Germany’s plan for 100% electric cars may actually increase carbon emissions

7 04 2017

Image 20170215 27402 ip046y

Bjoern Wylezich / shutterstock

Dénes Csala, Lancaster University

Germany has ambitious plans for both electric cars and renewable energy. But it can’t deliver both. As things stand, Germany’s well-meaning but contradictory ambitions would actually boost emissions by an amount comparable with the present-day emissions of the entire country of Uruguay or the state of Montana.

In October 2016 the Bundesrat, the country’s upper legislative chamber, called for Germany to support a phase-out of gasoline vehicles by 2030. The resolution isn’t official government policy, but even talk of such a ban sends a strong signal towards the country’s huge car industry. So what if Germany really did go 100% electric by 2030?

To environmentalists, such a change sounds perfect. After all, road transport is responsible for a big chunk of our emissions and replacing regular petrol vehicles with electric cars is a great way to cut the carbon footprint.

But it isn’t that simple. The basic problem is that an electric car running on power generated by dirty coal or gas actually creates more emissions than a car that burns petrol. For such a switch to actually reduce net emissions, the electricity that powers those cars must be renewable. And, unless things change, Germany is unlikely to have enough green energy in time.

After all, news of the potential petrol car ban came just after the chancellor, Angela Merkel, had announced she would slow the expansion in new wind farms as too much intermittent renewable power was making the grid unstable. Meanwhile, after Fukushima, Germany has pledged to retire its entire nuclear reactor fleet by 2022.

Germany’s grid is struggling to cope with all that intermittent power.
Bildagentur Zoonar GmbH / shutterstock

In an analysis published in Nature, my colleague Harry Hoster and I have looked at how Germany’s electricity and transport policies are intertwined. They each serve the noble goal of reducing greenhouse gas emissions. Yet, when combined, they might actually lead to increased emissions.

We investigated what it would take for Germany to keep to its announcements and fully electrify its road transportation – and what that would mean for emissions. Our research shows that you can’t simply erase fossil fuels from both energy and transport in one go, as Germany may be about to find out.

Less energy, more electricity

It’s certainly true that replacing internal combustion vehicles with electric ones would overnight lead to a huge reduction in Germany’s energy needs. This is because electric cars are far more efficient. When petrol is burned, just 30% or less of the energy released is actually used to move the car forwards – the rest goes into exhaust heat, water pumps and other inefficiencies. Electric cars do lose some energy through recharging their batteries, but overall at least 75% goes into actual movement.

Each year, German vehicles burn around 572 terawatt-hour (TWh)‘s worth of liquid fuels. Based on the above efficiency savings, a fully electrified road transport sector would use around 229 TWh. So Germany would use less energy overall (as petrol is a source of energy) but it would need an astonishing amount of new renewable or nuclear generation.

And there is another issue: Germany also plans to phase out its nuclear power plants, ideally by 2022, but 2030 at the latest. This creates a further void of 92TWh to be filled.

Adding up the extra renewable electricity needed to power millions of cars, and that required to replace nuclear plants, gives us a total of 321 TWh of new generation required by 2030. That’s equivalent to dozens of massive new power stations.

Even if renewable energy expands at the maximum rate allowed by Germany’s latest plan, it will still only cover around 63 TWh of what’s required. Hydro, geothermal and biomass don’t suffer from the same intermittency problems as wind or solar, yet the country is already close to its potential in all three.

This therefore means the rest of the gap – an enormous 258 TWh – will have to be filled by coal or natural gas. That is the the current total electricity consumption of Spain, or ten Irelands.

Germany could choose to fill the gap entirely with coal or gas plants. However, relying entirely on coal would lead to further annual emissions of 260 million tonnes of carbon dioxide while gas alone would mean 131m tonnes.

By comparison, German road transport currently emits around 156m tonnes of CO2, largely from car exhausts. Therefore, unless the electricity shortfall is filled almost entirely with new natural gas plants, Germany could switch to 100% electric cars and it would still end up with a net increase in emissions.

The above chart shows a more realistic scenario where half of the necessary electricity for electric cars would come from new gas plants and half from new coal plants. We have assumed both coal and gas would become 25% more efficient. In this relatively likely scenario, the emissions of the road transportation sector actually increase by 20%, or 32 million tonnes of CO2 (comparable to Uruguay or Montana’s annual emissions).

If Germany really does want a substantial reduction in vehicle emissions, its energy and transport policies must work in sync. Instead of capping new solar plants or wind farms, it should delay the nuclear phase-out and focus on getting better at predicting electricity demand and storing renewable energy.

Dénes Csala, Lecturer in Energy Storage Systems Dynamics, Lancaster University

This article was originally published on The Conversation. Read the original article.





It’s the end of the world as we know it (and I feel fine)

19 03 2017

This talk was given at a local TEDx event, produced independently of the TED Conferences. Our “psychological immune system” lets us feel truly happy even when things don’t go as planned.

Daniel Gilbert’s first TED talk has been seen by more than 8 million people and remains one of the most popular of all time.

Daniel Gilbert is the Edgar Pierce Professor of Psychology at Harvard University. He has won numerous awards for his research and teaching, including the American Psychological Association’s Distinguished Scientific Award for an Early Career Contribution to Psychology. In 2008 he was elected to the American Academy of Arts and Sciences.

His 2007 book, Stumbling on Happiness, spent 6 months on the New York Times bestseller list, has being translated into 30 languages, and was awarded the Royal Society’s General Book Prize for best science book of the year.





The end of the Middle East

14 03 2017

I have to say, I am seriously chuffed that Nafeez Ahmed is calling it, as I have been for years now…. In a lengthy but well worth reading article in the Middle East Eye, Nafeez explains the convoluted reasons why we have the current turmoil in Iraq, Yemen, and Syria. He doesn’t mention Egypt – yet – but to be fair, the article’s focus in on Mosul and the implications of the disaster unfolding there……

It never ceases to amaze me how Egypt has managed to stay off the news radar. Maybe the populace is too starved to revolt again….

After oil, rice and medicines, sugar has run out in Egypt, as the country has announced a devaluation of 48% of its currency. In Egypt, about 68 million of the total 92 million people receive food subsidized by the State through small consumer stores run by the Ministry of supply and internal trade. After shortages of oil, rice and milk, and even medicines, now sugar scarcity has hit the country. Nearly three quarters of the population completely rely on the government stores for their basic needs.

Egypt produces 2 million tons of sugar a year but has to import 3 million to face domestic demand. However imports have become too expensive.  The country is expected to receive a loan of 12 billion dollars (11 billion euros) from the International monetary Fund (IMF) to tackle its food scarcity. The price for sugar in supermarkets and black markets are skyrocketing as well, with a kilogram costing around 15 pounds. If available, one could get sugar from subsidized government stores for 0.50 euros per kilo.

Nafeez goes into great and interesting detail re the dismaying shenanigans going on in nafeezIraq and Syria at the moment. I’ll leave it to you to go through what he wrote on the Middle East Eye site on those issues, but what struck me as relevant to what this blog is about is how well they correlate with my own thoughts here…..:

Among my findings is that IS was born in the crucible of a long-term process of ecological crisis. Iraq and Syria are both experiencing worsening water scarcity. A string of scientific studies has shown that a decade-long drought cycle in Syria, dramatically intensified by climate change, caused hundreds and thousands of mostly Sunni farmers in the south to lose their livelihoods as crops failed. They moved into the coastal cities, and the capital, dominated by Assad’s Alawite clan. 

Meanwhile, Syrian state revenues were in terminal decline because the country’s conventional oil production peaked in 1996. Net oil exports gradually declined, and with them so did the clout of the Syrian treasury. In the years before the 2011 uprising, Assad slashed domestic subsidies for food and fuel.

While Iraqi oil production has much better prospects, since 2001 production levels have consistently remained well below even the lower-range projections of the industry, mostly because of geopolitical and economic complications. This weakened economic growth, and consequently, weakened the state’s capacity to meet the needs of ordinary Iraqis.

Drought conditions in both Iraq and Syria became entrenched, exacerbating agricultural failures and eroding the living standards of farmers. Sectarian tensions simmered. Globally, a series of climate disasters in major food basket regions drove global price spikes. The combination made life economically intolerable for large swathes of the Iraqi and Syrian populations.

Outside powers – the US, Russia, the Gulf states, Turkey and Iran – all saw the escalating Syrian crisis as a potential opportunity for themselves. As the ensuing Syrian uprising erupted into a full-blown clash between the Assad regime and the people, the interference of these powers radicalised the conflict, hijacked Sunni and Shia groups on the ground, and accelerated the de-facto collapse of Syria as we once knew it.  

AND…..

Meanwhile, across the porous border in Iraq, drought conditions were also worsening. As I write in Failing States, Collapsing Systems, there has been a surprising correlation between the rapid territorial expansion of IS, and the exacerbation of local drought conditions. And these conditions of deepening water scarcity are projected to intensify in coming years and decades.

An Iraqi man walks past a canoe siting on dry, cracked earth in the Chibayish marshes near the southern Iraqi city of Nasiriyah in 2015 (AFP)

The discernable pattern here forms the basis of my model: biophysical processes generate interconnected environmental, energy, economic and food crises – what I call earth system disruption (ESD). ESD, in turn, undermines the capacity of regional states like Iraq and Syria to deliver basic goods and services to their populations. I call this human system destabilisation (HSD).

As states like Iraq and Syria begin to fail as HSD accelerates, those responding – whether they be the Iraqi and Syrian governments, outside powers, militant groups or civil society actors – don’t understand that the breakdowns happening at the levels of state and infrastructure are being driven by deeper systemic ESD processes. Instead, the focus is always on the symptom: and therefore the reaction almost always fails entirely to even begin to address earth system sisruption.

So Bashar al-Assad, rather than recognising the uprising against his regime as a signifier of a deeper systemic shift – symptomatic of a point-of-no-return driven by bigger environmental and energy crises – chose to crackdown on his narrow conception of the problem: angry people.

Even more importantly, Nafeez also agrees with my predictions regarding Saudi Arabia…

The Gulf states are next in line. Collectively, the major oil producers might have far less oil than they claim on their books. Oil analysts at Lux Research estimate that OPEC oil reserves may have been overstated by as much as 70 percent. The upshot is that major producers like Saudi Arabia could begin facing serious challenges in sustaining the high levels of production they are used to within the next decade.

Another clear example of exaggeration is in natural gas reserves. Griffiths argues that “resource abundance is not equivalent to an abundance of exploitable energy”.

While the region holds substantial amounts of natural gas, underinvestment due to subsidies, unattractive investment terms, and “challenging extraction conditions” have meant that Middle East producers are “not only unable to monetise their reserves for export, but more fundamentally unable to utilise their reserves to meet domestic energy demands”. 

Starting to sound familiar..? We are doing the exact same thing here in Australia…. It’s becoming ever more clear that Limits to Growth equates to scraping the bottom of the barrel, and the scraping sounds are getting louder by the day.

And oil depletion is only one dimension of the ESD processes at stake. The other is the environmental consequence of exploiting oil.

Over the next three decades, even if climate change is stabilised at an average rise of 2 degrees Celsius, the Max Planck Institute forecasts that the Middle East and North Africa will still face prolonged heatwaves and dust storms that could render much of the region “uninhabitable”. These processes could destroy much of the region’s agricultural potential.

Nafeez finishes with a somewhat hopeful few paragraphs.

Broken models

While some of these climate processes are locked in, their impacts on human systems are not. The old order in the Middle East is, unmistakably, breaking down. It will never return.

But it is not – yet – too late for East and West to see what is actually happening and act now to transition into the inevitable future after fossil fuels.

The battle for Mosul cannot defeat the insurgency, because it is part of a process of human system destabilisation. That process offers no fundamental way of addressing the processes of earth system disruption chipping away at the ground beneath our feet.

The only way to respond meaningfully is to begin to see the crisis for what it is, to look beyond the dynamics of the symptoms of the crisis – the sectarianism, the insurgency, the fighting – and to address the deeper issues. That requires thinking about the world differently, reorienting our mental models of security and prosperity in a way that captures the way human societies are embedded in environmental systems – and responding accordingly.

At that point, perhaps, we might realise that we’re fighting the wrong war, and that as a result, no one is capable of winning.

The way the current crop of morons in charge is behaving, I feel far less hopeful that someone will see the light. There aren’t even worthwhile alternatives to vote for at the moment…  If anything, they are all getting worse at ‘leading the world’ (I of course use the term loosely..), not better. Nor is the media helping, focusing on politics rather than the biophysical issues discussed here.

 





Tough Sledding….

28 12 2016

Happy Holidays all,

markcochrane2

Mark Cochrane

Last weekend I was treated to a morning of trying to drive my daughter to her swim meet in -32 degree (-50 wind chill) temperatures (Fahrenheit and Celsius are about the same at these temperatures). Annually this sort of thing, or a big snowstorm somewhere leads to either denial of global climate change or the ‘an ice age is coming’ drivel.

However, every time we have massive unseasonable cold somewhere, spare a thought for what that actually means. That cold air didn’t just spring into existence, it had to come from somewhere. If the lower latitudes are experiencing this influx of cold air that means that something has to be back filling the air in the north. Translation, it gets very warm up north in the northern hemisphere. Remember, the key word in global climate change is ‘global’.

This year, yet again, the North Pole is experiencing a massive Christmas heat wave, raising temperatures to near freezing (32 F or 0 C, take your pick). Now this could be just ‘natural variability’ but each year that it keeps happening weakens that argument. You can’t have 1000-yr events every year or two again and again and call that ‘natural’. For several years now I have been a proponent of the theory that this is a signal of ongoing global climate change (e.g.Cohen et al. 2013). Debate is still ongoing in the scientific community about what is driving this phenomenon but it makes too much sense to me that it is linked to the dropping ice coverage in the Arctic ocean for it to be all chalked up to ‘natural variability’, which is just a weasel term for shit that happens periodically that we can’t convincingly explain.

The Arctic is showing stunning winter warmth, and these scientists think they know why

Last month, temperatures in the high Arctic spiked dramatically, some 36 degrees Fahrenheit above normal — a move that corresponded with record low levels of Arctic sea ice during a time of year when this ice is supposed to be expanding during the freezing polar night.

And now this week, as you can see above, we’re seeing another huge burst of Arctic warmth. A buoy close to the North Pole just reported temperatures close to the freezing point of 32 degrees Fahrenheit (0 Celsius), which is 10s of degrees warmer than normal for this time of year. Although it isn’t clear yet, we could now be in for another period when sea ice either pauses its spread across the Arctic ocean, or reverses course entirely.

But these bursts of Arctic warmth don’t stand alone — last month, extremely warm North Pole temperatures corresponded with extremely cold temperatures over Siberia. This week, meanwhile, there are large bursts of un-seasonally cold air over Alaska and Siberia once again.

It is all looking rather consistent with an outlook that has been dubbed “Warm Arctic, Cold Continents” — a notion that remains scientifically contentious but, if accurate, is deeply consequential for how climate change could unfold in the Northern Hemisphere winter.

So once again, Santa might be facing some tough sledding this year…

Merry Christmas,

Mark





The scariest charts you’re likely to see

9 12 2016

I have now seen one of the charts below, the one I’ve called ‘tipping point’, several times on the internet. I have searched high and low for its origin, and have now finally discovered it…. the Notre Dame International Security Center. It hardly sounds like a left wing University. From its own website, it states…:

The Notre Dame International Security Center was established in 2008 to provide a forum where leading scholars in national security studies from Notre Dame and elsewhere could come together to explore some of the most pressing issues in national security policy.

The center is directed by Professor Michael Desch.

At this site, you will find loads of climate data in graphic form……. and it’s where I discovered the two gobsmacking charts below.  Does this mean the NDISC is taking Climate Change as a serious threat to the security of the US?  We can only hope so, and also hope that they somehow get the ear of the Trumpet…..

You may or may not know that the Arctic polar region has experienced unprecedented temperatures; as high as twenty degrees C above normal. Places where the sun doesn’t even shine (because it’s winter…!) have even been above freezing, for days and days.

The result of this, it appears, is that the sea ice is not reforming. Dare I say, not reforming at all…? This anomaly is so extreme that it’s in the sigma 8 territory of statistical numbers.  σ8 is so weird, that were climate change a gambling game (and you have to wonder sometimes, looking at the policies of the morons in charge) that statistically it would be as uncommon as willing lotto….. or maybe, even more impossible.

Of course, it will almost certainly get colder again before the Northern Summer takes a grip again next year, but surely, we have reached a tipping point…. will next Summer be ice free? Watch this space…..

sigma8

tipping-point

Tipping Point…..?





Beyond the Point of No Return

4 12 2016

Imminent Carbon Feedbacks Just Made the Stakes for Global Warming a Hell of a Lot Higher

Republished from Robert Scribbler’s excellent website……..

If EVER there was a need to start soil farming, this proves it beyond doubt.

“It’s fair to say we have passed the point of no return on global warming and we can’t reverse the effects, but certainly we can dampen them,” said biodiversity expert Dr. Thomas Crowther.

“I’m an optimist and still believe that it is not too late, but we urgently need to develop a global economy driven by sustainable energy sources and start using CO2, as a substrate, instead of a waste product.” — Prof Ivan Janssens, recognized as a godfather of the global ecology field.

“…we are at the most dangerous moment in the development of humanity. We now have the technology to destroy the planet on which we live, but have not yet developed the ability to escape it… we only have one planet, and we need to work together to protect it.” — Professor Stephen Hawking yesterday in The Guardian.

*****

The pathway for preventing catastrophic climate change just got a whole hell of a lot narrower.

For according to new, conservative estimates in a scientific study led by Dr. Thomas Crowther, increasing soil respiration alone is about to add between 0.45 and 0.71 parts per million of CO2 to the atmosphere every year between now and 2050.

(Thomas Crowther explains why rapidly reducing human greenhouse gas emissions is so important. Namely, you want to do everything you can to avoid a runaway into a hothouse environment that essentially occurs over just one Century. Video source: Netherlands Institute of Ecology.)

What this means is that even if all of human fossil fuel emissions stop, the Earth environment, from this single source, will generate about the same carbon emission as all of the world’s fossil fuel industry did during the middle of the 20th Century. And that, if human emissions do not stop, then the pace of global warming of the oceans, ice sheets, and atmosphere is set to accelerate in a runaway warming event over the next 85 years.

Global Warming Activates Soil Respiration Which Produces More CO2

This happens because as the world warms, carbon is baked out of previously inactive soils through a process known as respiration. As a basic explanation, micro-organisms called heterotrophs consume carbon in the soil and produce carbon dioxide as a bi-product. Warmth is required to fuel this process. And large sections of the world that were previously too cold to support large scale respiration and CO2 production by heterotrophs and other organisms are now warming up. The result is that places like Siberian Russia, Northern Europe, Canada, and Alaska are about to contribute a whole hell of a lot more CO2 (and methane) to the atmosphere than they did during the 20th Century.

When initial warming caused by fossil fuel burning pumps more carbon out of the global environment, we call this an amplifying feedback. It’s a critical climate tipping point when the global carbon system in the natural environment starts to run away from us.

Sadly, soil respiration is just one potential feedback mechanism that can produce added greenhouse gasses as the Earth warms. Warming oceans take in less carbon and are capable of producing their own carbon sources as they acidify and as methane seeps proliferate. Forests that burn due to heat and drought produce their own carbon sources. But increasing soil respiration, which has also been called the compost bomb, represents what is probably one of the most immediate and likely large sources of carbon feedback.

increase-in-carbon-dioxide-from-soils

(A new study finds that warming of 1 to 2 C by 2050 will increase soil respiration. The result is that between 30 and 55 billion tons of additional CO2 is likely to hit the Earth’s atmosphere over the next 35 years. Image source: Nature.)

And it is also worth noting that the study categorizes its own findings as conservative estimates. That the world could, as an outside risk, see as much as four times the amount of carbon feedback (or as much as 2.7 ppm of CO2 per year) coming from soil if respiration is more efficient and wide-ranging than expected. If a larger portion of the surface soil carbon in newly warmed regions becomes a part of the climate system as microbes activate.

Amplifying Feedbacks Starting to Happen Now

The study notes that it is most likely that about 0.45 parts per million of CO2 per year will be leached from mostly northern soils from the period of 2016 to 2050 under 1 C worth of global warming during the period. To this point, it’s worth noting that the world has already warmed by more than 1 C above preindustrial levels. So this amount of carbon feedback can already be considered locked in. The study finds that if the world continues to warm to 2 C by 2050 — which is likely to happen — then an average of around 0.71 parts per million of CO2 will be leached out of soils by respiration every year through 2050.

rates-of-soil-carbon-loss

(When soils lose carbon, it ends up in the atmosphere. According to a new study, soils around the world are starting to pump carbon dioxide into the atmosphere. This is caused by increased soil respiration as the Earth warms. Over the next 35 years, the amount of carbon dioxide being pumped out by the world’s soils is expected to dramatically increase. How much is determined by how warm the world becomes over the next 35 years. Image source: Nature.)

The upshot of this study is that amplifying carbon feedbacks from the Earth environment are probably starting to happen on a large scale now. And we may be seeing some evidence for this effect during 2016 as rates of atmospheric carbon dioxide accumulation are hitting above 3 parts per million per year for the second year in a row even as global rates of human emissions plateaued.

Beyond the Point of No Return

What this means is that the stakes for cutting human carbon emissions to zero as swiftly as possible just got a whole hell of a lot higher. If we fail to do this, we will easily be on track for 5-7 C or worse warming by the end of this Century. And this level of warming happening so soon and over so short a timeframe is an event that few, if any, current human civilizations are likely to survive. Furthermore, if we are to avoid terribly harmful warming over longer periods, we must not only rapidly transition to renewable energy sources. We must also somehow learn to pull carbon, on net, out of the atmosphere in rather high volumes.

Today, Professor Ivan Janssens of the University of Antwerp noted:

“This study is very important, because the response of soil carbon stocks to the ongoing warming, is one of the largest sources of uncertainty in our climate models. I’m an optimist and still believe that it is not too late, but we urgently need to develop a global economy driven by sustainable energy sources and start using CO2, as a substrate, instead of a waste product. If this happens by 2050, then we can avoid warming above 2C. If not, we will reach a point of no return and will probably exceed 5C.”

In other words, even the optimists at this time think that we are on the cusp of runaway catastrophic global warming. That the time to urgently act is now.

Links:

Quantifying Soil Carbon Losses in Response to Warming

Netherlands Institute of Ecology

Earth Warming to Climate Tipping Point

This is the Most Dangerous Time for Our Planet

Climate Change Escalating So Fast it is Beyond the Point of No Return

NOAA ESRL

Soil Respiration





Mark Cochrane in podcast version…

28 11 2016

Mark Cochrane, Professor and Senior Research Scientist at the Geospatial Science Center of Excellence at South Dakota State University, returns to the podcast after a year and a half to update us on what the latest science has to tell us on the (often controversial) topic of climate change.

Mark has been researching the climate for over 20 years, and among his many other accomplishments, moderates what we believe to be the most level-headed, open-minded and data-centric discussion forum on climate change available on the Internet today.

In this week’s podcast, Mark updates us on the latest empirical data, separates out what science can and cannot prove today regarding climate change, and provides clarity into closely-related but less well-understood issues, such as ocean acidification:

Ocean acidity levels have gone up by 30 percent in recent decades. It is off the charts compared to the previous baseline of millions of years in terms of the rapidity of this. Have we had really high acid levels before? Yeah, but that was many millions of years ago. It didn’t happen over night they way it is now.

What we have is all of the organisms that rely on calcium or calcium carbonate shells, whether it’s their external shells or internal systems, they are under increasing amounts of stress, having a harder and harder time making those calcium-based structures.

In a lot of places, we’re already losing things. In the coastal areas they’re is a lot of carbon that was actually buried back in the ’50s and ’60s that is now simply of washing ashore in those regions. That is not even as bad as it is going to be. There is an increasing amount of studies looking at this in various ways to try to get a handle on what is happening now. There is just a study out yesterday showing how they can actually look at what the concentrations are going to be like by 2100. See how things will respond. They took some coral. They put them there and just monitored how they responded. It was not just a question of them resolving or having a harder time to grow. They will fight the tide so to speak. They will keep trying. But they are stressed. What they are finding is that they get these worms that start riddling through it; and actually eating it, and not just dissolving it. It is kind of a double whammy for a lot of these systems.

So we know it’s ongoing. We can measure it. We can see it. The question is trying to infer what will occur because of it? Now, we know we are losing the base of a lot of food chain items. Therefore, it’s harder and harder for other things that are not directly impacted to feed. We also have a variety of other things going on for the coral reefs between the heating causing bleaching, people blowing them up, fishing and other human-based efforts.

Right there, we are losing the food source for about a half a billion people.

This will take time to play out. But it’s a major concern right now. It’s one that’s not on many people’s radar because it’s the ocean: it’s far away and vast. It’s been around for a long time.

Well, life will go on. It will just not be the sort of life that we’re used to.