467 ways to die on a warming planet

17 12 2018

A new study published in Nature has found evidence for 467 ways in which climate hazards due to global warming are making life on the planet harder for humans. It confirms that we are witnessing a shift in the functioning of the Earth system as a whole, a shift to a new state that is unsympathetic to the continued flourishing of human life.

A changing climate is only one feature of a warming globe. Human activity has bounced the Earth into a state that has no equivalent in its 4.5 billion year history.

Clive Hamilton

The Earth’s new trajectory as it spins into the future has led scientists to tell us we have entered a new geological epoch, the Anthropocene. We have crossed a threshold and the geological clock cannot be turned back. The disruption we have caused is increasingly unpredictable and uncontrollable, and it has no endpoint.

There are, therefore, two questions humankind must face. What must we do to prevent serial disasters becoming existential catastrophe? And how can we make our social and economic systems flexible enough to cope with the new dispensation?

There are several reasons an international agreement has proven so hard. The leading one is sabotage by climate science deniers. Can it be countered? Climate science denial was invented and propagated mainly in the United States by the fossil fuel industry in the 1990s and early 2000s.

Activists know how to thwart an industry lobbying campaign. But then something calamitous happened – rejecting climate science became caught up in the culture war. The Tea Party and Fox News were largely responsible for the shift. Before then, even a conservative like Sarah Palin accepted the science and called for action. But after 2009, rejecting climate science became a badge of political identity for conservatives.

From that point onwards, facts no longer mattered.

So the challenge is no longer how to use information to change people’s minds. The challenge is how to change a culture. No one knows how to do that.

Yet it’s too easy to blame the world’s slowness to act on crazy American deniers. Because, in a way, we are all climate science deniers.

The full truth of what humans have done is almost impossible to take in. To fully embrace the message of the climate scientists means giving up the deepest presupposition of modernity – the idea of progress. Relinquishing our belief in progress means we must let go of the future, because we have been taught from infancy that the future is progress.

In our minds, replacing the old future defined by progress with a new future defined by endless struggle requires a period of grieving. Not many people have the stomach for that.

While most people in most countries accept the truth of climate science, they don’t accept its implications. What can be done to change that?

When it comes to communicating the science’s message to the public, there is no magic potion to be found. A lot has been tried and some of it works reasonably well, up to a point. The scientists must keep doing their research and putting it out. Accusing them of alarmism is a calculated political slander; in truth, they have consistently been too cautious in their warnings, especially in IPCC reports.

Yet the meaning of their reports has not sunk in. It’s clear that an Earth warmer by four degrees – and after the unwinding of the 2015 Paris agreement that is the path we have returned to – will impose enormous stresses on all societies.

In poorer countries, it will lead to mass migrations, many deaths and violent conflict. The effects in wealthy countries will depend on who holds power and how they govern. Disasters, food shortages and waves of immigration will magnify resentment against the rich, who will be attempting to insulate themselves from the turmoil around them.

But they too depend on the infrastructure of urban life – electricity and water supply, sewerage and waste disposal, transport systems for food and so on. And they can’t insulate themselves from social upheaval.

Some communities will learn to adapt more effectively. Smaller, cooperative communities will be best placed to adapt themselves to endure the troubles.

But however humans live or die on the new Earth we have made, we are approaching the endpoint of modernity and must accept that it is finally true that man is the environment of man.

• Clive Hamilton is professor of public ethics at Charles Sturt University in Canberra and author of Defiant Earth: The fate of humans in the Anthropocene


Kevin Anderson & Hugh Hunt – A Rule Book for the Climate Casino

14 12 2018

https://ScientistsWarning.TV – Kevin and Hugh are back with us this year discussing the new ‘climate glitterati’ that come annually to Davos to feign concern about the climate while they discuss techno-fixes that might allow the (in their minds at least) to continue their excessive lifestyle that is heading us directly for runaway climate change and collapse.

Hat Tip to Chris Harries for this COPOUT chart…..


30 11 2018

dr_susan_krumdieckAn interesting narrative by Susan Krumdieck…….

Let’s explore a thought puzzle: Can you change the future?

You are transported onto the deck of the RMS Titanic, the largest ship ever built and designed to be unsinkable. It is midnight 13 April 1912. There are 2,224 people on the ship, which is under full steam on the fastest ever crossing of the Atlantic. You know what will happen, what will you do?



“You know that at 11:39pm on 14 April the lookout will spot an iceberg, and by 2:20am the ship and 1,517 people will be gone. Can you change the future?”

You know that at 11:39pm on 14 April the lookout will spot an iceberg, and by 2:20am the ship and 1,517 people will be gone. The ship was launched with lifeboats for less than half the number of people on board. You could take a self-sufficiency strategy and make sure you are near a lifeboat, but you know they will be allocated according to class and you might not get a spot.

Clearly, the best solution is to slow down, change course and not hit the iceberg. You know that the wireless operator will receive numerous warnings from other ships about large icebergs in the direct path. You could seek out the operator and help him communicate the danger to the captain. But the captain has hit icebergs with other ships, and the Titanic is unsinkable, so he may not think caution is warranted. Neither will the captain and senior officers want to contradict the owners. You could try to convince the first-class passengers to ask the captain to slow down. But they are not convinced of danger in such a comfortable and luxurious ship, and they don’t want to hear about problems when they have parties to attend. You could go below decks and organize the lower-class passengers to occupy the bridge and demand action to slow the ship and change the course. But the passengers don’t want to worry, they believe in the technology of the ship and that if there was a problem, the captain or the owners would do something.

You are running out of time. How can you slow down the ship, enabling the captain to avoid the iceberg? You could go to the engine room and explain to the men shovelling coal into the boilers that they need to reduce the use of coal by 80%, providing the chance to change course in time and safeguard the journey. They would probably be afraid for their jobs. Could you convince them to change the future?

Transition engineering, an approach to wicked problems

Transition engineering is the work of innovating and delivering the redevelopment of energy-consuming systems, which we must do to accomplish the 80% step down in greenhouse gas production required to avoid runaway climate change. Ingenuity, resourcefulness and creativity are the best resources for achieving change.  However, innovative thinking is stifled if we focus on catastrophic failure.

For example, modern buildings, cities, and the entire economy would fail if coal, oil and gas supplies suddenly dropped by 80%. A rapid reduction in energy supply would be a disaster — but rapid reduction in energy use is the only way to mitigate climate risk. The risks of unsustainable fossil energy use are exacerbated without immediate change, but imminent collapse due to energy shortage is unlikely. This dissonance between the problem and the possible actions can be referred to as a “wicked problem”.

Transition engineering is an approach to wicked problems. The approach starts with defining a specific system, learning the history and knowing the future. Energy use and emissions have grown beyond sustainable levels because the utility, energy return on energy invested, and net surplus to the economy from coal, oil and gas are colossal. Engineering and technology provided access to these benefits at bargain prices. We now refer to this unsustainable activity as business-as-usual (BAU), and it is difficult to imagine changing course or slowing down. Society and its leaders expect that technology will provide new sources of green energy, and keep the economy growing with minimal inconvenience. The transition approach includes honest assessment of green technologies and whether they actually can change or slow the BAU course.

The economics of short-term perceived risk

The innovation phase of the approach is an interdisciplinary discovery of the future, 100 years from now, where the wicked problem has been resolved and the energy system is managed sustainably. For example, when we explored Christchurch 100 years from now, we discovered a city with redevelopment of much of the paved land into productive uses, several electric trams and all buildings incorporating passive design and very low energy use. There was some reorganization of the land use, and the dominant travel mode was bicycles and electrified cargo cycles.

The back-casting phase uses this 100-year discovery model to interrogate the present and identify the key players in changing course. In all instances, the technology used in the 100-year discovery is known today, but projects to bring about the necessary change are few. The problem is the economics of short-term perceived risk. For example, the design tools and materials for near-zero passive buildings are already known, but the business of low-energy redevelopment is not growing fast enough.

Creating projects that shift energy use by 80%

The next phase is to develop shift projects and new business opportunities that improve energy performance through holistic measures. These shift projects must be beneficial and profitable. For example, From the Ground Up is a new social enterprise in Christchurch that forms partnerships between electric tram manufacturer Alstom, the city council, retailers along a main avenue, student volunteers, the local community and property developers. The aim is to redevelop an area of old, substandard low-density suburb near the university into higher density, transit-oriented development along a tram corridor into the central business district. The enterprise has developed the base data and business case for the redevelopments.

Another example is the redevelopment of old buildings in old areas of cities. Many are in locations that could become vibrant, walkable and transit-oriented urban eco-villages, but the projects must be done one at a time in each city. The shift project will develop a new renovation business that invests in old buildings in the right locations, becoming the owner of the improvements, taking over the energy, utility and waste contracts and charging clients rents. The return on the investments is in both capital gains and in improved rents and lower energy costs. The shift project includes an insurance product that de-risks investment in redevelopment by guaranteeing a minimum energy savings return for fully modelled and reviewed renovation designs.

The transition engineering approach is about creating projects that shift energy use to 80% less fossil fuel while realizing social benefits and making profits. The Global Association for Transition Engineering can provide consultation and training for companies, councils and organizations to take on their wicked problems and change course.

Susan Krumdieck is professor of mechanical engineering at the University of Canterbury, New Zealand, and founder of the Global Association for Transition Engineering

Jean Marc Jancovici on Radio Eco Shock

14 11 2018

I’ve just listened to his podcast, and it’s a must listen item……  you will not be disappointed!


jean-marc-jancoviciDid you know energy is free, and Peak Oil is not dead? That comes from a French expert in technology, energy, and climate, Jean-Marc Jancovici. Jean-Marc co-founded Carbone 4 consultancy, and The Shift Project. He advises, writes books, and lectures mostly in French, but his ideas resonate with American writers like Richard Heinberg.

We have a special treat for you this week: the world premiere of an English language in-depth radio interview with Jean-Marc JancoviciJean-Marc is well known in Europe and beyond. He is a Professor, an author of several books, the latest being “Sleep quiet until 2100, and other misunderstandings about climate and energy” (French only, translation pending?). Jancovici is also a member of ASPO France, the Association for the Study of Peak Oil.

Listen to or download this Radio Ecoshock show in CD Quality (57 MB) or Lo-Fi (14 MB)

In a Foreword to the book by Bernard Durand, Jean-Marc writes

The only question, so to say, is when the peak occurs (and should we trigger it for environmental reasons, or wait for it to happen for other reasons?), at what level, and with what consequences. The oil production of the North Sea peaked in 2000, and the world production of conventional oil (everything except tar sands and shale oil) peaked in 2006, so this is no virtual process!

The Hopium of the people

8 11 2018

The Consciousness of Sheep has published another important article. I first came across the impossibility of carbon capture and storage as a silver bullet for ‘solving’ climate change while listening to Kevin Anderson speaking on the matter…….  he says CCS is assumed to work in the future and adopted in ALL of the IPCC’s scenario, even the bleakest 6-8 degrees C rise by 2100. Yet, not one single attempt at this technology has come close to working or being economically viable. And it won’t because it’s literally the stupidest idea yet, even if George Monbiot’s latest garbage comes a close second….

It was this realisation that eventually drove me to accepting nothing but de-industrialisation would save us now…….


If it sounds too good to be true, it almost certainly is.  That, at least, is the approach I’m taking to the flurry of crowd-funder videos currently doing the rounds on social media, promoting technologies that suck carbon out of the atmosphere.  As with a raft of other faux-green technologies that were hawked around social media, like solar roadways, waterseers and hyperloops, the machine that can suck carbon dioxide out of the air will never fulfill its promise.

To understand why, consider that the atmosphere is very big – roughly 5.5 quadrillion tons of gas.  But the carbon dioxide content is very small – just over 405 parts per million.  And humans release around 40 billion tons of the stuff every year.  So any machine that is going to attempt the task – even assuming 100 percent efficiency – would need to hoover up 2,470 tons of atmosphere to capture just 1 ton of carbon dioxide; and it would have to do this roughly a thousand times a second to keep up with our ongoing emissions.


Even when fitted to chimneys – where the carbon dioxide is at least concentrated – carbon capture technologies have proved excessively expensive in both financial and energy terms.  There is little point deploying technologies that are so energy-intensive that they themselves depend upon fossil fuels to power them.  However, this issue pales into insignificance when compared to the difficulty of storing any carbon dioxide that is captured.  As Kevin Bullis warned a few years ago in MIT Technology Review:

“Even if costs are made far lower than they are today, the impact of carbon capture will be limited by the sheer scale of infrastructure needed to store carbon dioxide… Vaclav Smil, a professor at University of Manitoba and master of sobering energy-related numbers, calculates that if we were to bury just one-fifth of the global carbon dioxide emissions, we would need to build an industry capable of handling twice the volume of stuff as the entire oil industry, an industry that took 100 years to develop, driven by a large and mostly expanding market.”

Selling captured carbon might provide a means of financing some limited deployment of carbon capture technology.  However, as Bullis notes, ironically:

“One market is for enhanced oil recovery; that is, injecting carbon dioxide into oil wells to increase the amount of oil they can produce. The carbon dioxide would stay underground. In some cases, this technique could double the amount of oil that comes out of a well. And, of course, burning that oil emits a fair amount of carbon dioxide.”

One reason why so many of us might be prepared to stump up the cash to fund carbon capture technologies – both those hawked around social media and those on laboratory benches in our universities – is that the alternative is too bleak to face up to.  As Mayer Hillman at the Guardian notes:

“There are three options in tackling climate change. Only one will work… the first and only effective course, albeit a deeply unpopular one, would be to stop using any fossil fuels. The second would be to voluntarily minimise their use as much as climate scientists have calculated would deliver some prospect of success. Finally, we can carry on as we are by aiming to meet the growth in demand for activities dependent on fossil fuels, allowing market forces to mitigate the problems that such a course of action generates – and leave it to the next generation to set in train realistic solutions (if that is possible), that the present one has been unable to find…”

The stark reality, of course is that “we” are not going to do anything about climate change.  This is because – in the US, UK and EU where lifestyles will need to change the most – there is no “we,” but rather an increasingly polarised “us” and “them.”  Andy Stone at Forbes alludes to this when he says:

“Summing up, the path to least climate impact will require nations to work together to cut global carbon emissions by 45% in just over a decade.”

“Such a cut in emissions will require an unprecedented degree of political will and global cooperation…

“Yet, despite the major political barriers to dramatic near-term emissions cuts, a terrifying realization is that such action is, in fact, the most realistic option available to hold climate change in check. Of the climate action pathways modeled by the IPCC, the scenario that requires boldest action in the near term is the only one that doesn’t also require a leap of faith that a suite of uneconomic, logistically challenging, and ultimately unproven negative emissions technologies will in fact deliver us from our collective peril.”

In more egalitarian societies in which the gap between rich and poor is narrower, an “unprecedented degree of political will” might be possible.  However, after decades of neoliberal politics and economics, only massive sacrifices on the part of the very wealthy are likely to prevent a further drift toward a climate change denying populism among the majority of impoverished citizens.  Speaking to the likelihood of the affluent making such sacrifices, Hillman points out that:

“Remarkably, public expectations about the future indicate that only minor changes in the carbon-based aspects of our lifestyles are anticipated. It is as if people can continue to believe that they have an inalienable right to travel as far and as frequently as they can afford. Indeed, there is a widespread refusal by politicians to admit to the fact the process of melting ice caps contributing to sea level rises, and permafrost thawing in tundra regions cannot now be stopped, let alone reversed.”

Even those – like Hillman and Stone – who have dropped the techno-rose-tinted glasses and acknowledged the huge changes to our lifestyles that are needed to reverse the climate damage that has already been done are oblivious to the consequences of that change.  More than six out of every seven people alive today only exist because of the Haber–Bosch process that produces synthetic ammonia (fertiliser) from fossil fuels.  Any genuine effort at reversing climate change had to have as its starting point a reduction in the human population at least to the level prior to the (industrial agriculture) “Green Revolution;” less than half of today’s population.  Instead – with a great deal of help from religions that implore us to go forth and multiply, and economists that need a new base for the global Ponzi scheme – we have grown our population as fast as agricultural productivity has improved.

Comic actor/director Woody Allen summed up our predicament thus:

“More than any other time in history, mankind faces a crossroads. One path leads to despair and utter hopelessness; the other to total extinction.  Let us pray we have the wisdom to choose correctly.”

The choice before us is that we can take action to reverse climate change and a lot of people are going to die.  Alternatively, we can do nothing about climate change and a lot of people are going to die.  And since nobody has the wisdom or the bravery to make that choice, we can all sit around pretending that some incredibly implausible technology is going to come riding to our rescue… the opium of the people indeed.

It’s going to require something drastic……

30 10 2018

Like…..  maybe…..  DE-INDUSTRIALIZATION?

Want to fight climate change? Have fewer children

30 10 2018

Most people think that selling your car, avoiding flights and going vegetarian are the best strategies for fighting climate change, but in fact, according to a study into true impacts of different green lifestyle choices, having fewer children beats all those actions by a very long margin…….

I’ve been saying this for years and years, but the graphic below might just about convince anyone……..

The greatest impact individuals can have in fighting climate change is to have one fewer child, according to a new study that identifies the most effective ways people can cut their carbon emissions.

The next best actions are selling your car, avoiding long flights, and eating a vegetarian diet. These reduce emissions many times more than common green activities, such as recycling, using low energy light bulbs or drying washing on a line. However, the high impact actions are rarely mentioned in government advice and school textbooks, researchers found.

Carbon emissions must fall to two tonnes of CO2 per person by 2050 to avoid severe global warming, but in the US and Australia emissions are currently 16 tonnes per person and in the UK seven tonnes. “That’s obviously a really big change and we wanted to show that individuals have an opportunity to be a part of that,” said Kimberly Nicholas, at Lund University in Sweden and one of the research team.

The new study, published in Environmental Research Letters, sets out the impact of different actions on a comparable basis. By far the biggest ultimate impact is having one fewer child, which the researchers calculated equated to a reduction of 58 tonnes of CO2 for each year of a parent’s life.

The figure was calculated by totting up the emissions of the child and all their descendants, then dividing this total by the parent’s lifespan. Each parent was ascribed 50% of the child’s emissions, 25% of their grandchildren’s emissions and so on.

The graphic shows how much CO2 can be saved through a range of different actions.
fewer children

“We recognise these are deeply personal choices. But we can’t ignore the climate effect our lifestyle actually has,” said Nicholas. “It is our job as scientists to honestly report the data. Like a doctor who sees the patient is in poor health and might not like the message ‘smoking is bad for you’, we are forced to confront the fact that current emission levels are really bad for the planet and human society.”

Besides, who in their right mind would want to bring children into this dysfunctional world? Oh wait……  nobody is in their right mind!