EV transition…. what EV transition…?

15 08 2017

It’s raining again, and all work outside has been temporarily suspended. Well that’s my excuse for hitting the keyboard again. And the more I delve into the future of this supposed transition to EVs techno utopians continually go on about, the less I believe it will occur. No one gets limits to growth, and therein lies the problem. I also found this neat document my readers might like to download. If you’ve been hanging out on this blog for some time. you probably already know what’s in it, but there are a lot of newbies joining DTM these days, this is for you…


I have already exposed how limits to Lithium and Cobalt and other resources needed to implement a transition away from oil powered happy motoring is going to give manufacurers (and share holders) headaches in the future; but obviously the fans of electric motoring do not understand the disruptive effects of such an industry nor how it will decimate the oil industry, which itself will kill off the EV sector….

At first glance, getting rid of polluting cars sounds like a great idea.  The billions of such vehicles around the world that pump out noxious gases and CO2 are, we know, are major contributors to climate change.  Banning them at the earliest opportunity, then, must surely be a good idea. But, there’s always a but………

If the world is going to make the switch to electric vehicles, we are going to need a massive infrastructure spend to create the fast charging systems without which the country is going to grind to a halt.

For most journeys – those of less than 10km – charging up at home overnight will do the trick.  But, Australia in particular.  is a nation of commuters who average around 1500km a month.  I know people who commute even further from where we used to live in Queensland….. Anyone driving more than about 70km to get to work is going to need somewhere to charge up before going home; and anyone driving more than 160km is going to need a fast charging station somewhere along their commute.  On the few times a year that many of us make far longer journeys (such as on long weekends) we would have to be able to stop several times to recharge – Australia is a big country. It’s either that, or we won’t be going away…..

And all of those other holiday drivers will all want to use the same “fast” (they currently take 20-30 minutes) chargers. I see melting circuit breakers…….

Add to this the fact that new oil discoveries have been plummeting and, without prices north of $200 per barrel, unlikely to bounce back, and it tells us one highly unpleasant thing… petrol and diesel prices are going to bounce back a few years from now, once the current glut is over.

That is great news if you work for an oil company or if you are a government that depends upon the taxes from oil exports to pay your debts.  But if you are a country whose oil industry is in terminal decline – like Australia that will have almost certainly totally run out of oil by 2020 – then you are about to find yourself competing for dwindling oil supplies against far richer countries like the USA and China.

Back in the real world, coal plants are shutting down, nuclear companies are going bust, the so-called ‘shale revolution’ is teetering on the cliff edge of collapse, and there is simply no way given the current state of technology for renewables to take up the slack.  What we are facing today is figuring out how to maintain the current supply of electricity, and the last thing anyone needs is the massive increase in demand that will inevitably accompany the mass consumption electric cars.

Electricity shortages may, however, prove to be the least of our worries.  Too many electric cars could trigger a global economic collapse.

Few pundits now doubt the benefits to consumers of electric cars compared to petrol (gasoline) powered ones.  A recent article in The Economist observes:

“Compared with existing vehicles, electric cars are much simpler and have fewer parts; they are more like computers on wheels. That means they need fewer people to assemble them and fewer subsidiary systems from specialist suppliers…

“With less to go wrong, the market for maintenance and spare parts will shrink. While today’s carmakers grapple with their costly legacy of old factories and swollen workforces, new entrants will be unencumbered. Premium brands may be able to stand out through styling and handling, but low-margin, mass-market carmakers will have to compete chiefly on cost.”

Sounds like job losses to me….. and who will buy EVs if they don’t have a job?

What would mass ownership of EVs do to the already struggling global oil industry?

The existential threat posed by electric cars is simply that they might force the price of petrol (gasoline) to zero.

In 2014, the world burned 41,235,000 barrels of petrol (gasoline) every day!  If no one wants the stuff,  and as there is no obvious alternative use for it with maybe the exception of some power tools and hobby engines, cars and light vans are the only place where petrol is consumed, why would the industry make petrol?

“Great,” I hear the greenies shout, “just stop producing the filthy, environment-destroying stuff.”  If only it were that simple.  The trouble is, as Michael Schirber at Live Science reminds us, oil is a chemical potpourri:

“Petroleum is not a single molecule but a mix of thousands of molecules, the most important of which are hydrocarbons. These are chains or rings of carbons atoms surrounded by hydrogen atoms.

“Although gasoline comprises nearly half of all petroleum production in the United States, a wide range of fuels and specialty oils come out of a modern-day oil refinery. The petroleum is first heated in a boiler to separate the smaller hydrocarbons with low boiling points from the larger hydrocarbons with high boiling points.”

Oil refineries can’t simply stop producing petrol (gasoline) without also ceasing production of all of those other far more useful products…. like those used to manufacture tyres, and bitumen roads..!  Both required by the EV revolution…. Lighter gases are used in such things as paints, cleaning agents and as chemical feedstock.  Heavier products include the kerosene that fuels jet aircraft; diesel for our heavy machinery and trucks; lubricating oils and greases for industry; and solids like the aforementioned bitumen.  One assumes that, like the rest of us, the greenwashers would quite like all of these other petroleum products – and the things they do for us – to be available after petrol has gone away.

And therein lies the conundrum; because petrol effectively subsidises the price of all those other products.  Even the pro-electric car Economist article concedes that:

“The internal combustion engine has had a good run—and could still dominate shipping and aviation for decades to come…”

Except of course, the oil industry is on its knees, and once it goes, so does the dream of happy electric car motoring……

Lithium’s limits to growth

7 08 2017

The ecological challenges of Tesla’s Gigafactory and the Model 3

From the eclectic brain of Amos B. Batto

A long but well researched article on the limitations of the materials needed for a transition to EVs…..


Many electric car advocates are heralding the advent of Tesla’s enormous battery factory, known as the “Gigafactory,” and its new Model 3 electric sedan as great advances for the environment.  What they are overlooking are the large quantities of energy and resources that are consumed in lithium-ion battery manufacturing and how these quantities might increase in the future as the production of electric vehicles (EVs) and battery storage ramps up.

Most of the credible life cycle assessment (LCA) studies for different lithium-ion chemistries find large large greenhouse gas emissions per kWh of battery. Here are the CO2-eq emissions per kWh with the battery chemistry listed in parentheses:
Hao et al. (2017): 110 kg (LFP), 104 kg (NMC), 97 kg (LMO)
Ellingsen et al. (2014): 170 kg (NMC)
Dunn et al. (2012): 40 kg (LMO)
Majeau-Bettez et al. (2011): 200 kg (NMC), 240 kg (LFP)
Ou et al (2010): 290 kg (NMC)
Zackrisson et al (2010): 440 kg (LFP)

Dunn et al. and Hao et al. are based on the GREET model developed by Argonne National Laboratory, which sums up the steps in the process and is based on the estimated energy consumption for each step. In contrast, Ellingsen et al. and Zackrisson et al. are based on the total energy consumption used by a working battery factory, which better captures all the energy in the processing steps, but the data is old and the battery factory was not very energy efficient, nor was it operating at full capacity. Battery manufacturing is getting more energy efficient over time and the energy density of the batteries is increasing by roughly 7% a year, so less materials are needed per kWh of battery. It is also worth noting that no LCA studies have been conducted on the NCA chemistry used by Tesla. NCA has very high emissions per kg due to the large amount of nickel in the cathode, but is very energy dense, so less total material is needed per kWh, so it is probably similar in emissions to NMC.

The big debate in the LCA studies of battery manufacturing is how much energy is consumed per kWh of battery in the battery factory. In terms of MJ per kWh of battery, Ellingsen et al. estimate 586 MJ, Zachrisson et al. estimate 451 MJ and Majeu-Bettez et al. estimate 371-473 MJ. However, the energy for the drying rooms and factory equipment is generally fixed, regardless of the throughput. Ellingsen et al (2014) found that the energy expended to manufacture a kWh of battery could vary as much as 4 times, depending on whether the factory is operating at full capacity or partial capacity. Since the Gigafactory will probably be operating a full capacity and energy efficiency is improving, let’s assume between 100 MJ and 150 MJ per kWh of battery in the Gigafactory (which converts to 28 – 42 kWh per kWh of battery). It is unlikely to be significantly less, because it is more energy efficient to burn natural gas for the drying rooms than use electric heaters, but the Gigafactory will have to use electric heaters to meet Musk’s goal of 100% renewable energy.

If producing 105 GWh of batteries per year at 100 – 150 MJ per kWh, plus another 45 GWh of packs with batteries from other factories at 25 MJ per kWh, the Gigafactory will consume between 3,229 and 4,688 GWh per year, which is between 8.3% and 12.0% of the total electrical generation in Nevada in 2016. I calculate that 285 MW of solar panels can be placed on the roof of the Gigafactory and they will only generate 600 GWh per year, assuming a yearly average of 7.16 kWh/m2/day of solar radiation, 85% (1.3 million m2) of the roof will be covered, 20% efficiency in the panels and a 10% system loss.

Solar panels in dusty locations such as Nevada loose roughly 25% of their output if they are not regularly cleaned. Although robots have been developed to clean panels with brushes, water will most likely be used to clean the Gigafactory’s panels. A study by Sandia National Laboratory found that photovoltaic energy plants in Nevada consume 0.0520 acre-feet of water per MW of nameplate capacity per year. The solar panels at the Gigafactory will probably have 25% less area per MW than the solar panels in the Sandia study, so we can guesstimate that the solar panels on the Gigafactory roof will consume 11.1 acre-feet or 13,700 cubic meters of water per year.

Solar panels can also be placed on the ground around the factory, and but consider the fact that the Gigafactory will only receive 4.23 kWh/m2/day in December, compared to 9.81 kWh/m2/day in July. With less than half the energy from the panels during the winter, the Gigafactory will need other sources of energy during the times when it is cloudy and the sun’s rays are more indirect. Even during the summer, the Gigafactory will probably have to use temporary battery storage to smooth out the solar output or get additional energy with electric utilities which use gas peaking, battery storage or buy energy from the regional grid to give the Gigafactory a stable supply of electricity.

The original mockup of the Gigafactory showed wind turbines on the hillsides around the plant, but wind energy will not work onsite, because the area has such low wind speed. A weather station in the Truckee River valley along I-80, near the Gigafactory, measures an average wind speed of 3.3 m/s at a height of 6 meters, although the wind speed is probably higher at the site of the Gigafactory. Between 4 to 5 m/s is the minimum wind speed to start generating any energy, and between 5 and 6 m/s is generally considered the minimum for wind turbines to be economically viable. It might be possible to erect viable wind turbines onsite with 150 m towers to capture better wind, but the high costs make it likely that Tesla will forgo that option.

The region has good geothermal energy at depths of 4000 to 6000 feet and this energy is not variable like solar and wind. However, there is a great deal of risk in geothermal exploration which costs $10 million to drill a test well. It is more likely that Tesla will try to buy geothermal energy from nearby producers, but geothermal energy in the region is already in heavy demand, due to the clean energy mandates from California, so it won’t be cheap.

Despite Musk’s rhetoric about producing 100% of the Gigafactory’s energy onsite from renewable sources, Tesla knows that it is highly unrealistic, which is why it negotiated to get $8 million in electricity rebates from the state of Nevada over an 8 year period. It is possible that the Gigafactory will buy hydroelectric energy from Washington or Oregon, but California already competes for that electricity. If Tesla wants a diversified supply of renewable energy to balance out the variability of its solar panels, it will probably have to provide guaranteed returns for third parties to build new geothermal plants or wind farms in the region.

I would guesstimate that between 2/3 of the electricity consumed by the Gigafactory will come from the standard Nevada grid, whereas 1/3 will be generated onsite or be bought from clean sources. In 2016, utility-scale electricity generation in Nevada was 72.8% natural gas, 5.5% coal, 4.5% hydroelectric, 0.9% wind, 5.7% PV solar, 0.6% concentrated solar, 9.8% geothermal, 0.14% biomass and 0.03% petroleum coke. If we use the grams of CO2-eq per kWh estimated by IPCC AR5 WGIII and Bruckner et al (2014), then natural gas emits 595 g, coal emits 1027 g, petroleum emits 880 g, hydroelectric emits 24 g, terrestrial wind emits 11 g, utility PV solar emits 48 g, residential PV solar emits 41 g, concentrated solar emits 27 g, geothermal emits 38 g and biomass emits 230 g. Based on those emission rates, grid electricity in Nevada emits 499 g CO2-eq per kWh. If 2/3 comes from the grid and 1/3 comes from rooftop PV solar or a similar clean source, then the electricity used in the Gigafactory will emit 346 g CO2 per kWh. If consuming between 3,229 and 4,688 GWh per year, the Gigafactory will emit between 1.12 and 1.62 megatonnes of CO2-eq per year, which represents between 3.1% and 4.5% of the greenhouse gas emissions that the state of Nevada produced in 2014 according to the World Resources Institute.

Aside from the GHG emissions from the Gigafactory, it is necessary to consider the greenhouse gas emissions from mining, refining and processing the materials used in the Gigafactory. The materials used in batteries consume a tremendous amount of energy and resources to produce. The various estimates of the energy to produce the materials in batteries and their greenhouse gas emissions shows the high impact that battery manufacturing has on the planet.


To get some idea of how much materials will be used in the NCA cells produced by the Gigafactory, I attempted to do a rough calculation of the weight of materials in 1 kWh of cells. Taking the weight breakdown of an NMC battery cell in Olofsson and Romare (2013), I used the same weight percentages for the cathode, electrolyte, anode and packaging, but scaled the energy density up from 233 kW per kg in the NCA cells in 2014 to 263 kW per kg, which is a 13% increase, since Telsa claims a 10% to 15% increase in energy density in the Gigafactory’s cells. Then, I estimated the weight of the components in the cathode, using 76% nickel, 14% cobalt, and 10% aluminum and some stochiometry to calculate the lithium and oxygen compared to the rest of the cathode materials. The 2170 cells produced by the Gigafactory will probably have different weight ratios between their components, and they will have more packaging materials than the pouch cells studied by Olofsson and Romare, but this provides a basic idea how much material will be consumed in the Tesla cells.


The estimates of the energy, the emissions of carbon dioxide equivalent, sulfur dioxide equivalent, phosphorous equivalent and human toxicity to produce the metals are taken from Nuss and Eckelman (2014), which are process-sum estimates based on the EcoInvent database. These are estimates to produce generic metals, not the highly purified metals used in batteries, and the process-sum methodology generally underestimates the emissions, so the estimates should be taken with a grain of salt but they do give some idea about the relative impact of the different components in battery cells since they use the same methodology in their calculations.

At this point we still don’t know how large the battery will be in the forthcoming Model 3, but it has been estimated to have a capacity of 55 kWh based on a range of 215 miles for the base model and a 20% reduction in the size of the car compared to the Model S. At that battery size, the cells in the Model 3 will contain 6.3 kg of lithium, 26.4 kg of nickel, 4.9 kg of cobalt, 27.9 kg of aluminum, 56.6 kg of copper and 21.0 kg of graphite.

Even more concerning is the total impact of the Gigafactory when it ramps up to its planned capacity of 150 GWh per year. Originally, the Gigafactory was scheduled to produce 35 GWh of lithium ion batteries by 2020, plus package an additional 15 GWh of cells produced in other factories. After Tesla received 325,000 preorders for the Model 3 within a week of being announced on March 31, 2016, the company ambitiously announced that it would triple its planned battery production and be able to produce 500,000 cars a year by 2018–two years earlier than initially planned. Now Elon Musk is talking about building 2 to 4 additional Gigafactories and one is rumored to have signed a deal to build one of them in Shanghai.

If the components for 1 kWh of Gigafactory batteries is correct and the Nevada plant manages to produce as much as Musk predicts, then the Gigafactory and the cells it packages from other battery factories will consume 17,119 tonnes of lithium, 71,860 tonnes of nickel, 13,292 tonnes of cobalt, 154,468 tonnes of copper and 75,961 tonnes of aluminum. All of these metals except aluminum have limited global reserves, and North America doesn’t have enough production capacity to hope to supply all the demand of the Gigafactory, except in the case of aluminum and possibly copper.


When the Gigafactory was originally announced, Telsa made statements about sourcing the battery materials from North America which would both reduce its costs and lower the environmental impact of its batteries. These claims should be treated with skepticism. The Gigafactory will reduce the transportation emissions in battery manufacturing, since it will be shipping directly from the refineries and processors, but the transportation emissions will still be very high because North America simply doesn’t produce enough of the metals needed by the Gigafactory. If the Gigafactory manufacturers 150 GWh of batteries per year, then it will consume almost 200 times more lithium than North America produced in 2013. In addition, it will also consume 166% of the cobalt, 133% of the natural graphite, 25.7% of the nickel, and 5.6% of the copper produced by North American mines in 2016. Presumably synthetic graphite will be used instead of natural graphite because it has a higher purity level of carbon and more uniform spheroid flakes which allow for the easier flow of electrons in the cathode, but most synthetic graphite comes from Asia. Only in the case of aluminum does it seem likely that the metal will come entirely from North America, since Gigafactory will consume 1.9% of North American mine production and the US has excess aluminum refining capacity and no shortage of bauxite. Even when considering that roughly 45 GWh of the battery cells will come from external battery factories which are presumably located in Asia, the Gigafactory will overwhelm the lithium and cobalt markets in North America, and strain the local supplies of nickel and copper.


Shipping from overseas contributes to greenhouse gases, but shipping over water is very energy efficient. The Gigafactory is located at a nexus of railroad lines, so it can efficiently ship the battery materials coming from Asia through the port of Oakland. The bigger problem is that most ships on international waters use dirty bunker fuels that contain 2.7% sulfur on average, so they release large quantities of sulfur dioxide into the atmosphere that cause acid rain and respiratory diseases.

A larger concern than the emissions from shipping is the fact that the production of most of these battery materials is an energy intensive process that consumes between 100 and 200 mejajoules per kg. The aluminum, copper, nickel and cobalt produced by North America is likely to come from places powered by hydroelectric dams in Canada and natural gas in the US, so they are comparatively cleaner.  Most of the metal refining and graphite production in Asia and Australia, however, is done by burning coal. Most of the places that produce battery materials either lack strong pollution controls, as is the case in Russia, the Democratic Republic of Congo (DRC), Zambia, Philippines or New Caledonia, or they use dirty sources of energy, as is the case in China, India, Australia, the DRC, Zambia, Brazil and Madagascar.


Most of the world’s lithium traditionally came from pumping lithium rich subsurface water out of the salt flats of Tibet, northeast Chile, northwest Argentina and Nevada, but the places with concentrated lithium brines are rapidly being exhausted. The US Geological Survey estimates that China’s annual production of lithium which mostly comes from salt flats in Tibet has fallen from 4500 tonnes in 2012 to just 2000 tonnes in 2016. Silver Peak, Nevada, which is the only place in North America where lithium is currently extracted, may be experiencing similar production problems due to the exhaustion of its lithium, but its annual production numbers are confidential.

Since 1966 when brine extraction began in Silver Peak, the concentration of lithium in the water has fallen from 360 to 230 ppm (parts per million), and it is probably around 200 ppm today. At that concentration of lithium, 14,300 liters of water need to be extracted to produce 1 kg of battery-grade lithium metal. This subsurface water is critical in a state that only receives an average of 9 inches of rain per year. Parts of Nevada are already suffering from water rationing, so a massive expansion of lithium extraction is an added stress, but the biggest risk is that brine operations may contaminate the ground water. 30% of Nevada’s water is pumped from underground aquifers, so protecting this resource is vitally important. Lithium-rich water is passed through a series of 4 or 5 evaporation pools over a series of 12 to 18 months, where it is converted to lithium chloride, which is toxic to plants and aquatic life and can contaminate the ground water. Adams-Kszos and Stewart (2003) measured the effect of lithium chloride contamination in aquatic species 150 miles away from brine operations in Nevada.

As the lithium concentrations fall in the water, more energy is expended in pumping water and evaporating it to concentrate the lithium for processing. Argonne National Laboratory estimates that it takes 3 times as much energy to extract a tonne of lithium in Silver Peak, Nevada as in the Atacama Salt Flats of Chile, where the lithium is 7 times more concentrated.  Most of the lithium in Chile and Argentina is produced with electricity from diesel generators, but in China and Australia it comes from burning coal, which is even worse.

For every kg of battery-grade lithium, 4.4 kg of slaked lime is consumed to remove magnesium and calcium from the brine in Silver Peak. The process of producing this lime from limestone releases 0.713 kg of COfor every kg of lime. In addition, 5 kg of soda ash (Na2CO3) is added for each kilo of battery-grade lithium to precipitate it as lithium carbonate. Production of soda ash is also an energy intensive process which produces greenhouse gases.

Although lithium is an abundant element and can be found in ocean water and salty lakes, there are only 4 places on the planet where it is concentrated enough without contaminants to be economically extracted from the water and the few places with concentrated lithium water are rapidly being exploited. In 2008, Meridian International estimated that 2 decades of mining had extracted 20% of the lithium from the epicenter of the Atacama Salt Flats where lithium concentrations are above 3000 ppm. According to Meridian’s calculations, the world only had 4 million tonnes of high-concentration lithium brine reserves remaining in 2008.

As the best concentrations of lithium brine are being exhausted, extraction is increasingly moving to mining pegmatites, such as spodumene. North Carolina, Russia and Canada shut down their pegmatite operations because they couldn’t compete with the cheap cost of lithium from the salt flats of Chile and Argentine, but Australia and Zimbabwe have dramatically increased their production of lithium from pegmatites in recent years. Between 2004 and 2016, the percentage of global lithium from pegmatites increased from 39% to 44%.


In 2016, Australia produced 40.9% of the global lithium supply by processing spodumene, which is an extremely energy-intensive process. It takes 125 MJ of energy to extract a kilo of lithium from Chile’s salt flats, whereas 850 MJ is consumed to extract the same amount of lithium from spodumene in Australia. The spodumene is crushed, so it can be passed through a flotation beneficiation process to produce a concentrate. That concentrate is then heated to 1100ºC to change the crystal structure of the mineral. Then, the spodumene is ground and mixed with sulfuric acid and heated to 250ºC to form lithium sulfate. Water is added to dissolve the lithium sulfate and it is filtered before adding soda ash which causes it to precipitate as lithium carbonate. As lithium extraction increasingly moves to pegmatites and salt flats with lower lithium concentrations, the energy consumption will dramatically increase to produce lithium in the future.

Likewise, the energy to extract nickel and cobalt will also increase in future. The nickel and cobalt from Canada and the copper from the United States, generally comes from sulfide ores, which require much less energy to refine, but these sulfide reserves are limited. The majority of nickel and cobalt, and a sizable proportion of the copper used by the Gigafactory will likely come from places which present ethical challenges. Nickel from sulfide ores generally consumes less than 100 MJ of energy per kg, whereas nickel produced from laterite ores consumes between 252 and 572 MJ per kg. All the sulfide sources emit less than 10 kg of CO2 per kg of nickel, whereas the greenhouse gas emissions from laterite sources range from 25 to 46 kg  CO2 per kg of nickel. It is generally better to acquire metals from sulfide ores, since they emit fewer greenhouse gases and they generally come from deeper in the ground, whereas laterite ores generally are produced by open pit and strip mining which causes greater disruption of the local ecology. Between 2004 and 2016, the percentage of global primary production of nickel from laterite ores increase from 40% to 60% and that percentage will continue to grow in the future, since 72% of global nickel “resources” are laterites according to the US Geological Survey.


Cobalt is a byproduct of copper or nickel mining. The majority of the sulfide ores containing copper/cobalt are located in places like Norilsk, Russia, Zambia and the Katanga Province of the Democratic Republic of Congo, where there are no pollution controls to capture the large amounts of sulfur dioxide and heavy metals released by smelting. The refineries in Norilsk, Russia, which produce 11% of the world’s nickel and 5% of its cobalt, are so polluting, that nothing grows within a 20 kilometer radius of the refineries and it is reported that Norilsk has the highest rates of lung cancer in the world.

The Democratic Republic of Congo currently produces 54% of the world’s cobalt and 5% of its copper. Buying cobalt from the DRC helps fuel a civil war in the Katanga Province where the use of children soldiers and systematic rape are commonplace. Zambia, which is located right over the border from Katanga Province, produces 4% of the world’s cobalt and copper and it also has very lax pollution controls for metal refining.

Most of the cobalt and nickel produced by the DRC and Zambia is shipped to China for refining by burning coal. China has cracked down on sulfur dioxide and heavy metal emissions in recent years, and now the DRC is attempting to do more of the refining within its own borders. The problem is that the DRC produces most of its energy from hydroelectric dams in tropical rainforests, which is the dirtiest energy on the planet. According to the IPCC (AR5 WGIII 2014), hydroelectric dams typically emit a medium of 24 g of  CO2-eq per kWh, but tropical dams accumulate large amounts of vegetation which collect at the bottom of the dam where bacteria feeding on the decaying matter release methane (CH4) in the absence of oxygen. There have been no measurements of the methane released by dams in the DRC, but studies of 3 Amazonian hydroelectric dams found that they emit an average of 2556 g CO2-eq per kWh. Presumably the CO2 from these dams would have been emitted regardless of whether the vegetation falls on the forest floor or in a dam, but rainforest dams are unique environments without oxygen that produces methane. If we only count the methane emissions, then Amazonian hydroelectric dams emit an average of 2044 g CO2-eq per kWh. Any refining of copper/cobalt in the DRC and Zambia or nickel/cobalt in Brazil will likely use this type of energy which emits twice as much greenhouse gases as coal.

To avoid the ethical problems with obtaining nickel and cobalt from Russia and cobalt and copper from the DRC and Zambia, the Gigafactory will have to consume metals from laterite ores in places like Cuba, New Caledonia, Philippines, Indonesia and Madagascar, which dramatically increases the greenhouse gas emissions of these metals. The nickel/cobalt ore from Moa, Cuba is shipped to Sherritts’ refineries in Canada, so presumably it will be produced with pollution controls in Cuba and Canada and relatively clean sources of energy. In contrast, the nickel/cobalt mining in the Philippines and New Caledonia has generated protracted protests by the local population who are effected by the contamination of their water, soil and air. When Vale’s $6 billion high pressure acid leaching plant in Goro, New Caledonia leaked 100,000 liters of acid-tainted effluent leaked into a local river in May 2014, protesters frustrated by the unaccountability of the mining giant burned a third of its trucks and one of its buildings, causing between $20 and $30 million in damages. The mining companies extracting nickel and cobalt in the Philippines have shown so little regard for the health of the local people, that the public outcry induced the Duterte administration to recently announce that it will prohibit all open pit mining of nickel. If this pronouncement is enforced, the operations of 28 of the 41 companies mining nickel/cobalt in the country will be shut down and the global supply of nickel will be reduced between 8% and 10%.

Most refining of laterite ores in the world is done with dirty energy, which is problematic because these ores require so much more energy than sulfide ores. Much of the copper/cobalt from the DRC and Zambia and the nickel/cobalt from the Philippines is shipped to China where it is refined with coal. The largest nickel/cobalt laterite mine and refinery in the world is the Ambatovy Project in Madagascar. Although the majority of the electricity on the island comes from hydroelectric dams, the supply is so limited that Ambatovy constructed three 30 MW coal-powered generators, plus 30 MW diesel powered generators.

It is highly likely that many of the LCA studies of lithium-ion batteries have underestimated the energy and greenhouse gas emissions to produce their metals, because they assume that the lithium comes from brine operations and the copper, nickel and cobalt come from sulfide ores with high metal concentrations. As lithium extraction increasingly shifts to spodumene mining and nickel and cobalt mining shifts to laterite ores, the greenhouse gas emissions to produce these metals will dramatically increase.

As the global production of lithium-ion batteries ramps up, the most concentrated ores for these metals will become exhausted, so that mining will move to less-concentrated sources, which require more energy and resources in the extraction and processing.  In 1910, copper ore in the US contained 1.9% copper. By 1950, this percentage had fallen to 0.9% copper, and by 1980 it was at 0.5% copper. As the concentration of copper in the ore has fallen, the environmental impact of extraction has risen. In a study of the smelting and refining of copper and nickel, Norgate and Rankin (2000) found that the energy consumption, greenhouse gas emissions and sulfur dioxide emissions per kg of metal rose gradually when changing from ore with 3% or 2% metal to 1% metal, but below 1% the environmental impacts increased dramatically. MJ/kg, CO2/kg and SO2/kg doubled when moving from ore with 1% metal to ore with 0.5% metal, and they doubled again when moving to 0.25% metal. Producing a kilo of copper today in the US has double the environmental impact of a kg of copper half a century ago and it will probably have 4 times the impact in the future.

The enormous demand for metals by battery manufacturers will force the mining companies to switch to less and less concentrated ores and consume more energy in their extraction. If the Nevada Gigafactory produces 150 GWh of batteries per year, then it will dramatically reduce the current global reserves listed by the US Geological survey. The Nevada Gigafatory will cut the current global lithium reserves from 400 to 270 years, assuming that current global consumption in other sectors does not change (which is highly unlikely). If the Gigafactory consumes metals whose recycled content is the US average recycling rate, then the current global copper reserves will be reduced from 37.1 to 36.9 years, the nickel reserves from 34.7 to 33.9 years, and the cobalt reserves from 56.9 to 52.5 years.

Recycling at the Gigafactory will not dramatically reduce its demand for metals. If we assume that 80% of the metal consumed by the Gigafactory will come from recycled content starting in 15 years when batteries start to be returned for recycling, then current global reserves will be extended 0.04 years for copper, 0.09 years for nickel, 0.9 years for cobalt. Only in the case of lithium will recycling make a dramatic difference, extending the current reserves 82 years for lithium.

The prospects for global shortages of these metals will become even more dire if the 95.0 million vehicles that the world produced in 2016 were all long-range electrics as Elon Musk advocates for “sustainable transport.” If the average vehicle (including all trucks and buses) has a 50 kWh battery, then the world would need to produce 4750 GWh of batteries per year just for electric vehicles. With energy storage for the electrical grid, that total will probably double, so 64 Gigafactories will be needed. Even that might not enough. In Leonardo de Caprio’s documentary Before the Flood, Elon Musk states, “We actually did the calculations to figure out what it would take to transition the whole world to sustainable energy… and you’d need 100 Gigafactories.”

Lithium-ion batteries will get more energy dense in the future, but they are unlikely to reach the high energy density of the NCA cells produced in the Gigafactory, if using the LMO or LFP chemistries. For that kind of energy density, they will probably need either an NCA or an altered NMC chemistry which is 70%-80% nickel, so the proportion of lithium, nickel, cobalt and copper in most future EV batteries is likely to be similar to the Gigafactory’s NCA cells. If 4750 GWh of these batteries are produced every year at an energy density of 263 Wh/kg, then the current global reserves will be used up in 24.5 years for lithium, 31.2 years for copper, 20.2 years for nickel, and 15.4 years for cobalt. Even if those batteries are produced with 80% recycled metals, starting in 15 years time, the current global lithium reserves would be extended 6.6 years, or 7.4 years if all sectors switch to using 80% recycled lithium. Using 80% recycled metal in the batteries would extend current copper, nickel and cobalt reserves by 0.7, 0.5 and 0.1 years, respectively. An 80% recycling rate in all sectors would make a difference for copper, extending its reserves by 11.5 years, but only 2.8 years for nickel and 0.2 years for cobalt. In other words, recycling will not significantly reduce the enormous stresses that lithium-ion batteries will place on global metal supplies, because they represent so much new demand for metals.

As the demand for these metals increases, the prices will increase and new sources of these metals will be found, but they will either be in places like the DRC with ethical challenges or in places with lower quality ores which require more energy and resources to extract and refine. We can expect more energy-intensive mining of spodumene and  more strip mining of laterite ores which cause more ecological disruption. The ocean floor has enormous quantities of manganese, nickel, copper and cobalt, but the energy and resources to scrap the bottom of the ocean will dramatically increase the economic and ecological costs. If battery manufacturing dramatically raises the prices of lithium, nickel, cobalt, copper (and manganese for NMC cells), then it will be doubly difficult to transition to a sustainable civilization in other areas. For example, nickel and cobalt are essential to making carbide blades, tool dies and high-temperature turbine blades and copper is a vital for wiring, electronics and electrical motors. It is hard to imagine how the whole world will transition to a low-carbon economy if these metals are made prohibitively expensive by manufacturing over a billion lithium-ion batteries for EVs.

Future batteries will probably be able to halve their weight by switching to a solid electrolyte and using an anode made of lithium metal, lithiated silicon or carbon nanotubes (graphene), but that will only eliminate the copper, while doing little to reduce the demand for the other metals. Switching the anode to spongy silicon or graphene will allow batteries to hold more charge per kilogram, but those materials also dramatically increase the cost and the energy and resources that are consumed in battery manufacturing.

In the near future, lithium-ion batteries are likely to continue to follow their historical trend of using 7% less materials each year to hold the same amount of charge. That rate of improvement, however, is unlikely to last. An NCA cathode currently holds a maximum of 200 mAh of energy per gram, but its theoretical maximum is 279 mAh/g. It has already achieved 72% of what is theoretically possible, so there is little scope to keep improving. NMC at 170 mAh/g is currently farther from its theoretical limit of 280 mAh/g, but the rate of improvement is likely to slow as these battery chemistries bump against their theoretical limits.

Clearly the planet doesn’t have the resources to build 95 million long-range electric vehicles each year that run on lithium-ion batteries. Possibly a new type of battery will be invented that only uses common materials, such as aluminum, zinc, sodium and sulfur, but all the batteries that have been conceived with these sorts of material still have significant drawbacks. Maybe a new type of battery will be invented that is suitable for vehicles or the membranes in fuel cells will become cheap enough to make hydrogen a viable competitor, but at this point, lithium-ion batteries appear likely to dominate electric vehicles for the foreseeable future. The only way EVs based on lithium-ion can become a sustainable solution for transport is if the world learns to live with far fewer vehicles.

Currently 3% more vehicles are being built each year, and there is huge demand for vehicles in the developing world. While demand for cars has plateaued in the developed world, vehicle manufacturing since 1999 has grown 17.4% and 10.5% per year in China and India, respectively. If the developing world follows the unsustainable model of vehicle ownership found in the developed world, then the transition to electrified transport will cause severe metal shortages. Based on current trends, Navigant Research predicts that 129.9 million vehicles will be built in the year 2035, when there will be 2 billion vehicles on the road.


On the other hand, James Arbib and Tony Seba believe that autonomous vehicles and Transport as a Service (TaaS) such as Uber and Lyft will dramatically reduce demand for vehicles, lowering the number of passenger vehicles on American roads from 247 to 44 million by 2030. If 95% of passenger miles are autonomous TaaS by 2030 and the lifespan of electric vehicles grows to 500,000 miles as Arbib and Seba predict, then far fewer vehicles will be needed. Manufacturing fewer electric vehicles reduces the pressure to extract metals from laterite ores, pegmatites, the ocean floor, and lower-grade ores in general with higher ecological costs.

Ellingsen et al (2016) estimate that the energy consumed by battery factories per kWh of batteries has halved since 2012, however, that has to be balanced by the growing use lithium from spodumene and nickel and cobalt from laterite ores, and ores with lower metal concentrations that require more energy and produce more pollution. Given the increased energy efficiency in battery manufacturing plants and the growing efficiencies of scale, I would guesstimate that lithium-ion battery emissions are currently at roughly 150 kg  CO2-eq per kWh of battery and that the Gigafactory will lower those emissions by a third to roughly 100 kg  CO2-eq / kWh. If the Model 3, uses a 55 kWh battery, then its battery emissions would be roughly 5500 kg  CO2-eq.

Manufacturing a medium-sized EV without the battery emits 6.5 tonnes of  CO2-eq according to Ellingsen et al (2016). Electric cars don’t have the huge engine block of an ICE car, but they have large amounts of copper in the motor’s rotor and the windings and the Model 3 will have far more electronics than a standard EV. The Model S has 23 kg of electronics and I would guesstimate that the Model 3 will have roughly 15 lbs of electronics if it contains nVidia’s Drive PX or a custom processor based on the K-1 graphics processor. If the GHG emissions are roughly 150 kg  CO2-eq per kg of electronics, we can guesstimate that 2.2 tonnes of  CO2-eq will be emitted to manufacture the electronics in the Model 3. Given the large amount of copper, electronics and sensors in the Model 3, add an additional tonne, plus 5.5 tonnes for its 50 kWh battery, so a total of 13 tonnes of  CO2-eq will be emitted to manufacture the entire car.

Manufacturing a medium-sized ICE car emits between 5 and 6 tonnes, so there is roughly a 7.5 tonne difference in GHG emissions between manufacturing the Model 3 and a comparable ICE car. A new ICE car the size of the Model 3 will get roughly 30 mpg. In the US, a gallon of gasoline emits 19.64 lbs of CO2, but it emits 24.3 lbs of  CO2e when the methane and nitrous oxide are included, plus the emissions from extraction, refining and transportation, according to the Argonne National Laboratory. Therefore, we will need to burn 680 gallons of gasoline or drive 20,413 miles at 30 mpg to equal those 7.5 extra tonnes in manufacturing the Model 3.

At this point, the decision whether the Model 3 makes ecological sense depends on where the electricity is coming from. Let’s assume that the Model 3 will consume 0.30 kWh of electricity per mile, which is what the EPA estimates the Nissan Leaf to consume. The Model S will be a smaller and more aerodynamic car than the Leaf, but it will also weigh significantly more due to its larger battery. If we also include the US national average of 4.7% transmission losses in the grid, then the Model 3 will consume 0.315 kWh per mile. After driving the Model 3 100,000 miles, the total greenhouse gas emissions (including the production emissions) will range between 14.1 and 45.3 tonnes, depending on its energy source to charge the battery.


In comparison, driving a 30 mpg ICE car (with 5.5 tonnes in production emissions) will emit 42.2 tonnes of  CO2-eq after 100,000 miles. If we guesstimate that manufacturing a Toyota Prius will emit 7 tonnes, then driving it 100,000 miles at 52 mpg will emit 28.2 tonnes. Only in places like Kentucky which get almost all their electricity from coal is an ICE car the better environmental choice. The Model 3, however, will have worse emissions than most of its competitors in the green car market, if it is running on average US electricity, which emits 528 grams of CO2-eq per kWh. It will emit slightly more than a plugin hybrid like the Chevy Volt and an efficient hybrid like the Toyota Prius and substantially more than a short-range electric, like the Nissan Leaf.

Most previous comparisons between electric cars and ICE cars were based on short-range electrics with smaller batteries, such as the Nissan Leaf, which is why environmental advocates are so enthusiastic about EVs. However, comparing the Model S and Model 3 to the Nissan Leaf, Chevy Volt and Toyota Prius hybrid shows that the environmental benefits of long-range EVs are questionable when compared to short-range EVs, plugin hybrids and hybrids. Only when running the Model 3 on cleaner sources of electricity does it emit less greenhouse gases than hybrids and plugin hybrids, but in the majority of the United States it will emit slightly more. Many of the early adopters of EVs also owned solar panels, so buying a Model 3 will reduce their carbon footprint, but the proportion of EV owners with solar panels on their roofs is falling. According to CleanTechnica’s PlugInsights annual survey, 25% of EV buyers before 2012 had solar panels on their roofs, compared to just 12% in 2014-2015. Most people who own solar panels do not have a home battery system so they can not use their clean energy all day, and most EV charging will happen at night using dirtier grid electricity.

Another factor to consider is the effect of methane leakage in the extraction and transport of natural gas. There is a raging scientific debate about what percentage of natural gas leaks into the atmosphere without being burned. A number of studies have concluded that the leakage of methane causes electricity from natural gas to have GHG emissions similar to coal, but there is still no consensus on the matter.  If the leakage rate is as high as some researchers believe, then EVs will emit more greenhouse gases than hybrids and efficient ICE cars in places like California which burn large amounts of natural gas.

On the other hand, many people believe that EVs will last 300,000 miles or even 500,000 miles since they have so few moving parts, so their high emissions in manufacturing will be justified. However, the EV battery will probably have to be replaced, and the manufacturing emissions for a long range EV battery can be as high as building a whole new ICE car. Another factor that could inhibit the long life of Telsa’s cars is the fact that the company builds cars described as “computers on wheels,” which are extremely difficult for third parties to fix and upgrade over time. Telsa only sells its parts to authorized repair shops and much of the functionality of car is locked up with proprietary code and secret security measures, as many do-it-yourselfers have discovered to their chagrin. When Tesla cars are damaged and sold as salvage, Tesla remotely disables its cars, so that they will no longer work even if repaired. The $600 inspection fee to reactivate the car plus the towing fees discourage Teslas from being fixed by third parties. These policies make it less likely that old Teslas will be fixed and their lifespans extended to counterbalance the high environmental costs of producing the cars.

Although the Model 3 has high greenhouse gas emissions in its production and driving it is also problematic in parts of the world that currently use dirty energy, those emissions could be significantly reduced in the future if they are accompanied by a shift to renewable energy, more recycling and the electrification of mining equipment, refining and transport. The car’s ecological benefits will increase if the emissions can be decreased in producing battery materials and the greater energy density of batteries is used to decrease the total materials in batteries rather than keep extending the range of EVs. Producing millions of Model 3s will strain the supply of vital metals and shift extraction to reserves which have higher ecological costs. However, the Model 3 could become a more sustainable option if millions of them are deployed in autonomous Transport as a Service fleets, which Arbib and Seba predict will be widespread by 2030, since TaaS will cost a tenth of the price of owning a private vehicle. If the Model 3 and future autonomous EVs become a means to drop the global demand for private vehicles and that helps reduce the demand for lithium, nickel, cobalt and copper down to sustainable levels, then the high environmental costs of manufacturing the Model 3 would be justified.

Nonetheless, the Model 3 and the NCA 2170 batteries currently being produced by Tesla offer few of those possible future ecological benefits. Most of the metal and graphite in the battery is being produced with energy from fossil fuels. In the short term at least, Telsa batteries will keep growing in capacity to offer more range, rather than reducing the total consumption of metals per battery. The extra sensors, processing power and electronics in the current Model 3 will increase its ecological costs without providing the Level 4 or 5 autonomy that would make it possible to convince people to give up their private vehicles. In the here and now, the Model 3 is generally not the best ecological choice, but it might become a better choice in the future.

The Model 3 promises to transform the market not only for EVs, but cars in general. If the unprecedented 500,000 pre-orders for the Model 3 are any indication of future demand, then long-range electrics with some degree of autonomous driving like the Model 3 will capture most of the EV market. Telsa’s stunning success will induce the rest of auto-makers to also start making long-range EVs with large batteries, advanced sensors, powerful image processors, advanced AI, cellular networking, driving data collection and large multimedia touchscreens. These features will dramatically increase the environmental costs of car manufacturing. Whether these features will be balanced by other factors which reduce their environmental costs remains to be seen.

Much of this analysis is guess work, so it should be taken with a grain of salt, but it points out the problems with automatically assuming that EVs are always better for the environment. If we consider sulfate emissions, EVs are significantly worse for the environment. Also, when we consider the depletion of critical metal reserves, EVs are significantly worse than ICE vehicles.

The conclusion should be that switching to long-range EVs with large batteries and advanced electronics bears significant environmental challenges. The high manufacturing emissions of these types of EVs make their ecological benefits questionable for private vehicles which are only used on average 4% of the time. However, they are a very good option for vehicles which are used a higher percentage of the time such as taxis, buses and heavy trucks, because they will be driven many miles to counterbalance their high manufacturing emissions. Companies such as BYD and Proterra provide a model of the kinds of electric vehicles that Tesla should be designing to promote “sustainable transport.” Tesla has a few ideas on the drawing board that are promising from an ecological perspective, such as its long-haul semi, the renting out of Teslas to an autonomous TaaS fleet, and a new vehicle that sounds like a crossover between a sedan and a minibus for public transport. The current Model 3, however, is still a vehicle which promotes private vehicle ownership and bears the high ecological costs of long-range lithium batteries and contributes to the growing shortage of critical metals.

Clearly, EVs alone are not enough to reduce greenhouse gas emissions or attain sustainable transport in general. The first step is to work on switching the electric grid to cleaner renewable energy and installing more residential solar, so that driving an EV emits less CO2. However, another important step is redesigning cities and changing policies so that people aren’t induced to drive so many private vehicles. Instead of millions of private vehicles on the road, we should be aiming for walkable cities and millions of bikes and electric buses, which are far better not only for human health, but also for the environment.

A further step where future Model 3s may help is in providing autonomous TaaS that helps convince people to give up their private vehicles. However, autonomous EVs need to be matched by public policies that disincentivize the kind of needless driving that will likely occur in the future. The total number of miles will likely increase in the future due to autonomous electric cars driving around looking for passengers to pick up and people who spend more time in the car because they can surf the web, watch movies, and enjoy the scenery without doing the steering. Plus, the cost of the electricity to charge the battery is so cheap compared to burning gasoline that people will be induced to drive more, not less.

Chris Martenson on insanity

5 08 2017

Published on 4 Aug 2017

Read the latest articles at Peak Prosperity: https://www.peakprosperity.com/

Our Brave New ”’Markets”’

The Inevitability Of DeGrowth

Suicide By Pesticide

View the “Accelerated” Crash Course Here: https://www.youtube.com/watch?v=pYyugz5wcrI

How an obscure Austrian philosopher saw through our empty rhetoric about ‘sustainability’

5 07 2017

Hot Mess

Marc Hudson, University of Manchester

“Sustainability” is, ironically, a growth industry. Ever since the term “sustainable development” burst onto the scene in 1987 with the release of Our Common Future (also known as the Brundtland report), there has been a dizzying increase in rhetoric about humanity’s relationship with our planet’s resources. Glossy reports – often featuring blonde children in front of solar panels or wind turbines – abound, and are slapped down on desks as proof of responsibility and stewardship.

Every few years a new term is thrown into the mix – usually preceded by adjectives like “participatory” or “community-led”. The fashionability of “resilience” as a mot du jour seems to have peaked, while more recently the “circular economy” has become the trendy term to put on grant applications, conference notices and journal special editions. Over time journals are established, careers are built, and library shelves groan.

Meanwhile, the planetary “overshoot”, to borrow the title of a terrifying 1980 book, goes on – exemplified by rising concentrations of atmospheric carbon dioxide, warmer oceans, Arctic melting, and other signs of the times.

With all this ink being spilled (or, more sustainably, electrons being pressed into service), is there anything new to say about sustainability? My colleagues and I think so.

Three of us (lead author Ulrike Ehgartner,
second author Patrick Gould
and myself) recently published an article called “On the obsolescence of human beings in sustainable development”.

In it we explore the big questions of sustainability, drawing on some of the work of an unjustly obscure Austrian political philosopher called Gunther Anders.

Who was Günther Anders?

He was born Günther Siegmund Stern in 1902. While he was working as a journalist in Berlin, an editor wanted to reduce the number of Jewish-sounding bylines. Stern plumped for “Anders” (meaning “other” or “different”) and used that nom de plume for the rest of his life.

Anders knew lots of the big philosophical names of the day. He studied under Edmund Husserl and Martin Heidegger. He was briefly married to Hannah Arendt, and Walter Benjamin was a cousin.

But despite his stellar list of friends and family, Anders himself was not well known. Harold Marcuse points out that the name “Stern” was pretty apt, writing:

His unsparingly critical pessimism may explain why his pathbreaking works have seldom sparked sustained public discussion.

While Hiroshima and the nuclear threat were the most obvious influences on Anders’ writing, he was also crucially influenced by the events at Auschwitz, the Vietnam War, and his periods in exile in France and the United States. But why should we care, and how can his ideas be applied to modern-day ideas about sustainability?

Space precludes a blow-by-blow account of what my colleagues and I wrote, but two ideas are worth exploring: the “Promethean gap” and “apocalyptic blindness”.

Anders suggested that the societal changes wrought by the industrial age – chief among them the division of labour – opened a gap between individuals’ capability to produce machines, and their capability to imagine and deal with the consequences.

So, riffing on the Greek myth of Prometheus (the chap who stole fire from Mount Olympus and gave it to humans), Anders proposed the existence of a “Promethean gap” which manifests in academic and scientific thinking and leads to the extensive trivialisation of societal issues.

The second idea is that of “apocalyptic blindness” – which is, according to Anders, the mindset of humans in the Age of the Third Industrial Revolution. This, as we write in our paper:

…determines a notion of time and future that renders human beings incapable of facing the possibility of a bad end to their history. The belief in progress, persistently ingrained since the Industrial Revolution, causes the incapability of humans to understand that their existence is threatened, and that this could lead to the end of their history.

Put simply, we don’t want to look an apocalypse in the eye, even if it’s heading straight towards us.

The climate connection

“So what?” you might ask. Why listen to yet another obscure philosopher railing about technology, in the vein of Lewis Mumford and Jacques Ellul? But I think a passing knowledge of Anders and his work reminds us of several important things.

This is nothing new. Recently, the very notion of ‘progress’ has come under renewed assault, with books questioning our assumptions about it. This is not new of course – in a 1967 short story collection about life at the United Nations, Shirley Hazzard had written:

About this development process there appeared to be no half-measures: once a country had admitted its backwardness, it could hope for no quarter in the matter of improvement. It could not accept a box of pills without accepting, in principle, an atomic reactor. Progress was a draught that must be drained to the last bitter drop.

The time – if ever there was one – for tinkering around the edges is over. We need to take stronger action than simply pursuing our feelgood preoccupation with sustainability.

This begs the question of who is supposed to shift us from the current course (or rather, multiple collision courses. That’s a difficult one to answer.

The hope that techno-fixes (including 100% renewable energy) will sort out our problems is a dangerous delusion (please note, I’m not against 100% renewables – I’m just saying that green energy is “necessary but not sufficient” for repairing the planet).

Similarly, the “circular economy” has a rather circular feeling to it – in the sense that we’ve seen all this before. It seems (to me anyway) to be the last gasp of the “ecological modernist” belief that with a bit more efficiency, everything can simply keep on progressing.

The ConversationOur problems go far deeper. We are going to need a rapid and fundamental shift in our values, habits, behaviours, and outlooks. Put in Anders’ terms, we need to stop being blind to the possibility of apocalypse. But then again, people have been saying that for a century or more.

Marc Hudson, PhD Candidate, Sustainable Consumption Institute, University of Manchester

This article was originally published on The Conversation. Read the original article.

The green car myth

28 06 2017

How government subsidies make the white elephant on your driveway look sustainable

And this comes on top of this article that describes how just making electric cars’ battery packs is equivalent to eight years worth of driving conventional happy motoring.

I have written before about the problems with bright green environmentalism. Bright greens suggest that various technological innovations will serve to reduce carbon dioxide emissions enough to avoid catastrophic global warming and other environmental problems. There are a variety of practical problems that I outlined there, including the fact that most of our economic activities are hitting physical limits to energy efficiency.

The solution lies in accepting that we can not continue to expand our economies indefinitely, without catastrophic consequences. In fact, catastrophic consequences are in all likelihood already unavoidable, if we believe the warnings of prominent climatologists who claim that a two degree temperature increase is sufficient to cause significant global problems.

It’s easy to be deceived however and assume that we are in the process of a transition towards sustainable green technologies. The problem with most green technologies is that although their implementation on a limited scale is affordable, they have insufficient scalability to enable a transition away from fossil fuels.

Part of the reason for this limited scalability is because users of “green” technology receive subsidies and do not pay certain costs which users of “grey” technology have to shoulder as a result. As an example, the Netherlands, Norway and many other nations waive a variety of taxes for green cars, taxes that are used to maintain the network of roads that these cars use. As the share of green cars rises, grey cars will be forced to shoulder increasingly higher costs to pay for the maintenance of road networks.

It’s inevitable that these subsidies will be phased out. The idea of course is that after providing an initial gentle push, the transition towards more green driving will have reached critical mass and prove itself sustainable without any further government subsidies. Unfortunately, that’s unlikely to occur. We’ve seen a case study of what happens when subsidies for green technologies are phased out in Germany. After 2011, the exponential growth in solar capacity rapidly came to a stop, as new installs started to drop. By 2014, solar capacity in Germany had effectively stabilized.1 Peak capacity of solar is now impressively high, but the amount of solar energy produced varies significantly from day to day. On bad days, solar and wind hardly contribute anything to the electricity grid.

Which brings us to the subject of today’s essay: The green car. The green car has managed to hide its enormous price tag behind a variety of subsidies, dodged taxes and externalities it has imposed upon the rest of society. Let us start with the externalities. Plug-in cars put significant strain on the electrical grid. These are costs that owners of such cars don’t pay themselves. Rather, power companies become forced to make costs to improve their grid, to avoid the risk of blackouts, costs that are then passed on to all of us.

When it comes to the subsidies that companies receive to develop green cars, it’s important not just to look at the companies that are around today. This is what is called survivorship bias. We focus on people who have succeeded and decide that their actions were a good decision to take. Everyone knows about the man who became a billionare by developing Minecraft. As a result, there are droves of indie developers out there hoping to produce the next big game. In reality, most of them earn less than $500 a year from sales.2

Everyone has heard of Tesla or of Toyota’s Prius. Nobody hears of the manufacturers who failed and went bankrupt. They had to make costs too, costs that were often passed on to investors or to governments. Who remembers Vehicle Production Group, or Fisker automotive? These are companies that were handed 193 million and 50 million dollar in loans respectively by the US Federal government, money the government won’t see again because the companies went bankrupt.3 This brings the total of surviving car manufacturers who received loans from the government to three.

To make matters worse, we don’t just subsidize green car manufacturers. We subsidize just about the entire production chain that ultimately leads to a green car on your driveway. Part of the reason Fisker automotive got in trouble was because its battery manufacturer, A123 Systems, declared bankruptcy. A123 Systems went bankrupt in 2012, but not before raising 380 million dollar from investors in 2009 and receiving a 249 million dollar grant from the U. S. department of energy back in 2010.

Which brings us to a de facto subsidy that affects not just green cars, but other unsustainable projects as well: Central bank policies. When interest rates are low, investors have to start searching for yield. They tend to find themselves investing in risky ventures, that may or may not pay off. Examples are the many shale companies that are on the edge of bankruptcy today. This could have been anticipated, but the current financial climate leaves investors with little choice but to invest in such risky ventures. This doesn’t just enable the growth of a phenomenon like the shale oil industry affects green car companies as well. Would investors have poured their money into A123 Systems, if it weren’t for central bank policies? Many might have looked at safer alternatives.

One company that has benefited enormously from these policies is Tesla. In 2008, Tesla applied for a 465 million dollar loan from the Federal government. This allowed Tesla to produce its car, which then allows Tesla to raise 226 million in an IPO in June 2010, where Tesla receives cash from investors willing to invest in risky ventures as a result of central bank policies. A $7,500 tax credit then encourages sales of Tesla’s Model S, which in combination with the money raised from the IPO allows Tesla to pay off its loan early.

In 2013, Tesla then announces that it has made an 11 million dollar profit. Stock prices go through the roof, as apparently they have succeeded at the task of the daunting task of making green cars economically viable. In reality, Tesla made 68 million dollar that year selling its emission credits to other car companies, without which, Tesla would have made a loss.

Tesla in fact receives $35,000 dollar in clean air credits for every Model S that it sells to customers, which in total was estimated to amount to 250 million dollar in 2013.4 To put these numbers in perspective, buying a Model S can cost anywhere around $70,000, so if the 35,000 dollar cost was passed on to the customer, prices would rise by about 50%, not including whatever sales tax applies when purchasing a car.

We can add to all of this the 1.2 billion of subsidy in the form of tax exemptions and reduced electricity rates that Tesla receives for its battery factory in Nevada.5 The story gets even better when we arrive at green cars sold to Europe, where we find the practice of “subsidy stacking”. The Netherlands exempts green cars from a variety of taxes normally paid upon purchase. These cars are then exported to countries like Norway, where green cars don’t have to pay toll and are allowed to drive on bus lanes.6

For freelancers in the Netherlands, subsidies for electrical cars have reached an extraordinarily high level. Without the various subsidies the Dutch government created to increase the incentive to drive an electrical car, a Tesla S would cost 94.010 Euro. This is a figure that would be even higher of course, if Dutch consumers had to pay for the various subsidies that Tesla receives in the United States. After the various subsidies provided by the Dutch government for freelance workers, Dutch consumers can acquire a Tesla S at a price of just 25,059 Euro.7

The various subsidies our governments provide are subsidies we all end up paying for in one form or another. What’s clear from all these numbers however is that an electric car is currently nowhere near a state where it could compete with a gasoline powered car in a free unregulated market, on the basis of its own merit.

The image that emerges here is not one of a technology that receives a gentle nudge to help it replace the outdated but culturally entrenched technology we currently use, but rather, of a number of private companies that compete for a variety of subsidies handed out by governments who seek to plan in advance how future technology will have to look, willfully ignorant of whatever effect physical limits might have on determining which technologies are economically viable to sustain and which aren’t.

After all, if government were willing to throw enough subsidies at it, we could see NGO’s attempt to solve world hunger using caviar and truffles. It wouldn’t be sustainable in the long run, but in the short term, it would prove to be a viable solution to hunger for a significant minority of the world’s poorest. There are no physical laws that render such a solution impossible on a small scale, rather, there are economic laws related to scalability that render it impossible.

Similarly, inventing an electrical car was never the problem. In 1900, 38% of American cars ran on electricity. The reason the electrical car died out back then was because it could not compete with gasoline. Today the problem consists of how to render it economically viable and able to replace our fossil fuel based transportation system, without detrimentally affecting our standard of living.

This brings us to the other elephant, the one in our room rather than our driveway. The real problem here is that we wish to sustain a standard of living that was built with cheap natural resources that are no longer here today. Coping with looming oil shortages will mean having to take a step back. The era where every middle class family could afford to have a car is over. Governments would be better off investing in public transport and safe bicycle lanes.

The problem America faces however, is that there are cultural factors that prohibit such a transition. Ownership of a car is seen as a marker of adulthood and the type of car tells us something about a man’s social status. This is an image car manufacturers are of course all too happy to reinforce through advertising. Hence, we find a tragic example of a society that wastes its remaining resources on false solutions to the crisis it faces.

1 – http://www.ise.fraunhofer.de/en/publications/veroeffentlichungen-pdf-dateien-en/studien-und-konzeptpapiere/recent-facts-about-photovoltaics-in-germany.pdf Page 12

2 – http://www.gameskinny.com/364n3/report-most-indie-game-devs-made-less-than-500-in-game-sales-in-2013

3 – http://www.forbes.com/sites/joannmuller/2013/05/11/the-real-reason-tesla-is-still-alive-and-other-green-car-companies-arent/

4 – http://evworld.com/news.cfm?newsid=30195

5 – http://www.rgj.com/story/news/2014/09/04/nevada-strikes-billion-tax-break-deal-tesla/15096777/

6 – http://www.elsevier.nl/Economie/achtergrond/2015/4/-1742131W/

7 – https://www.cda.nl/mensen/omtzigt/blog/toon/auto-rijden-op-subsidie/

Who cares………?

2 06 2017

Trump has just declared he’s taking the USA out of the Paris accord, and everyone’s freaking out…….. I personally don’t care much, and here’s why…..

Most people don’t realize, because they’re asleep at the wheel, read too many mainstream media headlines, and rather than do their own research before holding opinions believe what they are spoon fed by their TV screens that…..:

The Paris climate agreement:

1) had absolutely no binding language in it whatsoever, nor any repercussions for any countries that did not abide by it…..

2) required an increase in fossil fuel use up to the year 2100

3) would have already at this point required absolutely no new development of fossil fuels – only what was already “proven reserves”

4) has already been violated so badly that we absolutely cannot, by their own reckoning, keep levels below a 2 degree rise by 2050

5) completely and entirely relied on “carbon capture” – a technology which doesn’t yet exist in any form and is only dreamt of – to come along by mid-century and save us from catastrophic climate change.

 Professor Kevin Anderson has this to say about the Paris agreement….

The Paris Agreement is a genuine triumph of international diplomacy and of how the French people brought an often-fractious world together to see beyond national self interest. Moreover, the agreement is testament to how assiduous and painstaking science ultimately defeated the unremitting programme of misinformation by powerful vested interests. It is the twenty-first century’s equivalent to the success of Heliocentrism over the malign and unscientific inquisition.

The international community not only acknowledged the seriousness of climate change, but demonstrated sufficient unanimity to quantitatively define it: to hold “the increase in … temperature to well below 2°C … and to pursue efforts to limit the temperature increase to 1.5°C”. But, as the time-weary idiom suggests, “the devil is in the detail” – or perhaps more importantly, the lack of it.

The deepest challenge to whether the Agreement succeeds or fails, will not come from the incessant sniping of sceptics and luke-warmers or those politicians favouring a literal reading of Genesis over Darwin. Instead, it was set in train many years ago by a cadre of well-meaning scientists, engineers and economists investigating a Plan B. What if the international community fails to recognise that temperatures relate to ongoing cumulative emissions of greenhouse gases, particularly carbon dioxide? What if world leaders remain doggedly committed to a scientifically illiterate focus on 2050 (“not in my term of office”)? By then, any ‘carbon budget’ for even an outside chance of 2°C will have been squandered – and our global experiment will be hurtling towards 4°C or more. Hence the need to develop a Plan B.

Well the answer was simple. If we choose to continue our love affair with oil, coal and gas, loading the atmosphere with evermore carbon dioxide, then at some later date when sense prevails, we’ll be forced to attempt sucking our carbon back out of the atmosphere. Whilst a plethora of exotic Dr Strangelove options vie for supremacy to deliver on such a grand project, those with the ear of governments have plumped for BECCS (biomass energy carbon capture and storage) as the most promising “negative emission technology”. However these government advisors (Integrated Assessment Modellers – clever folk developing ‘cost-optimised’ solutions to 2°C by combining physics with economic and behavioural modelling) no longer see negative emission technologies as a last ditch Plan B – but rather now promote it as central pivot of the one and only Plan.

The speed and scale of emissions reduction that is actually required probably cannot be achieved while preserving the economic status quo. As climate scientist Kevin Anderson points out in a recent Nature Geoscience paper:

According to the IPCC’s Synthesis Report, no more than 1,000 billion tonnes (1,000 Gt) of CO2 can be emitted between 2011 and 2100 for a 66% chance (or better) of remaining below 2° C of warming (over preindustrial times). . . . However, between 2011 and 2014 CO2 emissions from energy production alone amounted to about 140 Gt of CO2. . . .” [Subtracting realistic emissions budgets for deforestation and cement production,] “the remaining budget for energy-only emissions over the period 2015–2100, for a ‘likely’ chance of staying below 2° C, is about 650 Gt of CO2.

To put this into perspective, recent data shows global food production (itself a major CO2 emitter), was 3.9Gt; Coal production was 9Gt; Iron Ore was 3.22Gt. The simple fact is that if we want to capture and store CO2, it will have to be done on a scale we do nothing else at……. not feeding the world, and not even feeding it its fossil fuels. ‘They’ expect to do this within less than twenty years, with technology that doesn’t yet exist, and anything remotely like what is needed,

Definition of Insanity

The world’s first commercial CO2 capture plant will be used to increase economic activity and will therefore actually increase CO2 emissions.

“It’s important to note that they will not be permanently storing the CO2 that will be captured,” she said. “Instead, it will be used for greenhouses, producing synfuels, etc. No negative emissions will be generated.”

“The captured carbon dioxide could also be used to manufacture transportation fuel, carbonated soft drinks and other products, Gebald said.”

“In order to meet the goal of removing the equivalent of 1 percent of annual global carbon dioxide emissions, 250,000 similar direct-air capture plants would have to be built, Gebald said.”

In other words, because we need to reduce our emissions by more than 50%, means we need to build over 12,500,000 of these CO2 removal machines. In under twenty years…… Think about the CO2 and debt required to accomplish this. Obviously it won’t happen, and if we try it will make things worse, because it appears that everyone’s oblivious to the fact that it is cumulative emissions that are doing the harm.

Until we get an ‘agreement’ to cease economic growth, nothing worthwhile will happen, and I therefore still hold to the conclusion nothing less than an economic collapse will ‘save us’ from climate change….. because I just cannot see any such agreement ever coming forth.

The banality of the Anthropocene

25 05 2017

It is often said that the biggest mistake humanity ever made was move from hunting-gathering to agriculture. This is easy to say with 20/20 hindsight and 10,000 plus years after the fact, but in my opinion, the biggest mistake we ever made was adopt fossil fuels, and misuse them. There’s no doubt fossil fuels have brought us many improvements, but I find it difficult to not wonder whether the advantages actually outweigh the disadvantages…….

Combine the two, and we have industrial farming. Now there was a major mistake. This insightful article from the Resillience website discusses this at length, and I recommend sharing it widely. Wherever you see written ‘Iowa’, insert wherever you live, because it’s appropriate for almost anywhere on the globe these days…. enjoy.


Heather Anne Swanson

Heather Swanson

I want to propose an Anthropocene territorialization and a subject-making project in which anthropologists might want to engage. The territory of which I write is a place called Iowa.

There are plenty of troubling things about the Anthropocene. But to my mind, one of its most troubling dimensions is the sheer number of people it fails to trouble.

For many living in precarious situations, the Anthropocene is already life-altering, life-threatening, and even deadly. It comes in the form of a massive flood or a rising tide that takes their homes away. Or as an oil well that poisons the river on which they depend.

But for others, especially the white and middle-class of the global North, the Anthropocene is so banal that they do not even notice it. It is the green front lawn, the strip-mall parking lot, the drainage ditch where only bullfrog tadpoles remain.

Iowa lies at the heart of this banal Anthropocene. The Anthropocene, here, is wholesome. It is the cornfield and the industrial pig farm. It is the 4-H county fair and eating hot dogs on the Fourth of July. It is precisely this banality, this routinized everydayness (see Arendt 1963), that makes the Iowa Anthropocene so terrifying.

I write of Iowa not from the outside, but from a place of connection. I, too, am Iowa. Without it, I would not be where I am. My mother and father were born and raised in Iowa, and its mid-twentieth-century agricultural modernization and postwar dreams for better futures propelled their upward mobility. It allowed them to get off the farm and become the first people in their families to go to college. Iowa’s industrial agriculture and its surpluses thus made my own scholarly career possible.

Indeed, we are all implicated in Iowa. We are all entangled with the everyday violences of industrial agriculture and nationalist projects in a way that substituting an organic latte for the hot dog or shopping at Whole Foods won’t solve. We cannot make ourselves clean. The urbanized coasts are made possible by the production of the heartland. New York is standing on Iowa (cf. Moore 2010).

How is it that Americans, especially white middle-class ones, learn not to notice such entanglements, to not be affected? How do we learn not to see the damage around us?


Barn along Highway 1, south of Fairfield, Iowa. Photo by Ken K.

Iowa is objectively one of the most ruined landscapes in the United States, but its ruination garners surprisingly little notice. Less than 0.1 percent of the tallgrass prairie that once covered much of the state remains. You’ve seen the Anthropocene J-curves: the rise of atmospheric CO2, human population growth, and dammed rivers, to name a few (Steffen et al. 2015). The decline in Iowa prairie makes a reverse J. Between 1830 and 1910, Iowa lost a whopping 97 percent of its prairie acreage. But this is only the tip of the iceberg. The reorientation of Iowa’s landscape toward capitalist agricultural production has resulted in the obliteration of worlds that once occupied it. The American Indians who carefully tended the prairie through burning and bison management have been forced out of the state. Nearly every acre has been privatized. Today Iowa ranks forty-ninth out of the fifty U.S. states in public land holdings.Ninety-nine percent of its marshes are gone. The level of its main aquifer has dropped by as much as three hundred feet since the nineteenth century, largely due to the extraction of irrigation water. Water quality is a mess, too. Between 2010 and 2015 more than sixty Iowa cities and towns had high nitrate levels in drinking water due to the leaching and run-off of agricultural fertilizers. And those same fertilizers wash down the Mississippi River to the Gulf of Mexico, where they have created an aquatic dead zone the size of Connecticut.

Few people, either within or beyond Iowa, notice the profundity of these changes. When my uncle, a farmer in northeast Iowa, gazes out at his cornfields, he does not see the annihilation of the prairie, the loss of the bison, or the displacement of American Indian communities. He does not notice the contamination of groundwater, even though he had to redig his well a few years ago due to bacterial seepage from a nearby pig farm. He simply shrugs off such things and wonders what the crop prices will be next year.

Blindness proliferates: when my uncle becomes blind to the violence of his own corn, he becomes blind to others in neighboring farmhouses, in the neighboring towns, in neighboring states. He cannot see Standing Rock, and he cannot see why Black Lives Matter might matter to him.

It isn’t exactly his fault that he doesn’t notice. White middle-class American subjectivities are predicated on not noticing. They are predicated on structural blindness: on a refusal to acknowledge the histories we inherit. As Deborah Bird Rose (2004) has shown in the case of Australian settler colonialism, dreaming of futures requires blindness to the past.

Michel Foucault’s work reminds us that the discourses that shape our subjectivities are not just words; they are also the bricks of the prison, the institutional form of the clinic (see Hirst 1995). But we have failed to see that they are also the monocrop cornfield. Iowa’s landscape infrastructure produces us and the Anthropocene. The cornfield is an assemblage that brings the so-called common good of progress and nationalist growth into being. It produces grain futures markets and cheap hamburgers. How can we better see its terrors and erasures?

One of these terrors is that there are countless Iowas beyond Iowa. I currently live in Denmark, where I am a member of a research project called Aarhus University Research on the Anthropocene (AURA). One of my colleagues, Nathalia Brichet, uses the term “mild apocalypse” to draw attention to the normalized degradation of Danish landscapes. In the midst of Denmark’s rolling fields and highly managed forests, the Anthropocene continues to be stubbornly hard to see.

Donna Haraway has called for curiosity as both scholarly method and political practice, as an antidote to these learned blindnesses. In her book When Species Meet (Haraway 2008), she becomes curious about who and what she touches when she reaches out to pet her dog. That curiosity becomes a radical practice of tracing and inheriting histories, such as the dog-herding practices of livestock-based Australian colonization efforts and the making of purebred dogs. But in a world of structural blindness, such kinds of curiosity do not come naturally. They must be cultivated. But how? How, in the words of Joseph Dumit (2014), do we wake up to connections?

Can we imagine corollaries to Bible study meetings or consciousness-raising groups in which people would be encouraged to trace the histories of the landscapes they inhabit, a process that might draw them into new ways of seeing themselves and their worlds? I imagine such practices as a multispecies analogue to Foucauldian genealogy (see Foucault 1970). Might exploring the genealogies of Iowa cornfields, for example, denaturalize them and counter the power of their banality? Might they enable Iowans and all of us to become more curious about the conditions of our own subjectivities and, in turn, how we might transform the landscapes with which they are entangled? This is the important work of making curiosity more common, of troubling the Anthropocene.


Arendt, Hannah. 1963. Eichmann in Jerusalem: A Report on the Banality of Evil. New York: Viking Press.

Dumit, Joseph. 2014. “Writing the Implosion: Teaching the World One Thing at a Time.” Cultural Anthropology 29, no. 2: 344–62.

Foucault, Michel. 1970. The Order of Things: An Archaeology of Knowledge. New York: Pantheon. Originally published in 1966.

Haraway, Donna. 2008. When Species Meet. Minneapolis: University of Minnesota Press.

Hirst, Paul. 1995. “Foucault and Architecture.” In Michel Foucault: Critical Assessments, Volume 4, edited by Barry Smart, 350–71. New York: Routledge.

Moore, Jason W. 2010. “‘Amsterdam is Standing on Norway’ Part One: The Alchemy of Capital, Empire, and Nature in the Diaspora of Silver, 1545–1648.” Journal of Agrarian Change 10, no. 1: 33–68.

Rose, Deborah Bird. 2004. Reports from a Wild Country: Ethics for Decolonization. Sydney: University of New South Wales Press.

Steffen, Will, Wendy Broadgate, Lisa Deutsch, Owen Gaffney, and Cornelia Ludwig. 2015. “The Trajectory of the Anthropocene: The Great Acceleration.” Anthropocene Review 2, no. 1: 81–98.