EVs’ Limits to Growth….

8 06 2019

THIS will throw the cat in amongst the pigeons…. some months ago, I downloaded a BBC podcast in which a British scientist claimed there wasn’t enough Cobalt and Lithium on the entire planet for just the UK to convert to EVs. It was on a USB stick that I use to listen to such things in my cars while either driving or working on the house. I promptly lost the darn thing and no amount of googling could find the BBC podcast again…… now this piece comes along in my newsfeed. Might be one of the scientists on the panel, I don’t know……

PRESS RELEASE

Leading scientists set out resource challenge of meeting net zero emissions in the UK by 2050

First published 5 June 2019

A letter authored by Natural History Museum Head of Earth Sciences Prof Richard Herrington and fellow expert members of SoS MinErals (an interdisciplinary programme of NERC-EPSRC-Newton-FAPESP funded research) has today been delivered to the Committee on Climate Change

The letter explains that to meet UK electric car targets for 2050 we would need to produce just under two times the current total annual world cobalt production, nearly the entire world production of neodymium, three quarters the world’s lithium production and at least half of the world’s copper production.

A 20% increase in UK-generated electricity would be required to charge the current 252.5 billion miles to be driven by UK cars.

Last month, the Committee on Climate Change published a report ‘Net Zero: The UK’s Contribution to Stopping Global Warming’ which concluded that ‘net zero is necessary, feasible and cost effective.’ As a major scientific research institution and authority on the natural world, the Natural History Museum supports the pressing need for a major reduction in carbon emissions to address further catastrophic consequences of climate change. Using its scientific expertise and vast collection of geological specimens, the Museum is collaborating with leading researchers to identify resource and environmental implications of the transition to green energy technologies including electric cars.

A letter which outlines these challenges was delivered to Baroness Brown, who chairs the Adaption Sub-Committee of the Committee on Climate Change.

Prof Richard Herrington says:

The urgent need to cut CO2 emissions to secure the future of our planet is clear, but there are huge implications for our natural resources not only to produce green technologies like electric cars but keep them charged.

“Over the next few decades, global supply of raw materials must drastically change to accommodate not just the UK’s transformation to a low carbon economy, but the whole world’s. Our role as scientists is to provide the evidence for how best to move towards a zero-carbon economy – society needs to understand that there is a raw material cost of going green and that both new research and investment is urgently needed for us to evaluate new ways to source these. This may include potentially considering sources much closer to where the metals are to be used.”

The challenges set out in the letter are:

The metal resource needed to make all cars and vans electric by 2050 and all sales to be purely battery electric by 2035. To replace all UK-based vehicles today with electric vehicles (not including the LGV and HGV fleets), assuming they use the most resource-frugal next-generation NMC 811 batteries, would take 207,900 tonnes cobalt, 264,600 tonnes of lithium carbonate (LCE), at least 7,200 tonnes of neodymium and dysprosium, in addition to 2,362,500 tonnes copperThis represents, just under two times the total annual world cobalt production, nearly the entire world production of neodymium, three quarters the world’s lithium production and at least half of the world’s copper production during 2018. Even ensuring the annual supply of electric vehicles only, from 2035 as pledged, will require the UK to annually import the equivalent of the entire annual cobalt needs of European industry.

The worldwide impact:If this analysis is extrapolated to the currently projected estimate of two billion cars worldwide, based on 2018 figures, annual production would have to increase for neodymium and dysprosium by 70%, copper output would need to more than double and cobalt output would need to increase at least three and a half times for the entire period from now until 2050 to satisfy the demand.

Energy cost of metal production: This choice of vehicle comes with an energy cost too.  Energy costs for cobalt production are estimated at 7000-8000 kWh for every tonne of metal produced and for copper 9000 kWh/t.  The rare-earth energy costs are at least 3350 kWh/t, so for the target of all 31.5 million cars that requires 22.5 TWh of power to produce the new metals for the UK fleet, amounting to 6% of the UK’s current annual electrical usage.  Extrapolated to 2 billion cars worldwide, the energy demand for extracting and processing the metals is almost 4 times the total annual UK electrical output

Energy cost of charging electric cars: There are serious implications for the electrical power generation in the UK needed to recharge these vehicles. Using figures published for current EVs (Nissan Leaf, Renault Zoe), driving 252.5 billion miles uses at least 63 TWh of power. This will demand a 20% increase in UK generated electricity. 

Challenges of using ‘green energy’ to power electric cars:If wind farms are chosen to generate the power for the projected two billion cars at UK average usage, this requires the equivalent of a further years’ worth of total global copper supply and 10 years’ worth of global neodymium and dysprosium production to build the windfarms.

Solar power is also problematic – it is also resource hungry; all the photovoltaic systems currently on the market are reliant on one or more raw materials classed as “critical” or “near critical” by the EU and/ or US Department of Energy (high purity silicon, indium, tellurium, gallium) because of their natural scarcity or their recovery as minor-by-products of other commodities. With a capacity factor of only ~10%, the UK would require ~72GW of photovoltaic input to fuel the EV fleet; over five times the current installed capacity. If CdTe-type photovoltaic power is used, that would consume over thirty years of current annual tellurium supply.

Both these wind turbine and solar generation options for the added electrical power generation capacity have substantial demands for steel, aluminium, cement and glass.

The co-signatories, like Prof Herrington are part of SoS MinErals, an interdisciplinary programme of NERC-EPSRC-Newton-FAPESP funded research focusing on the science needed to sustain the security of supply of strategic minerals in a changing environment. This programme falls under NERC’s sustainable use of natural resources (SUNR) strategic theme. They are:

Professor Adrian Boyce, Professor of Applied Geology at The Scottish Universities Environmental Research Centre

Paul Lusty, Team Leader for Ore Deposits and Commodities at British Geological Survey

Dr Bramley Murton, Associate Head of Marine Geosciences at the National Oceanography Centre

Dr Jonathan Naden, Science Coordination Team Lead of NERC SoS MinErals Programme, British Geological Society

Professor Stephen Roberts, Professor of Geology, School of Ocean and Earth Science, University of Southampton

Associate Professor Dan Smith, Applied and Environmental Geology, University of Leicester

Professor Frances Wall, Professor of Applied Mineralogy at Camborne School of Mines, University of Exeter





Enjoy the end of the world….

13 05 2019

Presentation by Dr Sid Smith given at Virginia Tech for the Greens at Virginia Tech, March 26th, 2019 that explains all our predicaments very well….. share widely.





“Renewables” – reality or illusion?

27 03 2019

ERIK MICHAELS·WEDNESDAY, MARCH 27, 2019

Originally posted in the Methane News Group (a considerable additional amount of information and discussion can only be seen by joining): https://www.facebook.com/groups/methanehydratesnews/

Lately I have fielded some rather interesting perspectives on “solutions” to climate change; not just here but in many other groups as well. I have pointed out that the ideas proposed as solutions are in fact just ideas; most of which require substantial amounts of energy not only to build, transport, erect, maintain, and replace at the end of their service life, but most of which serve no useful purpose to any other life form on this planet but us. Not only are these ideas unsustainable; if they don’t benefit other species, then they are ecologically extinct. Building a sustainable future means that we must incorporate ideas and things that interact with our biosphere in a manner that provides some sort of ecosystem service.

“Renewables” do not fit that description, so they are patently unsustainable.Ladies and Gentlemen, “optimism must be based in reality. If hope becomes something that you express through illusion, then it isn’t hope; it’s fantasy.” — Chris Hedges

I have spent a great deal of time lately discussing the issue of “renewables” and since this has been so pervasive as of late, I decided to draft a new file specifically for this purpose of outlining the facts.Before proceeding, please view this short video featuring Chris Hedges: https://vimeo.com/293802639

Recently, I discussed the fact that “renewables” are not a solution, and in fact, are actually making our existing predicaments worse. A considerable number of individuals are questioning these facts using all types of logical fallacies. I understand these questions; as I once thought that “renewable” energy and “green” energy and other ideas would save us as well – as little as 5 years ago. As I joined more climate change groups, I recognized the constantly repeating attack on these devices as non-solutions; so I decided to find out for myself once and for all, precisely whether they would work or not.Before going into further detail, I need to explain that IF these devices had been developed and installed back in the 1970s and 80s, along with serious efforts to quell population growth and tackling other unsustainable practices, they may have been beneficial.

However, the popular conclusion is not simply that they do not work (to serve their original intended purpose); but that they are actually causing more trouble than if they hadn’t been built at all. Many claim that these “solutions” are better than utilizing fossil energy; but this too, is an illusion. Having said that, please note that this article is in NO WAY promoting fossil energy; fossil energy use is every bit as bad, if not worse, than these devices; AND its use created the desire to build these devices in the first place.

Many people are utilizing a false dichotomy to justify continuing to build and use these devices. Using them creates no real desire to learn how to live without externally-produced energy, a loss we ALL face as time moves forward. Once the fossil fuel platform that these devices currently depend on disappears, so will the devices. Some individuals claim that we can continue to extract resources, manufacture, transport, and erect these devices after fossil energy is no longer available. This is true only on a MUCH smaller scale than the energy systems we have today, and only in small localities. On top of that, the systems of the future will continue to degrade over time and eventually, electricity will disappear altogether. Given this imminent fact, it makes little sense to continue building these devices, recognizing the environmental damage they are causing which only promotes the continued use of fossil energy as well.In order to comprehend why these devices are such a delusion, one must understand many different predicaments at once.

First, an understanding of energy and resource decline is critical. Secondly, a thorough understanding of pollution loading is essential, especially of the electronics, rare earths, mining, metals, plastics, and transportation industries. Understanding climate change and how our energy “addiction” has propelled it and continues to fuel it is absolutely necessary. Comprehension of biology along with the ecological and environmental degradation of habitat destruction and fragmentation is also necessary.

New information is constantly being made available as well, highlighting yet more reasons to stop building these devices. They are little more than energy “traps” that chain us to the same paradigm that is already killing life on this planet. The secret to resolving these issues isn’t a “new or different” energy source. It is eliminating the energy addiction altogether.The reason that eliminating energy addiction altogether is the only real strategy towards living a sustainable lifestyle is because of one seriously inconvenient fact: the diminishing returns on increasing complexity along with the fact that continuing to build these devices requires the continuation of mining, energy use, and industrial civilization – the very things killing all life on this planet.

As a system increases its complexity, the returns on that increasing complexity decrease. As we find more new ways to reduce the harm caused by energy use, misuse, and abuse, we continue to increase the complexity of producing said energy. Resistance and friction cause losses in motors, and inefficiency and sheer transmission losses produce yet further losses in all electrical systems. All these losses produce waste heat, no differently than traditional mechanical systems.

There is NO system that can be made 100% efficient, so there will ALWAYS be losses. This waste heat does nothing but add to the existing predicaments we already face; considering that in order to produce the energy to begin with, one must also pollute our atmosphere, water, and soil with toxins and byproducts of the processes themselves. Watch these three videos to understand why building each of these devices is a disaster in and of itself to wildlife around it. Focus on the devastation of the land that each unit sits on, as well as the habitat fragmentation caused by each road:

https://www.youtube.com/watch?v=mwwlxlMoVVQ

https://www.youtube.com/watch?v=84BeVq2Jm88

https://www.youtube.com/watch?v=1AAHJs-j3uw

Here is a handy reference guide about “renewables” with frequently asked questions:

https://deepgreenresistance.org/en/who-we-are/faqs/green-technology-renewable-energy Here are some links to more information that will help you understand WHY “renewable” energy is NOT a solution to climate change in any way, shape, or form:

  1. http://www.sixthtone.com/news/1002631/the-dark-side-of-chinas-solar-boom-
  2. https://www.wired.co.uk/article/lithium-batteries-environment-impact
  3. https://phys.org/news/2018-05-e-waste-wrong.html
  4. http://www.bbc.com/future/story/20150402-the-worst-place-on-earth
  5. https://www.scmp.com/news/china/society/article/2104162/chinas-ageing-solar-panels-are-going-be-big-environmental-problem
  6. https://www.nationalreview.com/2017/06/solar-panel-waste-environmental-threat-clean-energy/
  7. https://www.city-journal.org/wind-power-is-not-the-answer
  8. https://www.resilience.org/stories/2018-08-01/an-engineer-an-economist-and-an-ecomodernist-walk-into-a-bar-and-order-a-free-lunch/
  9. https://news.harvard.edu/gazette/story/2018/10/large-scale-wind-power-has-its-down-side/
  10. https://iopscience.iop.org/article/10.1088/1748-9326/aae102
  11. https://phys.org/news/2018-11-farm-predator-effect-ecosystems.html
  12. https://www.theatlantic.com/science/archive/2018/05/how-do-aliens-solve-climate-change/561479/
  13. https://patzek-lifeitself.blogspot.com/2018/10/all-is-well-on-our-planet-earth-isnt-it.html
  14. https://www.versobooks.com/blogs/3797-end-the-green-delusions-industrial-scale-renewable-energy-is-fossil-fuel

On a particular thread which featured the story link above, I wrote this detailed observation: “Ecocide is continuing BAU, which is precisely what “renewables” will allow for. They are nothing but a distraction for three reasons:

1. Building “renewables” does nothing to solve the predicament of energy use and energy growth. Replacing one type of energy with another is doing nothing but choosing a slightly less evil bad choice.

2. “Renewable” energy will never be able to replace the concentrated energy available in fossil fuels, and this fact is missed by both the MSM and most people in society. This is a recipe for disaster as the amount of fossil energy available inevitably dwindles and countries begin to fight for survival.

3. “Renewables” can not replace fossil energy in another way besides concentration of energy – each popular device such as solar panels and wind turbines only last around 20 years. This is if they survive that long – many have met an early demise due to extreme weather events. So not only do they represent a never-ending merry-go-round of maintain and replace, rinse and repeat; but due to continued energy growth, more are constantly needed as well. That is precisely what makes them every bit as unsustainable as fossil fuels.

4. Now, for a fourth issue that hasn’t been mentioned in the first three – building “renewables” doesn’t serve any truly needed service. Human beings and all other life forms on this planet don’t actually require external electricity in order to survive. So the ONLY species that benefits from building these devices is us. Sadly, building these devices kills off species through habitat destruction and habitat fragmentation along with pollution loading and other causes.

So in effect, these not only don’t solve the issue they were designed for, they continue the same ecological destruction that we are accomplishing through utilizing fossil energy. As we continue pulling the Jenga blocks out of the tree of life, how long will it be before we unwittingly become functionally extinct through using these to continue BAU? As one can clearly see, if humans want to continue living, they have no choice but to reduce fossil and all other energy use and bring it down to zero very quickly.

Sadly, I have little doubt that this will not be accomplished in any kind of reasonable time frame, IF AT ALL (we are currently going the wrong direction and have been for the last two decades DESPITE these devices having been built and installed), given what has transpired over the previous five decades even though we’ve known about these predicaments since then.” Here are several links to files that contain yet more links to more info:





Is peak everything just around the corner?

15 01 2019

What Happened in 2015 that Changed the World? Peak Civilization, Maybe?

“Peak Cement” may have taken place in 2015, stopping the exponentially growing curve that would have led us to turn the Earth into a bowling ball, similar to the fictional planet Trantor, Galactic capital in Isaac Asimov’s series “Foundation” (image source).

Signs of economic slowdowns are everywhere now….. last night in the news, Alan Kohler showed a chart describing how Chinese car sales flipped from growing at 10% to shrinking at 10%, in just three months, and evidence od Chinese economic collapse are even on mainstream news now…. Retail sales in Australia are taking a hit too.  And now this from Ugo Bardi’s Cassandra’s Legacy…

When giving an example of an exponentially growing production curve, I used to cite cement production. Look at the data up to 2013: a beautiful growing curve with a doubling time of — very roughly — 10 years. Then, if we assume that the current concrete covered area in the world is about 2%  (an average of the data by Schneider et al., 2009and the Global Rural-Urban Mapping Project, 2004) then we would get to Trantor — bowling ball planet — in some 50 years. Of course that wasn’t possible, but it was still a surprise to discover how abrupt the change has been: here are the most recent data (the value for 2018 is still an estimate from cemnet.com)

Impressive, right? Steve Rocco, smart as usual, had already noticed this trend in 2017, but now it is clearer. It looks like a peak, it has the shape of a peak, it gives the impression of a peak. Most likely it is a peak — actually, it could be the start of an irreversible decline in the global cement production. 

Now, what caused the decline? If you look at the disaggregated data, it is clear that the slowdown was mainly created by China, but not just by China. Several countries in the world are going down in terms of cement production — in Italy, the decline started in 2010.

My impression — that I share with the one proposed by Rocco — is that this is not a blip in the curve, nor a special case among the various mineral commodities produced nowadays. It is a symptom of a general problem: it may be the clearest manifestation of the concept of “peak civilization” that the 1972 “Limits to Growth” study had placed for some moment during the 1st or 2nd decades of the 21st century.

Peak Cement is not alone another major peak was detected by Antonio Turiel for diesel fuel in 2015.

And, of course, we know that another major commodity went through a global peak in 2014: coal. (data from bp.com)

So, are we really facing “peak civilization”? It is hard to say. On a time scale of a few years, many things could change and, in any case, you don’t expect peaking to take place at the same time for all mineral commodities, everywhere. A strong indication that the whole world system is peaking would come from the behavior of the global GDP. Rocco had proposed that also the GDP had peaked in 2015, but the data available at present are insufficient to prove that. 

In any case, it has been said that we would see the great peak “in the rear mirror”and this may well be what we are seeing. Whatever is happening it will be clearer in the future but, if it is really “the peak“, expect the Seneca cliff to open up in front of us in the coming years. And maybe it won’t be such a bad thing(*): did we really want to turn the Earth into a bowling ball?





2019: World Economy Is Reaching Growth Limits; Expect Low Oil Prices, Financial Turbulence

10 01 2019

Posted on January 9, 2019 by Gail Tverberg

Another incisive self explanatory article by Gail Tverberg explaining the recent volatility and what outcomes we can expect from that this coming year (and next) MUST READ.

Financial markets have been behaving in a very turbulent manner in the last couple of months. The issue, as I see it, is that the world economy is gradually changing from a growth mode to a mode of shrinkage. This is something like a ship changing course, from going in one direction to going in reverse. The system acts as if the brakes are being very forcefully applied, and reaction of the economy is to almost shake.

What seems to be happening is that the world economy is reaching Limits to Growth, as predicted in the computer simulations modeled in the 1972 book, The Limits to Growth. In fact, the base model of that set of simulations indicated that peak industrial output per capita might be reached right about now. Peak food per capita might be reached about the same time. I have added a dotted line to the forecast from this model, indicating where the economy seems to be in 2019, relative to the base model.

Figure 1. Base scenario from The Limits to Growth, printed using today’s graphics by Charles Hall and John Day in Revisiting Limits to Growth After Peak Oil with dotted line at 2019 added by author. The 2019 line is drawn based on where the world economy seems to be now, rather than on precisely where the base model would put the year 2019.

The economy is a self-organizing structure that operates under the laws of physics. Many people have thought that when the world economy reaches limits, the limits would be of the form of high prices and “running out” of oil. This represents an overly simple understanding of how the system works. What we should really expect, and in fact, what we are now beginning to see, is production cuts in finished goods made by the industrial system, such as cell phones and automobiles, because of affordability issues. Indirectly, these affordability issues lead to low commodity prices and low profitability for commodity producers. For example:

  • The sale of Chinese private passenger vehicles for the year of 2018 through November is down by 2.8%, with November sales off by 16.1%. Most analysts are forecasting this trend of contracting sales to continue into 2019. Lower sales seem to reflect affordability issues.
  • Saudi Arabia plans to cut oil production by 800,000 barrels per day from the November 2018 level, to try to raise oil prices. Profits are too low at current prices.
  • Coal is reported not to have an economic future in Australia, partly because of competition from subsidized renewables and partly because China and India want to prop up the prices of coal from their own coal mines.

The Significance of Trump’s Tariffs

If a person looks at history, it becomes clear that tariffs are a standard response to a problem of shrinking food or industrial output per capita. Tariffs were put in place in the 1920s in the time leading up to the Great Depression, and were investigated after the Panic of 1857, which seems to have indirectly led to the US Civil War.

Whenever an economy produces less industrial or food output per capita there is an allocation problem: who gets cut off from buying output similar to the amount that they previously purchased? Tariffs are a standard way that a relatively strong economy tries to gain an advantage over weaker economies. Tariffs are intended to help the citizens of the strong economy maintain their previous quantity of goods and services, even as other economies are forced to get along with less.

I see Trump’s trade policies primarily as evidence of an underlying problem, namely, the falling affordability of goods and services for a major segment of the population. Thus, Trump’s tariffs are one of the pieces of evidence that lead me to believe that the world economy is reaching Limits to Growth.

The Nature of World Economic Growth

Economic growth seems to require growth in three dimensions (a) Complexity, (b) Debt Bubble, and (c) Use of Resources. Today, the world economy seems to be reaching limits in all three of these dimensions (Figure 2).

Figure 2.

Complexity involves adding more technology, more international trade and more specialization. Its downside is that it indirectly tends to reduce affordability of finished end products because of growing wage disparity; many non-elite workers have wages that are too low to afford very much of the output of the economy. As more complexity is added, wage disparity tends to increase. International wage competition makes the situation worse.

growing debt bubble can help keep commodity prices up because a rising amount of debt can indirectly provide more demand for goods and services. For example, if there is growing debt, it can be used to buy homes, cars, and vacation travel, all of which require oil and other energy consumption.

If debt levels become too high, or if regulators decide to raise short-term interest rates as a method of slowing the economy, the debt bubble is in danger of collapsing. A collapsing debt bubble tends to lead to recession and falling commodity prices. Commodity prices fell dramatically in the second half of 2008. Prices now seem to be headed downward again, starting in October 2018.

Figure 3. Brent oil prices with what appear to be debt bubble collapses marked.

Figure 4. Three-month treasury secondary market rates compared to 10-year treasuries from FRED, with points where short term interest rates exceed long term rates marked by author with arrows.

Even the relatively slow recent rise in short-term interest rates (Figure 4) seems to be producing a decrease in oil prices (Figure 3) in a way that a person might expect from a debt bubble collapse. The sale of US Quantitative Easing assets at the same time that interest rates have been rising no doubt adds to the problem of falling oil prices and volatile stock markets. The gray bars in Figure 4 indicate recessions.

Growing use of resources becomes increasingly problematic for two reasons. One is population growth. As population rises, the economy needs more food to feed the growing population. This leads to the need for more complexity (irrigation, better seed, fertilizer, world trade) to feed the growing world population.

The other problem with growing use of resources is diminishing returns, leading to the rising cost of extracting commodities over time. Diminishing returns occur because producers tend to extract the cheapest to extract commodities first, leaving in place the commodities requiring deeper wells or more processing. Even water has this difficulty. At times, desalination, at very high cost, is needed to obtain sufficient fresh water for a growing population.

Why Inadequate Energy Supplies Lead to Low Oil Prices Rather than High

In the last section, I discussed the cost of producing commodities of many kinds rising because of diminishing returns. Higher costs should lead to higher prices, shouldn’t they?

Strangely enough, higher costs translate to higher prices only sometimes. When energy consumption per capita is rising rapidly (peaks of red areas on Figure 5), rising costs do seem to translate to rising prices. Spiking oil prices were experienced several times: 1917 to 1920; 1974 to 1982; 2004 to mid 2008; and 2011 to 2014. All of these high oil prices occurred toward the end of the red peaks on Figure 5. In fact, these high oil prices (as well as other high commodity prices that tend to rise at the same time as oil prices) are likely what brought growth in energy consumption down. The prices of goods and services made with these commodities became unaffordable for lower-wage workers, indirectly decreasing the growth rate in energy products consumed.

Figure 5.

The red peaks represented periods of very rapid growth, fed by growing supplies of very cheap energy: coal and hydroelectricity in the Electrification and Early Mechanization period, oil in the Postwar Boom, and coal in the China period. With low energy prices,  many countries were able to expand their economies simultaneously, keeping demand high. The Postwar Boom also reflected the addition of many women to the labor force, increasing the ability of families to afford second cars and nicer homes.

Rapidly growing energy consumption allowed per capita output of both food (with meat protein given a higher count than carbohydrates) and industrial products to grow rapidly during these peaks. The reason that output of these products could grow is because the laws of physics require energy consumption for heat, transportation, refrigeration and other processes required by industrialization and farming. In these boom periods, higher energy costs were easy to pass on. Eventually the higher energy costs “caught up with” the economy, and pushed growth in energy consumption per capita down, putting an end to the peaks.

Figure 6 shows Figure 5 with the valleys labeled, instead of the peaks.

Figure 6.

When I say that the world economy is reaching “peak industrial output per capita” and “peak food per capita,” this represents the opposite of a rapidly growing economy. In fact, if the world is reaching Limits to Growth, the situation is even worse than all of the labeled valleys on Figure 6. In such a case, energy consumption growth is likely to shrink so low that even the blue area (population growth) turns negative.

In such a situation, the big problem is “not enough to go around.” While cost increases due to diminishing returns could easily be passed along when growth in industrial and food output per capita were rapidly rising (the Figure 5 situation), this ability seems to disappear when the economy is near limits. Part of the problem is that the lower growth in per capita energy affects the kinds of jobs that are available. With low energy consumption growth, many of the jobs that are available are service jobs that do not pay well. Wage disparity becomes an increasing problem.

When wage disparity grows, the share of low wage workers rises. If businesses try to pass along their higher costs of production, they encounter market resistance because lower wage workers cannot afford the finished goods made with high cost energy products. For example, auto and iPhone sales in China decline. The lack of Chinese demand tends to lead to a drop in demand for the many commodities used in manufacturing these goods, including both energy products and metals. Because there is very little storage capacity for commodities, a small decline in demand tends to lead to quite a large decline in prices. Even a small decline in China’s demand for energy products can lead to a big decline in oil prices.

Strange as it may seem, the economy ends up with low oil prices, rather than high oil prices, being the problem. Other commodity prices tend to be low as well.

What Is Ahead, If We Are Reaching Economic Growth Limits?

1. Figure 1 at the top of this post seems to give an indication of what is ahead after 2019, but this forecast cannot be relied on. A major issue is that the limited model used at that time did not include the financial system or debt. Even if the model seems to provide a reasonably accurate estimate of when limits will hit, it won’t necessarily give a correct view of what the impact of limits will be on the rest of the economy, after limits hit. The authors, in fact, have said that the model should not be expected to provide reliable indications regarding how the economy will behave after limits have started to have an impact on economic output.

2. As indicated in the title of this post, considerable financial volatility can be expected in 2019if the economy is trying to slow itself. Stock prices will be erratic; interest rates will be erratic; currency relativities will tend to bounce around. The likelihood that derivatives will cause major problems for banks will rise because derivatives tend to assume more stability in values than now seems to be the case. Increasing problems with derivatives raises the risk of bank failure.

3. The world economy doesn’t necessarily fail all at once. Instead, pieces that are, in some sense, “less efficient” users of energy may shrink back. During the Great Recession of 2008-2009, the countries that seemed to be most affected were countries such as Greece, Spain, and Italy that depend on oil for a disproportionately large share of their total energy consumption. China and India, with energy mixes dominated by coal, were much less affected.

Figure 7. Oil consumption as a percentage of total energy consumption, based on 2018 BP Statistical Review of World Energy data.

Figure 8. Energy consumption per capita for selected areas, based on energy consumption data from 2018 BP Statistical Review of World Energy and United Nations 2017 Population Estimates by Country.

In the 2002-2008 period, oil prices were rising faster than prices of other fossil fuels. This tended to make countries using a high share of oil in their energy mix less competitive in the world market. The low labor costs of China and India gave these countries another advantage. By the end of 2007, China’s energy consumption per capita had risen to a point where it almost matched the (now lower) energy consumption of the European countries shown. China, with its low energy costs, seems to have “eaten the lunch” of some of its European competitors.

In 2019 and the years that follow, some countries may fare at least somewhat better than others. The United States, for now, seems to be faring better than many other parts of the world.

4. While we have been depending upon China to be a leader in economic growth, China’s growth is already faltering and may turn to contraction in the near future. One reason is an energy problem: China’s coal production has fallen because many of its coal mines have been closed due to lack of profitability. As a result, China’s need for imported energy (difference between black line and top of energy production stack) has been growing rapidly. China is now the largest importer of oil, coal, and natural gas in the world. It is very vulnerable to tariffs and to lack of available supplies for import.

Figure 9. China energy production by fuel plus its total energy consumption, based on BP Statistical Review of World Energy 2018 data.

A second issue is that demographics are working against China; its working-age population already seems to be shrinking. A third reason why China is vulnerable to economic difficulties is because of its growing debt level. Debt becomes difficult to repay with interest if the economy slows.

5. Oil exporters such as Venezuela, Saudi Arabia, and Nigeria have become vulnerable to government overthrow or collapse because of low world oil prices since 2014. If the central government of one or more of these exporters disappears, it is possible that the pieces of the country will struggle along, producing a lower amount of oil, as Libya has done in recent years. It is also possible that another larger country will attempt to take over the failing production of the country and secure the output for itself.

6. Epidemics become increasingly likely, especially in countries with serious financial problems, such as Yemen, Syria, and Venezuela. Historically, much of the decrease in population in countries with collapsing economies has come from epidemics. Of course, epidemics can spread across national boundaries, exporting the problems elsewhere.

7. Resource wars become increasingly likely. These can be local wars, perhaps over the availability of water. They can also be large, international wars. The timing of World War I and World War II make it seem likely that these wars were both resource wars.

Figure 10.

8. Collapsing intergovernmental agencies, such as the European Union, the World Trade Organization, and the International Monetary Fund, seem likely. The United Kingdom’s planned exit from the European Union in 2019 is a step toward dissolving the European Union.

9. Privately funded pension funds will increasingly be subject to default because of continued low interest rates. Some governments may choose to cut back the amounts they provide to pensioners because governments cannot collect adequate tax revenue for this purpose. Some countries may purposely shut down parts of their governments, in an attempt to hold down government spending.

10. A far worse and more permanent recession than that of the Great Recession seems likely because of the difficulty in repaying debt with interest in a shrinking economy. It is not clear when such a recession will start. It could start later in 2019, or perhaps it may wait until 2020. As with the Great Recession, some countries will be affected more than others. Eventually, because of the interconnected nature of financial systems, all countries are likely to be drawn in.

Summary

It is not entirely clear exactly what is ahead if we are reaching Limits to Growth. Perhaps that is for the best. If we cannot do anything about it, worrying about the many details of what is ahead is not the best for anyone’s mental health. While it is possible that this is an end point for the human race, this is not certain, by any means. There have been many amazing coincidences over the past 4 billion years that have allowed life to continue to evolve on this planet. More of these coincidences may be ahead. We also know that humans lived through past ice ages. They likely can live through other kinds of adversity, including worldwide economic collapse.





Interesting times ahead…..

29 11 2018

Very few people join all the dots, and as usual, Gail Tverberg does her best to do so here again…. There are so many signals on the web now pointing to a major reset it’s not funny.

Low Oil Prices: An Indication of Major Problems Ahead?

Many people, including most Peak Oilers, expect that oil prices will rise endlessly. They expect rising oil prices because, over time, companies find it necessary to access more difficult-to-extract oil. Accessing such oil tends to be increasingly expensive because it tends to require the use of greater quantities of resources and more advanced technology. This issue is sometimes referred to as diminishing returns. Figure 1 shows how oil prices might be expected to rise, if the higher costs encountered as a result of diminishing returns can be fully recovered from the ultimate customers of this oil.

In my view, this analysis suggesting ever-rising prices is incomplete. After a point, prices can’t really keep up with rising costs because the wages of many workers lag behind the growing cost of extraction.

The economy is a networked system facing many pressures, including a growing level of debt and the rising use of technology. When these pressures are considered, my analysis indicates that oil prices may fall too low for producers, rather than rise too high for consumers. Oil companies may close down if prices remain too low. Because of this, low oil prices should be of just as much concern as high oil prices.

In recent years, we have heard a great deal about the possibility of Peak Oil, including high oil prices. If the issue we are facing is really prices that are too low for producers, then there seems to be the possibility of a different limits issue, called Collapse. Many early economies seem to have collapsed as they reached resource limits. Collapse seems to be characterized by growing wealth disparity, inadequate wages for non-elite workers, failing governments, debt defaults, resource wars, and epidemics. Eventually, population associated with collapsed economies may fall very low or completely disappear. As Collapse approaches, commodity prices seem to be low, rather than high.

The low oil prices we have been seeing recently fit in disturbingly well with the hypothesis that the world economy is reaching affordability limits for a wide range of commodities, nearly all of which are subject to diminishing returns. This is a different problem than most researchers have been concerned about. In this article, I explain this situation further.

One thing that is a little confusing is the relative roles of diminishing returns and efficiency. I see diminishing returns as being more or less the opposite of growing efficiency.

The fact that inflation-adjusted oil prices are now much higher than they were in the 1940s to 1960s is a sign that for oil, the contest between diminishing returns and efficiency has basically been won by diminishing returns for over 40 years.

Oil Prices Cannot Rise Endlessly

It makes no sense for oil prices to rise endlessly, for what is inherently growing inefficiency. Endlessly rising prices for oil would be similar to paying a human laborer more and more for building widgets, during a time that that laborer becomes increasingly disabled. If the number of widgets that the worker can produce in one hour decreases by 50%, logically that worker’s wages should fall by 50%, not rise to make up for his/her growing inefficiency.

The problem with paying higher prices for what is equivalent to growing inefficiency can be hidden for a while, if the economy is growing rapidly enough. The way that the growing inefficiency is hidden is by adding Debt and Complexity (Figure 4).

Growing complexity is very closely related to “Technology will save us.” Growing complexity involves the use of more advanced machinery and ever-more specialized workers. Businesses become larger and more hierarchical. International trade becomes increasingly important. Financial products such as derivatives become common.

Growing debt goes hand in hand with growing complexity. Businesses need growing debt to support capital expenditures for their new technology. Consumers find growing debt helpful in affording major purchases, such as homes and vehicles. Governments make debt-like promises of pensions to citizen. Thanks to these promised pensions, families can have fewer children and devote fewer years to child care at home.

The problem with adding complexity and adding debt is that they, too, reach diminishing returns. The easiest (and cheapest) fixes tend to be added first. For example, irrigating a field in a dry area may be an easy and cheap way to fix a problem with inadequate food supply. There may be other approaches that could be used as well, such as breeding crops that do well with little rainfall, but the payback on this investment may be smaller and later.

A major drawback of adding complexity is that doing so tends to increase wage and wealth disparity. When an employer pays high wages to supervisory workers and highly skilled workers, this leaves fewer funds with which to pay less skilled workers. Furthermore, the huge amount of capital goods required in this more complex economy tends to disproportionately benefit workers who are already highly paid. This happens because the owners of shares of stock in companies tend to overlap with employees who are already highly paid. Low paid employees can’t afford such purchases.

The net result of greater wage and wealth disparity is that it becomes increasingly difficult to keep prices high enough for oil producers. The many workers with low wages find it difficult to afford homes and families of their own. Their low purchasing power tends to hold down prices of commodities of all kinds. The higher wages of the highly trained and supervisory staff don’t make up for the shortfall in commodity demand because these highly paid workers spend their wages differently. They tend to spend proportionately more on services rather than on commodity-intensive goods. For example, they may send their children to elite colleges and pay for tax avoidance services. These services use relatively little in the way of commodities.

Once the Economy Slows Too Much, the Whole System Tends to Implode

A growing economy can hide a multitude of problems. Paying back debt with interest is easy, if a worker finds his wages growing. In fact, it doesn’t matter if the growth that supports his growing wages comes from inflationary growth or “real” growth, since debt repayment is typically not adjusted for inflation.

Both real growth and inflationary growth help workers have enough funds left at the end of the period for other goods they need, despite repaying debt with interest.

Once the economy stops growing, the whole system tends to implode. Wage disparity becomes a huge problem. It becomes impossible to repay debt with interest. Young people find that their standards of living are lower than those of their parents. Investments do not appear to be worthwhile without government subsidies. Businesses find that economies of scale no longer work to their advantage. Pension promises become overwhelming, compared to the wages of young people.

The Real Situation with Oil Prices

The real situation with oil prices–and in fact with respect to commodity prices in general–is approximately like that shown in Figure 6.

What tends to happen is that oil prices tend to fall farther and farther behind what producers require, if they are truly to make adequate reinvestment in new fields and also pay high taxes to their governments. This should not be too surprising because oil prices represent a compromise between what citizens can afford and what producers require.

In the years before diminishing returns became too much of a problem (back before 2005, for example), it was possible to find prices that were within an acceptable range for both sellers and buyers. As diminishing returns has become an increasing problem, the price that consumers can afford has tended to fall increasingly far below the price that producers require. This is why oil prices at first fall a little too low for producers, and eventually seem likely to fall far below what producers need to stay in business. The problem is that no price works for both producers and consumers.

Affordability Issues Affect All Commodity Prices, Not Just Oil

We are dealing with a situation in which a growing share of workers (and would be workers) find it difficult to afford a home and family, because of wage disparity issues. Some workers have been displaced from their jobs by robots or by globalization. Some spend many years in advanced schooling and are left with large amounts of debt, making it difficult to afford a home, a family, and other things that many in the older generation were able to take for granted. Many of today’s workers are in low-wage countries; they cannot afford very much of the output of the world economy.

At the same time, diminishing returns affect nearly all commodities, just as they affect oil. Mineral ores are affected by diminishing returns because the highest grade ores tend to be extracted first. Food production is also subject to diminishing returns because population keeps rising, but arable land does not. As a result, each year it is necessary to grow more food per arable acre, leading to a need for more complexity (more irrigation or more fertilizer, or better hybrid seed), often at higher cost.

When the problem of growing wage disparity is matched up with the problem of diminishing returns for the many different types of commodity production, the same problem occurs that occurs with oil. Prices of a wide range of commodities tend to fall below the cost of production–first by a little and, if the debt bubble pops, by a whole lot.

We hear people say, “Of course oil prices will rise. Oil is a necessity.” The thing that they don’t realize is that the problem affects a much bigger “package” of commodities than just oil prices. In fact, finished goods and services of all kinds made with these commodities are also affected, including new homes and vehicles. Thus, the pattern we see of low oil prices, relative to what is required for true profitability, is really an extremely widespread problem.

Interest Rate Policies Affect Affordability

Commodity prices bear surprisingly little relationship to the cost of production. Instead, they seem to depend more on interest rate policies of government agencies. If interest rates rise or fall, this tends to have a big impact on household budgets, because monthly auto payments and home payments depend on interest rates. For example, US interest rates spiked in 1981.

This spike in interest rates led to a major cutback in energy consumption and in GDP growth.

Oil prices began to slide, with the higher interest rates.

Figure 11 indicates that the popping of a debt bubble (mostly relating to US sub-prime housing) sent oil prices down in 2008. Once interest rates were lowered through the US adoption of Quantitative Easing (QE), oil prices rose again. They fell again, when the US discontinued QE.

While these charts show oil prices, there is a tendency for a broad range of commodity prices to move more or less together. This happens because the commodity price issue seems to be driven to a significant extent by the affordability of finished goods and services, including homes, automobiles, and restaurant food.

If the collapse of a major debt bubble occurs again, the world seems likely to experience impacts somewhat similar to those in 2008, depending, of course, on the location(s) and size(s) of the debt bubble(s). A wide variety of commodity prices are likely to fall very low; asset prices may also be affected. This time, however, government organizations seem to have fewer tools for pulling the world economy out of a prolonged slump because interest rates are already very low. Thus, the issues are likely to look more like a widespread economic problem (including far too low commodity prices) than an oil problem.

Lack of Growth in Energy Consumption Per Capita Seems to Lead to Collapse Scenarios

When we look back, the good times from an economic viewpoint occurred when energy consumption per capita (top red parts on Figure 12) were rising rapidly.

The bad times for the economy were the valleys in Figure 12. Separate labels for these valleys have been added in Figure 13. If energy consumption is not growing relative to the rising world population, collapse in at least a part of the world economy tends to occur.

The laws of physics tell us that energy consumption is required for movement and for heat. These are the basic processes involved in GDP generation, and in electricity transmission. Thus, it is logical to believe that energy consumption is required for GDP growth. We can see in Figure 9 that growth in energy consumption tends to come before GDP growth, strongly suggesting that it is the cause of GDP growth. This further confirms what the laws of physics tell us.

The fact that partial collapses tend to occur when the growth in energy consumption per capita falls too low is further confirmation of the way the economics system really operates. The Panic of 1857occurred when the asset price bubble enabled by the California Gold Rush collapsed. Home, farm, and commodity prices fell very low. The problems ultimately were finally resolved in the US Civil War (1861 to 1865).

Similarly, the Depression of the 1930s was preceded by a stock market crash in 1929. During the Great Depression, wage disparity was a major problem. Commodity prices fell very low, as did farm prices. The issues of the Depression were not fully resolved until World War II.

At this point, world growth in energy consumption per capita seems to be falling again. We are also starting to see evidence of some of the same problems associated with earlier collapses: growing wage disparity, growing debt bubbles, and increasingly war-like behavior by world leaders. We should be aware that today’s low oil prices, together with these other symptoms of economic distress, may be pointing to yet another collapse scenario on the horizon.

Oil’s Role in the Economy Is Different From What Many Have Assumed

We have heard for a long time that the world is running out of oil, and we need to find substitutes. The story should have been, “Affordability of all commodities is falling too low, because of diminishing returns and growing wage disparity. We need to find rapidly rising quantities of very, very cheap energy products. We need a cheap substitute for oil. We cannot afford to substitute high-cost energy products for low-cost energy products. High-cost energy products affect the economy too adversely.”

In fact, the whole “Peak Oil” story is not really right. Neither is the “Renewables will save us” story, especially if the renewables require subsidies and are not very scalable. Energy prices can never be expected to rise high enough for renewables to become economic.

The issues we should truly be concerned about are Collapse, as encountered by many economies previously. If Collapse occurs, it seems likely to cut off production of many commodities, including oil and much of the food supply, indirectly because of low prices.

Low oil prices and low prices of other commodities are signs that we truly should be concerned about. Too many people have missed this point. They have been taken in by the false models of economists and by the confusion of Peak Oilers. At this point, we should start considering the very real possibility that our next world problem is likely to be Collapse of at least a portion of the world economy.

Interesting times seem to be ahead.





A reality check on Renewable Energy

23 10 2018

Hat tip to my friend Shane who put me onto this TedX lecture…….  well worth sharing with your ecotopian friends! It does show how Australia – and Canada –  with very low population densities, are in not a bad position, except of course for the fact they are nowhere near the places with high densitity populations. You can’t beat arithmetics and physics…….

How much land mass would renewables need to power a nation like the UK? An entire country’s worth. In this pragmatic talk, David MacKay tours the basic mathematics that show worrying limitations on our sustainable energy options and explains why we should pursue them anyway. (Filmed at TEDxWarwick.) Lesson by David MacKay.