Lithium’s limits to growth

7 08 2017

The ecological challenges of Tesla’s Gigafactory and the Model 3

From the eclectic brain of Amos B. Batto

A long but well researched article on the limitations of the materials needed for a transition to EVs…..


Many electric car advocates are heralding the advent of Tesla’s enormous battery factory, known as the “Gigafactory,” and its new Model 3 electric sedan as great advances for the environment.  What they are overlooking are the large quantities of energy and resources that are consumed in lithium-ion battery manufacturing and how these quantities might increase in the future as the production of electric vehicles (EVs) and battery storage ramps up.

Most of the credible life cycle assessment (LCA) studies for different lithium-ion chemistries find large large greenhouse gas emissions per kWh of battery. Here are the CO2-eq emissions per kWh with the battery chemistry listed in parentheses:
Hao et al. (2017): 110 kg (LFP), 104 kg (NMC), 97 kg (LMO)
Ellingsen et al. (2014): 170 kg (NMC)
Dunn et al. (2012): 40 kg (LMO)
Majeau-Bettez et al. (2011): 200 kg (NMC), 240 kg (LFP)
Ou et al (2010): 290 kg (NMC)
Zackrisson et al (2010): 440 kg (LFP)

Dunn et al. and Hao et al. are based on the GREET model developed by Argonne National Laboratory, which sums up the steps in the process and is based on the estimated energy consumption for each step. In contrast, Ellingsen et al. and Zackrisson et al. are based on the total energy consumption used by a working battery factory, which better captures all the energy in the processing steps, but the data is old and the battery factory was not very energy efficient, nor was it operating at full capacity. Battery manufacturing is getting more energy efficient over time and the energy density of the batteries is increasing by roughly 7% a year, so less materials are needed per kWh of battery. It is also worth noting that no LCA studies have been conducted on the NCA chemistry used by Tesla. NCA has very high emissions per kg due to the large amount of nickel in the cathode, but is very energy dense, so less total material is needed per kWh, so it is probably similar in emissions to NMC.

The big debate in the LCA studies of battery manufacturing is how much energy is consumed per kWh of battery in the battery factory. In terms of MJ per kWh of battery, Ellingsen et al. estimate 586 MJ, Zachrisson et al. estimate 451 MJ and Majeu-Bettez et al. estimate 371-473 MJ. However, the energy for the drying rooms and factory equipment is generally fixed, regardless of the throughput. Ellingsen et al (2014) found that the energy expended to manufacture a kWh of battery could vary as much as 4 times, depending on whether the factory is operating at full capacity or partial capacity. Since the Gigafactory will probably be operating a full capacity and energy efficiency is improving, let’s assume between 100 MJ and 150 MJ per kWh of battery in the Gigafactory (which converts to 28 – 42 kWh per kWh of battery). It is unlikely to be significantly less, because it is more energy efficient to burn natural gas for the drying rooms than use electric heaters, but the Gigafactory will have to use electric heaters to meet Musk’s goal of 100% renewable energy.

If producing 105 GWh of batteries per year at 100 – 150 MJ per kWh, plus another 45 GWh of packs with batteries from other factories at 25 MJ per kWh, the Gigafactory will consume between 3,229 and 4,688 GWh per year, which is between 8.3% and 12.0% of the total electrical generation in Nevada in 2016. I calculate that 285 MW of solar panels can be placed on the roof of the Gigafactory and they will only generate 600 GWh per year, assuming a yearly average of 7.16 kWh/m2/day of solar radiation, 85% (1.3 million m2) of the roof will be covered, 20% efficiency in the panels and a 10% system loss.

Solar panels in dusty locations such as Nevada loose roughly 25% of their output if they are not regularly cleaned. Although robots have been developed to clean panels with brushes, water will most likely be used to clean the Gigafactory’s panels. A study by Sandia National Laboratory found that photovoltaic energy plants in Nevada consume 0.0520 acre-feet of water per MW of nameplate capacity per year. The solar panels at the Gigafactory will probably have 25% less area per MW than the solar panels in the Sandia study, so we can guesstimate that the solar panels on the Gigafactory roof will consume 11.1 acre-feet or 13,700 cubic meters of water per year.

Solar panels can also be placed on the ground around the factory, and but consider the fact that the Gigafactory will only receive 4.23 kWh/m2/day in December, compared to 9.81 kWh/m2/day in July. With less than half the energy from the panels during the winter, the Gigafactory will need other sources of energy during the times when it is cloudy and the sun’s rays are more indirect. Even during the summer, the Gigafactory will probably have to use temporary battery storage to smooth out the solar output or get additional energy with electric utilities which use gas peaking, battery storage or buy energy from the regional grid to give the Gigafactory a stable supply of electricity.

The original mockup of the Gigafactory showed wind turbines on the hillsides around the plant, but wind energy will not work onsite, because the area has such low wind speed. A weather station in the Truckee River valley along I-80, near the Gigafactory, measures an average wind speed of 3.3 m/s at a height of 6 meters, although the wind speed is probably higher at the site of the Gigafactory. Between 4 to 5 m/s is the minimum wind speed to start generating any energy, and between 5 and 6 m/s is generally considered the minimum for wind turbines to be economically viable. It might be possible to erect viable wind turbines onsite with 150 m towers to capture better wind, but the high costs make it likely that Tesla will forgo that option.

The region has good geothermal energy at depths of 4000 to 6000 feet and this energy is not variable like solar and wind. However, there is a great deal of risk in geothermal exploration which costs $10 million to drill a test well. It is more likely that Tesla will try to buy geothermal energy from nearby producers, but geothermal energy in the region is already in heavy demand, due to the clean energy mandates from California, so it won’t be cheap.

Despite Musk’s rhetoric about producing 100% of the Gigafactory’s energy onsite from renewable sources, Tesla knows that it is highly unrealistic, which is why it negotiated to get $8 million in electricity rebates from the state of Nevada over an 8 year period. It is possible that the Gigafactory will buy hydroelectric energy from Washington or Oregon, but California already competes for that electricity. If Tesla wants a diversified supply of renewable energy to balance out the variability of its solar panels, it will probably have to provide guaranteed returns for third parties to build new geothermal plants or wind farms in the region.

I would guesstimate that between 2/3 of the electricity consumed by the Gigafactory will come from the standard Nevada grid, whereas 1/3 will be generated onsite or be bought from clean sources. In 2016, utility-scale electricity generation in Nevada was 72.8% natural gas, 5.5% coal, 4.5% hydroelectric, 0.9% wind, 5.7% PV solar, 0.6% concentrated solar, 9.8% geothermal, 0.14% biomass and 0.03% petroleum coke. If we use the grams of CO2-eq per kWh estimated by IPCC AR5 WGIII and Bruckner et al (2014), then natural gas emits 595 g, coal emits 1027 g, petroleum emits 880 g, hydroelectric emits 24 g, terrestrial wind emits 11 g, utility PV solar emits 48 g, residential PV solar emits 41 g, concentrated solar emits 27 g, geothermal emits 38 g and biomass emits 230 g. Based on those emission rates, grid electricity in Nevada emits 499 g CO2-eq per kWh. If 2/3 comes from the grid and 1/3 comes from rooftop PV solar or a similar clean source, then the electricity used in the Gigafactory will emit 346 g CO2 per kWh. If consuming between 3,229 and 4,688 GWh per year, the Gigafactory will emit between 1.12 and 1.62 megatonnes of CO2-eq per year, which represents between 3.1% and 4.5% of the greenhouse gas emissions that the state of Nevada produced in 2014 according to the World Resources Institute.

Aside from the GHG emissions from the Gigafactory, it is necessary to consider the greenhouse gas emissions from mining, refining and processing the materials used in the Gigafactory. The materials used in batteries consume a tremendous amount of energy and resources to produce. The various estimates of the energy to produce the materials in batteries and their greenhouse gas emissions shows the high impact that battery manufacturing has on the planet.


To get some idea of how much materials will be used in the NCA cells produced by the Gigafactory, I attempted to do a rough calculation of the weight of materials in 1 kWh of cells. Taking the weight breakdown of an NMC battery cell in Olofsson and Romare (2013), I used the same weight percentages for the cathode, electrolyte, anode and packaging, but scaled the energy density up from 233 kW per kg in the NCA cells in 2014 to 263 kW per kg, which is a 13% increase, since Telsa claims a 10% to 15% increase in energy density in the Gigafactory’s cells. Then, I estimated the weight of the components in the cathode, using 76% nickel, 14% cobalt, and 10% aluminum and some stochiometry to calculate the lithium and oxygen compared to the rest of the cathode materials. The 2170 cells produced by the Gigafactory will probably have different weight ratios between their components, and they will have more packaging materials than the pouch cells studied by Olofsson and Romare, but this provides a basic idea how much material will be consumed in the Tesla cells.


The estimates of the energy, the emissions of carbon dioxide equivalent, sulfur dioxide equivalent, phosphorous equivalent and human toxicity to produce the metals are taken from Nuss and Eckelman (2014), which are process-sum estimates based on the EcoInvent database. These are estimates to produce generic metals, not the highly purified metals used in batteries, and the process-sum methodology generally underestimates the emissions, so the estimates should be taken with a grain of salt but they do give some idea about the relative impact of the different components in battery cells since they use the same methodology in their calculations.

At this point we still don’t know how large the battery will be in the forthcoming Model 3, but it has been estimated to have a capacity of 55 kWh based on a range of 215 miles for the base model and a 20% reduction in the size of the car compared to the Model S. At that battery size, the cells in the Model 3 will contain 6.3 kg of lithium, 26.4 kg of nickel, 4.9 kg of cobalt, 27.9 kg of aluminum, 56.6 kg of copper and 21.0 kg of graphite.

Even more concerning is the total impact of the Gigafactory when it ramps up to its planned capacity of 150 GWh per year. Originally, the Gigafactory was scheduled to produce 35 GWh of lithium ion batteries by 2020, plus package an additional 15 GWh of cells produced in other factories. After Tesla received 325,000 preorders for the Model 3 within a week of being announced on March 31, 2016, the company ambitiously announced that it would triple its planned battery production and be able to produce 500,000 cars a year by 2018–two years earlier than initially planned. Now Elon Musk is talking about building 2 to 4 additional Gigafactories and one is rumored to have signed a deal to build one of them in Shanghai.

If the components for 1 kWh of Gigafactory batteries is correct and the Nevada plant manages to produce as much as Musk predicts, then the Gigafactory and the cells it packages from other battery factories will consume 17,119 tonnes of lithium, 71,860 tonnes of nickel, 13,292 tonnes of cobalt, 154,468 tonnes of copper and 75,961 tonnes of aluminum. All of these metals except aluminum have limited global reserves, and North America doesn’t have enough production capacity to hope to supply all the demand of the Gigafactory, except in the case of aluminum and possibly copper.


When the Gigafactory was originally announced, Telsa made statements about sourcing the battery materials from North America which would both reduce its costs and lower the environmental impact of its batteries. These claims should be treated with skepticism. The Gigafactory will reduce the transportation emissions in battery manufacturing, since it will be shipping directly from the refineries and processors, but the transportation emissions will still be very high because North America simply doesn’t produce enough of the metals needed by the Gigafactory. If the Gigafactory manufacturers 150 GWh of batteries per year, then it will consume almost 200 times more lithium than North America produced in 2013. In addition, it will also consume 166% of the cobalt, 133% of the natural graphite, 25.7% of the nickel, and 5.6% of the copper produced by North American mines in 2016. Presumably synthetic graphite will be used instead of natural graphite because it has a higher purity level of carbon and more uniform spheroid flakes which allow for the easier flow of electrons in the cathode, but most synthetic graphite comes from Asia. Only in the case of aluminum does it seem likely that the metal will come entirely from North America, since Gigafactory will consume 1.9% of North American mine production and the US has excess aluminum refining capacity and no shortage of bauxite. Even when considering that roughly 45 GWh of the battery cells will come from external battery factories which are presumably located in Asia, the Gigafactory will overwhelm the lithium and cobalt markets in North America, and strain the local supplies of nickel and copper.


Shipping from overseas contributes to greenhouse gases, but shipping over water is very energy efficient. The Gigafactory is located at a nexus of railroad lines, so it can efficiently ship the battery materials coming from Asia through the port of Oakland. The bigger problem is that most ships on international waters use dirty bunker fuels that contain 2.7% sulfur on average, so they release large quantities of sulfur dioxide into the atmosphere that cause acid rain and respiratory diseases.

A larger concern than the emissions from shipping is the fact that the production of most of these battery materials is an energy intensive process that consumes between 100 and 200 mejajoules per kg. The aluminum, copper, nickel and cobalt produced by North America is likely to come from places powered by hydroelectric dams in Canada and natural gas in the US, so they are comparatively cleaner.  Most of the metal refining and graphite production in Asia and Australia, however, is done by burning coal. Most of the places that produce battery materials either lack strong pollution controls, as is the case in Russia, the Democratic Republic of Congo (DRC), Zambia, Philippines or New Caledonia, or they use dirty sources of energy, as is the case in China, India, Australia, the DRC, Zambia, Brazil and Madagascar.


Most of the world’s lithium traditionally came from pumping lithium rich subsurface water out of the salt flats of Tibet, northeast Chile, northwest Argentina and Nevada, but the places with concentrated lithium brines are rapidly being exhausted. The US Geological Survey estimates that China’s annual production of lithium which mostly comes from salt flats in Tibet has fallen from 4500 tonnes in 2012 to just 2000 tonnes in 2016. Silver Peak, Nevada, which is the only place in North America where lithium is currently extracted, may be experiencing similar production problems due to the exhaustion of its lithium, but its annual production numbers are confidential.

Since 1966 when brine extraction began in Silver Peak, the concentration of lithium in the water has fallen from 360 to 230 ppm (parts per million), and it is probably around 200 ppm today. At that concentration of lithium, 14,300 liters of water need to be extracted to produce 1 kg of battery-grade lithium metal. This subsurface water is critical in a state that only receives an average of 9 inches of rain per year. Parts of Nevada are already suffering from water rationing, so a massive expansion of lithium extraction is an added stress, but the biggest risk is that brine operations may contaminate the ground water. 30% of Nevada’s water is pumped from underground aquifers, so protecting this resource is vitally important. Lithium-rich water is passed through a series of 4 or 5 evaporation pools over a series of 12 to 18 months, where it is converted to lithium chloride, which is toxic to plants and aquatic life and can contaminate the ground water. Adams-Kszos and Stewart (2003) measured the effect of lithium chloride contamination in aquatic species 150 miles away from brine operations in Nevada.

As the lithium concentrations fall in the water, more energy is expended in pumping water and evaporating it to concentrate the lithium for processing. Argonne National Laboratory estimates that it takes 3 times as much energy to extract a tonne of lithium in Silver Peak, Nevada as in the Atacama Salt Flats of Chile, where the lithium is 7 times more concentrated.  Most of the lithium in Chile and Argentina is produced with electricity from diesel generators, but in China and Australia it comes from burning coal, which is even worse.

For every kg of battery-grade lithium, 4.4 kg of slaked lime is consumed to remove magnesium and calcium from the brine in Silver Peak. The process of producing this lime from limestone releases 0.713 kg of COfor every kg of lime. In addition, 5 kg of soda ash (Na2CO3) is added for each kilo of battery-grade lithium to precipitate it as lithium carbonate. Production of soda ash is also an energy intensive process which produces greenhouse gases.

Although lithium is an abundant element and can be found in ocean water and salty lakes, there are only 4 places on the planet where it is concentrated enough without contaminants to be economically extracted from the water and the few places with concentrated lithium water are rapidly being exploited. In 2008, Meridian International estimated that 2 decades of mining had extracted 20% of the lithium from the epicenter of the Atacama Salt Flats where lithium concentrations are above 3000 ppm. According to Meridian’s calculations, the world only had 4 million tonnes of high-concentration lithium brine reserves remaining in 2008.

As the best concentrations of lithium brine are being exhausted, extraction is increasingly moving to mining pegmatites, such as spodumene. North Carolina, Russia and Canada shut down their pegmatite operations because they couldn’t compete with the cheap cost of lithium from the salt flats of Chile and Argentine, but Australia and Zimbabwe have dramatically increased their production of lithium from pegmatites in recent years. Between 2004 and 2016, the percentage of global lithium from pegmatites increased from 39% to 44%.


In 2016, Australia produced 40.9% of the global lithium supply by processing spodumene, which is an extremely energy-intensive process. It takes 125 MJ of energy to extract a kilo of lithium from Chile’s salt flats, whereas 850 MJ is consumed to extract the same amount of lithium from spodumene in Australia. The spodumene is crushed, so it can be passed through a flotation beneficiation process to produce a concentrate. That concentrate is then heated to 1100ºC to change the crystal structure of the mineral. Then, the spodumene is ground and mixed with sulfuric acid and heated to 250ºC to form lithium sulfate. Water is added to dissolve the lithium sulfate and it is filtered before adding soda ash which causes it to precipitate as lithium carbonate. As lithium extraction increasingly moves to pegmatites and salt flats with lower lithium concentrations, the energy consumption will dramatically increase to produce lithium in the future.

Likewise, the energy to extract nickel and cobalt will also increase in future. The nickel and cobalt from Canada and the copper from the United States, generally comes from sulfide ores, which require much less energy to refine, but these sulfide reserves are limited. The majority of nickel and cobalt, and a sizable proportion of the copper used by the Gigafactory will likely come from places which present ethical challenges. Nickel from sulfide ores generally consumes less than 100 MJ of energy per kg, whereas nickel produced from laterite ores consumes between 252 and 572 MJ per kg. All the sulfide sources emit less than 10 kg of CO2 per kg of nickel, whereas the greenhouse gas emissions from laterite sources range from 25 to 46 kg  CO2 per kg of nickel. It is generally better to acquire metals from sulfide ores, since they emit fewer greenhouse gases and they generally come from deeper in the ground, whereas laterite ores generally are produced by open pit and strip mining which causes greater disruption of the local ecology. Between 2004 and 2016, the percentage of global primary production of nickel from laterite ores increase from 40% to 60% and that percentage will continue to grow in the future, since 72% of global nickel “resources” are laterites according to the US Geological Survey.


Cobalt is a byproduct of copper or nickel mining. The majority of the sulfide ores containing copper/cobalt are located in places like Norilsk, Russia, Zambia and the Katanga Province of the Democratic Republic of Congo, where there are no pollution controls to capture the large amounts of sulfur dioxide and heavy metals released by smelting. The refineries in Norilsk, Russia, which produce 11% of the world’s nickel and 5% of its cobalt, are so polluting, that nothing grows within a 20 kilometer radius of the refineries and it is reported that Norilsk has the highest rates of lung cancer in the world.

The Democratic Republic of Congo currently produces 54% of the world’s cobalt and 5% of its copper. Buying cobalt from the DRC helps fuel a civil war in the Katanga Province where the use of children soldiers and systematic rape are commonplace. Zambia, which is located right over the border from Katanga Province, produces 4% of the world’s cobalt and copper and it also has very lax pollution controls for metal refining.

Most of the cobalt and nickel produced by the DRC and Zambia is shipped to China for refining by burning coal. China has cracked down on sulfur dioxide and heavy metal emissions in recent years, and now the DRC is attempting to do more of the refining within its own borders. The problem is that the DRC produces most of its energy from hydroelectric dams in tropical rainforests, which is the dirtiest energy on the planet. According to the IPCC (AR5 WGIII 2014), hydroelectric dams typically emit a medium of 24 g of  CO2-eq per kWh, but tropical dams accumulate large amounts of vegetation which collect at the bottom of the dam where bacteria feeding on the decaying matter release methane (CH4) in the absence of oxygen. There have been no measurements of the methane released by dams in the DRC, but studies of 3 Amazonian hydroelectric dams found that they emit an average of 2556 g CO2-eq per kWh. Presumably the CO2 from these dams would have been emitted regardless of whether the vegetation falls on the forest floor or in a dam, but rainforest dams are unique environments without oxygen that produces methane. If we only count the methane emissions, then Amazonian hydroelectric dams emit an average of 2044 g CO2-eq per kWh. Any refining of copper/cobalt in the DRC and Zambia or nickel/cobalt in Brazil will likely use this type of energy which emits twice as much greenhouse gases as coal.

To avoid the ethical problems with obtaining nickel and cobalt from Russia and cobalt and copper from the DRC and Zambia, the Gigafactory will have to consume metals from laterite ores in places like Cuba, New Caledonia, Philippines, Indonesia and Madagascar, which dramatically increases the greenhouse gas emissions of these metals. The nickel/cobalt ore from Moa, Cuba is shipped to Sherritts’ refineries in Canada, so presumably it will be produced with pollution controls in Cuba and Canada and relatively clean sources of energy. In contrast, the nickel/cobalt mining in the Philippines and New Caledonia has generated protracted protests by the local population who are effected by the contamination of their water, soil and air. When Vale’s $6 billion high pressure acid leaching plant in Goro, New Caledonia leaked 100,000 liters of acid-tainted effluent leaked into a local river in May 2014, protesters frustrated by the unaccountability of the mining giant burned a third of its trucks and one of its buildings, causing between $20 and $30 million in damages. The mining companies extracting nickel and cobalt in the Philippines have shown so little regard for the health of the local people, that the public outcry induced the Duterte administration to recently announce that it will prohibit all open pit mining of nickel. If this pronouncement is enforced, the operations of 28 of the 41 companies mining nickel/cobalt in the country will be shut down and the global supply of nickel will be reduced between 8% and 10%.

Most refining of laterite ores in the world is done with dirty energy, which is problematic because these ores require so much more energy than sulfide ores. Much of the copper/cobalt from the DRC and Zambia and the nickel/cobalt from the Philippines is shipped to China where it is refined with coal. The largest nickel/cobalt laterite mine and refinery in the world is the Ambatovy Project in Madagascar. Although the majority of the electricity on the island comes from hydroelectric dams, the supply is so limited that Ambatovy constructed three 30 MW coal-powered generators, plus 30 MW diesel powered generators.

It is highly likely that many of the LCA studies of lithium-ion batteries have underestimated the energy and greenhouse gas emissions to produce their metals, because they assume that the lithium comes from brine operations and the copper, nickel and cobalt come from sulfide ores with high metal concentrations. As lithium extraction increasingly shifts to spodumene mining and nickel and cobalt mining shifts to laterite ores, the greenhouse gas emissions to produce these metals will dramatically increase.

As the global production of lithium-ion batteries ramps up, the most concentrated ores for these metals will become exhausted, so that mining will move to less-concentrated sources, which require more energy and resources in the extraction and processing.  In 1910, copper ore in the US contained 1.9% copper. By 1950, this percentage had fallen to 0.9% copper, and by 1980 it was at 0.5% copper. As the concentration of copper in the ore has fallen, the environmental impact of extraction has risen. In a study of the smelting and refining of copper and nickel, Norgate and Rankin (2000) found that the energy consumption, greenhouse gas emissions and sulfur dioxide emissions per kg of metal rose gradually when changing from ore with 3% or 2% metal to 1% metal, but below 1% the environmental impacts increased dramatically. MJ/kg, CO2/kg and SO2/kg doubled when moving from ore with 1% metal to ore with 0.5% metal, and they doubled again when moving to 0.25% metal. Producing a kilo of copper today in the US has double the environmental impact of a kg of copper half a century ago and it will probably have 4 times the impact in the future.

The enormous demand for metals by battery manufacturers will force the mining companies to switch to less and less concentrated ores and consume more energy in their extraction. If the Nevada Gigafactory produces 150 GWh of batteries per year, then it will dramatically reduce the current global reserves listed by the US Geological survey. The Nevada Gigafatory will cut the current global lithium reserves from 400 to 270 years, assuming that current global consumption in other sectors does not change (which is highly unlikely). If the Gigafactory consumes metals whose recycled content is the US average recycling rate, then the current global copper reserves will be reduced from 37.1 to 36.9 years, the nickel reserves from 34.7 to 33.9 years, and the cobalt reserves from 56.9 to 52.5 years.

Recycling at the Gigafactory will not dramatically reduce its demand for metals. If we assume that 80% of the metal consumed by the Gigafactory will come from recycled content starting in 15 years when batteries start to be returned for recycling, then current global reserves will be extended 0.04 years for copper, 0.09 years for nickel, 0.9 years for cobalt. Only in the case of lithium will recycling make a dramatic difference, extending the current reserves 82 years for lithium.

The prospects for global shortages of these metals will become even more dire if the 95.0 million vehicles that the world produced in 2016 were all long-range electrics as Elon Musk advocates for “sustainable transport.” If the average vehicle (including all trucks and buses) has a 50 kWh battery, then the world would need to produce 4750 GWh of batteries per year just for electric vehicles. With energy storage for the electrical grid, that total will probably double, so 64 Gigafactories will be needed. Even that might not enough. In Leonardo de Caprio’s documentary Before the Flood, Elon Musk states, “We actually did the calculations to figure out what it would take to transition the whole world to sustainable energy… and you’d need 100 Gigafactories.”

Lithium-ion batteries will get more energy dense in the future, but they are unlikely to reach the high energy density of the NCA cells produced in the Gigafactory, if using the LMO or LFP chemistries. For that kind of energy density, they will probably need either an NCA or an altered NMC chemistry which is 70%-80% nickel, so the proportion of lithium, nickel, cobalt and copper in most future EV batteries is likely to be similar to the Gigafactory’s NCA cells. If 4750 GWh of these batteries are produced every year at an energy density of 263 Wh/kg, then the current global reserves will be used up in 24.5 years for lithium, 31.2 years for copper, 20.2 years for nickel, and 15.4 years for cobalt. Even if those batteries are produced with 80% recycled metals, starting in 15 years time, the current global lithium reserves would be extended 6.6 years, or 7.4 years if all sectors switch to using 80% recycled lithium. Using 80% recycled metal in the batteries would extend current copper, nickel and cobalt reserves by 0.7, 0.5 and 0.1 years, respectively. An 80% recycling rate in all sectors would make a difference for copper, extending its reserves by 11.5 years, but only 2.8 years for nickel and 0.2 years for cobalt. In other words, recycling will not significantly reduce the enormous stresses that lithium-ion batteries will place on global metal supplies, because they represent so much new demand for metals.

As the demand for these metals increases, the prices will increase and new sources of these metals will be found, but they will either be in places like the DRC with ethical challenges or in places with lower quality ores which require more energy and resources to extract and refine. We can expect more energy-intensive mining of spodumene and  more strip mining of laterite ores which cause more ecological disruption. The ocean floor has enormous quantities of manganese, nickel, copper and cobalt, but the energy and resources to scrap the bottom of the ocean will dramatically increase the economic and ecological costs. If battery manufacturing dramatically raises the prices of lithium, nickel, cobalt, copper (and manganese for NMC cells), then it will be doubly difficult to transition to a sustainable civilization in other areas. For example, nickel and cobalt are essential to making carbide blades, tool dies and high-temperature turbine blades and copper is a vital for wiring, electronics and electrical motors. It is hard to imagine how the whole world will transition to a low-carbon economy if these metals are made prohibitively expensive by manufacturing over a billion lithium-ion batteries for EVs.

Future batteries will probably be able to halve their weight by switching to a solid electrolyte and using an anode made of lithium metal, lithiated silicon or carbon nanotubes (graphene), but that will only eliminate the copper, while doing little to reduce the demand for the other metals. Switching the anode to spongy silicon or graphene will allow batteries to hold more charge per kilogram, but those materials also dramatically increase the cost and the energy and resources that are consumed in battery manufacturing.

In the near future, lithium-ion batteries are likely to continue to follow their historical trend of using 7% less materials each year to hold the same amount of charge. That rate of improvement, however, is unlikely to last. An NCA cathode currently holds a maximum of 200 mAh of energy per gram, but its theoretical maximum is 279 mAh/g. It has already achieved 72% of what is theoretically possible, so there is little scope to keep improving. NMC at 170 mAh/g is currently farther from its theoretical limit of 280 mAh/g, but the rate of improvement is likely to slow as these battery chemistries bump against their theoretical limits.

Clearly the planet doesn’t have the resources to build 95 million long-range electric vehicles each year that run on lithium-ion batteries. Possibly a new type of battery will be invented that only uses common materials, such as aluminum, zinc, sodium and sulfur, but all the batteries that have been conceived with these sorts of material still have significant drawbacks. Maybe a new type of battery will be invented that is suitable for vehicles or the membranes in fuel cells will become cheap enough to make hydrogen a viable competitor, but at this point, lithium-ion batteries appear likely to dominate electric vehicles for the foreseeable future. The only way EVs based on lithium-ion can become a sustainable solution for transport is if the world learns to live with far fewer vehicles.

Currently 3% more vehicles are being built each year, and there is huge demand for vehicles in the developing world. While demand for cars has plateaued in the developed world, vehicle manufacturing since 1999 has grown 17.4% and 10.5% per year in China and India, respectively. If the developing world follows the unsustainable model of vehicle ownership found in the developed world, then the transition to electrified transport will cause severe metal shortages. Based on current trends, Navigant Research predicts that 129.9 million vehicles will be built in the year 2035, when there will be 2 billion vehicles on the road.


On the other hand, James Arbib and Tony Seba believe that autonomous vehicles and Transport as a Service (TaaS) such as Uber and Lyft will dramatically reduce demand for vehicles, lowering the number of passenger vehicles on American roads from 247 to 44 million by 2030. If 95% of passenger miles are autonomous TaaS by 2030 and the lifespan of electric vehicles grows to 500,000 miles as Arbib and Seba predict, then far fewer vehicles will be needed. Manufacturing fewer electric vehicles reduces the pressure to extract metals from laterite ores, pegmatites, the ocean floor, and lower-grade ores in general with higher ecological costs.

Ellingsen et al (2016) estimate that the energy consumed by battery factories per kWh of batteries has halved since 2012, however, that has to be balanced by the growing use lithium from spodumene and nickel and cobalt from laterite ores, and ores with lower metal concentrations that require more energy and produce more pollution. Given the increased energy efficiency in battery manufacturing plants and the growing efficiencies of scale, I would guesstimate that lithium-ion battery emissions are currently at roughly 150 kg  CO2-eq per kWh of battery and that the Gigafactory will lower those emissions by a third to roughly 100 kg  CO2-eq / kWh. If the Model 3, uses a 55 kWh battery, then its battery emissions would be roughly 5500 kg  CO2-eq.

Manufacturing a medium-sized EV without the battery emits 6.5 tonnes of  CO2-eq according to Ellingsen et al (2016). Electric cars don’t have the huge engine block of an ICE car, but they have large amounts of copper in the motor’s rotor and the windings and the Model 3 will have far more electronics than a standard EV. The Model S has 23 kg of electronics and I would guesstimate that the Model 3 will have roughly 15 lbs of electronics if it contains nVidia’s Drive PX or a custom processor based on the K-1 graphics processor. If the GHG emissions are roughly 150 kg  CO2-eq per kg of electronics, we can guesstimate that 2.2 tonnes of  CO2-eq will be emitted to manufacture the electronics in the Model 3. Given the large amount of copper, electronics and sensors in the Model 3, add an additional tonne, plus 5.5 tonnes for its 50 kWh battery, so a total of 13 tonnes of  CO2-eq will be emitted to manufacture the entire car.

Manufacturing a medium-sized ICE car emits between 5 and 6 tonnes, so there is roughly a 7.5 tonne difference in GHG emissions between manufacturing the Model 3 and a comparable ICE car. A new ICE car the size of the Model 3 will get roughly 30 mpg. In the US, a gallon of gasoline emits 19.64 lbs of CO2, but it emits 24.3 lbs of  CO2e when the methane and nitrous oxide are included, plus the emissions from extraction, refining and transportation, according to the Argonne National Laboratory. Therefore, we will need to burn 680 gallons of gasoline or drive 20,413 miles at 30 mpg to equal those 7.5 extra tonnes in manufacturing the Model 3.

At this point, the decision whether the Model 3 makes ecological sense depends on where the electricity is coming from. Let’s assume that the Model 3 will consume 0.30 kWh of electricity per mile, which is what the EPA estimates the Nissan Leaf to consume. The Model S will be a smaller and more aerodynamic car than the Leaf, but it will also weigh significantly more due to its larger battery. If we also include the US national average of 4.7% transmission losses in the grid, then the Model 3 will consume 0.315 kWh per mile. After driving the Model 3 100,000 miles, the total greenhouse gas emissions (including the production emissions) will range between 14.1 and 45.3 tonnes, depending on its energy source to charge the battery.


In comparison, driving a 30 mpg ICE car (with 5.5 tonnes in production emissions) will emit 42.2 tonnes of  CO2-eq after 100,000 miles. If we guesstimate that manufacturing a Toyota Prius will emit 7 tonnes, then driving it 100,000 miles at 52 mpg will emit 28.2 tonnes. Only in places like Kentucky which get almost all their electricity from coal is an ICE car the better environmental choice. The Model 3, however, will have worse emissions than most of its competitors in the green car market, if it is running on average US electricity, which emits 528 grams of CO2-eq per kWh. It will emit slightly more than a plugin hybrid like the Chevy Volt and an efficient hybrid like the Toyota Prius and substantially more than a short-range electric, like the Nissan Leaf.

Most previous comparisons between electric cars and ICE cars were based on short-range electrics with smaller batteries, such as the Nissan Leaf, which is why environmental advocates are so enthusiastic about EVs. However, comparing the Model S and Model 3 to the Nissan Leaf, Chevy Volt and Toyota Prius hybrid shows that the environmental benefits of long-range EVs are questionable when compared to short-range EVs, plugin hybrids and hybrids. Only when running the Model 3 on cleaner sources of electricity does it emit less greenhouse gases than hybrids and plugin hybrids, but in the majority of the United States it will emit slightly more. Many of the early adopters of EVs also owned solar panels, so buying a Model 3 will reduce their carbon footprint, but the proportion of EV owners with solar panels on their roofs is falling. According to CleanTechnica’s PlugInsights annual survey, 25% of EV buyers before 2012 had solar panels on their roofs, compared to just 12% in 2014-2015. Most people who own solar panels do not have a home battery system so they can not use their clean energy all day, and most EV charging will happen at night using dirtier grid electricity.

Another factor to consider is the effect of methane leakage in the extraction and transport of natural gas. There is a raging scientific debate about what percentage of natural gas leaks into the atmosphere without being burned. A number of studies have concluded that the leakage of methane causes electricity from natural gas to have GHG emissions similar to coal, but there is still no consensus on the matter.  If the leakage rate is as high as some researchers believe, then EVs will emit more greenhouse gases than hybrids and efficient ICE cars in places like California which burn large amounts of natural gas.

On the other hand, many people believe that EVs will last 300,000 miles or even 500,000 miles since they have so few moving parts, so their high emissions in manufacturing will be justified. However, the EV battery will probably have to be replaced, and the manufacturing emissions for a long range EV battery can be as high as building a whole new ICE car. Another factor that could inhibit the long life of Telsa’s cars is the fact that the company builds cars described as “computers on wheels,” which are extremely difficult for third parties to fix and upgrade over time. Telsa only sells its parts to authorized repair shops and much of the functionality of car is locked up with proprietary code and secret security measures, as many do-it-yourselfers have discovered to their chagrin. When Tesla cars are damaged and sold as salvage, Tesla remotely disables its cars, so that they will no longer work even if repaired. The $600 inspection fee to reactivate the car plus the towing fees discourage Teslas from being fixed by third parties. These policies make it less likely that old Teslas will be fixed and their lifespans extended to counterbalance the high environmental costs of producing the cars.

Although the Model 3 has high greenhouse gas emissions in its production and driving it is also problematic in parts of the world that currently use dirty energy, those emissions could be significantly reduced in the future if they are accompanied by a shift to renewable energy, more recycling and the electrification of mining equipment, refining and transport. The car’s ecological benefits will increase if the emissions can be decreased in producing battery materials and the greater energy density of batteries is used to decrease the total materials in batteries rather than keep extending the range of EVs. Producing millions of Model 3s will strain the supply of vital metals and shift extraction to reserves which have higher ecological costs. However, the Model 3 could become a more sustainable option if millions of them are deployed in autonomous Transport as a Service fleets, which Arbib and Seba predict will be widespread by 2030, since TaaS will cost a tenth of the price of owning a private vehicle. If the Model 3 and future autonomous EVs become a means to drop the global demand for private vehicles and that helps reduce the demand for lithium, nickel, cobalt and copper down to sustainable levels, then the high environmental costs of manufacturing the Model 3 would be justified.

Nonetheless, the Model 3 and the NCA 2170 batteries currently being produced by Tesla offer few of those possible future ecological benefits. Most of the metal and graphite in the battery is being produced with energy from fossil fuels. In the short term at least, Telsa batteries will keep growing in capacity to offer more range, rather than reducing the total consumption of metals per battery. The extra sensors, processing power and electronics in the current Model 3 will increase its ecological costs without providing the Level 4 or 5 autonomy that would make it possible to convince people to give up their private vehicles. In the here and now, the Model 3 is generally not the best ecological choice, but it might become a better choice in the future.

The Model 3 promises to transform the market not only for EVs, but cars in general. If the unprecedented 500,000 pre-orders for the Model 3 are any indication of future demand, then long-range electrics with some degree of autonomous driving like the Model 3 will capture most of the EV market. Telsa’s stunning success will induce the rest of auto-makers to also start making long-range EVs with large batteries, advanced sensors, powerful image processors, advanced AI, cellular networking, driving data collection and large multimedia touchscreens. These features will dramatically increase the environmental costs of car manufacturing. Whether these features will be balanced by other factors which reduce their environmental costs remains to be seen.

Much of this analysis is guess work, so it should be taken with a grain of salt, but it points out the problems with automatically assuming that EVs are always better for the environment. If we consider sulfate emissions, EVs are significantly worse for the environment. Also, when we consider the depletion of critical metal reserves, EVs are significantly worse than ICE vehicles.

The conclusion should be that switching to long-range EVs with large batteries and advanced electronics bears significant environmental challenges. The high manufacturing emissions of these types of EVs make their ecological benefits questionable for private vehicles which are only used on average 4% of the time. However, they are a very good option for vehicles which are used a higher percentage of the time such as taxis, buses and heavy trucks, because they will be driven many miles to counterbalance their high manufacturing emissions. Companies such as BYD and Proterra provide a model of the kinds of electric vehicles that Tesla should be designing to promote “sustainable transport.” Tesla has a few ideas on the drawing board that are promising from an ecological perspective, such as its long-haul semi, the renting out of Teslas to an autonomous TaaS fleet, and a new vehicle that sounds like a crossover between a sedan and a minibus for public transport. The current Model 3, however, is still a vehicle which promotes private vehicle ownership and bears the high ecological costs of long-range lithium batteries and contributes to the growing shortage of critical metals.

Clearly, EVs alone are not enough to reduce greenhouse gas emissions or attain sustainable transport in general. The first step is to work on switching the electric grid to cleaner renewable energy and installing more residential solar, so that driving an EV emits less CO2. However, another important step is redesigning cities and changing policies so that people aren’t induced to drive so many private vehicles. Instead of millions of private vehicles on the road, we should be aiming for walkable cities and millions of bikes and electric buses, which are far better not only for human health, but also for the environment.

A further step where future Model 3s may help is in providing autonomous TaaS that helps convince people to give up their private vehicles. However, autonomous EVs need to be matched by public policies that disincentivize the kind of needless driving that will likely occur in the future. The total number of miles will likely increase in the future due to autonomous electric cars driving around looking for passengers to pick up and people who spend more time in the car because they can surf the web, watch movies, and enjoy the scenery without doing the steering. Plus, the cost of the electricity to charge the battery is so cheap compared to burning gasoline that people will be induced to drive more, not less.


The End of the Oilocene

19 02 2017

The Oilocene, if that term ever catches on, will have only lasted 150 years. Which must be the quickest blink in terms of geological eras…… This article was lifted from but unfortunately I can’t give writing credits as I could not find the author’s name anywhere. The data showing we’ll be quickly out of viable oil is stacking up at an increasing rate.

Steven Kopits from Douglas-Westwood (whose work I published here three years ago almost to the day) said the productivity of new capital spending has fallen by a factor of five since 2000. “The vast majority of public oil and gas companies require oil prices of over $100 to achieve positive free cash flow under current capex and dividend programs. Nearly half of the industry needs more than $120,” he said”.

And if you don’t finish reading this admittedly long article, do not exit this blog without first taking THIS on board…….:

What people do not realise is that it takes oil to extract, refine, produce and deliver oil to the end user. The Hills Group calculates that in 2012, the average energy required by the oil production chain had risen so much that it was then equal to the energy contained in the oil delivered to the economy. In other words “In 2012 the oil industry production chain in total used 50% of all the energy contained in the oil delivered to the consumer”. This is trending rapidly to reach 100% early in the next decade.

So there you go…… as I posted earlier this year, do we have five years left…….?


End of the “Oilocene”: The Demise of the Global Oil Industry and of the Global Economic System as we know it.

(A pdf version of this paper is here. Please refer to my presentation for supporting images and comments. )

In 1981 I was sitting on an eroded barren hillside in India, where less than 100 years previously there had been dense forest with tigers. It was now effectively a desert and I was watching villagers scavenging for twigs for fuelwood and pondering their future, thinking about rapidly increasing human population and equally rapid degradation of the global environment. I had recently devoured a copy of The Limits to Growth (LTG) published in 1972, and here it was playing out in front of me. Their Business as Usual (BAU) scenario showed that global economic growth would be over between 2010 -2020; and today 45 years later, that prediction is inexorably becoming true. Since 2008 any semblance of growth has been fuelled by astronomically greater quantities of debt; and all other indicators of overshoot are flashing red.


One of the main factors limiting growth was regarded by the authors of LTG as energy; specifically oil. By mid 1970’s surprisingly, enough was known about accessible oil reserves that not a huge amount has since been added to what is known as reserves of conventional oil. Conventional oil is (or was) the high quality, high net energy, low water content, easy to get stuff. Its multi-decade increasing rate in production came to an end around 2005 (as predicted many years earlier by Campbell and Laherre in 1998). The rate of production peaked in 2011 and has since been in decline (IEA 2016).


The International Energy Agency (IEA) is the pre-eminent global forecaster of oil production and demand. Recently it admitted that its oil production forecasts were based on economic projections rather than geology or cost; ie on the assumption that supply will always meet projected demand.
In its latest annual forecast however (New Policies Scenario 2016) the IEA has also admitted for the first time a future in which total global “all liquids” oil production could start to fall within the next few years.


As Kjell Aklett of Upsala University Global Energy Research Group comments (06-12-16), “In figure 3.16 the IEA shows for the first time what will happen if its unrealistic wishful thinking does not become reality during the next 10 years. Peak Oil will occur even if oil from fracked tight sources, oil sands, and other (unconventional) sources are included”.

In fact – this IEA image clearly shows that the total global rate of production of “all hydrocarbon liquids” could start falling anytime from now on; and this should in itself raise a huge red flag for the Irish Government.

Furthermore, it raises a number of vital questions which are the core subject of this post.
Reserves of conventional “easy” oil have mostly been used up. How likely is it that remaining reserves will be produced at the rate projected? Rapidly diminishing reserves of conventional oil are now increasingly being supplemented by the difficult stuff that Kjell Aklett mentions; including conventional from deep water, polar and other inaccessible regions, very heavy bituminous and high sulphur oil; natural gas liquids and other xtl’s, plus other “unconventional oil” including tar sands and shale oil.

How much will it cost to produce all these various types? How much energy will be required, and crucially how much energy will be left over for use by the economy?

The global industrial economy runs on oil.

Oil is the vital and crucial link in virtually every production chain in the global industrial world economy partly because it supplies over 96% of global transport energy – with no significant non-oil dependent alternative in sight.


Our industrial food production system uses over 10 calories of oil energy to plough, plant, fertilise, harvest, transport, refine, package, store/refrigerate, and deliver 1 calorie of food to the consumer; and imagine trying to build infrastructure; roads, schools, hospitals, industrial facilities, cities, railways, airports without oil, let alone maintain them.

Surprisingly perhaps, oil is also crucial to production of all other forms of energy including renewables. We cannot mine and distribute coal or even drill for gas and install pipelines and gas distribution networks without lots of oil; and you certainly cannot make a nuclear power station or build a hydroelectric dam without oil. But even solar panels, wind and biomass energy are also totally dependent on oil to extract and produce the raw materials; oil is directly or indirectly used in their manufacture (steel, glass, copper, fibreglass/GRP, concrete) and finally to distribute the product to the end user, and install and maintain it.

So it’s not surprising that excluding hydro and nuclear (which mostly require phenomenal amounts of oil to implement), renewables still only constitute about 3% of world energy (BP Energy Outlook 2016). This figure speaks entirely for itself. I am a renewable energy consultant and promoter, but I am also a realist; in practice the world runs on oil.


The economy, Global GDP and oil are therefore mutually dependent and have enjoyed a tightly linked dance over the decades as shown in the following images. Note the connection between oil, total energy, oil price and GDP (clues for later).

Click on image to enlarge

Rising cost of oil production

Since 2005 when the rate of production of conventional oil slowed and peaked, production costs have been rising more rapidly. By 2013, oil industry costs were approaching the level of the global oil price which was more than $100/barrel at that time; and industry insiders were saying that the oil industry was finding it difficult to break even.

Click on image to enlarge

A good example of the time was the following article which is worth quoting in full in the light of the price of oil at the time (~$100/bbl), and the average 2016 sustained low oil price of ~$50/bbl.

Oil and gas company debt soars to danger levels to cover shortfall in cash By Ambrose Evans-Pritchard. Telegraph. 11 Aug 2014

“The world’s leading oil and gas companies are taking on debt and selling assets on an unprecedented scale to cover a shortfall in cash, calling into question the long-term viability of large parts of the industry. The US Energy Information Administration (EIA) said a review of 127 companies across the globe found that they had increased net debt by $106bn in the year to March, in order to cover the surging costs of machinery and exploration, while still paying generous dividends at the same time. They also sold off a net $73bn of assets.

The EIA said revenues from oil and gas sales have reached a plateau since 2011, stagnating at $568bn over the last year as oil hovers near $100 a barrel. Yet costs have continued to rise relentlessly. Companies have exhausted the low-hanging fruit and are being forced to explore fields in ever more difficult regions.

The EIA said the shortfall between cash earnings from operations and expenditure — mostly CAPEX and dividends — has widened from $18bn in 2010 to $110bn during the past three years. Companies appear to have been borrowing heavily both to keep dividends steady and to buy back their own shares, spending an average of $39bn on repurchases since 2011”.

In another article (my highlights) he wrote

“The major companies are struggling to find viable reserves, forcing them to take on ever more leverage to explore in marginal basins, often gambling that much higher prices in the future will come to the rescue. Global output of conventional oil peaked in 2005 despite huge investment. The cumulative blitz on exploration and production over the past six years has been $5.4 trillion, yet little has come of it. Not a single large project has come on stream at a break-even cost below $80 a barrel for almost three years.

Steven Kopits from Douglas-Westwood said the productivity of new capital spending has fallen by a factor of five since 2000. “The vast majority of public oil and gas companies require oil prices of over $100 to achieve positive free cash flow under current capex and dividend programmes. Nearly half of the industry needs more than $120,” he said”.

The following images give a good idea of the trend and breakdown in costs of oil production. Getting it out of the ground is just for starters. The images show just how expensive it is becoming to produce – and how far from breakeven the current oil price is.

Click on image to enlarge

It is important to note that the “breakeven cost” is much less than the oil price required to sustain the industry into the future (business as usual).

The following images show that the many different types of oil have (obviously) vastly different production costs. Note the relatively small proportion of conventional reserves (much of it already used), and the substantially higher production cost of all other types of oil. Note also the apt title and date of the Deutsche Bank analysis – production costs have risen substantially since then.



The global oil industry is in deep trouble

You do not need to be an economist to see that the average 2016 price of oil ~ $50/bbl was substantially lower than just the breakeven price of all but a small proportion of global oil reserves. Even before the oil price collapse of 2014-5, the global oil industry was in deep trouble. Debts are rising quickly, and balance sheets are increasingly RED. Earlier this year 2016, Deloitte warned that 35% of oil majors were in danger of bankruptcy, with another 30% to follow in 2017.


Click on image to enlarge

In addition to the oil majors, shrinking oil revenues in oil-producing countries are playing havoc with national economies. Virtually every oil producing country in the world requires a much higher oil price to balance its budget – some of them vastly so (eg Venezuela). Their economies have been designed around oil, which for many of them is their largest source of income. Even Saudi Arabia, the biggest global oil producer with the biggest conventional oil reserves is quickly using up its sovereign wealth fund.


It appears that not a single significant oil-producing country is balancing its budget. Their debts and deficits grow bigger by the day. Everyone is praying for higher oil prices. Who are they kidding? The average BAU oil price going forward for business as usual for the whole global oil industry probably needs to be well over $100/bbl; and the world economy is on its knees even at the present low oil price. Why is this? The indicators all spell huge trouble ahead. Could there be another fundamental oil/energy/financial mechanism operating here?

The Root Cause

The cause is not surprising. All the various new types of oil and a good deal of the conventional stuff that remains require far more energy to produce.

In 2015, The Hills Group (US Oil Engineers) published “Depletion – A Determination of the Worlds Petroleum Reserve”. It is meticulously researched and re-worked with trends double checked against published data. It follows on from the Hills Group 2013 work that accurately predicted the approaching oil price collapse after 2014 (which no-one else did) and calculated that the average oil price of 2016 would be ~$50/bbl. They claim theirs is the most accurate oil price indicator ever produced, with >96% accuracy with published past data. The Hills Group work has somewhat clarified my understanding of the core issues and I will try to summarise two crucial points as follows.

Oil can only be useful as an energy source if the energy contained in the product (ie transport fuel) is greater than the energy required to extract, refine and deliver the fuel to the end user.

If you electrolyse water, the hydrogen gas produced (when mixed with air and ignited), will explode with a bang (be careful doing this at home!). The hydrogen contained in the world’s water is an enormous potential energy source and contains infinitely more energy (as hydrogen) than humans could ever need. The problem is that it takes far more energy to produce a given amount of hydrogen from water than is available by combusting it. Oil is rapidly going the same way. Only a small proportion of what remains of conventional oil resources can provide an energy surplus for use as a fuel. All the other types of oil require more energy to produce and deliver as fuel to the end user (taking into account the whole oil production chain), than is contained in the fuel itself.

What people do not realise is that it takes oil to extract, refine, produce and deliver oil to the end user. The Hills Group calculates that in 2012, the average energy required by the oil production chain had risen so much that it was then equal to the energy contained in the oil delivered to the economy. In other words “In 2012 the oil industry production chain in total used 50% of all the energy contained in the oil delivered to the consumer”. This is trending rapidly to reach 100% early in the next decade.

At this point – no matter how much oil is left (a lot) and in whatever form (many), oil will be of no use as an energy source for transport fuels, since it will on average require more energy to extract, refine and deliver to the end-user, than the oil itself contains.

Because oil reserves are of decreasing quality and oil is getting more difficult and expensive to produce and transform into transport fuels; the amount of energy required by the whole oil production chain (the global oil industry) is rapidly increasing; leaving less and less left over for the rest of the economy.

In this context and relative to the IEA graph shown earlier, there is a big difference between annual gross oil production, and the amount of energy left in the product available for work as fuel. Whilst total global oil (all liquids) production currently appears to be still growing slowly, the energy required by the global oil industry is growing faster, and the net energy available for work by the end user is decreasing rapidly. This is illustrated by the following figure (Louis Arnoux 2016).


The price of oil cannot exceed the value of the economic activity generated from the amount of energy available to end-users per barrel.

The rapid decline in oil-energy available to the economy is one of the key reasons for the equally rapid rise in global debt.

The global industrial world economy depends on oil as its prime energy source. Increasing growth of the world economy during the oil age has been exactly matched by oil production and use, but as Louis’ image shows, over the last forty years the amount of net energy delivered by the oil industry to the economy has been decreasing.

As a result, the economic value of a barrel of oil is falling fast. “In 1975 one dollar could have bought, on average, 42,348 BTU; by 2010 a dollar would only have bought 6,946 BTU” (The Hills Group 2015).


This has caused a parallel reduction in real economic activity. I say “real” because today the financial world accounts for about 40% of global GDP, and I would like to remind economists and bankers that you cannot eat 0000’s on a computer screen, or use them to put food on the table, heat your house, or make something useful. GDP as an indicator of the global economy is an illusion. If you deduct financial services and account for debt, the real world economy is contracting fast.

To compensate, and continue the fallacy of endless economic growth, we have simply borrowed and borrowed, and borrowed. Huge amounts of additional debt are now required to sustain the “Growth Illusion”.


In 2012 the decreasing ability of oil to power the economy intersected with the increasing cost of oil production at a point The Hills Group refers to as the maximum affordable consumer price (just over $100/bbl) and they calculated that the price of oil must fall soon afterwards. In 2014 much to everyone’s surprise (IEA, EIA, World Bank, Wall St Oil futures etc) the price of oil fell to where it is now. This is clearly illustrated by The Hills Group’s petroleum price curve of 2013 which correctly calculated that the 2016 average price of oil would be ~$50/bbl (Depletion – The Fate of the Oil Age 2013).


In their detailed 2015 study The Hills Group writes (Depletion – A determination of the world’s petroleum reserve 2015);

“To determine the affordability range it is first observed that the price of a unit of petroleum cannot exceed the value of the economic activity (generated by the net energy) it supplies to the end consumer. (Since 2012) more of the energy from petroleum was being committed to the production of petroleum than was delivered to the consumer. This precipitated the 2014 price decline that reduced prices by 50%. The energy delivered to the end consumer will continue to decline and the end consumer maximum affordability will decline with it.

Dr Louis Arnoux explains this as follows: “In 1900 the Global Industrial World received 61% of the gross energy in a barrel of oil. In 2016 this is down to 7%. The global industrial world is being forced to contract because it is being starved of net energy from oil” (Louis Arnoux 2016).

This is reflected in the slowing down of global economic growth and the huge increase in total global debt.

Without noticing it, in 2012 the world entered “Emergency Red Alert”

In the following image, Dr Arnoux has reworked Hills Group petroleum price curve showing the impending collapse of thermodynamically driven oil prices – and the end of the oil age as we know it. This analysis is more than amply reinforced by the dire financial straits of the global oil industry, and the parlous state of the global economy and financial system.


Oil is a finite resource which is subject to the same physical laws as many other commodities. The debate about peak oil has been clouded by the fact that oil consists of many different kinds of hydrocarbons; each of which has its own extraction profile. But conventional oil is the only category of oil that can be extracted with a whole production chain energy surplus. Production of this commodity (conventional oil) has undoubtedly peaked and is now declining. The amount of energy (and cost) required by the global oil industry to produce and deliver much of the remainder of conventional reserves and the many alternative categories of oil to the consumer, is rapidly increasing; and we are equally rapidly heading toward the day when we have used up those reserves of oil which will deliver an energy surplus (taking into account the whole production chain from extraction to delivery of the end product as fuel to the consumer).

The Global Oil Industry is one of the most advanced and efficient in the world and further efficiency gains will be minor compared to the scale of the problem, which is essentially one of oil depletion thermodynamics.

Humans are very good at propping up the unsustainable and this often results in a fast and unexpected collapse (eg Joseph Tainter: The collapse of complex societies). An example of this is the Seneca Curve/Cliff which appears to me to be an often-repeated defining trait of humanity. Our oil/financial system is a perfect illustration.

Debt is being used to extend the unsustainable and it looks as though we are headed for the “Mother of all Seneca Curves” which I have illustrated below:



Because oil is the primary energy resource upon which all other energy sources depend, it is almost certain that a contraction in oil production would be reflected in a parallel reduction in other energy systems; as illustrated rather dramatically in this image by Gail Tverberg (the timing is slightly premature – but probably not by much).


Energy and Money

Fundamental to all energy and economic systems is money. Debt is being used to prop up a contracting oil energy system, and the scale of money created as debt over the last few decades to compensate is truly phenomenal; amounting to hundreds of trillions (excluding “extra-terrestrial” amounts of “financials”), rising exponentially faster. This amount of debt, can never ever be repaid. The on-going contraction of the oil/energy system will exacerbate this trend until the financial system collapses. There is nothing anyone can do about it no matter how much money is printed, NIRP, ZIRP you name it – all the indicators are flashing red. The panacea of indefinite money printing will soon hit the thermodynamic energy wall of reality.


The effects we currently observe such as exponential growth in debt (US Debt alone almost doubled from $10 trillion to nearly $20 trillion during Obama’s tenure), and the financial problems of oil majors and oil producing countries, are clear indicators of the imminent contraction in existing global energy and financial systems.

The coming failure of the global economic system will be a systemic failure. I say “systemic” because for the last 150 years up till now there has always been cheap and abundant oil to power recovery from previous busts. This era is over. Cheap and abundant oil will not be available for recovery from the next crunch, and the world will need to adopt a completely different economic and financial model.

The Economics “profession”

Economists would have us believe it’s just another turn of the credit cycle. This dismal non-science is in the main the lapdog of the establishment, the global financial and corporate interests. They have engineered the “science” to support the myth of perpetual growth to suit the needs of their pay-masters, the financial institutions, corporations and governments (who pay their salaries, fund the universities and research, etc). They have steadfastly ignored all ecological and resource issues and trends and warnings such as LTG, and portrayed themselves as the pre-eminent arbiters of human enterprise. By vehemently supporting the status quo, they of all groups, I hold primarily responsible for the appalling situation the planet faces; the destruction of the natural world, and many other threats to the global environment and its ability to sustain civilisation as we know it.

I have news for the “Economics Profession”. The perpetual growth fantasy financial system based on unlimited cheap energy is now coming to an end. From the planet’s point of view – it simply couldn’t be soon enough. This will mark the end of what I call the “Oilocene”. Human activities are having such an effect on the planet that the present age has been classified by geologists as a new geological era “The Anthropocene”. But although humans had already made a significant impact on natural systems, the Anthropocene has largely been defined by the relatively recent discovery and use of liquid fossil energy reserves amounting to millions of years of stored solar energy. Unlimited cheap oil has fuelled exponential growth in human systems to the point that many of these are now greater than natural planetary ones.
This cannot be sustained without huge amounts of cheap net oil energy, so we are inescapably headed for “the great deceleration”. The situation is very like the fate of the Titanic which I have outlined in my presentation. Of the few who had the courage to face the economic wind of perpetual growth, I salute the authors of LTG and the memory of Richard Douthwaite (The Growth Illusion 1992), and all at FEASTA who are working hard to warn a deaf Ireland of what is to come and why – and have very sensibly been preparing for it! We will all need a lot of courage and resilience to face what is coming down the line.

Ireland has a very short time available to prepare for hard times.

There are many things we could do here to soften the impact if the problem was understood for what it is. FEASTA publications such as the Before The Wells Run Dry and Fleeing Vesuvius; and David Korowicz’s works such as The Tipping Point and of course, The Hills Group 2015 publicationDepletion – a determination of the worlds petroleum reserve , and very many other references, provide background material and should be required urgent reading for all policy makers.

The pre-eminent challenge is energy for transport and agriculture. We could switch to use of compressed natural gas (CNG) as the urgent default transport/motive fuel in the short term since petrol and diesel engines can be converted to dual-fuel use with CNG; supplemented rapidly by biogas (since we are lucky enough to have plenty of agricultural land and water compared to many countries).

We could urgently switch to an organic high labour input agriculture concentrating on local self-sufficiency eliminating chemical inputs such as fertilisers pesticides and herbicides (as Cuba did after the fall of the Soviet Union). We could outlaw the use of oil for heating and switch to biomass.

We could penalise high electricity use and aim to massively cut consumption so that electricity can be supplied by completely renewable means – preserving our natural gas for transport fuel and the rapid transition from oil. The Grid could be urgently reconfigured to enable 100% use of renewable electricity within a few years. We could concentrate on local production of food, goods and services to reduce transport needs.

These measures would create a lot of jobs and improve the balance of payments. They have already been proposed in one form or another by FEASTA over the last 15 years.

Ireland has made a start, but it is insignificant compared to the scale and timescale of the challenge ahead as illustrated by the next image (SEAI: Energy in Ireland – Key Statistics 2015). We urgently need to shrink the oil portion to a small fraction of current use.


Current fossil energy use is very wasteful. By reducing waste and increasing efficiency we can use less. For instance, a large amount of the energy used as transport fuels and for electricity generation is lost to atmosphere as waste heat. New technological solutions include a global initiative to mount an affordable emergency response called nGeni that is solely based on well-known and proven technology components, integrated in a novel way, with a business and financial model enabling it to tap into over €5 trillion/year of funds currently wasted globally as waste heat. This has potential for Ireland, and will be outlined in a subsequent post.

To finance all the changes we need to implement, quickly (and hopefully before the full impact of the oil/financial catastrophe really kicks in), we could for instance create something like a massive multibillion “National Sustainability and Renewable Energy Bond”. Virtually all renewables provide a better (often substantially better) return on investment compared to bank savings, government bonds, etc; especially in the age of zero and negative interest rate policies ZIRP, NIRP etc.

We may need to think about managing this during a contraction in the economy and financial system which could occur at any time. We certainly could do with a new clever breed of “Ecological Economists” to plan for the end of the old system and its replacement by a sustainable new one. There is no shortage of ideas. The disappearance of trillions of fake money and the shrinking of national and local tax income which currently funds the existing system and its social programmes will be a huge challenge to social stability in Ireland and all over the world.

It’s now “Emergency Red Alert”. If we delay, we won’t have the energy or the money to implement even a portion of what is required. We need to drag our politicians and policy makers kicking and screaming to the table, to make them understand the dire nature of the predicament and challenge them to open their eyes to the increasingly obvious, and to take action. We can thank The Hills Group for elucidating so clearly the root causes of the problem, but the indicators of systemic collapse have for many years been frantically jumping up and down, waving at us and shouting LOOK AT ME! Meanwhile the majority of blinkered clueless economists that advise business and government and who plan our future, look the other way.

In 1972 “The Limits to Growth” warned of the consequences of growing reliance on the finite resource called “oil” and of the suicidal economics mantra of endless growth. The challenge Ireland will soon face is managing a fast economic and energy contraction and implementing sustainability on a massive scale whilst maintaining social cohesion. Whatever the outcome (managed or chaotic contraction), we will soon all have to live with a lot less energy and physical resources. That in itself might not necessarily be such a bad thing provided the burden is shared. “Modern citizens today use more energy and physical resources in a month than our great-grandparents used during their whole lifetime” (John Thackera; “From Oil Age to Soil Age”, Doors to Perception; Dec 2016). Were they less happy than us?

PDF of this article
Powerpoint presentation

Featured image: used motor oil. Source:

Peak Uranium by Ugo Bardi

12 01 2017

Posted on by

THIS should get Eclipse all stirred up……..

[ This is an extract of Ugo Bardi’s must read “Extracted”.  Many well-meaning citizens favor nuclear power because it doesn’t emit greenhouse gases.  The problem is that the Achilles heel of civilization is our dependency on trucks of all kinds, which run on diesel fuel because diesel engines transformed our civilization by their ability to do heavy work better than steam, gasoline, or any other engine on earth.  Trucks are required to keep the supply chains going that every person and business on earth depend on, as well as mining, tractors/harvesters, road & other construction trucks, logging etc.  Since trucks can’t run on electricity, anything that generates electricity is not a solution, nor is it likely that the electric grid can ever be 100% renewable (read “When trucks stop running”, this can’t be explained in a sound-bite).

Alice Friedemann  author of “When Trucks Stop Running: Energy and the Future of Transportation”, 2015, Springer and “Crunch! Whole Grain Artisan Chips and Crackers”. Podcasts: Practical Prepping, KunstlerCast 253, KunstlerCast278, Peak Prosperity , XX2 report ]

Bardi, Ugo. 2014. Extracted: How the Quest for Mineral Wealth Is Plundering the Planet. Chelsea Green Publishing.

Although there is a rebirth of interest in nuclear energy, there is still a basic problem: uranium is a mineral resource that exists in finite amounts.

Even as early as the 1950s it was clear that the known uranium resources were not sufficient to fuel the “atomic age” for a period longer than a few decades.

That gave rise to the idea of “breeding” fissile plutonium fuel from the more abundant, non-fissile isotope 238 of uranium. It was a very ambitious idea: fuel the industrial system with an element that doesn’t exist in measurable amounts on Earth but would be created by humans expressly for their own purposes. The concept gave rise to dreams of a plutonium-based economy. This ambitious plan was never really put into practice, though, at least not in the form that was envisioned in the 1950s and ’60s.Several attempts were made to build breeder reactors in the 1970s, but the technology was found to be expensive, difficult to manage, and prone to failure. Besides, it posed unsolvable strategic problems in terms of the proliferation of fissile materials that could be used to build atomic weapons. The idea was thoroughly abandoned in the 1970s, when the US Senate enacted a law that forbade the reprocessing of spent nuclear fuel. 47

A similar fate was encountered by another idea that involved “breeding” a nuclear fuel from a naturally existing element—thorium. The concept involved transforming the 232 isotope of thorium into the fissile 233 isotope of uranium, which then could be used as fuel for a nuclear reactor (or for nuclear warheads). 48 The idea was discussed at length during the heydays of the nuclear industry, and it is still discussed today; but so far, nothing has come out of it and the nuclear industry is still based on mineral uranium as fuel.

Today, the production of uranium from mines is insufficient to fuel the existing nuclear reactors. The gap between supply and demand for mineral uranium has been as large as almost 50 percent in the period between 1995 and 2005, but it has been gradually reduced during the past few years.

The U.S. minded 370,000 metric tons the past 50 years, peaking in 1981 at 17,000 tons/year.  Europe peaked in the 1990s after extracting 460,000 tons.  Today nearly all of the 21,000 ton/year needed to keep European nuclear plants operating is imported.

The European mining cycle allows us to determine how much of the originally estimated uranium reserves could be extracted versus what actually happened before it cost too much to continue. Remarkably in all countries where mining has stopped it did so at well below initial estimates (50 to 70%). Therefore it’s likely ultimate production in South Africa and the United States can be predicted as well.

The Soviet Union and Canada each mined 450,000 tons. By 2010 global cumulative production was 2.5 million tons.  Of this, 2 million tons has been used, and the military had most of the remaining half a million tons.

The most recent data available show that mineral uranium accounts now for about 80% of the demand. 49 The gap is filled by uranium recovered from the stockpiles of the military industry and from the dismantling of old nuclear warheads.

This turning of swords into plows is surely a good idea, but old nuclear weapons and military stocks are a finite resource and cannot be seen as a definitive solution to the problem of insufficient supply. With the present stasis in uranium demand, it is possible that the production gap will be closed in a decade or so by increased mineral production. However, prospects are uncertain, as explained in “The End of Cheap Uranium.” In particular, if nuclear energy were to see a worldwide expansion, it is hard to see how mineral production could satisfy the increasing uranium demand, given the gigantic investments that would be needed, which are unlikely to be possible in the present economically challenging times.

At the same time, the effects of the 2011 incident at the Fukushima nuclear power plant are likely to negatively affect the prospects of growth for nuclear energy production, and with the concomitant reduced demand for uranium, the surviving reactors may have sufficient fuel to remain in operation for several decades.

It’s true that there are large quantities of uranium in the Earth’s crust, but there are limited numbers of deposits that are concentrated enough to be profitably mined. If we tried to extract those less concentrated deposits, the mining process would require far more energy than the mined uranium could ultimately produce [negative EROI].

Modeling Future Uranium Supplies

Uranium supply and demand to 2030


Using historical data for countries and single mines, it is possible to create a model to project how much uranium will be extracted from existing reserves in the years to come. 54 The model is purely empirical and is based on the assumption that mining companies, when planning the extraction profile of a deposit, project their operations to coincide with the average lifetime of the expensive equipment and infrastructure it takes to mine uranium—about a decade.

Gradually the extraction becomes more expensive as some equipment has to be replaced and the least costly resources are mined. As a consequence, both extraction and profits decline. Eventually the company stops exploiting the deposit and the mine closes. The model depends on both geological and economic constraints, but the fact that it has turned out to be valid for so many past cases shows that it is a good approximation of reality.

This said, the model assumes the following points:

  • Mine operators plan to operate the mine at a nearly constant production level on the basis of detailed geological studies and to manage extraction so that the plateau can be sustained for approximately 10 years.
  • The total amount of extractable uranium is approximately the achieved (or planned) annual plateau value multiplied by 10.

Applying this model to well-documented mines in Canada and Australia, we arrive at amazingly correct results. For instance, in one case, the model predicted a total production of 319 ± 24 kilotons, which was very close to the 310 kilotons actually produced. So we can be reasonably confident that it can be applied to today’s larger currently operating and planned uranium mines. Considering that the achieved plateau production from past operations was usually smaller than the one planned, this model probably overestimates the future production.

Table 2 summarizes the model’s predictions for future uranium production, comparing those findings against forecasts from other groups and against two different potential future nuclear scenarios.

As you can see, the forecasts obtained by this model indicate substantial supply constraints in the coming decades—a considerably different picture from that presented by the other models, which predict larger supplies.

The WNA’s 2009 forecast differs from our model mainly by assuming that existing and future mines will have a lifetime of at least 20 years. As a result, the WNA predicts a production peak of 85 kilotons/year around the year 2025, about 10 years later than in the present model, followed by a steep decline to about 70 kilotons/year in 2030. Despite being relatively optimistic, the forecast by the WNA shows that the uranium production in 2030 would not be higher than it is now. In any case, the long deposit lifetime in the WNA model is inconsistent with the data from past uranium mines. The 2006 estimate from the EWG was based on the Red Book 2005 RAR (reasonably assured resources) and IR (inferred resources) numbers. The EWG calculated an upper production limit based on the assumption that extraction can be increased according to demand until half of the RAR or at most half of the sum of the RAR and IR resources are used. That led the group to estimate a production peak around the year 2025.

Assuming all planned uranium mines are opened, annual mining will increase from 54,000 tons/year to a maximum of 58 (+ or – 4) thousand tons/year in 2015. [ Bardi wrote this before 2013 and 2014 figures were known. 2013 was 59,673 (highest total) and 56,252 in 2014.]

Declining uranium production will make it impossible to obtain a significant increase in electrical power from nuclear plants in the coming decades.

Has the revolution begun…?

18 05 2016

julian cribb

Julian Cribb

Written by Julian Cribb, and originally published in the Sydney Morning Herald.

Election 2016 may herald the beginning of the end of party rule in Australian politics. Indeed, rather like Mikhail Gorbachev, Malcolm Turnbull might just have inadvertently pulled the trigger on the dissolution of the party system. It’s a big thought, after a century or more of the national interest being subordinated to vested interests, but there are signs that Australian electors are thoroughly jack of party politics and more than willing to try new things and new people.
It shows in the febrile oscillation of the opinion polls, the frequent switches of government and leader, the determination of voters to deny the major parties control in the Senate. It shows in the disgust of ordinary Australians at each new case of electoral corruption, secret dealing and rip-off by spendthrift MPs, who preach restraint while plundering the public purse.

It shows in our dismay at the ongoing deterioration in our education system – school, university and TAFE – the degradation of our scientific enterprise and healthcare system – which overall add up to an attrition in the nation’s skills, technologies, fitness for work and capacity for sustainable economic growth.

It shows in the complicity of the mainstream parties in the wrecking of the Australian landscape and oceans – from the Liverpool Plains, to the extinction of native species, to the now almost-unavoidable ruin of the Great Barrier Reef. As Euan Ritchie and Don Driscoll noted on The Conversation, the national biodiversity crisis does not rate priority policy from any of the major parties.

It shows in the Canute-like attempts of politicians across the spectrum to turn back the flood-tide of Australian opinion on issues such as domestic violence, marriage equality and assisted dying.

And it shows in the public revulsion at the engagement of the main political parties in endless, pointless, unwinnable wars, in their use of terrorism to justify greater surveillance and repression, and their inhuman treatment of people fleeing those wars.

The word ‘party’ is from the Latin, pars, partis – a part – the stem that gives rise to the term partial. And that is exactly what Australian political parties today have become – bodies partial to their own interests and those of a tiny minority of supporters. By definition, as well as by contemporary behaviour, they are no longer aligned with the national interest or the public good. And we are simply the mugs who let them get away with it, time and again – probably because we haven’t yet completely figured out there is another way.

Once upon a time, political vested interests were diluted by well-meaning people with a commitment to public service. No longer. A never-ending cycle of political pay hikes, rorting of public funds and parliamentary privileges, gold-plated pensions and ‘entitlements’, furnishes the proof that most of them are in it for what they can get. The driving ambition of Australian politics has become personal, rather than national, enrichment.

In 2014-15, according to the Australian Electoral Commission, the combined parties of Australia received over $170 million, mainly donations and mostly from private individuals and companies. As the public understands, it’s a fair bet most of that was donated in the expectation of some sort of special treatment or monetary advantage granted by the ruling party. In other words, an officially-sanctioned bribe. However, as the NSW ICAC continually discloses, these are but the first whiff of a large and festering corpus of hidden or less-visible rewards, abuses of office and, post-politics, the appointment of scores of former Ministers and MPs to juicy sinecures on corporate boards, where they peddle special influence for personal gain.

The hypocrisy of this system has recently been illumined in the LNP’s attempts to expose Labor’s connection to shonky union affairs in the Royal Commission, and the ALP’s counterbattery retort in the form of a proposed banking Royal Commission. The answer obvious to most Australians – a Federal Independent Commission Against Corruption – is one that none of the leading parties wishes, for obvious reasons, to countenance: it would expose glaring evidence that the entire party system is corrupt and rotten, root and branch.

The role of the fossil fuels and mining lobby in derailing climate policy in Australia is a further case of the preparedness of parties and their paymasters to sacrifice the national future, our grandchildren and the planet, to their own short-term interests. This alone demands a Royal Commission – or a Federal ICAC – if not substantial jail sentences, as any crime against humanity deserves.

Disenchantment with political parties has halved their membership in recent decades. Despite the secrecy, journalistic investigations suggest that the combined membership of all parties totals under 100,000. No party comes even close to the membership of, say, the Collingwood Football Club (76,000 – maybe it should run for office instead of trying to play football…). It is therefore likely that our leaders are being chosen for us by less than 0.4 per cent of the Australian population, a travesty of democracy (and in reality, by a microscopic handful of powerbrokers within this tiny minority). Not surprisingly an Australian National University study (2014) found that only 43 per cent of Australians believe it makes any difference who is in power.

Given all this, one enchanting possibility in the coming election is that Turnbull’s gamble to rid himself of the cross-benches might just backfire horribly – as disgusted voters decide to punish both he and the equally disappointing and compromised Shorten. It’s not the sort of thing that shows up in opinion polls, which are interpreted chiefly by the media’s need for short, simplistic two-horse-race stories. Neither the parties nor the media display much grasp of the emerging multi-spectral character of Australian politics, in which hung parliaments, complex alliances of minor parties and negotiation with a multiplying throng of independents form the central dynamic. A Scandinavian political scene, rather than the one we’re accustomed to.

It only takes one thing for this to happen. For a majority of voters to rip up their party how-to-vote cards, ignore the deluge of deceptive advertising and soon-to-be-broken promises, and put their mark next to the name of the most decent, well-intentioned Australian standing in their electorate. The one with a track record for honesty, trustworthiness, integrity, hard work and commitment to the future. The exact antithesis of the usual party hack.

Of such small things are political revolutions made.
Julian Cribb is a Canberra-based author and science writer.
Read more:
Follow us: @smh on Twitter | sydneymorningherald on Facebook

How “Green” is Lithium?

17 04 2016

Originally published on the KITCO website in 2014….. interesting how this makes no mention of NiFe batteries, they are simply ‘under the radar’……


The market for battery electric and hybrid vehicles is growing slowly but steadily – from 0.4% in 2012 to 0.6% in 2013 and 0.7% in 2014 (year-to-date) in the United States alone.

Consumers buy these vehicles despite lower gas prices out of a growing conscience and concern for the environment. With this strong attraction to alternative energy, grows the demand for lithium, which is predominantly mined and imported from countries like Bolivia, Chile, China and Argentina.

Within the U.S., only Nevada, future home of Tesla’s new “Gigafactory” for batteries, produces lithium. However, the overall ecological impact of lithium ion batteries remains somewhat unclear, as does the “well-to-wheel” effort and cost to recharge such batteries.

To fully grasp the relevance and environmental impact of lithium it is important to note that lithium ion batteries are also found in most mobile phones, laptop computers, wearable electronics and almost anything else powered by rechargeable batteries.

Dozens of reports are available on the ecological impact of lithium mining. Unfortunately, many of them are influenced by the perspective of the organizations or authors releasing them. Reducing the available information to studies carried out by government bodies and research institutes around the world, a picture emerges nonetheless:

  • Elemental lithium is flammable and very reactive. In nature, lithium occurs in compounded forms such as lithium carbonate requiring chemical processing to be made usable.
  • Lithium is typically found in salt flats in areas where water is scarce. The mining process of lithium uses large amounts of water. Therefore, on top of water contamination as a result of its use, depletion or transportation costs are issues to be dealt with. Depletion results in less available water for local populations, flora and fauna.
  • Toxic chemicals are used for leaching purposes, chemicals requiring waste treatment. There are widespread concerns of improper handling and spills, like in other mining operations around the world.
  • The recovery rate of lithium ion batteries, even in first world countries, is in the single digit percent range. Most batteries end up in landfill.
  • In a 2013 report, the U.S. Environmental Protection Agency (EPA) points out that nickel and cobalt, both also used in the production of lithium ion batteries, represent significant additional environmental risks.

A 2012 study titled “Science for Environment Policy” published by the European Union compares lithium ion batteries to other types of batteries available (lead-acid, nickel-cadmium, nickel-metal-hydride and sodium sulphur). It concludes that lithium ion batteries have the largest impact on metal depletion, suggesting that recycling is complicated. Lithium ion batteries are also, together with nickel-metal-hydride batteries, the most energy consuming technologies using the equivalent of 1.6kg of oil per kg of battery produced. They also ranked the worst in greenhouse gas emissions with up to 12.5kg of CO2 equivalent emitted per kg of battery. The authors do point out that “…for a full understanding of life cycle impacts, further aspects of battery use need to be considered, such as length of usage, performance at different temperatures, and ability to discharge quickly.”

Technology will of course improve, lithium supplies will be sufficient for the foreseeable future, and recycling rates will climb. Other issues like the migration of aging cars and electronic devices to countries with less developed infrastructures will, however, remain. As will the reality of lithium mining and processing. It is therefore conceivable that new battery technologies (sea water batteries or the nano-flowcell, for instance) will gain more importance in years to come, as will hydrogen fuel cells.

We will report about the pros and cons of each of these alternatives in future issues of Tech Metals Insider.

Bodo Albrecht,

The False Solutions of Green Energy

13 10 2014

Max Wilbert & Cameron Foley expose the fallacies of “green” technology by tracing the process of industrial production for these technologies and exposing the destruction they cause.

I suggest you download the pdf file that has the slides in it, and watch that while you listen to the youtube video…….

Powerpoint slides available at

More on Renewables fantasy

10 10 2014

As debate continues to rage over at The Conversation I have now mentioned several times regarding future Carbon emissions, I continually come across people who misunderstand our energy conundrums.  It gives me satisfaction to be able to rattle their collective cages, and introduce them to notions like the energy cliff, and the utterly essential continuation of oil production for mining the resources we need to keep business as usual operating.

Interestingly, some of the commentators there introduce me to things I knew nothing about.  Which is good; because it makes me think further about why their solutions will not save the day, and forces me to do some more research and keep the old brain cells alive and ticking.  For instance, when I pointed the conversation towards Simon Michaux’s Peak Mining presentation available on this blog, and that I thought mining without diesel would be impossible, along comes this person who points me to mining trucks powered by overhead electricity, much like an electric train.  This is readily feasible of course, because all those big Tonka Trucks are already running on electric motors, powered by a huge diesel enegine that spins an equally huge generator to produce the electricity for the motors….. very much like a diesel electric locomotive.  My first reaction, however, was ‘how can they move the overhead lines constantly as the bottom of the mine expands and keeps changing shape’?

Here is a video of how they operate……

Now, this video makes claims such as ‘saving energy’, which I suggest it clearly does not.  While running in ‘trolley mode’, diesel consumption may fall from 360L/hr to 45L/hr, but now it’s burning electricity instead, and it’s STILL burning diesel!  On top of that, this video claims that by using electric lines, they can increase the speed of the truck from 8km/hr to 24km/hr….  hello, don’t they realise there is no free lunch?  Going faster requires more energy, especially uphill!  Instead of reducing energy consumption, I think this would actually increase it.  I would like to see total energy consumption in MJ/km rather than merely saying the trucks use less diesel.  You’ll notice that the overhead lines are only used in the uphill sections.

This then got me thinking about why they would go to this trouble.  After all, spending capital to electrify the lifting of ores from the bottom of a mine pit just as the price of these commodities is falling, seems counter intuitive to me.  Until that is, you put two and two together and realise that as the ore concentrations fall off a cliff, more and more ore has to be brought up for processing, and faster and faster to boot, just to keep up with production of the final resource, in this case Copper.  But wait, there’s more…  research shows Zambia produces 200 barrels of oil a day.  NOT 200,000……  two hundred!  On top of that, Zambia gets 100% of its electricity from hydro.  So of course, what else would they do?

Further down The Conversation, someone else makes the comment “Solar thermal is a very new technology, do you think ERoEI values estimated now will apply for all time? ”  Well no…….  thermodynamics dictates that ERoEI will always fall!

“”To maintain a society like ours requires an overall ERoEI of about 12:1″. Perhaps, but perhaps not, that’s a fairly bold assertion, I’m not sure of the weight of evidence behind it. One would also assume that as the easily accessible fossil fuels are increasingly depleted, the ERoEI of fossil fuels would be decreasing (unlike that of renewables which is increasing).”

This is classic.  People who want to believe in a renewables powered future apparently also believe that renewables’ ERoEI can magically rise, just as the fossil fuels’ ERoEI, the very energy sources used to make the renewables, falls.  Talk about white man’s magic….

IF we require to build more and more robots, just build more and more robots, to make more and more PVs to power the robots, and make more robots to build more Tonka Tucks, to dig more and more mineral ores, just so we can build more factories to house more robots to….  well, you get the message.  We are sinking alarmingly increasing amounts of energy and non renewable resources into a black hole, and for what…?

Making someone already rich even richer.  Game over.

By the way, an alarmingly high number of people are predicting a looming financial correction of epic proportion, maybe even this month (October 2014).  I’m not qualified to comment on this, except as just another passenger, but I found this quite concerning.  A bit long at 34 minutes, and the interviewer keeps interrupting annoyingly, but what does everyone else think?