Unpacking Extinction Rebellion — Part I: Net-zero Emissions

17 09 2019

Kim Hill

Sep 13 · Originally published by Medium, a very important article needed to be read very widely……..

The Extinction Rebellion (XR) movement has taken off around the world, with millions of people taking to the streets to demand that governments take action on climate change and the broader ecological crisis. The scale of the movement means it has the potential to have an enormous impact on the course of history, by bringing about massive changes to the structure of our societies and economic systems.

The exact nature of the demanded action is not made clear, and warrants a close examination. There is a long history of powerful government and corporate interests throwing their support behind social movements, only to redirect the course of action to suit their own ends, and Extinction Rebellion is no exception.

With the entirety of life on this planet at stake, any course of action needs to be considered extremely carefully. Actions have consequences, and at this late stage, one mis-step can be catastrophic. The feeling that these issues have been discussed long enough and it is now time for immediate action is understandable. However, without clear goals and a plan on how to achieve them, the actions taken are likely to do more harm than good.

Extinction and climate change are among the many disastrous effects of an industrial society. While the desire to take action to stop the extinction of the natural world is admirable, rebelling against the effects without directly confronting the economic and political systems that are the root cause is like treating the symptoms of an illness without investigating or diagnosing it first. It won’t work. Addressing only one aspect of the global system, without taking into account the interconnected industries and governance structures, will only lead to worse problems.

Demand 2: net-zero emissions

The rebellion’s goals are expressed in three demands, under the headings Tell the Truth, Act Now and Beyond Politics. I’m starting with the second demand because net-zero is the core goal of the rebellion, and the one that will have enormous political, economic and social impact.

What does net-zero emissions mean? In the words of Catherine Abreau, executive director of the Climate Action Network: “In short, it means the amount of emissions being put into the atmosphere is equal to the amount being captured.” The term carbon-neutral is interchangeable with net-zero.

Net-zero emissions is Not a Thing. There is no way to un-burn fossil fuels. This demand is not for the extraction and burning to stop, but for the oil and gas industry to continue, while powering some non-existent technology that makes it all okay. XR doesn’t specify how they plan to reach the goal.

Proponents of net-zero emissions advocate for the trading of carbon offsets, so industries can pay to have their emissions captured elsewhere, without reducing any on their part. This approach creates a whole new industry of selling carbon credits. Wind turbines, hydro-electric dams, biofuels, solar panels, energy efficiency projects, and carbon capture are commonly traded carbon offsets. None of these actually reduce carbon emissions in practice, and are themselves contributing to greenhouse gas emissions, so make the problem worse. Using this approach, a supposedly carbon-neutral economy leads to increased extraction and burning, and generates massive profits for corporations in the process. Head of environmental markets at Barclays Capital, Louis Redshaw, predicted in 2007 “carbon will be the world’s biggest commodity market, and it could become the world’s biggest market overall.”

The demand for net-zero emissions has been echoed by a group of more than 100 companies and lobby groups, who say in a letter to the UK government: “We see the threat that climate change poses to our businesses and to our investments, as well as the significant economic opportunities that come with being an early mover in the development of new low-carbon goods and services.” Included in this group are Shell, Nestle and Unilever. This is the same Shell that has caused thousands of oil spills and toxic leaks in Nigeria and around the world, executed protesters, owns 60 per cent of the Athabasca oil sands project in Alberta, and intends to continue extracting oil long into the future; the same Nestle that profits from contaminated water supplies by selling bottled water, while depleting the world’s aquifers; the same Unilever that is responsible for clearing rainforests for palm oil and paper, dumping tonnes of mercury in India, and making billions by marketing plastic-wrapped junk food and unnecessary consumer products to the world’s poorest people. All these companies advocate for free trade and privatization of the commons, and exploit workers and lax environmental laws in the third world. As their letter says, their motivation is to profit from the crisis, not to stop the destruction they are causing.

These are XR’s allies in the call for net-zero emissions.

The nuclear industry also sees the net-zero target as a cause for celebration, and even fracking is considered compatible with the goal.

Net-zero emissions in practice

Let’s look at some of the proposed approaches to achieve net-zero in more detail.

Renewable energy doesn’t reduce the amount of energy being generated by fossil fuels, and doesn’t do anything to reduce atmospheric carbon. Wind turbines and solar panels are made of metals, which are mined using fossil fuels. Any attempt to transition to 100% renewables would require more of some rare earth metals than exist on the planet, and rare earth mining is mostly done illegally in ecologically sensitive areas in China. There are plans to mine the deep sea to extract the minerals needed for solar panels, wind turbines and electric car batteries. Mining causes massive destruction and pollution of forests and rivers, leading to increased rates of extinction and climate change. And huge profits for mining and energy companies, who can claim government subsidies for powering the new climate economy. The amount of fossil fuels needed to power the mines, manufacturing, infrastructure and maintenance of renewables makes the goal of transitioning to clean energy completely meaningless. Wind and solar ‘farms’ are installed on land taken from actual farms, as well as deserts and forests. And the energy generated is not used to protect endangered species, but to power the industries that are driving us all extinct. Not a solution. Not even close. In the net-zero logic of offset trading, renewables are presented as not an alternative to fossil fuel extraction, but instead a way to buy a pass to burn even more oil. That’s a double shot of epic fail for renewables.

Improving efficiency of industrial processes leads to an increase in the amount of energy consumed, not a decrease, as more can be produced with the available energy, and more energy is made available for other uses. The industries that are converting the living world into disposable crap need to be stopped, not given money to destroy the planet more efficiently.

Reforestation would be a great way to start repairing the damage done to the world, but instead is being used to expand the timber industry, which uses terms like ‘forest carbon markets’ and ‘net-zero deforestation’ to legitimize destroying old-growth forests, evicting their inhabitants, and replacing them with plantations. Those seeking to profit from reforestation are promoting genetically engineered, pesticide-dependent monocrop plantations, to be planted by drones, and are anticipating an increase in demand for wood products in the new ‘bioeconomy’. Twelve million hectares of tropical rainforest were cleared in 2018, the equivalent of 30 football fields a minute. Land clearing at this rate has been going on for decades, with no sign of stopping. No carbon offsets or emissions trading can have any effect while forest destruction continues. And making an effort to repair past damage does not make it okay to continue causing harm long into the future. A necessary condition of regenerating the land is that all destructive activity needs to stop.

Carbon capture and storage (CCS) is promoted as a way to extract carbon dioxide from industrial emissions, and bury it deep underground. Large amounts of energy and fresh water are required to do this, and pollutants are released into the atmosphere in the process. The purpose of currently-operational carbon capture installations is not to store the carbon dioxide, but to use it in a process called Enhanced Oil Recovery (EOR), which involves injecting CO2 into near-depleted oil fields, to extract more fossil fuels than would otherwise be accessible. And with carbon trading, the business of extracting oil becomes more profitable, as it can sell offset credits. Again, the proposed solution leads to more fossil fuel use, not less. Stored carbon dioxide is highly likely to leak out into the atmosphere, causing earthquakes and asphyxiating any nearby living beings. This headline says all you need to know: “Best Carbon Capture Facility In World Emits 25 Times More CO2 Than Sequestered”. Carbon capture for underground storage is neither technically nor commercially viable, as it is risky and there is no financial incentive to store the carbon dioxide, so requires government investment and subsidies. And the subsidies lead to coal and gas becoming more financially viable, thus expanding the industry.

Bio-energy with carbon capture and storage (BECCS) is a psychopathic scheme to clear forests, and take over agricultural land to grow genetically modified fuel crops, burn the trees and crops as an energy source, and then bury the carbon dioxide underground (where it’s used to expand oil and gas production). It would require an amount of land almost the size of Australia, or up to 80% of current global cropland, masses of chemical fertilizers (made from fossil fuels), and lead to soil degradation (leading to more emissions), food shortages, water shortages, land theft, massive increase in the rate of extinction, and I can’t keep researching these effects it’s making me feel ill. Proponents of BECCS (i.e. fossil fuel companies) acknowledge that meeting the targets will require “three times the world’s total cereal production, twice the annual world use of water for agriculture, and twenty times the annual use of nutrients.” Of course this will mostly take place on land stolen from the poor, in Africa, South America and Asia. And the energy generated used to make more fighter jets, Hollywood movies, pointless gadgets and urban sprawl. Burning of forests for fuel is already happening in the US and UK, all in the name of clean energy. Attaching carbon capture to bioenergy means that 30% more trees or crops need to be burned to power the CCS facility, to sequester the emissions caused by burning them. And again, it’s an offset, so sold as a justification to keep the fossil fuel industry in business. The Intergovernmental Panel on Climate Change (in the three most likely of its four scenarios) recommends implementing BECCS on a large scale to keep warming below 2°C. Anyone who thinks this is a good idea can go burn in hell, where they can be put to good use as an energy source.

This is what a decarbonised economy looks like in practice. An enormous increase in fossil fuel extraction, land clearing, mining (up to nine times as much as current levels), pollution, resource wars, exploitation, and extinction. All the money XR is demanding that governments invest in decarbonisation is going straight to the oil, gas, coal and mining companies, to expand their industries and add to their profits. The Centre for International Environmental Law, in the report Fuel to the Fire, states “Overall, the US government has been funding CCS research since 1997, with over $5billion being appropriated since 2010.” Fossil fuel companies have been advocating net-zero for some years, as it is seen as a way to save a failing coal industry, and increase demand for oil and gas, because solar, wind, biofuels and carbon capture technologies are all dependent on fossil fuels for their operation.

Anyone claiming that a carbon-neutral economy is possible is not telling the truth. All of these strategies emit more greenhouse gases than they capture. The second demand directly contradicts the first.

These approaches are used to hide the problem, and dump the consequences on someone else: the poor, nonhuman life, the third world, and future generations, all in the service of profits in the present. The goal here is not to maintain a stable climate, or to protect endangered species, but to make money out of pretending to care.

Green growth, net-zero emissions and the Green New Deal (which explicitly states in its report that the purpose is to stimulate the economy, which includes plans to extract “remaining fossil fuel with carbon capture”) are fantasy stories sold to us by energy companies, a shiny advertisement sucking us in with their claims to make life better. In reality the product is useless, and draws us collectively into a debt that we’re already paying for by being killed off at a rate of 200 species a day. With exponential economic growth (a.k.a. exponential climate action) the rate of extinction will also grow exponentially. And the money to pay for it all comes directly from working people, in the form of pension funds, carbon taxes, and climate emergency levies.

The transition to net-zero

There are plans for thousands of carbon capture facilities to be built in the coming years, all requiring roads, pipelines, powerlines, shipping, land clearing, water extraction, pollution, noise, and the undermining of local economies for corporate profits, all for the purpose of extracting more oil. And all with the full support of the rebellion.



To get a sense of the scale of this economic transformation, a billion seconds is almost 32 years. If you were to line up a billion cars and run over them (or run them over) at a rate of one car per second, you’d be running for 32 years non-stop. That’s enough cars to stretch 100 times around the equator. You’d probably need to turn entire continents into a mine site to extract all the minerals required to make them. And even that wouldn’t be enough, as some of the rare earth metals required for batteries don’t exist in sufficient quantities. If all these cars are powered by renewables, you do the math on how much mining would be needed to make all the wind turbines and solar panels. Maybe several more continents. And then a few more covered in panels, turbines, powerlines, substations. And a few more to extract all the oil needed to power the mining and road building. Which all leaves no space for any life. And all for what? So we can spend our lives stuck in traffic? It’s ridiculous and apocalyptic, yet this is what the net-zero lobbyists, with the US and UK governments, and the European Union, have already begun implementing.

Shell’s thought leadership and government advisory schemes appear to be going great, with the US senate passing a number of bills in recent months to increase subsidies for oil companies using carbon capture, and a few more, to subsidise wind, solar, nuclear, coal, gas, research and development, and even more carbon capture, are scheduled to pass in the coming months.

The UK government, with guidance from the creepy-sounding nonprofit Energy and Climate Intelligence Unit, is implementing a transition to net-zero, involving carbon capture, nuclear, bioenergy, hydrogen, ammonia, wind, solar, oil, gas, electric cars, smart grids, offset trading, manufacturing and the obligatory economic growth. And offering ‘climate finance’ to third world countries, to impose this industrial horror on the entire planet. All led by their advisors from the fossil fuel and finance industries, with input from the CCS, oil, gas, bioenergy, renewables, chemical, manufacturing, hydrogen, nuclear, airline, automotive, mining, and agriculture industries.

The European Union, advised by the corporate-funded European Climate Foundation, are implementing a similar plan, aiming to remain competitive with the rest of the industrialised world. The EU intends to commit 25% of its budget to implementing so-called climate mitigation strategies. Other industrialised countries also have plans to transition to a decarbonised economy.

Net-zero emissions is also the goal of the councils that have declared a climate emergency, which now number close to 1000, covering more than 200 million citizens.

This is the plan the rebellion is uniting behind to demand from the world’s governments.





The Danger of Inspiration: A Review of On Fire: The (Burning) Case for a Green New Deal

11 09 2019

Naomi Klein’s new book, On Fire: The (Burning) Case for a Green New Deal, has one crippling flaw—it’s inspiring. At this moment in history, inspiring talk about solutions to multiple, cascading ecological crises is dangerous. Republished from the Resilience site……

At the conclusion of these 18 essays that bluntly outline the crises and explain a Green New Deal response, Klein bolsters readers searching for hope: “[W]hen the future of life is at stake, there is nothing we cannot achieve.” It is tempting to embrace that claim, especially after nearly 300 pages of Klein’s eloquent writing that weaves insightful analysis together with honest personal reflection.

The problem, of course, is that the statement is not even close to being true. With nearly 8 billion people living within a severely degraded ecosphere, there are many things we cannot, and will not, achieve. A decent human future—perhaps any human future at all—depends on our ability to come to terms with these limits. That is not a celebration of cynicism or a rationalization for nihilism, but rather the starting point for rational planning that takes seriously not only our potential but also the planet’s biophysical constraints.

Klein’s essays in this volume make it clear that she is well aware of those limits, but the book’s subtitle suggests that she is writing not only to inform but also to mobilize support for Green New Deal proposals. This tension runs throughout the book—when Klein reports on and analyzes the state of the world, the prose challenges readers to face difficult realities, but when making the case for those policy proposals, she sounds more like an organizer rallying supporters.

That’s not a dig—Klein is a writer who doesn’t sit on the sidelines but gets involved with movements and political projects. Her commitment to activism and organizing is admirable, but it can pull a writer in conflicting directions.

This critique should not lead anyone to ignore On Fire, which is an excellent book that should be read cover to cover, without skipping chapters that had been previously published. Collections of essays can fall flat because of faded timeliness or unnecessary repetition, but neither are a problem here. As always, Klein’s sharp eye for detail makes her reporting on events compelling, whether she’s describing disasters (natural and unnatural) or assessing political trends. And, despite the grim realities we face, the book is a pleasure to read.

Before explaining concerns with the book’s inspirational tone, I want to emphasize key points Klein makes that I agree are essential to a left/progressive analysis of the ecological crises:

  • First-World levels of consumption are unsustainable;
  • capitalism is incompatible with a livable human future;
  • the modern industrial world has undermined people’s connections to each other and the non-human world; and
  • we face not only climate disruption but a host of other crises, including, but not limited to, species extinction, chemical contamination, and soil erosion and degradation.

In other words, business-as-usual is a dead end, which Klein states forthrightly:

I feel confident in saying that a climate-disrupted future is a bleak and an austere future, one capable of turning all our material possessions into rubble or ash with terrifying speed. We can pretend that extending the status quo into the future, unchanged, is one of the options available to us. But that is a fantasy. Change is coming one way or another. Our choice is whether we try to shape that change to the maximum benefit of all or wait passively as the forces of climate disaster, scarcity, and fear of the “other” fundamentally reshape us.

On Fire focuses primarily on the climate crisis and the Green New Deal’s vision, which is widely assailed as too radical by the two different kinds of climate-change deniers in the United States today—one that denies the conclusions of climate science and another that denies the implications of that science. The first, based in the Republican Party, is committed to a full-throated defense of our pathological economic system. The second, articulated by the few remaining moderate Republicans and most mainstream Democrats, imagines that market-based tinkering to mitigate the pathology is adequate.

Thankfully, other approaches exist. The most prominent in the United States is the Green New Deal’s call for legislation that recognizes the severity of the ecological crises while advocating for economic equality and social justice. Supporters come from varied backgrounds, but all are happy to critique and modify, or even scrap, capitalism. Avoiding dogmatic slogans or revolutionary rhetoric, Klein writes realistically about moving toward a socialist (or, perhaps, socialist-like) future, using available tools involving “public infrastructure, economic planning, corporate regulation, international trade, consumption, and taxation” to steer out of the existing debacle.

One of the strengths of Klein’s blunt talk about the social and ecological problems in the context of real-world policy proposals is that she speaks of motion forward in a long struggle rather than pretending the Green New Deal is the solution for all our problems. On Firemakes it clear that there are no magic wands to wave, no magic bullets to fire.

The problem is that the Green New Deal does rely on one bit of magical thinking—the techno-optimism that emerges from the modern world’s underlying technological fundamentalism, defined as the faith that the use of evermore advanced technology is always a good thing. Extreme technological fundamentalists argue that any problems caused by the unintended consequences of such technology eventually can be remedied by more technology. (If anyone thinks this definition a caricature, read “An Ecomodernist Manifesto.”)

Klein does not advocate such fundamentalism, but that faith hides just below the surface of the Green New Deal, jumping out in “A Message from the Future with Alexandria Ocasio-Cortez,” which Klein champions in On Fire. Written by U.S. Rep. Ocasio-Cortez (the most prominent legislator advancing the Green New Deal) and Avi Lewis (Klein’s husband and collaborator), the seven-and-a-half minute video elegantly combines political analysis with engaging storytelling and beautiful visuals. But one sentence in that video reveals the fatal flaw of the analysis: “We knew that we needed to save the planet and that we had all the technology to do it [in 2019].”

First, talk of saving the planet is misguided. As many have pointed out in response to that rhetoric, the Earth will continue with or without humans. Charitably, we can interpret that phrase to mean, “reducing the damage that humans do to the ecosphere and creating a livable future for humans.” The problem is, we don’t have all technology to do that, and if we insist that better gadgets can accomplish that, we are guaranteed to fail.

Reasonable people can, and do, disagree about this claim. (For example, “The science is in,” proclaims the Nature Conservancy, and we can have a “future in which catastrophic climate change is kept at bay while we still power our developing world” and “feed 10 billion people.”) But even accepting overly optimistic assessments of renewable energy and energy-saving technologies, we have to face that we don’t have the means to maintain the lifestyle that “A Message from the Future” promises for the United States, let alone the entire world. The problem is not just that the concentration of wealth leads to so much wasteful consumption and wasted resources, but that the infrastructure of our world was built by the dense energy of fossil fuels that renewables cannot replace. Without that dense energy, a smaller human population is going to live in dramatically different fashion.

Welcome to the third rail of contemporary political life. The question that the multiple, cascading ecological crises put squarely in front of us is, “What is a sustainable human population?” That question has to be split in two: “How many people? Consuming how much?”

It’s no surprise that political candidates ignore these questions, but progressive writers and activists should not back away. Honestly engaging these issues takes us well beyond the Green New Deal.

On the second of those questions—“consuming how much?”—Klein frequently highlights the problem, but with a focus on “profligate consumption.” She stresses the need to:

  • “scale back overconsumption”;
  • identify categories in which we must contract, “including air travel, meat consumption, and profligate energy use”; [I do wish people would get off the back of meat consumption and point the finger at industrial scale agriculture instead…]
  • end “the high-carbon lifestyle of suburban sprawl and disposable consumption”;
  • reject capitalism’s faith in “limitless consumption” that locks us in “the endless consumption cycle”; and
  • make deep changes “not just to our energy consumption but to the underlying logic of our economic system.”

No argument with any of those statements, especially because Klein rejects the notion that simply improving efficiency will solve our problems, a common assumption of the techno-optimists. But challenging “overconsumption by the comparatively wealthy” focuses on the easy target: “The bottom line is that an ecological crisis that has its roots in the overconsumption of natural resources must be addressed not just by improving the efficiency of our economies, but also by reducing the amount of material stuff that the wealthiest 20 percent of people on the planet consume.”

My goal is not to defend rich people or their consumption habits. However, constraining the lifestyles of the rich and famous is a necessary but not sufficient condition for sustainability. Here we have to deal with the sticky question of human nature. Klein rightly rejects capitalism’s ideological claim that people’s capacity to act out of greed and short-term self-interest (which all of us certainly are capable of doing) is the dominant human trait. Human nature also includes the capacity to act out of compassion in solidarity with others, of course, and different systems reward different parts of our nature. Capitalism encourages the greed and discourages the compassion, to the detriment of people and planet.

But we are organic creatures, and that means there is a human nature, or what we might more accurately call our human-carbon nature. As Wes Jackson of The Land Institute puts it, life on Earth is “the scramble for energy-rich carbon,” and humans have gotten exceedingly good at grabbing lots of carbon. Not all cultures go after it with the same intensity, of course, but that scramble predates capitalism and will continue after capitalism. This doesn’t mean we are condemned to make the planet unlivable for ourselves and other creatures, but public policy has to recognize that we not only need carbon to survive but that most people—including most environmentalists—like the work that carbon can do for us when we burn those fossil fuels. And once we get a taste of what that carbon can do, it’s not easy to give it up.

As Klein points out, curbing our carbon-seeking is not merely a test of will power and matter of individual virtue; collective action through public policy is needed. I believe that requires a hard cap on carbon—limits that we can encourage people to accept through cultural advocacy but in the end must be imposed through law. A sensible approach, called “cap and adapt,” has been proposed by Larry Edwards and Stan Cox. In a forthcoming book, Cox will expand on a cap-and-ration strategy that could help in “drawing the human economy back within necessary ecological limits,” a follow-up to, and expansion of, his earlier book that made a compelling case for a rationing.

There’s no simple answer to how much energy and material resources we can consume without undermining the ecosystems on which our own lives depend, but I’m confident in saying that it’s dramatically less that we consume today, and that reducing aggregate consumption—even if we could create equitable societies—will be difficult. But that’s the easy part. Much more difficult is the first question—“how many people?”

On the question of population, On Fire is silent, and it’s not hard to understand, for several reasons. First, the Earth has a carrying capacity for any species but it’s impossible to predict when we will reach it (or did reach it), and failed attempts at prediction in the past have made people wary. Second, some of the most vocal supporters of population control also espouse white supremacy, which has tainted even asking the question. Third, while we know that raising the status of women and educating girls reduces birth rates, it’s difficult to imagine a non-coercive strategy for serious population reduction on the scale necessary. Still, we should acknowledge ecological carrying capacity while pursuing social justice and rejecting anti-immigration projects. Progressives’ unwillingness to address the issue cedes the terrain to “eco-fascists,” those who want to use ecological crises to pursue a reactionary agenda.

There’s no specific number to offer for a sustainable human population, but I’m confident in saying that it’s fewer than 8 billion and that finding a humane and democratic path to that lower number is difficult to imagine. [I’ll offer one, and it’s well below one billion – https://damnthematrix.wordpress.com/2015/03/12/losing-our-energy-slaves/ ]

The fact that these questions are troubling and/or impossible to answer does not mean the questions do not matter. For now, my answer—a lot fewer people and a lot less stuff—is adequate to start a conversation: “A sustainable human presence on the planet will mean fewer people consuming less.” Agree or disagree? Why or why not?

Two responses are possible from Green New Deal supporters: (1) I’m nuts, or (2) I’m not nuts, but what I’m suggesting is politically impossible because people can’t handle all this bad news.

If I am nuts, critics have to demonstrate what is unsound about the argument, without resorting to the cliché that “necessity is the mother of invention” and the faith-based claims of the technological fundamentalists.

If I am not, then those Green supporters face a quandary. When mainstream Democrats tell progressive folks that the Green New Deal is doomed to fail because it is not politically viable at this moment, supporters counter, appropriately, by saying that anything less is inadequate in the face of the crises. Those supporters argue, appropriately, that the real failure is supporting policies that don’t do enough to create sustainable human societies and that we need to build a movement for the needed change. I agree, but by that logic, if the Green New Deal itself is inadequate to create sustainability, then we must push further.

The Green New Deal is a start, insufficiently radical but with the potential to move the conversation forward—if we can be clear about the initiative’s limitations. That presents a problem for organizers, who seek to rally support without uncomfortable caveats—“Support this plan! But remember that it’s just a start, and it gets a lot rougher up ahead, and whatever we do may not be enough to stave off unimaginable suffering” is, admittedly, not a winning slogan.

Back to what I think Klein is right about, and eloquent in expressing:

Because while it is true that climate change is a crisis produced by an excess of greenhouse gases in the atmosphere, it is also, in a more profound sense, a crisis produced by an extractive mind-set, by a way of viewing both the natural world and the majority of its inhabitants as resources to use up and then discard. I call it the “gig and dig” economy and firmly believe that we will not emerge from this crisis without a shift in worldview at every level, a transformation to an ethos of care and repair.

The domination/subordination dynamic that creates so much suffering within the human family also defines the modern world’s destructive relationship to the larger living world. Throughout the book, Klein presses the importance of telling a new story about all those relationships. Scientific data and policy proposals matter, but they don’t get us far without a story for people to embrace. Klein is right, and On Fire helps us imagine a new story for a human future.

I offer a friendly amendment to the story she is constructing: Our challenge is to highlight not only what we can but also what we cannot accomplish, to build our moral capacity to face a frightening future but continue to fight for what can be achieved, even when we know that won’t be enough.

One story I would tell is of the growing gatherings of people, admittedly small in number today, who take comfort in saying forthrightly what they believe, no matter how painful—people who do not want to suppress their grief, yet do not let their grief overwhelm them.

What kind of person wants to live like that? I can offer a real-life example, my late friend Jim Koplin. He once told me, in a conversation about those multiple, cascading ecological crises (a term I stole from him, with his blessing), “I wake up every morning in a state of profound grief.” He was neither depressed nor irrational but simply honest. Jim, a Depression-era farm boy who had been permanently radicalized in the 1960s, felt that grief more deeply than anyone I have known, yet every day he got up to work in his garden and then offer his time and energy to a variety of political, community, and arts groups that were fighting for a better world.

Klein speaks of this grief in On Fire, in what for me were the most moving passages, often involving her young son’s future in the face of this “planetary death spiral”:

There is no question that the strongest emotions I have about the climate crisis have to do with [Toma] and his generation—the tremendous intergenerational theft under way. I have flashes of sheer panic about the extreme weather we have already locked in for these kids. Even more intense than this fear is the sadness about what they won’t ever know. They are growing up in a mass extinction, robbed of the cacophonous company of so many fast-disappearing life forms. It feels so desperately lonely.

The escape from loneliness, for me, starts with recognizing that Jim’s “state of profound grief” was not only wholly rational but also emotionally healthy. When told that even if this harsh assessment is correct, people can’t handle it, I agree. No one can handle all this. Jim couldn’t handle it every waking minute. I don’t handle it as well as he did. At best, we struggle to come to terms with a “bleak and austere” future.

But that’s exactly why we need to engage rather than avoid the distressing realities of our time. If we are afraid to speak honestly, we suffer alone. Better that we tell the truth and accept the consequences, together.





Peak Copper is coming….

26 08 2019

Elon Musk told a closed-door Washington conference of miners, regulators and lawmakers that he sees a shortage of EV minerals coming, including copper and nickel (Scheyder 2019).   Other rare metals used in cars include neodymium, lanthanum, terbium, and dysprosium (Gorman 2009).

Alice Friedemann   www.energyskeptic.com  author of “When Trucks Stop Running: Energy and the Future of Transportation”, 2015, Springer and “Crunch! Whole Grain Artisan Chips and Crackers”. Podcasts: Derrick JensenPractical PreppingKunstlerCast 253KunstlerCast278Peak Prosperity , XX2 report

***

Richard A. Kerr. February 14, 2014. The Coming Copper Peak.  Science 343:722-724.

Production of the vital metal will top out and decline within decades, according to a new model that may hold lessons for other resources.

If you take social unrest and environmental factors into account, the peak could be as early as the 2020s

As a crude way of taking account of social and environmental constraints on production, Northey and colleagues reduced the amount of copper available for extraction in their model by 50%. Then the peak that came in the late 2030s falls to the early 2020s, just a decade away.

After peak Copper

Whenever it comes, the copper peak will bring change.  Graedel and his Yale colleagues reported in a paper published on 2 December 2013 in the Proceedings of the National Academy of Sciences that copper is one of four metals—chromium, manganese, and lead being the others—for which “no good substitutes are presently available for their major uses.”

If electrons are the lifeblood of a modern economy, copper makes up its blood vessels. In cables, wires, and contacts, copper is at the core of the electrical distribution system, from power stations to the internet. A small car has 20 kilograms (44 lbs) of copper in everything from its starter motor to the radiator; hybrid cars have twice that. But even in the face of exponentially rising consumption—reaching 17 million metric tons in 2012—miners have for 10,000 years met the world’s demand for copper.

But perhaps not for much longer. A group of resource specialists has taken the first shot at projecting how much more copper miners will wring from the planet. In their model runs, described this month in the journal Resources, Conservation and Recyclingproduction peaks by about mid-century even if copper is more abundant than most geologists believe.

Predicting when production of any natural resource will peak is fraught with uncertainty. Witness the running debate over when world oil production will peak (Science, 3 February 2012, p. 522).

The team is applying its depletion model to other mineral resources, from oil to lithium, that also face exponentially escalating demands on a depleting resource.

The world’s copper future is not as rosy as a minimum “125-year supply” might suggest, however. For one thing, any future world will have more people in it, perhaps a third more by 2050. And the hope, at least, is that a larger proportion of those people will enjoy a higher standard of living, which today means a higher consumption of copper per person. Sooner or later, world copper production will increase until demand cannot be met from much-depleted deposits. At that point, production will peak and eventually go into decline—a pattern seen in the early 1970s with U.S. oil production.

For any resource, the timing of the peak depends on a dynamic interplay of geology, economics, and technology. But resource modeler Steve Mohr of the University of Technology, Sydney (UTS), in Australia, waded in anyway. For his 2010 dissertation, he developed a mathematical model for projecting production of mineral resources, taking account of expected demand and the amount thought to be still in the ground. In concept, it is much like the Hubbert curves drawn for peak oil production, but Mohr’s model is the first to be applied to other mineral resources without the assumption that supplies are unlimited.

Exponential growth

Increasing the amount of accessible copper by 50% to account for what might yet be discovered moves the production peak back only a few years, to about 2045 — even doubling the copper pushes peak production back only to about 2050.  Quadrupling only delays peak until 2075.

Copper trouble spots

The world has been so thoroughly explored for copper that most of the big deposits have probably already been found. Although there will be plenty of discoveries, they will likely be on the small side.

“The critical issues constraining the copper industry are social, environmental, and economic,” Mudd writes in an e-mail. Any process intended to extract a kilogram of metal locked in a ton of rock buried hundreds of meters down inevitably raises issues of energy and water consumption, pollution, and local community concerns.

Civil war and instability make many large copper deposits unavailable

Mudd has a long list of copper mining trouble spots. The Reko Diq deposit in northwestern Pakistan close to both Iran and Afghanistan holds $232 billion of copper, but it is tantalizingly out of reach, with security problems and conflicts between local government and mining companies continuing to prevent developmentThe big Panguna mine in Bougainville, Papua New Guinea, has been closed for 25 years, ever since its social and environmental effects sparked a 10-year civil war that left about 20,000 dead.

Are we about to destroy the largest salmon fishery in the world for copper?

On 15 January the U.S. Environmental Protection Agency issued a study of the potential effects of the yet-to-be-proposed Pebble Mine on Bristol Bay in southwestern Alaska. Environmental groups had already targeted the project, and the study gives them plenty of new ammunition, finding that it would destroy as much as 150 kilometers of salmon-supporting streams and wipe out more than 2000 hectares of wetlands, ponds, and lakes.

Gold and Oil have already peaked

Copper is far from the only mineral resource in a race between depletion—which pushes up costs—and new technology, which can increase supply and push costs down. Gold production has been flat for the past decade despite a soaring price (Science, 2 March 2012, p. 1038). Much crystal ball–gazing has considered the fate of world oil production. “Peakists” think the world may be at or near the peak now, pointing to the long run of $100-a-barrel oil as evidence that the squeeze is already on.

Coal likely to peak in 2034, all fossil fuels by 2030, according to Mohr’s model

Fridley, Heinberg, Patzek, and other scientists believe Peak Coal is already here or likely by 2020.

Coal will begin to falter soon after, his model suggests, with production most likely peaking in 2034. The production of all fossil fuels, the bottom line of his dissertation, will peak by 2030, according to Mohr’s best estimate. Only lithium, the essential element of electric and hybrid vehicle batteries, looks to offer a sufficient supply through this century. So keep an eye on oil and gold the next few years; copper may peak close behind.

References

Gorman, S. August 30, 2009. As hybrid cars gobble rare metals, shortage looms. Reuters.

Scheyder, E. 2019. Exclusive: Tesla expects global shortage of electric vehicle battery minerals. Reuters.





Jevons Paradox strikes again….

6 08 2019

Automated vehicles: more driving, energy wasted, & congestion

Posted on August 1, 2019 by energyskeptic

Preface. There’s no need to actually worry about how automated vehicles will be used and their potential congestion, energy use, and whether there are enough rare earth minerals to make them possible, because they simply can never be fully automated, as explained in this post, with articles from Science, Scientific American, and the New York Times: “Why self-driving cars may not be in your future“.

There are two articles summarized below.

Alice Friedemann   www.energyskeptic.com  author of “When Trucks Stop Running: Energy and the Future of Transportation”, 2015, Springer and “Crunch! Whole Grain Artisan Chips and Crackers”. Podcasts: Practical PreppingKunstlerCast 253KunstlerCast278Peak Prosperity , XX2 report ]

***

Taiebat, M., et al. 2019. Forecasting the Impact of Connected and Automated Vehicles on Energy Use: A Microeconomic Study of Induced Travel and Energy Rebound. Applied Energy247: 297

The benefits of self-driving cars will likely induce vehicle owners to drive more, and those extra miles could partially or completely offset the potential energy-saving benefits that automation may provide, according to a new University of Michigan study.

Greater fuel efficiency induces some people to travel extra miles, and those added miles can partially offset fuel savings. It’s a behavioral change known as the rebound effect. In addition, the ability to use in-vehicle time productively in a self-driving car — people can work, sleep, watch a movie, read a book — will likely induce even more travel.

Taken together, those two sources of added mileage could partially or completely offset the energy savings provided by autonomous vehicles. In fact, the added miles could even result in a net increase in energy consumption, a phenomenon known as backfire.

Traditionally, time spent driving has been viewed as a cost to the driver. But the ability to pursue other activities in an autonomous vehicle is expected to lower this “perceived travel time cost” considerably, which will likely spur additional travel.

The U-M researchers estimated that the induced travel resulting from a 38% reduction in perceived travel time cost would completely eliminate the fuel savings associated with self-driving cars.

“Backfire — a net rise in energy consumption — is a distinct possibility.

Mervis, J. December 15, 2017. Not so fast. We can’t even agree on what autonomous, much less how they will affect our lives. Science.

Joan Walker, a transportation engineer at UC Berkeley, designed a clever experiment. Using an automated vehicle (AV) is like having your own chauffeur. So she gave 13 car owners in the San Francisco Bay area the use of a chauffeur-driven car for up to 60 hours over 1 week, and then tracked their travel habits.  There were 4 millennials, 4 families, and 5 retirees.

The driver was free.  The study looked at how they drove their own cars for a week, and how that changed when they had a driver.

They could send the car on ghost trips (errands), such as picking up their children from school, and they didn’t have to worry about driving or parking.

The results suggest that a world with AVs will have more traffic:

  1. the 13 subjects logged 76% more miles
  2. 22% were ghost errand trips
  3. There was a 94% increase in the number of trips over 20 miles and an 80% increase after 6 PM, with retirees increasing the most.
  4. During the chauffeur week, there was no biking, mass transit, or use of ride services like Uber and Lyft.

Three-fourths of the supposedly car-shunning millennials clocked more miles. In contrast to conventional wisdom that older people would be slower to embrace the new technology, Walker says, “The retirees were really excited about AVs. They see their declining mobility and they are like, ‘I want this to be available now.’”

Due to the small sample size she will repeat this experiment on a larger scale next summer.





Changing course

3 08 2019

I’m a great fan of Jack Alpert’s, having published his videos here before……

However, I’m less than optimistic about this scheme of his, because it’s been shown people are not swayed by facts.… After all, I’ve been trying unsuccessfully for years..!





Rethinking Renewable Mandates

1 08 2019

Posted on July 31, 2019, another terrific post by Gail Tverberg

Powering the world’s economy with wind, water and solar, and perhaps a little wood sounds like a good idea until a person looks at the details. The economy can use small amounts of wind, water and solar, but adding these types of energy in large quantities is not necessarily beneficial to the system.

While a change to renewables may, in theory, help save world ecosystems, it will also tend to make the electric grid increasingly unstable. To prevent grid failure, electrical systems will need to pay substantial subsidies to fossil fuel and nuclear electricity providers that can offer backup generation when intermittent generation is not available. Modelers have tended to overlook these difficulties. As a result, the models they provide offer an unrealistically favorable view of the benefit (energy payback) of wind and solar.

If the approach of mandating wind, water, and solar were carried far enough, it might have the unfortunate effect of saving the world’s ecosystem by wiping out most of the people living within the ecosystem. It is almost certain that this was not the intended impact when legislators initially passed the mandates.

[1] History suggests that in the past, wind and water never provided a very large percentage of total energy supply.

Figure 1. Annual energy consumption per person (megajoules) in England and Wales 1561-70 to 1850-9 and in Italy 1861-70. Figure by Tony Wrigley, Cambridge University.

Figure 1 shows that before and during the Industrial Revolution, wind and water energy provided 1% to 3% of total energy consumption.

For an energy source to work well, it needs to be able to produce an adequate “return” for the effort that is put into gathering it and putting it to use. Wind and water seemed to produce an adequate return for a few specialized tasks that could be done intermittently and that didn’t require heat energy.

When I visited Holland a few years ago, I saw windmills from the 17th and 18th centuries. These windmills pumped water out of low areas in Holland, when needed. A family would live inside each windmill. The family would regulate the level of pumping desired by adding or removing cloths over the blades of the windmill. To earn much of their income, they would also till a nearby plot of land.

This overall arrangement seems to have provided adequate income for the family. We might conclude, from the inability of wind and water energy to spread farther than 1% -3% of total energy consumption, that the energy return from the windmills was not very high. It was adequate for the arrangement I described, but it didn’t provide enough extra energy to encourage greatly expanded use of the devices.

[2] At the time of the Industrial Revolution, coal worked vastly better for most tasks of the economy than did wind or water.

Economic historian Tony Wrigley, in his book Energy and the English Industrial Revolution, discusses the differences between an organic economy (one whose energy sources are human labor, energy from draft animals such as oxen and horses, and wind and water energy) and an energy-rich economy (one that also has the benefit of coal and perhaps other energy sources). Wrigley notes the following benefits of a coal-based energy-rich economy during the period shown in Figure 1:

  • Deforestation could be reduced. Before coal was added, there was huge demand for wood for heating homes and businesses, cooking food, and for making charcoal, with which metals could be smelted. When coal became available, it was inexpensive enough that it reduced the use of wood, benefiting the environment.
  • The quantity of metals and tools was greatly increased using coal. As long as the source of heat for making metals was charcoal from trees, the total quantity of metals that could be produced was capped at a very low level.
  • Roads to mines were greatly improved, to accommodate coal movement. These better roads benefitted the rest of the economy as well.
  • Farming became a much more productive endeavor. The crop yield from cereal crops, net of the amount fed to draft animals, nearly tripled between 1600 and 1800.
  • The Malthusian limit on population could be avoided. England’s population grew from 4.2 million to 16.7 million between 1600 and 1850. Without the addition of coal to make the economy energy-rich, the population would have been capped by the low food output from the organic economy.

[3] Today’s wind, water, and solar are not part of what Wrigley called the organic economy. Instead, they are utterly dependent on the fossil fuel system.

The name renewables reflects the fact that wind turbines, solar panels, and hydroelectric dams do not burn fossil fuels in their capture of energy from the environment.

Modern hydroelectric dams are constructed with concrete and steel. They are built and repaired using fossil fuels. Wind turbines and solar panels use somewhat different materials, but these too are available only thanks to the use of fossil fuels. If we have difficulty with the fossil fuel system, we will not be able to maintain and repair any of these devices or the electricity transmission system used for distributing the energy that they capture.

[4] With the 7.7 billion people in the world today, adequate energy supplies are an absolute requirement if we do not want population to fall to a very low level. 

There is a myth that the world can get along without fossil fuels. Wrigley writes that in a purely organic economy, the vast majority of roads were deeply rutted dirt roads that could not be traversed by wheeled vehicles. This made overland transport very difficult. Canals were used to provide water transport at that time, but we have virtually no canals available today that would serve the same purpose.

It is true that buildings for homes and businesses can be built with wood, but such buildings tend to burn down frequently. Buildings of stone or brick can also be used. But with only the use of human and animal labor, and having few roads that would accommodate wheeled carts, brick or stone homes tend to be very labor-intensive. So, except for the very wealthy, most homes will be made of wood or of other locally available materials such as sod.

Wrigley’s analysis shows that before coal was added to the economy, human labor productivity was very low. If, today, we were to try to operate the world economy using only human labor, draft animals, and wind and water energy, we likely could not grow food for very many people. World population in 1650 was only about 550 million, or about 7% of today’s population. It would not be possible to provide for the basic needs of today’s population with an organic economy as described by Wrigley.

(Note that organic here has a different meaning than in “organic agriculture.” Today’s organic agriculture is also powered by fossil fuel energy. Organic agriculture brings soil amendments by truck, irrigates land and makes “organic sprays” for fruit, all using fossil fuels.)

[5] Wind, water and solar only provided about 11% of the world’s total energy consumption for the year 2018. Trying to ramp up the 11% production to come anywhere close to 100% of total energy consumption seems like an impossible task.

Figure 2. World Energy Consumption by Fuel, based on data of 2019 BP Statistical Review of World Energy.

Let’s look at what it would take to ramp up the current renewables percentage from 11% to 100%. The average growth rate over the past five years of the combined group that might be considered renewable (Hydro + Biomass etc + Wind&Solar) has been 5.8%. Maintaining such a high growth rate in the future is likely to be difficult because new locations for hydroelectric dams are hard to find and because biomass supply is limited. Let’s suppose that despite these difficulties, this 5.8% growth rate can be maintained going forward.

To increase the quantity from 2018’s low level of renewable supply to the 2018 total energy supply at a 5.8% growth rate would take 39 years. If population grows between 2018 and 2057, even more energy supply would likely be required. Based on this analysis, increasing the use of renewables from a 11% base to close to a 100% level does not look like an approach that has any reasonable chance of fixing our energy problems in a timeframe shorter than “generations.”

The situation is not quite as bad if we look at the task of producing an amount of electricity equal to the world’s current total electricity generation with renewables (Hydro + Biomass etc + Wind&Solar); renewables in this case provided 26% of the world’s electricity supply in 2018.

Figure 3. World electricity production by type, based on data from 2019 BP Statistical Review of World Energy.

The catch with replacing electricity (Figure 3) but not energy supplies is the fact that electricity is only a portion of the world’s energy supply. Different calculations give different percentages, with electricity varying between 19% to 43% of total energy consumption.1 Either way, substituting wind, water and solar in electricity production alone does not seem to be sufficient to make the desired reduction in carbon emissions.

[6] A major drawback of wind and solar energy is its variability from hour-to-hour, day-to-day, and season-to-season. Water energy has season-to-season variability as well, with spring or wet seasons providing the most electricity.

Back when modelers first looked at the variability of electricity produced by wind, solar and water, they hoped that as an increasing quantity of these electricity sources were added, the variability would tend to offset. This happens a little, but not nearly as much as one would like. Instead, the variability becomes an increasing problem as more is added to the electric grid.

When an area first adds a small percentage of wind and/or solar electricity to the electric grid (perhaps 10%), the electrical system’s usual operating reserves are able to handle the variability. These were put in place to handle small fluctuations in supply or demand, such as a major coal plant needing to be taken off line for repairs, or a major industrial client reducing its demand.

But once the quantity of wind and/or solar increases materially, different strategies are needed. At times, production of wind and/or solar may need to be curtailed, to prevent overburdening the electric grid. Batteries are likely to be needed to help ease the abrupt transition that occurs when the sun goes down at the end of the day while electricity demand is still high. These same batteries can also help ease abrupt transitions in wind supply during wind storms.

Apart from brief intermittencies, there is an even more serious problem with seasonal fluctuations in supply that do not match up with seasonal fluctuations in demand. For example, in winter, electricity from solar panels is likely to be low. This may not be a problem in a warm country, but if a country is cold and using electricity for heat, it could be a major issue.

The only real way of handling seasonal intermittencies is by having fossil fuel or nuclear plants available for backup. (Battery backup does not seem to be feasible for such huge quantities for such long periods.) These back-up plants cannot sit idle all year to provide these services. They need trained staff who are willing and able to work all year. Unfortunately, the pricing system does not provide enough funds to adequately compensate these backup systems for those times when their services are not specifically required by the grid. Somehow, they need to be paid for the service of standing by, to offset the inevitable seasonal variability of wind, solar and water.

[7] The pricing system for electricity tends to produce rates that are too low for those electricity providers offering backup services to the electric grid.

As a little background, the economy is a self-organizing system that operates through the laws of physics. Under normal conditions (without mandates or subsidies) it sends signals through prices and profitability regarding which types of energy supply will “work” in the economy and which kinds will simply produce too much distortion or create problems for the system.

If legislators mandate that intermittent wind and solar will be allowed to “go first,” this mandate is by itself a substantial subsidy. Allowing wind and solar to go first tends to send prices too low for other producers because it tends to reduce prices below what those producers with high fixed costs require.2

If energy officials decide to add wind and solar to the electric grid when the grid does not really need these supplies, this action will also tend to push other suppliers off the grid through low rates. Nuclear power plants, which have already been built and are adding zero CO2 to the atmosphere, are particularly at risk because of the low rates. The Ohio legislature recently passed a $1.1 billion bailout for two nuclear power plants because of this issue.

If a mandate produces a market distortion, it is quite possible (in fact, likely) that the distortion will get worse and worse, as more wind and solar is added to the grid. With more mandated (inefficient) electricity, customers will find themselves needing to subsidize essentially all electricity providers if they want to continue to have electricity.

The physics-based economic system without mandates and subsidies provides incentives to efficient electricity providers and disincentives to inefficient electricity suppliers. But once legislators start tinkering with the system, they are likely to find a system dominated by very inefficient production. As the costs of handling intermittency explode and the pricing system gets increasingly distorted, customers are likely to become more and more unhappy.

[8] Modelers of how the system might work did not understand how a system with significant wind and solar would work. Instead, they modeled the most benign initial situation, in which the operating reserves would handle variability, and curtailment of supply would not be an issue. 

Various modelers attempted to figure out whether the return from wind and solar would be adequate, to justify all of the costs of supporting it. Their models were very simple: Energy Out compared to Energy In, over the lifetime of a device. Or, they would calculate Energy Payback Periods. But the situation they modeled did not correspond well to the real world. They tended to model a situation that was close to the best possible situation, one in which variability, batteries and backup electricity providers were not considerations. Thus, these models tended to give a far too optimistic estimates of the expected benefit of intermittent wind and solar devices.

Furthermore, another type of model, the Levelized Cost of Electricity model, also provides distorted results because it does not consider the subsidies needed for backup providers if the system is to work. The modelers likely also leave out the need for backup batteries.

In the engineering world, I am told that computer models of expected costs and income are not considered to be nearly enough. Real-world tests of proposed new designs are first tested on a small scale and then at progressively larger scales, to see whether they will work in practice. The idea of pushing “renewables” sounded so good that no one thought about the idea of testing the plan before it was put into practice.

Unfortunately, the real-world tests that Germany and other countries have tried have shown that intermittent renewables are a very expensive way to produce electricity when all costs are considered. Neighboring countries become unhappy when excess electricity is simply dumped on the grid. Total CO2 emissions don’t necessarily go down either.

[9] Long distance transmission lines are part of the problem, not part of the solution. 

Early models suggested that long-distance transmission lines might be used to smooth out variability, but this has not worked well in practice. This happens partly because wind conditions tend to be similar over wide areas, and partly because a broad East-West mixture is needed to even-out the rapid ramp-down problem in the evening, when families are still cooking dinner and the sun goes down.

Also, long distance transmission lines tend to take many years to permit and install, partly because many landowners do not want them crossing their property. In some cases, the lines need to be buried underground. Reports indicate that an underground 230 kV line costs 10 to 15 times what a comparable overhead line costs. The life expectancy of underground cables seems to be shorter, as well.

Once long-distance transmission lines are in place, maintenance is very fossil fuel dependent. If storms are in the area, repairs are often needed. If roads are not available in the area, helicopters may need to be used to help make the repairs.

An issue that most people are not aware of is the fact that above ground long-distance transmission lines often cause fires, especially when they pass through hot, dry areas. The Northern California utility PG&E filed for bankruptcy because of fires caused by its transmission lines. Furthermore, at least one of Venezuela’s major outages seems to have been related to sparks from transmission lines from its largest hydroelectric plant causing fires. These fire costs should also be part of any analysis of whether a transition to renewables makes sense, either in terms of cost or of energy returns.

[10] If wind turbines and solar panels are truly providing a major net benefit to the economy, they should not need subsidies, even the subsidy of going first.

To make wind and solar electricity producers able to compete with other electricity providers without the subsidy of going first, these providers need a substantial amount of battery backup. For example, wind turbines and solar panels might be required to provide enough backup batteries (perhaps 8 to 12 hours’ worth) so that they can compete with other grid members, without the subsidy of going first. If it really makes sense to use such intermittent energy, these providers should be able to still make a profit even with battery usage. They should also be able to pay taxes on the income they receive, to pay for the government services that they are receiving and hopefully pay some extra taxes to help out the rest of the system.

In Item [2] above, I mentioned that when coal mines were added in England, roads to the mines were substantially improved, befitting the economy as a whole. A true source of energy (one whose investment cost is not too high relative to it output) is supposed to be generating “surplus energy” that assists the economy as a whole. We can observe an impact of this type in the improved roads that benefited England’s economy as a whole. Any so-called energy provider that cannot even pay its own fair share of taxes acts more like a leech, sucking energy and resources from others, than a provider of surplus energy to the rest of the economy.

Recommendations

In my opinion, it is time to eliminate renewable energy mandates. There will be some instances where renewable energy will make sense, but this will be obvious to everyone involved. For example, an island with its electricity generation from oil may want to use some wind or solar generation to try to reduce its total costs. This cost saving occurs because of the high price of oil as fuel to make electricity.

Regulators, in locations where substantial wind and/or solar has already been installed, need to be aware of the likely need to provide subsidies to backup providers, in order to keep the electrical system operating. Otherwise, the grid will likely fail from lack of adequate backup electricity supply.

Intermittent electricity, because of its tendency to drive other providers to bankruptcy, will tend to make the grid fail more quickly than it would otherwise. The big danger ahead seems to be bankruptcy of electricity providers and of fossil fuel producers, rather than running out of a fuel such as oil or natural gas. For this reason, I see little reason for the belief by many that electricity will “last longer” than oil. It is a question of which group is most affected by bankruptcies first.

I do not see any real reason to use subsidies to encourage the use of electric cars. The problem we have today with oil prices is that they are too low for oil producers. If we want to keep oil production from collapsing, we need to keep oil demand up. We do this by encouraging the production of cars that are as inexpensive as possible. Generally, this will mean producing cars that operate using petroleum products.

(I recognize that my view is the opposite one from what many Peak Oilers have. But I see the limit ahead as being one of too low prices for producers, rather than too high prices for consumers. The CO2 issue tends to disappear as parts of the system collapse.)

Notes:

[1] BP bases its count on the equivalent fossil fuel energy needed to create the electricity; IEA counts the heat energy of the resulting electrical output. Using BP’s way of counting electricity, electricity worldwide amounts to 43% of total energy consumption. Using the International Energy Agency’s approach to counting electricity, electricity worldwide amounts to only about 19% of world energy consumption.

[2] In some locations, “utility pricing” is used. In these cases, pricing is set in a way needed to provide a fair return to all providers. With utility pricing, intermittent renewables would not be expected to cause low prices for backup producers.





Germany’s renewable energy program, Energiewende, is a big, expensive failure

21 07 2019

Another post about why renewables cannot keep complex civilisation running. Analyses like these are coming thick and fast these days, this one from Alice’s great blog……. you may also want to read a previous post here about The Lesson from Energiewend is that Germany consumes too much energy…….

After reading this post, or better yet the original 44-page document, you’ll understand why the Green New Deal is a bad idea.  This is a cautionary tale worth paying attention to.

The goal of Energiewende was to make Germany independent of fossil fuels.  But it hasn’t worked out.  The 29,000 wind turbines and 1.6 million PV systems provide only 3.1% of Germany’s energy needs and have cost well over 100 billion Euros so far and likely another 450 billion Euros over the next two decades.  And much more than that when you add in the extra cost of maintaining fossil generation systems to back up the lack of wind and sunshine from seconds to weeks.

Because of their extremely low energy density and need for a great deal of space, forests are being cut down, pits dug, and filled with hundreds of tons of reinforced concrete for wind turbines to stand on, 5 acres per turbine. With the forest no longer protecting the soil, it is now vulnerable to wind and rain erosion.

Because wind and solar farms get a guaranteed price for 20 years, they have no need to innovate, do research, or please customers, who paid them 176 billion euros for electricity with a market value of just 5 billion euros from 2000-2016.  This is money that taxpayers could have used to build bridges, energy efficient buildings, or renovate schools, which would create even more jobs than the wind and solar industry claims so they can tout themselves as good for society, perhaps they aren’t so great when you look at other ways and jobs that could have been created with all the subsidies (Vernunftkraft 2018).

Germany’s electricity rates have skyrocketed to the highest levels in the EU because of the Energiewende debacle.

Other news about Energiewende:

  • Germany’s Federal Audit Office has accused the federal government of having largely failed to manage the transformation of Germany’s energy systems (Energiewende  program), and will miss its targets for reducing greenhouse gas emissions, energy consumption and the share of renewable energy in transport.
  • At the same time, policy makers had burdened the nation with enormous costs. The audit further concluded that the program is a monumental bureaucratic nightmare.
  • The build-up of renewables benefited from more than $800 billion in subsidies. 
  • The country has not just been burning coal; it has been burning lignite, one of the dirtiest fuels on the planet. In fact, in 2016, seven of the 10 worst polluting facilities in Europe were German lignite plants.
  • When it’s windy and bright, the grid is so flooded with power that prices in the wholesale market sometimes drop below zero.
  • Transport consumes 30 percent and mining & manufacturing 29% of Germany’s power, but for each, only 4 percent of its energy comes from renewables. Households use 26% of power, but only 13% of it comes from renewables, and Trade, commerce and services 15% but just 7% renewables.  
  • Germany’s carbon emissions have stagnated at roughly their 2009 level. The country remains Europe’s largest producer and burner of coal, which generates more than one-third of Germany’s power supply. Moreover, emissions in the transportation sector have shot up by 20 percent since 1995 and are rising with no end in sight

Alice Friedemann   www.energyskeptic.com  author of “When Trucks Stop Running: Energy and the Future of Transportation”, 2015, Springer and “Crunch! Whole Grain Artisan Chips and Crackers”. Podcasts: Practical PreppingKunstlerCast 253KunstlerCast278Peak Prosperity , XX2 report

***

Vernunftkraft. 2018. Germanys Energiewende – where we really stand.  Bundesinitiative für vernünftige Energiepolitik, Vernunftkraft.

The Energiewende has the goal of making Germany independent of fossil fuels in the long term. Coal, oil and gas were to be phased out, allowing drastic reductions in carbon dioxide emissions. However, these goals have not even begun to be achieved.

The idea of meeting our country’s energy needs with wind power and solar energy has proven to be an illusion. At present, around 29,000 wind turbines and 1.6 million photovoltaic systems together account for just 3.1 % of our energy requirements.   There were hardly any successes in the heating/cooling and transport sectors.

Well over a hundred billion euros have been spent on the expansion of solar and wind energy over the same period. The financial obligations undertaken in the process will continue to burden taxpayers for another two decades and will end up costing German consumers a total sum of around 550 billion euros.

To compensate for the lack of reliability of wind and sun and to be able to actually replace conventional power generation, gigantic amounts of electricity storage would be required. The replacement of controllable power generation with a fluctuating power supply is impossible without storage and unaffordable with it.

A reliable supply of electricity around the clock is taken for granted by citizens of the Federal Republic of Germany. But only those who have taken a closer look will appreciate the importance of a reliable power supply for our highly complex, high-tech society. It is not just about comfort and convenience. It is not only a matter of maintaining an essential input for important manufacturing processes; it is about nothing less than the functioning of civilized community life.

A fundamental characteristic of electrical current must be taken into account when answering this question: it must be produced, to the millisecond, at the moment of consumption, giving an exact balance between power supply and demand. Stable power grids are based on this principle.

At the end of September 2017, more than 27,000 wind turbines with a rated output of 53,374 MW were installed in Germany. Nominal power is defined as the highest power that can be provided permanently under optimum operating conditions (strong to stormy wind conditions). In Figure 2, the dark blue areas represent the delivered power from the German wind turbine fleet during September 2017. A total of 6,380 GWh (1 GWh = 1 million kWh) was sent to the grid, corresponding to just 16.6 % of what was theoretically possible.  

For approximately half of September 2017, the power delivered by the wind fleet was less than 10 % of the nominal capacity. Values above 50 % were reached only 5.3 % of the time, in essence only on 8 and 13–15 September.

Electricity consumption in September 2017 was 39,000 GWh. Wind turbines delivered for 6400 GWh of this and PV systems another 3100 GWh. The minimum power input by all of the PV and wind energy systems was below 0.6 GW, representing less than 1% of the installed capacity of 96 GW.

Since wind and solar are often absent, conventional power plants are needed to ensure grid stability at all times – often over long periods.  Consumers pay for the costs of maintaining two parallel generation systems.

There is no discernable smoothing effect from the size and geographical spread of the wind fleet: the argument that the wind is always blowing somewhere is not true. Even a Europe-wide wind power expansion in conjunction with a perfectly developed electricity grid would not solve the problem of the fluctuating wind energy generation. It is quite possible for there to be no wind anywhere in Europe.

Anyone who studies the feed-in characteristics of electricity generation from wind power and PV systems thoroughly must realize that sun and wind usually supply either far too little or far too much – and that one cannot rely on anything but chance.

Despite the increased capacity and the increasing peaks, the guaranteed output of all 27,000 wind turbines and the 400 million m² of PV systems remains close to zero because of their weather-dependency. This is a particular problem in the winter months, when electricity consumption is high.

Even the ‘dumping’ of electricity abroad to reduce the surplus energy will become increasingly difficult, since neighboring countries are closing themselves off with electricity barriers in order to protect their own grids.

There is no sunshine at night and electricity cannot be stored in bags

The wind energy statistics reveal the absurdity of wanting to tackle the problem of intermittency through construction of additional power lines and extensive wind power expansion.

So even with a European electricity grid based on wind turbines, a 100 % replacement system would always have to be available to ensure the security of electricity supply.

With PV systems, the lack any smoothing of electricity over the diurnal and seasonal cycles is even more evident. It is obvious that the generation peaks in Germany occur at the same time as the peaks in the other European countries. This is due to the size of the low pressure areas, which results in a positive correlation of wind power generation levels across the continent: if too much electricity is produced in Germany, most of our neighbors will be over-producing too. This calls into question the sense of network expansion a priori.

German energy consumption is particularly high in the winter months, especially during inversion weather conditions, when PV systems barely supply any electricity due to clouds and wind turbines are usually at a standstill. The weather-dependency of electricity generation would thus have direct and fatal effects on the transport sector. It would not be possible to heat electrically either. In other words, renewable energy can’t keep transportation or heating going.

Climate protection: a bad joke with deadly undertones

No discussion about the construction of wind turbines and no energy policy document of the last federal government can avoid the suggestion that the Energiewende might help avert the dangers of climate change. This is why the last German government continually described the EEG as a central instrument of climate protection. The thesis – often presented in a shrill, moralizing tone – is that the expansion of ‘renewable energies’ is a human obligation in view of the impending global warming apocalypse. Particularly perfidious forms of this thesis even suggest that not expanding wind power plants in Germany would mean that we would soon be dealing with ‘billions of climate refugees’.

At least one hectare of forest is cleared per wind turbine and is thus permanently destroyed. Afforestation elsewhere cannot make up for this, since old trees are in every respect much more valuable than new plantations. The negative effects of global warming predicted for Germany are more frequent floods and droughts, but forest is the best form of protection against soil erosion, cleaning soil and storing water.

Whether it is forest destruction, cultivation of maize for biogas plants, the destruction of habitats or the direct killing of birds and bats – the massive expansion of ‘renewable energies’ has appalling consequences, the result of their low energy density and the resulting requirement for vast areas of land.

Besides intermittency, the core problem of wind and solar energy is that it is generated in a very diffuse form. Anyone who has ridden a bike against the wind will understand: a headwind of 3m/s makes clothes flutter a little, but hardly makes it difficult to pedal. Water, on the other hand, flowing towards us at the same speed, will wash us away. This is because the power of water is comparatively concentrated, while the power of the wind is much more diffuse. In the case of hydropower, ‘collecting from the surface’ is done by a wide system of ditches, brooks, rivers and streams. If you want to ‘capture’ the power of the wind, you have to do the tedious work of concentrating the energy yourself – requiring a multitude of collection stations and power lines to connect them. Instead of ditches, streams, and rivers wind power required 200-m-high industrial installations, pylons and wires. Inevitably, natural areas become industrialized and opportunities for retreat in nature are gradually destroyed.

A few years ago, a wind turbine invasion of the many forests that have been managed for decades in accordance with the principle of sustainability was still unimaginable. But huge pits are now being dug and filled with thousands of tons of reinforced concrete, with considerable effects on the ecosystem. The effects on wildlife, soils and water as well as on the aesthetics and natural harmony of hilltop landscapes are catastrophic.

The direct cost drivers of electricity prices are the feed-in tariffs set out in the legislation: operators of wind farms, PV and biomass plants will receive a guaranteed price per kilowatt hour, fixed for 20 years after commissioning. This is set at a level that is many times higher than the market price. The difference is passed on to (almost) all consumers via the electricity price. In addition, producers are guaranteed to be able to sell electricity into the grid at that price, regardless of whether there is a need for it or not.

In the period 2000–2016, 176 billion euros were paid by electricity consumers to renewables companies, for electricity with a market value of just 5 billion euros.

What else could have been done with this money?  This is known in economic terms as the ‘opportunity cost’.  For example, the St Gotthard tunnel opened in 2016 at a cost of 3.4 billion euros; the Hamburg Elbe Philharmonic Hall cost 0.8 billion euros. The refurbishment needs of all German schools are estimated to total just 34 billion euros.

The fact that electricity from wind and sun is randomly produced puts the power supply system under considerable and increasing stress. The task of transmission system operators to maintain a constant 50Hz alternating voltage becomes more difficult with each additional weather-dependent and privileged feeding system. In order to cope with increasing volatility, the generation output must be repeatedly intervened in order to protect line sections from overload.

If a bottleneck threatens at a certain point in the grid, power plants on this side of the bottleneck are instructed to reduce their feed-in, while plants beyond the bottleneck must increase their output. The need for re-dispatching  will continue to increase.  Together with the expansion of wind power, the costs of these re-dispatching measures rose continuously. By 2015, grid operators had to spend a billion euros to protect the power grid from the blackout. Since this billion did not ‘fall from the sky’, the unreliability of EEG electricity is reflected in higher electricity prices.

But that’s not all: In order to protect themselves from unwanted erratic electricity inflows and to prevent their grids from being endangered, our neighbors in the Czech Republic and Poland were forced to install phase shifters, i.e. to erect ‘electrical current barriers’. The costs of these self-defense measures are also borne by German consumers.

The ‘energy revolution’ is often referred to as a modernization and innovation program. Germany will become a global leader in technology development, is the slogan. In green-inspired literature, ‘wind and solar’ should be celebrated as the ‘winners’. However, the real world is only partially impressed by this case: those technologies that prove to be economic will win, not those that bureaucrats and officials favor. Long-term economic gains can only be made through competition. However, with renewables, the competitive mechanism is switched off: prices and quantities are determined in a political process, the outcome of which is ultimately determined by the producers of renewable energy themselves.

If post-war governments had adopted the same approach for the automobile industry, it might have demanded that by the year 2000 every German must have a car. The Volkswagen Beetle – at the time, one of the most technically advanced cars in the world – would have been declared an industry standard and a purchase price that would deliver `cars for all’ would have been determined in a biennial consultation process between government and manufacturers. As a result, we would still have vehicles of the technical standard of the VW Beetle, innovation would be irrelevant, and the German industry would never have achieved its position of global leadership.

The plight of the German photovoltaic industry, which rapidly lost international market share and had to cope with many insolvencies, is an example of this. The availability of easy money – subsidies – was the main rea son for the sector’s loss of competitiveness.  It is a harbinger of what can be expected in other artificially nurtured segments of the renewables sector.

Subsidies, however, take away their incentive to innovate. German PV companies invested only 2–3 % of their sales in research and development. In the highly competitive automobile industry, the equivalent figure is 6%; in the pharmaceutical industry it is even higher, at around 9 %. Subsidies make businesses sluggish.

Green jobs? On large posters and in advertisements in autumn 2015, the Energiewende congratulated itself for the creation of ‘230,000 sustainable jobs’. This myth of a ‘job creating’ energy transition is regularly disseminated. Of course, the energy transition is shifting purchasing power from traditional consumer and capital goods industries to industries that produce wind turbines, solar panels and other equipment. This shift generates gross jobs in the those sectors: wind turbines, solar parks and biogas plants must be built. The components have to be produced, delivered and assembled; the finished systems have to be maintained. The investments require financing and credit agreements. This creates employment in banks and law firms. Subsidies must be regulated and monitored, which leads to even employment in the bureaucracy and, once again, lawyers’ offices.  

It should also be noted that were the money not spent on ‘renewable energies’, investments could have been made in other areas that would also have created employment. If, for example, the 178 billion euros mentioned above had been used to renovate schools, the order books of countless businesses would have remained full for many years to come.

If one wants to focus not only on short-term economic effects, but also on long-term growth, one has to ask not only about the scope, but also about the type of investments made. Otherwise you run the risk of losing to ‘Broken Window’ fallacy. According to this, a large stone would have to be thrown through the nearest window as powerfully as possible as an immediate measure of economic policy. This would ultimately give the glazier a large order and thus income, of which he would spend a portion on the confectioner, for example, and thus generate income again. An income that he in turn would spend partly on the butcher, resulting in a virtuous circle that would ultimately benefit everyone and increase national wealth…

Anyone who produces electricity will be remunerated at a guaranteed rate far above the market price for a period of 20 years. EEG beneficiaries do not need to worry about the needs of customers, the offerings of competitors, technical progress or other such ‘banalities’. The search for profitable locations is made easier for wind power producers insofar as the fixed prices per kWh are in essence higher at ‘bad’ locations than at ‘good’ ones. This principle – of incentivizing the use of bad locations – can intuitively be recognized as foolish, but was nevertheless adopted in the tendering procedures of the 2017 revision of the EEG. This absurdity was justified with a claim the fact that an expansion of the area covered in windfarms would lead to a reduction in the volatility of the electricity supplied – a fundamentally wrong idea

Tax consultant Daldorf, analyzed over 1600 annual financial statements of wind energy projects between 2005 and 2013. They found that the vast majority of wind farms in Germany operate at a loss. With many local wind farms, investors are lucky to get their original investment back at all. Daldorf gives the following reasons for the poor performance of windfarms:

  • poor wind assessments or no one-year wind measurements on site
  • erroneous wind indexes as a basis for planning
  • overly low margins of error in wind forecasts
  • underestimates of plant downtime for maintenance and repairs
  • ’planning optimism’ of the project promoters as a strategy for maximizing profits

The operators and investors bear the full risk. Before they can make a profit, the following costs must be covered from the sales achieved:

  • lease costs
  • insurance premiums, fees
  • maintenance costs
  • repairs, reserves for dismantling costs
  • management costs
  • administrative and other costs
  • interest-costs
  • taxes

The cubic relationship between wind force and power generation is decisive for the frequent red numbers: a doubling or halving of the wind speed changes the generation by a factor of eight. The smallest deviations from the expected wind input are reflected in sharp deviations in power generation and thus in revenues. Measurements on wind masts are the most accurate method, but even here the typical error range is 2–8 %. The uncertainty of measurement alone causes an uncertainty of the expected yield of up to 16 %. Measurements with optical methods (LIDAR) or even wind assessments are even less accurate. Anyone who evaluates such measurements will find that the operation of wind farms entails considerable economic risks. These risks apply in particular to wind assessments, whose error rate is in the order of 20 %.

The profit is almost solely determined by the annual electricity yield. No matter how clever the marketing may be, it cannot influence profitability, which depends on the whims of the weather.

Investment in wind turbines on the basis of wind assessments is close to gambling. Anyone who does so is responsible for their own downfall. However, anyone who lives in a community whose elected representatives fall for the promises of windfarm promoters is virtually forced to the roulette table.

The cardinal problems – weather-dependence and low energy density – are unsolved or unsolvable.

My note: there are even more reasons in this document than I have listed above for why Energiewende is a failure. And also see: