenue as well as 75% of government revenue, the state has resorted to harsh austerity measures. Sharp reductions in public spending, power cuts, fuel shortages and conditional new loans will probably widen economic inequalities and further stoke the grievances that feed groups like Boko Haram in the North. With domestic oil production decline undermining Nigeria’s oil export revenues and consequent fuel subsidy cuts, the public grows poorer and increases the number of young men more likely to join Islamist terrorist groups.

3) Predictions of when collapse will begin in Middle East, India, China, Europe, Russia, North America

When will  Middle-East oil producing nations fail?

Ahmed says that so far after peak oil production, Middle-Eastern economies have declined as revenues declined, leading to systemic state-failure in roughly 15 years, more or less, depending on how hard hit a nation was by additional (climate-change) factors such as drought, water scarcity, food prices, and overpopulation.

Saudi Arabia, and much of the rest of Arabian Gulf peninsula, may experience state-failure well within 10 to 20 years. If forecasts of Saudi oil depletion are remotely accurate, then by 2030 the country will simply not exist as we know it. Coupled with the accelerating impacts of climate-induced water scarcity, the Kingdom is bound to begin experiencing systemic state-failure at most within 20 years, and probably much earlier.

Marin Katusa, chief energy strategist at Casey Research, reports that “many Middle Eastern countries may stop exporting oil and gas altogether within the next few years, while some already have” (Katusa 2016). Oil analysts at Lux Research estimate that OPEC oil reserves may have been overstated by as much as 70%. True OPEC reserves could be as low as 429 billion barrels, which could mean a global net export crunch as early as 2020 (Lazenby 2016).

The period from 2020 to 2030 will see Middle East oil exporters experiencing a systemic convergence of energy and food crises.

When will India & China collapse?

India and China are widely assumed to be the next superpowers, but at this stage of energy and resource depletion, can’t possibly mimic the exponential growth of the Western world.

India, South Asia, and China face enormous ecological challenges Irregularities in the pattern of monsoon rains and drought are likely to lower food production and increase water scarcity, while higher temperatures will increase the range of vector-borne diseases such as malaria and become prevalent year-round (DCDC 2013). As sea levels rise, millions of people will be displaced permanently.

These impacts will unravel regional political and economic order well within 20 years and manifest at first as civil unrest.  Depending on how the Indian and Chinese states respond, it is likely that these outbreaks of domestic disorder will become more organized, and will eventually undermine state territorial integrity before 2030.  Near-term growth will further undermine environmental health and deplete resources, making these nations even more vulnerable to climate and food crises.

European and Russian collapse timeframe

Within Europe, resource depletion has meant that the European Union as a whole has become increasingly dependent on energy imports from Russia, the Middle East, Central Asia and Africa. Yet exports from these regions will become tighter as major oil producers approach production limits.

The geopolitical turmoil that has unfolded in Ukraine provides a compelling indication that such processes are rapidly moving from the periphery of the global system into the core. For the most part, the Euro-Atlantic core—traditionally representing the most powerful sections of the world system—has insulated itself from global crisis convergence impacts by diversifying energy supply sources. However, there is only so much that diversification can achieve when the total energetic and economic quality of global hydrocarbon resource production is declining.

Post-2030–2045

Faced with these converging crises, the Euro-Atlantic core will continue to see the creation of cheap debt-money through quantitative easing as an immediate solution to generate emergency funds to stabilize the financial system and shore-up ailing industries. This will likely play out in one of these business-as-usual scenarios:

  1. The lower resource quality (EROI) of the global energy system may act as a fundamental geophysical ceiling on the capacity of the economy to grow. It may act as an invisible brake on growth in demand, so fossil fuel prices would remain at chronically low levels, endangering the profitability of the fossil fuel industries. This would lead to an acceleration of the demise of the fossil fuel industries, which could lead to debt-defaults across industries in the financial system. Declining hydrocarbon energy production would cause a self-reinforcing recessionary economic process. This would escalate vulnerability to water, food and energy crises and hugely strain the capacity of European and American states to deliver goods and services to even their own populations, and other nations dependent as much on importing food as they are oil.
  2. Scarcity of net exports on the world market may raise oil prices and provide some sectors of ailing fossil fuel industries to be profitable again. But previous slashing of investments and cutbacks in exploration will mean that only the most powerful sections of the industry would be able to capitalize on this, which means production is unlikely to return to former high levels. Price spikes would trigger economic recession, causing a drop in demand, while lower production levels would exacerbate the economy’s inability to grow substantially, if at all. In effect, the global economy would likely still experience a self-reinforcing recessionary economic process.

In both scenarios, escalating economic crises are likely to invite the Euro-Atlantic core to respond by using debt-money to shore-up as much of the existing core financial and energy industries as possible. Prices spikes and shortages in water, food and energy would be experienced by general populations as a dramatic lowering of purchasing power, leading to an overall decrease in quality of life, an increase in poverty, and a heightening of inequality. This would undermine their internal cohesion, giving rise to new divisive, nationalist and xenophobic movements, and lead states into a tightening spiral of militarization to police domestic order. As instability in the Middle East and elsewhere intensifies, manifesting in further unrest, political violence and terrorist activity, states will also be drawn increasingly into short- sighted military solutions. In particular, scarcity of net oil exports on the world market will heighten geopolitical and military competition to control and/or access the world’s remaining hydrocarbon energy resources. With the Middle East still holding the vast bulk of the world’s reserves, the region will remain a central flashpoint for such competition, even as major producers such as Saudi Arabia approach systemic state-failure due to reaching inevitable production declines.

It is difficult to avoid the conclusion that as we near 2045, the European and American projects will face escalating internal challenges to their internal territorial integrity, increasing the risk of systemic state-failure. Likewise, after 2030, Europe, India, China (and other Asian nations) will begin to experience symptoms of systemic state-failure.

References

Adel, Mohamed. 2016. Eni to Increase Zohr Field Gas Production to 2bn Cubic Feet Per Day by End of 2019. Daily News Egypt, May 9. http://www.dailynewsegypt.com/2016/05/09/ eni-increase-zohr-field-gas-production-2bn-cubic-feet-per-day-end-2019/ .

Agrimoney. 2012. Unrest, Bad Weather Lift Syrian Grain Import Needs. Agrimoney.com, March 14. http://www.agrimoney.com/news/unrest-bad-weather-lift-syrian-grain-import-needs–4278.html

Ahmed, Nafeez Mosaddeq. 2009. The Globalization of Insecurity: How the International Economic Order Undermines Human and National Security on a World Scale. Historia Actual Online 0(5): 113–126.

Ahmed, Nafeez. 2010. A User’s Guide to the Crisis of Civilisation: And How to Save It. London: Pluto Press.

———. 2011. The International Relations of Crisis and the Crisis of International Relations: From the Securitisation of Scarcity to the Militarisation of Society. Global Change, Peace & Security 23(3): 335–355. doi: 10.1080/14781158.2011.601854 .

———. 2013a. Peak Oil, Climate Change and Pipeline Geopolitics Driving Syria Conflict. The Guardian, May 13, sec. Environment. https://www.theguardian.com/environment/earth- insight/2013/may/13/1

———. 2013b. How Resource Shortages Sparked Egypt’s Months-Long Crisis. The Atlantic, August 19. http://www.theatlantic.com/international/archive/2013/08/how-resource-shortagessparked-egypts-months-long-crisis/278802/

———. 2014. Behind the Rise of Boko Haram—Ecological Disaster, Oil Crisis, Spy Games. The Guardian, May 9, sec. Environment. https://www.theguardian.com/environment/earth-insight/2014/may/09/behind-rise-nigeria-boko-haram-climate-disaster-peak-oil-depletion

———. 2015. The US-Saudi War with OPEC to Prolong Oil’s Dying Empire. Middle East Eye. May 8. http://www.middleeasteye.net/columns/us-saudi-war-opec-prolong-oil-s-dyingempire-222413845

———. 2016a. Climate Change Fuels Boko Haram. Women Across Frontiers Magazine. February 29. http://wafmag.org/2016/02/boko-haram-filling-vacuum-nigerias-state-collapses/

———. 2016b. At the Root of Egyptian Rage Is a Deepening Resource Crisis. Quartz. Accessed August 16. http://qz.com/116276/at-the-root-of-egyptian-rage-is-a-deepening-resource-crisis/

———. 2016c. Return of the Reich: Mapping the Global Resurgence of Far Right Power. Investigative Report. London: Tell MAMA and INSURGE Intelligence. https://medium.com/ return-of-the-reich

———. 2016d. FEMA Contractor Predicts ‘Social Unrest’ Caused by 395% Food Price Spikes. Motherboard. Accessed August 21. http://motherboard.vice.com/read/fema-contractor- predicts-social-unrest-caused-by-395-food-price-spikes

Akuru, Udochukwu B., and Ogbonnaya I. Okoro. 2011. A Prediction on Nigeria’s Oil Depletion Based on Hubbert’s Model and the Need for Renewable Energy. International Scholarly Research Notices, International Scholarly Research Notices 2011: e285649. doi: 10.5402/2011/285649 .

Al-Sinousi, Mahasin, and Amira Saleh. 2008. International Expert Warns Of Egypt’s Oil And Gas Reserves Depletion In 2020. Al-Masry Al-Youm, May 17, 1434 edition. http://today.almasryalyoum.com/article2.aspx?ArticleID=105585

Arashi, Fakhri. 2013. Wheat Imports Cause Yemen Heavy Losses—National Yemen. http://nationalyemen.com/2013/03/03/wheat-imports-cause-yemen-heavy-losses/

Aston, T.H., Trevor Henry Aston, and C.H.E. Philpin. 1987. The Brenner Debate: Agrarian Class Structure and Economic Development in Pre-Industrial Europe. Cambridge: Cambridge University Press.

Aucott, Michael L., and Jacqueline M. Melillo. 2013. A Preliminary Energy Return on Investment Analysis of Natural Gas from the Marcellus Shale. Journal of Industrial Ecology 17(5): 668– 679. doi: 10.1111/jiec.12040 .

Azevedo, Ligia B., An M. De Schryver, A. Jan Hendriks, and Mark A.J. Huijbregts. 2015. Calcifying Species Sensitivity Distributions for Ocean Acidification. Environmental Science & Technology 49(3): 1495–1500. doi: 10.1021/es505485m .

Badgley, Catherine, and Ivette Perfecto. 2007. Can Organic Agriculture Feed the World? Renewable Agriculture and Food Systems 22(2): 80–85.

Bardi, Ugo. 2014. Extracted: How the Quest for Mineral Wealth Is Plundering the Planet. Vermont: Chelsea Green Publishing.

Barnett, Tim P., and David W. Pierce. 2008. When Will Lake Mead Go Dry? Water Resources Research 44(3): W03201. doi: 10.1029/2007WR006704

Barron, Robert. 2016. Facing Rumors of Money Troubles, Egypt Denies Tension with Foreign Oil, Gas Firms. Mada Masr. January 27. http://www.madamasr.com/sections/economy/ facing-rumors-money-troubles-egypt-denies-tension-foreign-oil-gas-firms

Berger, Daniel, William Easterly, Nathan Nunn, and Shanker Satyanath. 2013. Commercial Imperialism? Political Influence and Trade during the Cold War. American Economic Review 103(2): 863–896. doi: 10.1257/aer.103.2.863

Berman, Arthur, and Ray Leonard. 2015. Years Not Decades: Proven Reserves and the Shale Revolution. Houston Geological Society Bulletin 57(6): 35–39.

Bhardwaj, Mayank. 2016. Food Imports Rise as Modi Struggles to Revive Rural India. Reuters India. February 2. http://in.reuters.com/article/india-farming-idINKCN0VA3NL

Bindi, Marco, and Jørgen E. Olesen. 2010. The Responses of Agriculture in Europe to Climate Change. Regional Environmental Change 11(1): 151–158. doi: 10.1007/s10113-010-0173-x

Bose, Prasenjit. 2016. A Budget That Reveals the Truth about India’s Growth Story. The Wire. March 2. http://thewire.in/23392/what-the-budget-tells-us-about-indias-growth-story/ .

Boucek, Christopher. 2009. Yemen: Avoiding a Downward Spiral. Carnegie Endowment for International Peace. September. http://carnegieendowment.org/2009/09/10/yemen-avoidingdownward-spiral-pub-23827

Bove, Vincenzo, Leandro Elia, and Petros G. Sekeris. 2014. US Security Strategy and the Gains from Bilateral Trade. Review of International Economics 22(5): 863–885. doi: 10.1111/ roie.12141

Bove, Vincenzo, Kristian Skrede Gleditsch, and Petros G. Sekeris. 2015. ‘Oil above Water’ Economic Interdependence and Third-Party Intervention. Journal of Conflict Resolution, January 27: 0022002714567952. doi: 10.1177/0022002714567952 .

Bove, Vincenzo, and Petros G. Sekeris. 2016. Fueling Conflict: The Role of Oil in Foreign Interventions. IPI Global Observatory. Accessed July 19. https://theglobalobservatory.org/2015/03/civil-wars-oil-above-water-military-intervention/

Brandt, Adam R., Yuchi Sun, Sharad Bharadwaj, David Livingston, Eugene Tan, and Deborah Gordon. 2015. Energy Return on Investment (EROI) for Forty Global Oilfields Using a Detailed Engineering-Based Model of Oil Production. PLOS ONE 10(12): e0144141.

Brown, Jeffrey J., and Samuel Foucher. 2008. A Quantitative Assessment of Future Net Oil Exports by the Top Five Net Oil Exporters. Energy Bulletin. January 8. http://www.resilience.org/stories/2008-01-08/quantitative-assessment-future-net-oil-exports-top-five-net-oil-exporters

Brown, James H., William R. Burnside, Ana D. Davidson, John P. DeLong, William C. Dunn, Marcus J. Hamilton, Norman Mercado-Silva, et al. 2011. Energetic Limits to Economic Growth. BioScience 61(1): 19–26.

Buckley. 2016. Coal Decline Steepens in 2016 in India, China, U.S. Institute for Energy Economics & Financial Analysis. May 16. http://ieefa.org/coal-decline-steepens-2016-2/

Capellán-Pérez, Iñigo, Margarita Mediavilla, Carlos de Castro, Óscar Carpintero, and Luis Javier Miguel. 2014. Fossil Fuel Depletion and Socio-Economic Scenarios: An Integrated Approach. Energy 77: 641–666.

Castillo-Mussot, Marcelo del, Pablo Ugalde-Véle, Jorge Antonio Montemayor-Aldrete, Alfredo de la Lama-García, and Fidel Cruz. 2016. Impact of Global Energy Resources Based on Energy Return on Their Investment (EROI) Parameters. Perspectives on Global Development and Technology 15(1–2): 290–299.

Chen, Shuai, Xiaoguang Chen, and Xu. Jintao. 2016. Impacts of Climate Change on Agriculture: Evidence from China. Journal of Environmental Economics and Management 76: 105–124. doi: 10.1016/j.jeem.2015.01.005

Chowdhury, Shakhawat, and Muhammad Al-Zahrani. 2013. Implications of Climate Change on Water Resources in Saudi Arabia. Arabian Journal for Science and Engineering 38(8): 1959– 1971.

Clarkson, M.O., S.A. Kasemann, R.A. Wood, T.M. Lenton, S.J. Daines, S. Richoz, F. Ohnemueller, A. Meixner, S.W. Poulton, and E.T. Tipper. 2015. Ocean Acidification and the Permo-Triassic Mass Extinction. Science 348(6231): 229–232. doi: 10.1126/science.aaa0193

Cleveland, Cutler J., and Peter A. O’Connor. 2011. Energy Return on Investment (EROI) of Oil Shale. Sustainability 3(11): 2307–2322.

Coleman, Isabel. 2012. Reforming Egypt’s Untenable Subsidies. Council on Foreign Relations. April 6. http://www.cfr.org/egypt/reforming-egypts-untenable-subsidies/p27885

Cook, Benjamin I., Toby R. Ault, and Jason E. Smerdon. 2015. Unprecedented 21st Century Drought Risk in the American Southwest and Central Plains. Science Advances 1(1): e1400082. doi: 10.1126/sciadv.1400082

Coumou, Dim, Alexander Robinson, Stefan Rahmstorf. 2013. Global increases in record-breaking 0668-1.

Csereklyei, Zsuzsanna, and David I. Stern. 2015. Global Energy Use: Decoupling or Convergence? Energy Economics 51: 633–641.

Cunningham, Nick. 2016. Decline of Coal Demand Is ‘irreversible. MINING.com. February 19. http://www.mining.com/web/decline-of-coal-demand-is-irreversible/

Dawson, Terence P., Anita H. Perryman, and Tom M. Osborne. 2014. Modelling Impacts of Climate Change on Global Food Security. Climatic Change 134(3): 429–440. doi: 10.1007/ s10584-014-1277-y.

Daya, Ayesha, and Dana El Baltaji. 2016. Saudi Arabia May Become Oil Importer by 2030, Citigroup Says. Bloomberg.com. Accessed August 11. http://www.bloomberg.com/news/articles/2012-09-04/saudi-arabia-may-become-oil-importer-by-2030-citigroup-says-1-

DCDC. 2013. Regional Survey—South Asia Out to 2040. Strategic Trends Programme. UK Ministry of Defence, Defence Concepts and Doctrines Centre.

Department Of State, Bureau of Public Affairs. 2014. Syria. Press Release|Fact Sheet. U.S. Department of State. March 20. http://www.state.gov/r/pa/ei/bgn/3580.htm

Diffenbaugh, Noah S., Daniel L. Swain, and Danielle Touma. 2015. Anthropogenic Warming Has Increased Drought Risk in California. Proceedings of the National Academy of Sciences 112(13): 3931–3936. doi: 10.1073/pnas.1422385112

Dipaola, Anthony. 2016. Iraq’s Oil Output Seen by Lukoil at Peak as Government Cuts Back. Bloomberg.com. May 19. http://www.bloomberg.com/news/articles/2016-05-19/iraq-s-oiloutput-seen-by-lukoil-at-peak-as-government-cuts-back

Dittmar, Michael. 2016. Regional Oil Extraction and Consumption: A Simple Production Model for the Next 35 Years Part I. BioPhysical Economics and Resource Quality 1(1): 7. doi: 10.1007/ s41247-016-0007-7

Dodge, Robert. 2016. Unconventional Drilling for Natural Gas in Europe. In The Global Impact of Unconventional Shale Gas Development, ed. Yongsheng Wang and William E. Hefley, 97–130. Natural Resource Management and Policy 39. Springer International Publishing.

EASAC. 2014. Shale Gas Extraction: Issues of Particular Relevance to the European Union. European Academies Science Advisory Council.

Ebrahimi, Mohsen, and Nahid Ghasabani. 2015. Forecasting OPEC Crude Oil Production Using a Variant Multicyclic Hubbert Model. Journal of Petroleum Science and Engineering 133: 818– 823.

El. 2012. Youth Are Quarter of Egypt’s Population, and Half of Them Are Poor | Egypt Independent. Egypt Independent. August 12. http://www.egyptindependent.com/news/youth-are-quarter-egypt-s-population-and-half-them-are-poor

EIA. 2016. Petroleum & Other Liquids Weekly Supply Estimates. US Energy Information Administration. http://www.eia.gov/dnav/pet/pet_sum_sndw_dcus_nus_w.htm  .

Evans-Pritchard, Ambrose. 2015. Saudi Arabia May Go Broke before the US Oil Industry Buckles. The Telegraph, August 5, sec. 2016. http://www.telegraph.co.uk/business/2016/02/11/saudi-arabia-may-go-broke-before-the-us-oil-industry-buckles/

Famiglietti, J.S. 2014. The Global Groundwater Crisis. Nature Climate Change 4(11): 945–948.

Farmer, J., M. Doyne, C. Gallegati, A. Hommes, P. Kirman, S. Ormerod, A. Sanchez Cincotti, and D. Helbing. 2012. A Complex Systems Approach to Constructing Better Models for Managing Financial Markets and the Economy. The European Physical Journal Special Topics 214(1): 295–324.

Feely, Richard, Christopher L. Sabine, and Victoria J. Fabry. 2006. Carbon Dioxide and our Ocean Legacy. Pew Trust. http://www.pmel.noaa.gov/pubs/PDF/feel2899/feel2899.pdf

Foster, John Bellamy, Brett Clark, and Richard York. 2010. The Ecological Rift: Capitalism’s War on the Earth. New York: NYU Press.

Fournier, Valérie. 2008. Escaping from the Economy: The Politics of Degrowth. International Journal of Sociology and Social Policy 28(11/12): 528–545.

Francis. 2014. Boko Haram, Al Shabaab and Al Qaeda 2.0—Islamic Extremism in Africa. Humanosphere. May 7. http://www.humanosphere.org/world-politics/2014/05/boko-haram-alshabaab-and-al-qaeda-2-0-islamic-extremism-in-africa/

Friedman, Thomas L. 2013. The Scary Hidden Stressor. The New York Times, March 2. http:// www.nytimes.com/2013/03/03/opinion/sunday/friedman-the-scary-hidden-stressor.html

Fritz, Martin, and Max Koch. 2014. Potentials for Prosperity without Growth: Ecological Sustainability, Social Inclusion and the Quality of Life in 38 Countries. Ecological Economics 108: 191–199.

Gagnon, Nathan, Charles A.S. Hall, and Lysle Brinker. 2009. A Preliminary Investigation of Energy Return on Energy Investment for Global Oil and Gas Production. Energies 2(3): 490– 503.

García-Olivares, Antonio, and Joaquim Ballabrera-Poy. 2015. Energy and Mineral Peaks, and a Future Steady State Economy. Technological Forecasting and Social Change 90, Part B (January): 587–598.

Ghafar, Adel Abdel. 2015. Egypt’s New Gas Discovery: Opportunities and Challenges | Brookings Institution. Brookings. September 10. https://www.brookings.edu/opinions/egypts-new-gasdiscovery-opportunities-and-challenges/

Guilford, Megan C., Charles A.S. Hall, Peter O’Connor, and Cutler J. Cleveland. 2011. A New Long Term Assessment of Energy Return on Investment (EROI) for U.S. Oil and Gas Discovery and Production. Sustainability 3(10): 1866–1887.

Gülen, Gürcan, John Browning, Svetlana Ikonnikova, and Scott W. Tinker. 2013. Well Economics Across Ten Tiers in Low and High Btu (British Thermal Unit) Areas, Barnett Shale, Texas. Energy 60: 302–315.

Hall, Charles A. S., and Kent A. Klitgaard. 2012. Energy and the Wealth of Nations. New York, NY: Springer New York. http://link.springer.com/10.1007/978-1-4419-9398-4

Hall, Charles A.S., Cutler J. Cleveland, and Robert K. Kaufmann. 1992. Energy and Resource Quality: The Ecology of the Economic Process. Niwot, CO: University Press of Colorado

Hall, Charles A.S., Jessica G. Lambert, and Stephen B. Balogh. 2014. EROI of Different Fuels and the Implications for Society. Energy Policy 64: 141–152.

Hallock Jr., John L., Wei Wu, Charles A.S. Hall, and Michael Jefferson. 2014. Forecasting the Limits to the Availability and Diversity of Global Conventional Oil Supply: Validation. Energy 64: 130–153.

Ho, Mae-Wan. 1999. Are Economic Systems Like Organisms? In Sociobiology and Bioeconomics, ed. Peter Koslowski, 237–258. Studies in Economic Ethics and Philosophy. Berlin: Springer.

Holling, C.S. 2001. Understanding the Complexity of Economic, Ecological, and Social Systems. Ecosystems 4(5): 390–405.

Holthaus, Eric. 2014. Hot Zone. Slate, June 27. http://www.slate.com/articles/technology/future_ tense/2014/06/isis_water_scarcity_is_climate_change_destabilizing_iraq.single.html

Homer-Dixon, Thomas. 2011. Carbon Shift: How Peak Oil and the Climate Crisis Will Change Canada (and Our Lives). Toronto: Random House of Canada.

Hook, Leslie. 2013. China’s Appetite for Food Imports to Fuel Agribusiness M&A. Financial Times, June 6.

Hughes, J. David. 2013. Energy: A Reality Check on the Shale Revolution. Nature 494(7437): 307–308.

ICEF. 2016. Growing Chinese Middle Class Projected to Spend Heavily on Education through 2030. ICEF Monitor. http://monitor.icef.com/2016/04/growing-chinese-middle-classprojected-spend-heavily-education-2030/

IEA. 2009. World Energy Outlook. Washington, DC: International Energy Agency.

———. 2015. India Energy Outlook. World Energy Outlook Special Report. International Energy Agency. https://www.iea.org/publications/freepublications/publication/india-energy-outlook2015.html

Inman, Mason. 2014. Natural Gas: The Fracking Fallacy. Nature 516(7529): 28–30.

IRIN. 2008. Bread Subsidies Under Threat as Drought Hits Wheat Production. IRIN. June 30.

———. 2010. Growing Protests over Water Shortages. IRIN. July 27. http://www.irinnews.org/news/2010/07/27/growing-protests-over-water-shortages .

———. 2012. Time Running Out for Solution to Water Crisis. IRIN. August 13. http://www.irinnews.org/analysis/2012/08/13/time-running-out-solution-water-crisis

Jackson, Tim. 2009. Prosperity Without Growth: Economics for a Finite Planet. London: Earthscan.

Jackson, Peter M., and Leta K. Smith. 2014. Exploring the Undulating Plateau: The Future of Global Oil Supply. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 372(2006): 20120491.

Jancovici, Jean-Marc. 2013. A Couple of Thoughts in the Energy Transition. Manicore. http:// www.manicore.com/anglais/documentation_a/transition_energy.html

Jefferson, Michael. 2016. A Global Energy Assessment. Wiley Interdisciplinary Reviews: Energy and Environment 5(1): 7–15

Johanisova, Nadia, and Stephan Wolf. 2012. Economic Democracy: A Path for the Future? Futures, Special Issue: Politics, Democracy and Degrowth, 44(6): 562–570.

Johnstone, Sarah, and Jeffrey Mazo. 2011. Global Warming and the Arab Spring. Survival 53(2): 11–17.

Kaminska, Izabella. 2014. Energy Is Gradually Decoupling from Economic Growth. FT Alphaville, January 17. http://ftalphaville.ft.com/2014/01/17/1745542/energy-is-gradually-decouplingfrom-economic-growth/

Katusa, Marin. 2016. How to Pocket Extraordinary Profits from Unconventional Oil. Casey Energy Report.

Kavanagh, Jennifer. 2013. Do U.S. Military Interventions Occur in Clusters? Product Page. http://www.rand.org/pubs/research_briefs/RB9718.html

Kelley, Colin P., Shahrzad Mohtadi, Mark A. Cane, Richard Seager, and Yochanan Kushnir. 2015. Climate Change in the Fertile Crescent and Implications of the Recent Syrian Drought. Proceedings of the National Academy of Sciences 112(11): 3241–3246.

King, Carey W. 2015. Comparing World Economic and Net Energy Metrics, Part 3: Macroeconomic Historical and Future Perspectives. Energies 8(11): 12997–12920.

King, Carey W., John P. Maxwell, and Alyssa Donovan. 2015a. Comparing World Economic and Net Energy Metrics, Part 1: Single Technology and Commodity Perspective. Energies 8(11): 12949–12974.

———. 2015b. Comparing World Economic and Net Energy Metrics, Part 2: Total Economy Expenditure Perspective. Energies 8(11): 12975–12996.

Kirkpatrick, David D. 2013a. Egypt, Short of Money, Sees Crisis on Food and Gas. The New York Times, March 30. http://www.nytimes.com/2013/03/31/world/middleeast/egypt-short-of- money-sees-crisis-on-food-and-gas.html

———. 2013b. Egypt, Short of Money, Sees Crisis on Food and Gas. The New York Times, March 30. http://www.nytimes.com/2013/03/31/world/middleeast/egypt-short-of-money-sees-crisison-food-and-gas.html

Klump, Edward, and Jim Polson. 2016. Shale-Gas Skeptic’s Supply Doubts Draw Wrath of Devon. Bloomberg.com. Accessed July 11. http://www.bloomberg.com/news/articles/2009-11-17/shalegas-skeptics-supply-doubts-draw-wrath-of-devon-energy

Kothari, Ashish. 2014. Degrowth and Radical Ecological Democracy: A View from the South— Blog Postwachstum. Postwatchstum, Wuppertal Institute. June 27.

Kundu, Tadit. 2016. Nearly Half of Indians Survived on Less than Rs38 a Day in 2011–2012. http://www.livemint.com/Opinion/l1gVncveq4EYEn2zuzX4FL/Nearly-half-of-Indians-survived-on-less-than-Rs38-a-day-in-2.html

Lagi, Marco, Karla Z. Bertrand, and Yaneer Bar-Yam. 2011. The Food Crises and Political Instability in North Africa and the Middle East.

Lazenby, Henry. 2016. Opec Believed to Overstate Oil Reserves by 70%, Reserves Depleted Sooner. Mining Weekly. Accessed August 22. http://www.miningweekly.com/article/opec-believed-to-overstate-oil-reserves-by-70-reserves-depleted-sooner-2012-10-04

Lelieveld, J., Y. Proestos, P. Hadjinicolaou, M. Tanarhte, E. Tyrlis, and G. Zittis. 2016. Strongly Increasing Heat Extremes in the Middle East and North Africa (MENA) in the 21st Century. Climatic Change 137(1–2): 245–260.

LePoire, David, and Argonne National Laboratory, Argonne, IL, USA. 2015. Interpreting ‘big History’ as Complex Adaptive System Dynamics with Nested Logistic Transitions in Energy Flow and Organization—Emergence: Complexity and Organization. Emergence, March. https://journal.emergentpublications.com/article/interpreting-big-history-as-complexadaptive-system-dynamics-with-nested-logistic- transitions-in-energy-flow-and-organization/

Lesk, Corey, Pedram Rowhani, and Navin Ramankutty. 2016. Influence of Extreme Weather Disasters on Global Crop Production. Nature 529(7584): 84–87. doi: 10.1038/nature16467

Li, Minqi. 2014. Peak Oil, Climate Change, and the Limits to China’s Economic Growth. New York: Routledge.

MacDonald, Gregor. 2010. Think OPEC Exports Won’t Decline? You’re Living In A Dreamworld. Business Insider. August 14. http://www.businessinsider.com/think-opec-exports-wontdecline-youre-living-in-a-dreamworld-2010-8

Matsumoto, Ken’ichi, and Vlasios Voudouris. 2014. Potential Impact of Unconventional Oil Resources on Major Oil-Producing Countries: Scenario Analysis with the ACEGES Model. Natural Resources Research 24(1): 107–119.

Mawry, Yousef. 2015. Yemen Fuel Crisis Ignites Street Riots. Middle East Eye. February 12. http:// www.middleeasteye.net/news/yemen-fuel-crises-ignites-ongoing-street-riots-393941730

May, Robert M., Simon A. Li, Minqi. 2014. Peak Oil, Climate Change, and the Limits to China’s Economic Growth. New York: Routledge.

MacDonald, Gregor. 2010. Think OPEC Exports Won’t Decline? You’re Living In A Dreamworld. Business Insider. August 14. http://www.businessinsider.com/think-opec-exports-wontdecline-youre-living-in-a-dreamworld-2010-8

Matsumoto, Ken’ichi, and Vlasios Voudouris. 2014. Potential Impact of Unconventional Oil Resources on Major Oil-Producing Countries: Scenario Analysis with the ACEGES Model. Natural Resources Research 24(1): 107–119.

Mawry, Yousef. 2015. Yemen Fuel Crisis Ignites Street Riots. Middle East Eye. February 12. http:// www.middleeasteye.net/news/yemen-fuel-crises-ignites-ongoing-street-riots-393941730

May, Robert M., Simon A. Levin, and George Sugihara. 2008. Complex Systems: Ecology for Bankers. Nature 451(7181): 893–895.

Mayah, Emmanuel. 2012. Climate Change Fuels Nigeria Terrorism. Africa Review. February 24. http://www.africareview.com/news/Climate-change-fuels-Nigeria-terrorism/979180-1334472- 4m5dlu/index.html

McGlade, Christophe, Jamie Speirs, and Steve Sorrell. 2013. Unconventional Gas—A Review of Regional and Global Resource Estimates. Energy 55: 571–584.

Meighan, Brendan. 2016. Egypt’s Natural Gas Crisis. Carnegie Endowment for International Peace. January. http://carnegieendowment.org/sada/62534

Moeller, Devin, and David Murphy. 2016. Net Energy Analysis of Gas Production from the Marcellus Shale. BioPhysical Economics and Resource Quality 1(1): 1–13.

Mohr, Steve. 2010. Projection of World Fossil Fuel Production with Supply and Demand Interactions. Callaghan: University of Newcastle.

Mohr, S.H., and G.M. Evans. 2009. Forecasting Coal Production until 2100. Fuel 88(11): 2059– 2067.

———. 2010. Long Term Prediction of Unconventional Oil Production. Energy Policy 38(1): 265–276.

Mohr, S.H., J. Wang, G. Ellem, J. Ward, and D. Giurco. 2015. Projection of World Fossil Fuels by Country. Fuel 141: 120–135

Mora, Camilo, Abby G. Frazier, Ryan J. Longman, Rachel S. Dacks, Maya M. Walton, Eric J. Tong, Joseph J. Sanchez, et al. 2013a. The Projected Timing of Climate Departure from Recent Variability. Nature 502(7470): 183–187.

Mora, Camilo, Chih-Lin Wei, Audrey Rollo, Teresa Amaro, Amy R. Baco, David Billett, Laurent Bopp, et al. 2013b. Biotic and Human Vulnerability to Projected Changes in Ocean Biogeochemistry over the 21st Century. PLOS Biol 11(10): e1001682.

Morgan, Geoffrey. 2016. Average Oil Production to Decline This Year, Grow More Slowly in the Future: CAPP. Financial Post, June 23.

Morrissey, John. 2016. US Central Command and Liberal Imperial Reach: Shaping the Central Region for the 21st Century. The Geographical Journal 182(1): 15–26.

Murphy, David J. 2014. The Implications of the Declining Energy Return on Investment of Oil Production. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 372(2006): 20130126. doi:10.1098/rsta.2013.0126.

Murphy, David J., and Charles A.S. Hall. 2011. Energy Return on Investment, Peak Oil, and the End of Economic Growth. Annals of the New York Academy of Sciences 1219(1): 52–72.

Nandi, Sanjib Kumar. 2014. A Study on Hubbert Peak of India’s Coal: A System Dynamics Approach. International Journal of Scientific & Engineering Research 9(2).  http://www.academia.edu/9744358/A_Study_on_Hubbert_Peak_of_Indias_Coal_A_System_Dynamics_Approach

Nekola, Jeffrey C., Craig D. Allen, James H. Brown, Joseph R. Burger, Ana D. Davidson, Trevor S. Fristoe, Marcus J. Hamilton, et al. 2013. The Malthusian–Darwinian Dynamic and the Trajectory of Civilization. Trends in Ecology & Evolution 28(3): 127–130. doi: 10.1016/j. tree.2012.12.001

OBG. 2016. New Discoveries for Egyptian Oil Producers. Oxford Business Group. January 27. http://www.oxfordbusinessgroup.com/overview/fresh-ideas-new-discoveries-have-oilproducers-optimistic-about-future

Odhiambo, George O. 2016. Water Scarcity in the Arabian Peninsula and Socio-Economic Implications. Applied Water Science, June, 1–14.

Odum, Howard Thomas. 1994. Ecological and General Systems: An Introduction to Systems Ecology. Niwot, CO: University Press of Colorado.

Omisore, Bolanle. 2014. Nigerians Face Fuel Shortages In the Shadow of Plenty. National Geographic News. April 11. http://news.nationalgeographic.com/news/enerws/ener nigeria-fuel-shortage-oil/

Onyia, Chukwuma. 2015. Climate Change and Conflict in Nigeria: The Boko Haram Challenge. American International Journal of Social Science 4(2)

Owen, Nick A., Oliver R. Inderwildi, and David A. King. 2010. The Status of Conventional World Oil reserves—Hype or Cause for Concern? Energy Policy 38(8): 4743–4749.

Patrick, Roger. 2015. When the Well Runs Dry: The Slow Train Wreck of Global Water Scarcity. Journal—American Water Works Association 107: 65–76.

Patzek, Tad W., Frank Male, and Odum, Howard Thomas. 1994. Ecological and General Systems: An Introduction to Systems Ecology. Niwot, CO: University Press of Colorado.

Omisore, Bolanle. 2014. Nigerians Face Fuel Shortages In the Shadow of Plenty. National Geographic News. April 11. http://news.nationalgeographic.com/news/enerws/ener nigeria-fuel-shortage-oil/

Onyia, Chukwuma. 2015. Climate Change and Conflict in Nigeria: The Boko Haram Challenge. American International Journal of Social Science 4(2). http://www.aijssnet.com/journal/index/329 .

Owen, Nick A., Oliver R. Inderwildi, and David A. King. 2010. The Status of Conventional World Oil reserves—Hype or Cause for Concern? Energy Policy 38(8): 4743–4749.

Patrick, Roger. 2015. When the Well Runs Dry: The Slow Train Wreck of Global Water Scarcity. Journal—American Water Works Association 107: 65–76.

Patzek, Tad W., Frank Male, and Michael Marder. 2013. Gas Production in the Barnett Shale Obeys a Simple Scaling Theory. Proceedings of the National Academy of Sciences 110(49): 19731–19736.

Pearce, Joshua M. 2008. Thermodynamic Limitations to Nuclear Energy Deployment as a Greenhouse Gas Mitigation Technology. International Journal of Nuclear Governance, Economy and Ecology 2(1): 113.

Peel, Michael. 2013. Subsidies ‘Distort’ Saudi Arabia Economy Says Economy Minister. Financial Times. May 7. http://www.ft.com/cms/s/0/f474cf28-b717-11e2-841e-00144feabdc0.html

Phys.org. 2016. Minority Rules: Scientists Discover Tipping Point for the Spread of Ideas. Accessed August 21. http://phys.org/news/2011-07-minority-scientists-ideas.html

Pichler, Franz. 1999. Modeling Complex Systems by Multi-Agent Holarchies. In Computer Aided Systems Theory—EUROCAST’99, ed. Peter Kopacek, Roberto Moreno-Díaz, and Franz Pichler, 154–168. Lecture Notes in Computer Science 1798. Springer Berlin Heidelberg.

Pierce, Charles P. 2016. What Happens When the American Southwest Runs Out of Water? Esquire. June 1. http://www.esquire.com/news-politics/politics/news/a45398/southwest-desertwater-drought/

Pracha, Ali S., and Timothy A. Volk. 2011. An Edible Energy Return on Investment (EEROI) Analysis of Wheat and Rice in Pakistan. Sustainability 3(12): 2358–2391.

Pritchard, Bill. 2016. The Impacts of Climate Change for Food and Nutrition Security: Issues for India. In Climate Change Challenge (3C) and Social-Economic-Ecological Interface-Building. Environmental Science and Engineering. Springer.

Pueyo, Salvador. 2014. Ecological Econophysics for Degrowth. Sustainability 6(6): 3431–3483.

Qaed, Samar. 2014. Expanding Too Quickly? Yemen Times. February 25.

Qi, Ye, Nicholas Stern, Tong Wu, Jiaqi Lu, and Fergus Green. 2016. China’s Post-Coal Growth. Nature Geoscience 9.

Reganold, John P., and Jonathan M. Wachter. 2016. Organic Agriculture in the Twenty-First Century. Nature Plants 2(2): 15221.

Rioux, Sébastien, and Frédérick Guillaume Dufour. 2008. La sociologie historique de la théorie des relations sociales de propriété. Actuel Marx 43(1): 126.

RiskMetrics Group. 2010. Canada’s Oil Sands: Shrinking Window of Opportunity. Ceres, Inc. http://www.ceres.org/resources/reports/oil-sands-2010

Rockström, Johan, Will Steffen, Kevin Noone, Persson Åsa, F. Stuart Chapin, Eric F. Lambin, Timothy M. Lenton, et al. 2009. A Safe Operating Space for Humanity. Nature 461(7263): 472–475.

Ross, John, and Adam P. Arkin. 2009. Complex Systems: From Chemistry to Systems Biology. Proceedings of the National Academy of Sciences 106(16): 6433–6434.

Salameh, M. G. 2012. Impact of US Shale Oil Revolution on the Global Oil Market, the Price of Oil & Peak Oil.

Saleh, Hebah. 2013. Egypt Weighs Burden of IMF Austerity. Financial Times. March 11. http://www.ft.com/cms/s/0/464a9350-8a6d-11e2-bf79-00144feabdc0.html

Sanders, Jim. 2013. The Hidden Force behind Islamic Militancy in Nigeria? Climate Change. The Christian Science Monitor. July 8.

Sands, Phil. 2011. Population Surge in Syria Hampers Country’s Progress | The National. The National, March 6. http://www.thenational.ae/news/world/middle-east/population-surgein-syria-hampers-countrys-progress

Sarant, Louise. 2013. Climate Change and Water Mismanagement Parch Egypt | Egypt Independent. Egypt Independent. February 26. http://www.egyptindependent.com/news/climate-changeand-water-mismanagement-parch-egypt

Sayne, Aaron. 2011. Climate Change Adaptation and Conflict in Nigeria. Special Report. United States Institute of Peace. http://www.usip.org/publications/climate-change-adaptationand-conflict-in-nigeria

Schneider, E.D., and J.J. Kay. 1994. Life as a Manifestation of the Second Law of Thermodynamics. Mathematical and Computer Modelling 19(6): 25–48.

Schneider, François, Giorgos Kallis, and Joan Martinez-Alier. 2010. Crisis or Opportunity? Economic Degrowth for Social Equity and Ecological Sustainability. Introduction to This Special Issue. Journal of Cleaner Production, Growth, Recession or Degrowth for Sustainability and Equity? 18(6): 511–518.

Schrodinger, Erwin. 1944. What Is Life? http://whatislife.stanford.edu/LoCo_files/What-isLife.pdf

Schwartzman, David, and Peter Schwartzman. 2013. A Rapid Solar Transition Is Not Only Possible, It Is Imperative! African Journal of Science, Technology. Innovation and Development 5(4): 297–302.

Shahine, Alaa. 2016. Egypt Had FDI Outflows of $482.7 Million in 2011. Bloomberg.com. Accessed August 16. http://www.bloomberg.com/news/articles/2012-03-25/egypt-had-fdioutflows-of-482-7-million-in-2011-correct-

Shaw, Martin. 2005. Risk-Transfer Militarism and the Legitimacy of War after Iraq. In September 11, 2001: A Turning-Point in International and Domestic Law? ed. Paul Eden and T. O’Donnell. Transnational Publishers. http://sro.sussex.ac.uk/12462/

Simms, Andrew. 2008. The Poverty Myth. New Scientist 200(2678): 49.

Smith-Nonini, Sandy. 2016. The Role of Corporate Oil and Energy Debt in Creating the Neoliberal Era. Economic Anthropology 3(1): 57–67.

Söderbergh, Bengt, Fredrik Robelius, and Kjell Aleklett. 2007. A Crash Programme Scenario for the Canadian Oil Sands Industry. Energy Policy 35(3): 1931–1947.

Steffen, Will, et al. 2015. January 15, 2015. Planetary Boundaries: Guiding Human Development on a Changing Planet. Science.

Stewart, Ian. 2015. Debt-Driven Growth, Where Is the Limit? Deloitte: Monday Briefing. February 2. http://blogs.deloitte.co.uk/mondaybriefing/2015/02/debt-driven-growth-whereis-the-limit.html

Stokes, Doug, and Sam Raphael. 2010. Global Energy Security and American Hegemony. Baltimore: JHU Press. Stott, Peter. 2016. How Climate Change Affects Extreme Weather Events. Science 352(6293): 1517–1518.

Street, 1615 L., NW, Suite 800 Washington, and DC 20036 Media Inquiries. 2014. Attitudes about Aging: A Global Perspective. Pew Research Center’s Global Attitudes Project. January 30. http://www.pewglobal.org/2014/01/30/attitudes-about-aging-a-global-perspective/

Taha, Sharif. 2014. Kingdom Imports 80% of Food Products. Arab News. April 20. http://www.arabnews.com/news/558271

Tainter, Joseph. 1990. The Collapse of Complex Societies. Cambridge: Cambridge University Press.

Tao, Fulu, Masayuki Yokozawa, Yousay Hayashi, and Erda Lin. 2003. Future Climate Change, the Agricultural Water Cycle, and Agricultural Production in China. Agriculture, Ecosystems & Environment 95(1): 203–215.

TE. 2016. Egypt Government Debt to GDP 2002-2016. Trading Economics. http://www.tradingeconomics.com/egypt/government-debt-to-gdp

Terzis, George, and Robert Arp, eds. 2011. Information and Living Systems: Philosophical and Scientific Perspectives. MIT Press. http://www.jstor.org/stable/j.ctt5hhhvb.

Thevard, Benoit. 2012. Europe Facing Peak Oil. Momentum Institute/Greens-EFA Group in European Parliament.  http://www.greens-efa.eu/fileadmin/dam/Documents/Publications/PIC%20petrolier_EN_lowres.pdf

Timms, Matt. 2016. Resource Mismanagement Has Led to a Critical Water Shortage in Asia. World Finance, July 21.

Tong, Shilu et al. 2016. Climate Change, Food, Water and Population Health in China. Bulletin of the World Health Organization, July.

Tranum, Sam. 2013. Powerless: India’s Energy Shortage and Its Impact. India: Sage.

Trendberth, Kevin, Jerry Meehl, Jeff Masters, and Richard Somerville. 2012. Heat Waves and Climate Change. https://www.climatecommunication.org/wp-content/uploads/2012/06/Heat_ Waves_and_Climate_Change.pdf

Tverberg, Gail. 2016. China: Is Peak Coal Part of Its Problem? Our Finite World. June 20.  https://ourfiniteworld.com/2016/06/20/china-is-peak-coal-part-of-its-problem/

UN 2015. World Population Prospects. United Nations Department of Economic & Social Affairs, Population Division.

UN News Center, United Nations News Service. 2012. UN News—Despite End-of-Year Decline, 2011 Food Prices Highest on Record—UN. UN News Service Section. January 12.

Victor, Peter. 2010. Questioning Economic Growth. Nature 468(7322): 370–371.

Vyas, Kejal, and Timothy Puko. 2016. Venezuela Oil Production Drops Sharply in May. Wall Street Journal, June 14, sec. World. http://www.wsj.com/articles/venezuela-oil-productiondrops-sharply-in-may-1465868354

Wang, Jinxia, Robert Mendelsohn, Ariel Dinar, Jikun Huang, Scott Rozelle, and Lijuan Zhang. 2009. The Impact of Climate Change on China’s Agriculture. Agricultural Economics 40(3): 323–337.

Wang, Ke, Lianyong Feng, Jianliang Wang, Yi Xiong, and Gail E. Tverberg. 2016. An Oil Production Forecast for China Considering Economic Limits. Energy 113: 586–596.

Weijermars, Ruud. 2013. Economic Appraisal of Shale Gas Plays in Continental Europe. Applied Energy 106: 100–115. doi: 10.1016/j.apenergy.2013.01.025

Wiedmann, Thomas O., Heinz Schandl, Manfred Lenzen, Daniel Moran, Sangwon Suh, James West, and Keiichiro Kanemoto. 2015. The Material Footprint of Nations. Proceedings of the National Academy of Sciences 112(20): 6271–6676.

Wilkinson, Henry. 2016. Political Violence Contagion: A Framework for Understanding the Emergence and Spread of Civil Unrest. Lloyd’s.   http://www.lloyds.com/~/media/files/news%20and%20insight/risk%20insight/2016/political%20violence%20contagion.pdf

Williams, Selina, and Bradley Olson. 2016. Big Oil Companies Binge on Debt. Wall Street Journal, August 24. http://www.wsj.com/articles/largest-oil-companies-debts-hit-record-high1472031002

Wood, Ellen Meiksins. 1981. The Separation of the Economic and the Political in Capitalism. New Left Review, I 127: 66–95. World Bank. 2014. Future Impact of Climate Change Visible Now in Yemen.

World Bank. November 24. http://www.worldbank.org/en/news/feature/2014/11/24/future-impactof-climate-change-visible-now-in-yemen

Worth, Robert F. 2010. Drought Withers Lush Farmlands in Syria. The New York Times, October 13. http://www.nytimes.com/2010/10/14/world/middleeast/14syria.html

Yaritani, Hiroaki, and Jun Matsushima. 2014. Analysis of the Energy Balance of Shale Gas Development. Energies 7(4): 2207–2227.





Is eating no meat actually doing more harm than good?

18 05 2017

I spend more time on the internet arguing wih vegetarians/vegans than any other group of people……  I so wish they would get off their high horses and start supporting farmers who do the right thing…. and that goes for all you meat eaters out there who buy meat from supermarkets….  STOP IT!!

This opinion piece was originally published by Farmdrop on 4th May 2017.


The younger generation are positively redefining the way we see ourselves in relation to food and the environment.

I grew up in the late 1960s and so I consider myself a bit of a hippy. That decade marked a fundamental mind-set shift in the way people saw themselves in relation to the world. At the time, it was difficult to pinpoint where these ideas came from; many of them simply seemed to come through intuition.

I mention this because, for the first time since the late 1960s, I feel like another shift in consciousness is occurring among the younger generation, particularly amongst so called ‘millennials’.

There is a new field of scientific study called epigenetics which shows that all living organisms constantly interact with their external environment and that these influences can prompt changes in gene expression which can be passed down through the generations. Plants, for example, have epigenetic responses to the environment they grow in, as a result of which a plant may have a subtle difference in its genotype from its parents. Even more interestingly, certain epigenetic traits can stay dormant for several generations, only to find full expression at a later time.

So I suspect that the changing shift in consciousness towards food production and sustainability may actually be partly epigenetic. Perhaps the radical energy of the 1960s is now finding expression among millennials, albeit in a slightly different way.

For these reasons, as an organic farmer of almost 45 years, I have never been more optimistic about the future of farming. However, I am growing increasingly concerned about the large number of people turning to diets that may not necessarily be either healthy or sustainable.

If we are to move to a genuinely sustainable food system, then I think we all need to become much better informed about the sustainability or otherwise of different food systems. Only then we will be better placed to challenge the huge amounts of misinformation on so-called sustainable diets which are encouraging people to avoid all meats and animal products, despite the reality that in many (if not most climates and regions) it is difficult to farm in a truly sustainable way without livestock.

What is the problem with food and farming?

It has become a cliché but it’s true: supermarket food is not cheap and comes at a heavy price. The industrial application of nitrogen fertiliser has contaminated our water systems and atmosphere with dangerous nitrates; the subsidised production of fructose corn syrup has driven an increase in obesity and diabetes; and the excessive use of antibiotics in animals has caused a resistance to these drugs amongst humans.

The real problem is that none of the costs of all this damage is charged to the people who use it and, on the other hand, the positive effects of sustainable farming are not supported.

The current policy framework supports a dishonest economic food pricing system, as a result of which, the best business case is for farmers to grow using industrial methods and for retailers to buy the commodity products from industrial farms, process the hell out of them, package them so the consumer knows nothing about their backstory and then make a profit by turning that around.

So we need new incentives and disincentives, which ensure that the polluter pays and those who farm in a truly sustainable way are better rewarded for the benefits they deliver.

But what are the most sustainable farming methods?

There is no doubt that agriculture and farming is one of the most significant contributor towards climate change. Cutting back on the biggest pollutant (man-made fossil fuels) is very important but to actually reverse climate change – take CO2 out of the atmosphere – then we need to change the way we farm, particularly in relation to the way we look after the soil.

This is because organic matter in the soil is a store of carbon, thereby mitigating harmful emissions in the atmosphere. Britain’s soils store around 10 billion tonnes of carbon, which is more than total annual global emissions of carbon dioxide. Moreover, high levels of organic matter are also the basis for soil fertility, releasing nutrients for healthy plant growth and ultimately food. In other words, the amount of organic matter present in the soil is essential, both for combating climate change and ultimately improving our health.

The problem is that industrial farming methods have depleted organic matter in the soils. In the East of England, around 84% of the land’s carbon rich soil has been lost and continues to disappear at a rate of 1 to 2cm per year. That represents an enormous amount of CO2 released into the atmosphere.

Sustainable food systems are therefore about much more than simply avoiding nasty chemicals and antibiotics, they are about building organic matter in the soil through crop rotation and mixed farming practices.

It is possible for farmers to reduce the emissions from agriculture by re-introducing rotations in the way they use their land – introducing a grass and clover phase that builds soil organic matter, which is then grazed by ruminant animals on rotation, who fertilise the soil further, and results in an ability to grow healthy crops.

According to the International Panel on Climate Change, it is estimated that 89% of all agricultural emissions can be mitigated by improving carbon levels in the soil.

How can you have the most healthy and sustainable diet?

Everyone, at least in principle, wants to eat a healthy and sustainable diet, but we are all very confused about how to do it. If you asked 10 people what the most sustainable and healthy way to eat was then you would probably get 10 different answers. A few might say vegetarian or vegan (the numbers eating a vegan diet has increased by 360% in the last decade) but I think that a large scale switch towards vegetarianism may not necessarily be compatible with sustainability.

In my opinion, many people have been led astray by bad science. The tools used by scientific researchers in the past, and whose published papers have prompted changes in people’s diets, were not based on sound science. It was said that red meat and animal fats should be avoided, both because they are unhealthy and because ruminant animals (cows and sheep) are largely responsible for harmful methane emissions.

But it turns out that neither of those positions are necessarily true.

The study that prompted Governments in Britain and the United States to recommend people to reduce their intake of fats was not based on solid evidence. It is this study that encouraged the food industry to replace fats with added sugars, and we are only now understanding the damage these do to our health.

And the studies that recommended a reduction in red meat consumption on grounds of reducing its environmental impact only look at certain factors in isolation rather than the whole food system. Land-use is often considered as bad in all instances, even though raising livestock is sometimes the only productive land use option available. In roughly two thirds of the UK’s agricultural land area is grass and the only way we can turn that into a good soil that stores carbon and grows healthy crops is to have ruminant animals grazing on a rotation system to fertilise the ground.

These flawed assumptions have had significant consequences for the way people eat. Beef production has halved since the 1980s and the consumption of lamb, arguably the most sustainable grass-fed meat for the land, has plummeted. While new evidence is now showing that animals fats are good for our health and cattle grazed in the right way can actually reduce carbon emissions by creating fertile soils.

Where do we go from here?

My message is simple: a healthy diet should work backwards from the most sustainable way to farm, and that ideally means eating the foods produced by mixed farms using crop rotations which include a fertility building phase, usually of grass and clover grazed by cows and sheep, but also pastured pigs and poultry.

Industrial farming has been an extractive industry. We have dined out on the natural capital of the soil that previous generations have laid down for us. We need to fix that because the environment in which a plant or animal is produced goes a long way to determine its nutrient value when consumed by humans.





Healthy soil is the real key to feeding the world

6 04 2017

Image 20170329 8557 1q1xe1z
Planting a diverse blend of crops and cover crops, and not tilling, helps promote soil health.
Catherine Ulitsky, USDA/Flickr, CC BY

David R. Montgomery, University of Washington

One of the biggest modern myths about agriculture is that organic farming is inherently sustainable. It can be, but it isn’t necessarily. After all, soil erosion from chemical-free tilled fields undermined the Roman Empire and other ancient societies around the world. Other agricultural myths hinder recognizing the potential to restore degraded soils to feed the world using fewer agrochemicals.

When I embarked on a six-month trip to visit farms around the world to research my forthcoming book, “Growing a Revolution: Bringing Our Soil Back to Life,” the innovative farmers I met showed me that regenerative farming practices can restore the world’s agricultural soils. In both the developed and developing worlds, these farmers rapidly rebuilt the fertility of their degraded soil, which then allowed them to maintain high yields using far less fertilizer and fewer pesticides.

Their experiences, and the results that I saw on their farms in North and South Dakota, Ohio, Pennsylvania, Ghana and Costa Rica, offer compelling evidence that the key to sustaining highly productive agriculture lies in rebuilding healthy, fertile soil. This journey also led me to question three pillars of conventional wisdom about today’s industrialized agrochemical agriculture: that it feeds the world, is a more efficient way to produce food and will be necessary to feed the future.

Myth 1: Large-scale agriculture feeds the world today

According to a recent U.N. Food and Agriculture Organization (FAO) report, family farms produce over three-quarters of the world’s food. The FAO also estimates that almost three-quarters of all farms worldwide are smaller than one hectare – about 2.5 acres, or the size of a typical city block.

Enter a caption

A Ugandan farmer transports bananas to market. Most food consumed in the developing world is grown on small family farms.
Svetlana Edmeades/IFPRI/Flickr, CC BY-NC-ND

Only about 1 percent of Americans are farmers today. Yet most of the world’s farmers work the land to feed themselves and their families. So while conventional industrialized agriculture feeds the developed world, most of the world’s farmers work small family farms. A 2016 Environmental Working Group report found that almost 90 percent of U.S. agricultural exports went to developed countries with few hungry people.

Of course the world needs commercial agriculture, unless we all want to live on and work our own farms. But are large industrial farms really the best, let alone the only, way forward? This question leads us to a second myth.

Myth 2: Large farms are more efficient

Many high-volume industrial processes exhibit efficiencies at large scale that decrease inputs per unit of production. The more widgets you make, the more efficiently you can make each one. But agriculture is different. A 1989 National Research Council study concluded that “well-managed alternative farming systems nearly always use less synthetic chemical pesticides, fertilizers, and antibiotics per unit of production than conventional farms.”

And while mechanization can provide cost and labor efficiencies on large farms, bigger farms do not necessarily produce more food. According to a 1992 agricultural census report, small, diversified farms produce more than twice as much food per acre than large farms do.

Even the World Bank endorses small farms as the way to increase agricultural output in developing nations where food security remains a pressing issue. While large farms excel at producing a lot of a particular crop – like corn or wheat – small diversified farms produce more food and more kinds of food per hectare overall.

Myth 3: Conventional farming is necessary to feed the world

We’ve all heard proponents of conventional agriculture claim that organic farming is a recipe for global starvation because it produces lower yields. The most extensive yield comparison to date, a 2015 meta-analysis of 115 studies, found that organic production averaged almost 20 percent less than conventionally grown crops, a finding similar to those of prior studies.

But the study went a step further, comparing crop yields on conventional farms to those on organic farms where cover crops were planted and crops were rotated to build soil health. These techniques shrank the yield gap to below 10 percent.

The authors concluded that the actual gap may be much smaller, as they found “evidence of bias in the meta-dataset toward studies reporting higher conventional yields.” In other words, the basis for claims that organic agriculture can’t feed the world depend as much on specific farming methods as on the type of farm.

Cover crops planted on wheat fields in The Dalles, Oregon.
Garrett Duyck, NRCS/Flickr, CC BY-ND

Consider too that about a quarter of all food produced worldwide is never eaten. Each year the United States alone throws out 133 billion pounds of food, more than enough to feed the nearly 50 million Americans who regularly face hunger. So even taken at face value, the oft-cited yield gap between conventional and organic farming is smaller than the amount of food we routinely throw away.

Building healthy soil

Conventional farming practices that degrade soil health undermine humanity’s ability to continue feeding everyone over the long run. Regenerative practices like those used on the farms and ranches I visited show that we can readily improve soil fertility on both large farms in the U.S. and on small subsistence farms in the tropics.

I no longer see debates about the future of agriculture as simply conventional versus organic. In my view, we’ve oversimplified the complexity of the land and underutilized the ingenuity of farmers. I now see adopting farming practices that build soil health as the key to a stable and resilient agriculture. And the farmers I visited had cracked this code, adapting no-till methods, cover cropping and complex rotations to their particular soil, environmental and socioeconomic conditions.

Whether they were organic or still used some fertilizers and pesticides, the farms I visited that adopted this transformational suite of practices all reported harvests that consistently matched or exceeded those from neighboring conventional farms after a short transition period. Another message was as simple as it was clear: Farmers who restored their soil used fewer inputs to produce higher yields, which translated into higher profits.

No matter how one looks at it, we can be certain that agriculture will soon face another revolution. For agriculture today runs on abundant, cheap oil for fuel and to make fertilizer – and our supply of cheap oil will not last forever. There are already enough people on the planet that we have less than a year’s supply of food for the global population on hand at any one time. This simple fact has critical implications for society.

So how do we speed the adoption of a more resilient agriculture? Creating demonstration farms would help, as would carrying out system-scale research to evaluate what works best to adapt specific practices to general principles in different settings.

We also need to reframe our agricultural policies and subsidies. It makes no sense to continue incentivizing conventional practices that degrade soil fertility. We must begin supporting and rewarding farmers who adopt regenerative practices.

Once we see through myths of modern agriculture, practices that build soil health become the lens through which to assess strategies for feeding us all over the long haul. Why am I so confident that regenerative farming practices can prove both productive and economical? The farmers I met showed me they already are.

David R. Montgomery, Professor of Earth and Space Sciences, University of Washington

This article was originally published on The Conversation. Read the original article.





The end of the Middle East

14 03 2017

I have to say, I am seriously chuffed that Nafeez Ahmed is calling it, as I have been for years now…. In a lengthy but well worth reading article in the Middle East Eye, Nafeez explains the convoluted reasons why we have the current turmoil in Iraq, Yemen, and Syria. He doesn’t mention Egypt – yet – but to be fair, the article’s focus in on Mosul and the implications of the disaster unfolding there……

It never ceases to amaze me how Egypt has managed to stay off the news radar. Maybe the populace is too starved to revolt again….

After oil, rice and medicines, sugar has run out in Egypt, as the country has announced a devaluation of 48% of its currency. In Egypt, about 68 million of the total 92 million people receive food subsidized by the State through small consumer stores run by the Ministry of supply and internal trade. After shortages of oil, rice and milk, and even medicines, now sugar scarcity has hit the country. Nearly three quarters of the population completely rely on the government stores for their basic needs.

Egypt produces 2 million tons of sugar a year but has to import 3 million to face domestic demand. However imports have become too expensive.  The country is expected to receive a loan of 12 billion dollars (11 billion euros) from the International monetary Fund (IMF) to tackle its food scarcity. The price for sugar in supermarkets and black markets are skyrocketing as well, with a kilogram costing around 15 pounds. If available, one could get sugar from subsidized government stores for 0.50 euros per kilo.

Nafeez goes into great and interesting detail re the dismaying shenanigans going on in nafeezIraq and Syria at the moment. I’ll leave it to you to go through what he wrote on the Middle East Eye site on those issues, but what struck me as relevant to what this blog is about is how well they correlate with my own thoughts here…..:

Among my findings is that IS was born in the crucible of a long-term process of ecological crisis. Iraq and Syria are both experiencing worsening water scarcity. A string of scientific studies has shown that a decade-long drought cycle in Syria, dramatically intensified by climate change, caused hundreds and thousands of mostly Sunni farmers in the south to lose their livelihoods as crops failed. They moved into the coastal cities, and the capital, dominated by Assad’s Alawite clan. 

Meanwhile, Syrian state revenues were in terminal decline because the country’s conventional oil production peaked in 1996. Net oil exports gradually declined, and with them so did the clout of the Syrian treasury. In the years before the 2011 uprising, Assad slashed domestic subsidies for food and fuel.

While Iraqi oil production has much better prospects, since 2001 production levels have consistently remained well below even the lower-range projections of the industry, mostly because of geopolitical and economic complications. This weakened economic growth, and consequently, weakened the state’s capacity to meet the needs of ordinary Iraqis.

Drought conditions in both Iraq and Syria became entrenched, exacerbating agricultural failures and eroding the living standards of farmers. Sectarian tensions simmered. Globally, a series of climate disasters in major food basket regions drove global price spikes. The combination made life economically intolerable for large swathes of the Iraqi and Syrian populations.

Outside powers – the US, Russia, the Gulf states, Turkey and Iran – all saw the escalating Syrian crisis as a potential opportunity for themselves. As the ensuing Syrian uprising erupted into a full-blown clash between the Assad regime and the people, the interference of these powers radicalised the conflict, hijacked Sunni and Shia groups on the ground, and accelerated the de-facto collapse of Syria as we once knew it.  

AND…..

Meanwhile, across the porous border in Iraq, drought conditions were also worsening. As I write in Failing States, Collapsing Systems, there has been a surprising correlation between the rapid territorial expansion of IS, and the exacerbation of local drought conditions. And these conditions of deepening water scarcity are projected to intensify in coming years and decades.

An Iraqi man walks past a canoe siting on dry, cracked earth in the Chibayish marshes near the southern Iraqi city of Nasiriyah in 2015 (AFP)

The discernable pattern here forms the basis of my model: biophysical processes generate interconnected environmental, energy, economic and food crises – what I call earth system disruption (ESD). ESD, in turn, undermines the capacity of regional states like Iraq and Syria to deliver basic goods and services to their populations. I call this human system destabilisation (HSD).

As states like Iraq and Syria begin to fail as HSD accelerates, those responding – whether they be the Iraqi and Syrian governments, outside powers, militant groups or civil society actors – don’t understand that the breakdowns happening at the levels of state and infrastructure are being driven by deeper systemic ESD processes. Instead, the focus is always on the symptom: and therefore the reaction almost always fails entirely to even begin to address earth system sisruption.

So Bashar al-Assad, rather than recognising the uprising against his regime as a signifier of a deeper systemic shift – symptomatic of a point-of-no-return driven by bigger environmental and energy crises – chose to crackdown on his narrow conception of the problem: angry people.

Even more importantly, Nafeez also agrees with my predictions regarding Saudi Arabia…

The Gulf states are next in line. Collectively, the major oil producers might have far less oil than they claim on their books. Oil analysts at Lux Research estimate that OPEC oil reserves may have been overstated by as much as 70 percent. The upshot is that major producers like Saudi Arabia could begin facing serious challenges in sustaining the high levels of production they are used to within the next decade.

Another clear example of exaggeration is in natural gas reserves. Griffiths argues that “resource abundance is not equivalent to an abundance of exploitable energy”.

While the region holds substantial amounts of natural gas, underinvestment due to subsidies, unattractive investment terms, and “challenging extraction conditions” have meant that Middle East producers are “not only unable to monetise their reserves for export, but more fundamentally unable to utilise their reserves to meet domestic energy demands”. 

Starting to sound familiar..? We are doing the exact same thing here in Australia…. It’s becoming ever more clear that Limits to Growth equates to scraping the bottom of the barrel, and the scraping sounds are getting louder by the day.

And oil depletion is only one dimension of the ESD processes at stake. The other is the environmental consequence of exploiting oil.

Over the next three decades, even if climate change is stabilised at an average rise of 2 degrees Celsius, the Max Planck Institute forecasts that the Middle East and North Africa will still face prolonged heatwaves and dust storms that could render much of the region “uninhabitable”. These processes could destroy much of the region’s agricultural potential.

Nafeez finishes with a somewhat hopeful few paragraphs.

Broken models

While some of these climate processes are locked in, their impacts on human systems are not. The old order in the Middle East is, unmistakably, breaking down. It will never return.

But it is not – yet – too late for East and West to see what is actually happening and act now to transition into the inevitable future after fossil fuels.

The battle for Mosul cannot defeat the insurgency, because it is part of a process of human system destabilisation. That process offers no fundamental way of addressing the processes of earth system disruption chipping away at the ground beneath our feet.

The only way to respond meaningfully is to begin to see the crisis for what it is, to look beyond the dynamics of the symptoms of the crisis – the sectarianism, the insurgency, the fighting – and to address the deeper issues. That requires thinking about the world differently, reorienting our mental models of security and prosperity in a way that captures the way human societies are embedded in environmental systems – and responding accordingly.

At that point, perhaps, we might realise that we’re fighting the wrong war, and that as a result, no one is capable of winning.

The way the current crop of morons in charge is behaving, I feel far less hopeful that someone will see the light. There aren’t even worthwhile alternatives to vote for at the moment…  If anything, they are all getting worse at ‘leading the world’ (I of course use the term loosely..), not better. Nor is the media helping, focusing on politics rather than the biophysical issues discussed here.

 





It’s official……………

8 03 2017

I am now an old fart.

Yesterday, I turned 65 (will she still love me…?) and am now officially a pensioner. To celebrate, I did the unthinkable, flying over 2,500 km to join my family and friends in Queensland who all wanted to see me. Love miles George Monbiot calls them……. not only that, we also drove more than 300km in Glenda’s little car, though it would have only burned 15 litres of petrol doing so. I’m over feeling guilty over my travels now ; whatever I do (or don’t do) will not make one iota of difference to the outcomes of western civilisation…..

If ever I needed reminding of why I will never return to the big island, the weather while I was burning all those fossil fuels was downright awful. Maybe it’s because I am getting old, or maybe it’s due to climate change, but I could not remember the heat being as oppressive as it was……. as I type, in Geeveston, it’s 21 degrees (C of course…) and I have my shirt off……. after harvesting in the market garden, more later.

Everyone I spoke too was mumbling through the thick air about the oppressive heat, and the lack of rain…… worst summer in living memory, etc etc etc………… in the end, I spent most of the time eating, drinking, sweating (when not in airconditioning) or traveling by oil powered transport. Now I’m back, I have to wear off the pounds I put on in just three days!

Glenda and I made the time to see Bruce at Mt Glorious. Where too it was hot….. Mt Glorious? For Pete’s sake, it’s 600m above sea level..?

There’s never enough time to talk to Bruce. Like me, he is short of people he can have an actual conversation that makes sense with, and after just three hours, we had to go back down the mountain to the pea soup.

Bruce related a story to me that relates highly to an article I recently published about PV’s negative ERoEI. It goes something like this……:

His in-laws, who live off the grid near Stanthorpe in Queensland, had a pretty good 20 year old 24V battery bank charged with an array of 12V solar panels. It worked just fine, until the lady of the house decided to replace the fridge, and voila, the system could not cope. So she contacted the company who installed the original system to upgrade it. “But everything’s changed now” she was told…… you will have to replace the whole lot…. nonsense said Bruce (as I said when he was telling me what happened). 12V modules are a thing of the past now, unless you’re willing to pay for ‘camping’ versions of these things that cost ten times as much per Watt as the ‘conventional’ gear being screwed to everyone’s roofs these days…… talk about an expensive fridge.

The company involved could not be bothered to tinker with the system, they reckoned the batteries and associated inverter and charging gear were too old and not worth the effort. So off it all came, now replaced with the latest stuff, including the ridiculous use of a grid tied inverter needing to be hooked up to an ‘island’ bit of gear to make it work as a standalone inverter. And at 20 years old, all that stuff was right on the verge of paying itself off in energy return, but now it’s a pile of waste with a negative ERoEI. Bruce has the panels, but I suspect he doesn’t need them, though they could be good backup for his old system should anything go wrong with it……….

The other interesting thing that happened to me was on the flight up…… I just happened to sit next to this Canadian, who, after some banter, it was discovered knew all about peak oil and ‘the end of capitalism’. Maybe there are more and more people ‘getting it’ these days.

20170213_191338

Steak from the neighbours, mashed potatoes with parsley and garlic from the garden, plus home grown beans – all washed down with home brewed cider made with apples from trees I can see from here…

Back to reality. I was a tad concerned about leaving my garden unattended, particularly not being watered in this warm weather, but I need not have worried, it seems to have thrived on neglect! This morning I harvested 7.3kg of tomatoes, 9.6kg of snow peas (!) and a 3kg zucchini that was as long as my arm…… a zuccini that big is not salable, so I chopped it up for the chooks. Waste nothing (unlike solar power companies).

I’m actually starting to feel like I’m living in abundance, at least for the time being. I ate a watermelon from the poly tunnel before leaving for Qld, and this morning I got stuck into a delicious rockmelon. I’ve been making blackberry jam, and there’s such a glut of berries now, I will be making more for the next couple of weeks…. and just before leaving, I bought half a pig from my neighbour, and is it soooo delicious……. Eat your heart out Queenslanders……





Feeding 9 billion

16 01 2017

I have just been tipped off to this fantastic Joel Salatin video…… I think it’s ironic that Eclipe, a fan of Polyface Farm, is in complete disagreement with Joel who is totally anti hi-tech farming. In fact, like me, Joel believes in walking away from the Matrix (exemplified in this video by McDonald’s), and he lets both barrels go at the establishment…..

Enjoy.





The price of fuel..: what is going on..?

11 01 2017

Yesterday, I went to the big smoke for a medical appointment. I’m fine. But when I went to fill up to ensure I could make it home, I realised that the price of petrol had gone up by a whopping 20c/L in one hit. That’s a 14% increase……… in one day.Petrol price hike in Hobart

In the news, “Mr Moody (of the Royal Automobile Club of Tasmania) said prices were being driven up by increases in the global oil price, but he said the price should level out in Tasmania at about $1.40 a litre in about a month.”

Except that when I investigated this, the price of oil had not skyrocketed, it was still around $52 a barrel. Last time petrol was this expensive, oil was at $147 a barrel….. so what’s going on?

My take on this is that the oil companies must be finding it harder and harder to pay their interest bills. If they can’t make profits with oil, they’ll have to find them upstream at the pump.  Furthermore, maybe Peak Oil is on the cusp of getting really serious, and this might be the tip of the iceberg……. Nafeez Ahmed has just written the following article about how dire the oil situation is becoming…….

Brace for the oil, food and financial crash of 2018

80% of the world’s oil has peaked, and the resulting oil crunch will flatten the economy

New scientific research suggests that the world faces an imminent oil crunch, which will trigger another financial crisis.

A report by HSBC shows that contrary to industry mythology, even amidst the glut of unconventional oil and gas, the vast bulk of the world’s oil production has already peaked and is now in decline; while European government scientists show that the value of energy produced by oil has declined by half within just the first 15 years of the 21st century.

The upshot? Welcome to a new age of permanent economic recession driven by ongoing dependence on dirty, expensive, difficult oil… unless we choose a fundamentally different path.

Last September, a few outlets were reporting the counterintuitive findings of a new HSBC research report on global oil supply. Unfortunately, the true implications of the HSBC report were largely misunderstood.

The HSBC research note — prepared for clients of the global bank — found that contrary to concerns about too much oil supply and insufficient demand, the situation was opposite: global oil supply will in coming years be insufficient to sustain rising demand.screenshot

Yet the full, striking import of the report, concerning the world’s permanent entry into a new age of global oil decline, was never really explained. The report didn’t just go against the grain of the industry’s hype about ‘peak demand’: it vindicated what is routinely lambasted by the industry as a myth: peak oil — the concurrent peak and decline of global oil production.

The HSBC report you need to read, now

INSURGE intelligence obtained a copy of the report in December 2016, and for the first time we are exclusively publishing the entire report in the public interest.

Read and/or download the full HSBC report by clicking below:

HSBC peak oil report

The HSBC report has a helpful, ten-point summary of the key arguments the bank makes, and what is going on right now. These arguments are summarised below…:

  1. Oil’s oversupply problem, which has caused most of the trouble in the markets in recent years will end by 2017, and the market will return to balance.
  2. Spare capacity will have shrunk substantially by then “to just 1% of global supply/demand.” This HSBC argues, will make the market more susceptible to disruptions like those seen in Nigeria and Canada in 2016.
  3. Oil demand is still growing by ~1mbd every year, and no central scenarios that we recently assessed see oil demand peaking before 2040.”
  4. 81% of the production of liquid oil is already in decline.
  5. HSBC sees between 3 and 4.5 million barrels per day of supply disappearing once peak oil production is reached. “In our view a sensible range for average decline rate on post-peak production is 5-7%, equivalent to around 3-4.5mbd of lost production every year.”
  6. Based on a simple calculation, HSBC estimates that by 2040, the world will need to find around 40 million barrels of oil per day to keep up with growing demand from emerging economies. That is equivalent to over 4 times the current crude oil output of Saudi Arabia.
  7. “Small oilfields typically decline twice as fast as large fields, and the global supply mix relies increasingly on small fields: the typical new oilfield size has fallen from 500-1,000mb 40 years ago to only 75mb this decade.” — This will exacerbate the problem of declining oil fields, and the lack of supply.
  8. The amount of new oil discoveries being made is pretty small. HSBC notes that in 2015 the discovery rate for new wells was just 5%, a record low. The discoveries made are also fairly small in size.
  9. There is potential for growth in US shale oil, but it currently represents less than 5% of global supply, meaning that it will not be able, single-handedly at least, to address the tumbling global supply HSBC expects.
  10. “Step-change improvements in production and drilling efficiency in response to the downturn have masked underlying decline rates at many companies, but the degree to which they can continue to do so is becoming much more limited.” Essentially HSBC argues that companies aren’t improving their efficiency at a quick enough rate, meaning that supply declines will hit them even harder.

Here is the chart showing the decline in production post-peak:

Oil peak production

As usual, the mainstream media is spruiking loads of rubbish, probably trying to not scare the children…… unless you peek elsewhere like this blog, or follow other bloggers who keep abreast of the truth, you could be forgiven for thinking America will be great again…. or some other such rubbish.

Under the current supply glut driven by rising unconventional production, falling oil prices have damaged industry profitability and led to dramatic cut backs in new investments in production. This, HSBC says, will exacerbate the likelihood of a global oil supply crunch from 2018 onwards.
So how do you improve profitability? You put the price of fuel up. Given that petrol is the single biggest purchase made by households on a weekly basis, the lift in petrol prices may lead to less household activity — a potential concern for retailers and the economy generally. High fuel prices combined with large debts is what broke the camel’s back in 2008, causing the GFC. Things are not only not different today, debt levels are even higher….. how long before GFC MkII kicks off is anyone’s guess, but it can’t be too far away now….