More gnashing of teeth

7 02 2017

The Über-Lie

By Richard Heinberg, Post Carbon Institute

heinbergNevertheless, even as political events spiral toward (perhaps intended) chaos, I wish once again, as I’ve done countless times before, to point to a lie even bigger than the ones being served up by the new administration…It is the lie that human society can continue growing its population and consumption levels indefinitely on our finite planet, and never suffer consequences.

This is an excellent article from Richard Heinberg, the writer who sent me on my current life voyage all those years ago. Hot on the heels of my attempt yesterday of explaining where global politics are heading, Richard (whom I met years ago and even had a meal with…) does a better job than I could ever possibly muster.  Enjoy……


Our new American president is famous for spinning whoppers. Falsehoods, fabrications, distortions, deceptions—they’re all in a day’s work. The result is an increasingly adversarial relationship between the administration and the press, which may in fact be the point of the exercise: as conservative commentators Scott McKay suggests in The American Spectator, “The hacks covering Trump are as lazy as they are partisan, so feeding them . . . manufactured controversies over [the size of] inaugural crowds is a guaranteed way of keeping them occupied while things of real substance are done.”

But are some matters of real substance (such as last week’s ban on entry by residents of seven Muslim-dominated nations) themselves being used to hide even deeper and more significant shifts in power and governance? Steve “I want to bring everything crashing down” Bannon, who has proclaimed himself an enemy of Washington’s political class, is a member of a small cabal (also including Trump, Stephen Miller, Reince Priebus, and Jared Kushner) that appears to be consolidating nearly complete federal governmental power, drafting executive orders, and formulating political strategy—all without paper trail or oversight of any kind. The more outrage and confusion they create, the more effective is their smokescreen for the dismantling of governmental norms and institutions.

There’s no point downplaying the seriousness of what is up. Some commentators are describing it as a coup d’etat in progress; there is definitely the potential for blood in the streets at some point.

Nevertheless, even as political events spiral toward (perhaps intended) chaos, I wish once again, as I’ve done countless times before, to point to a lie even bigger than the ones being served up by the new administration—one that predates the new presidency, but whose deconstruction is essential for understanding the dawning Trumpocene era. I’m referring to a lie that is leading us toward not just political violence but, potentially, much worse. It is an untruth that’s both durable and bipartisan; one that the business community, nearly all professional economists, and politicians around the globe reiterate ceaselessly. It is the lie that human society can continue growing its population and consumption levels indefinitely on our finite planet, and never suffer consequences.

Yes, this lie has been debunked periodically, starting decades ago. A discussion about planetary limits erupted into prominence in the 1970s and faded, yet has never really gone away. But now those limits are becoming less and less theoretical, more and more real. I would argue that the emergence of the Trump administration is a symptom of that shift from forecast to actuality.

Consider population. There were one billion of us on Planet Earth in 1800. Now there are 7.5 billion, all needing jobs, housing, food, and clothing. From time immemorial there were natural population checks—disease and famine. Bad things. But during the last century or so we defeated those population checks. Famines became rare and lots of diseases can now be cured. Modern agriculture grows food in astounding quantities. That’s all good (for people anyway—for ecosystems, not so much). But the result is that human population has grown with unprecedented speed.

Some say this is not a problem, because the rate of population growth is slowing: that rate was two percent per year in the 1960s; now it’s one percent. Yet because one percent of 7.5 billion is more than two percent of 3 billion (which was the world population in 1960), the actual number of people we’re now adding annually is the highest ever: over eighty million—the equivalent of Tokyo, New York, Mexico City, and London added together. Much of that population growth is occurring in countries that are already having a hard time taking care of their people. The result? Failed states, political unrest, and rivers of refugees.

Per capita consumption of just about everything also grew during past decades, and political and economic systems came to depend upon economic growth to provide returns on investments, expanding tax revenues, and positive poll numbers for politicians. Nearly all of that consumption growth depended on fossil fuels to provide energy for raw materials extraction, manufacturing, and transport. But fossil fuels are finite and by now we’ve used the best of them. We are not making the transition to alternative energy sources fast enough to avert crisis (if it is even possible for alternative energy sources to maintain current levels of production and transport). At the same time, we have depleted other essential resources, including topsoil, forests, minerals, and fish. As we extract and use resources, we create pollution—including greenhouse gasses, which cause climate change.

Depletion and pollution eventually act as a brake on further economic growth even in the wealthiest nations. Then, as the engine of the economy slows, workers find their incomes leveling off and declining—a phenomenon also related to the globalization of production, which elites have pursued in order to maximize profits.

Declining wages have resulted in the upwelling of anti-immigrant and anti-globalization sentiments among a large swath of the American populace, and those sentiments have in turn served up Donald Trump. Here we are. It’s perfectly understandable that people are angry and want change. Why not vote for a vain huckster who promises to “Make America Great Again”? However, unless we deal with deeper biophysical problems (population, consumption, depletion, and pollution), as well as the policies that elites have used to forestall the effects of economic contraction for themselves (globalization, financialization, automation, a massive increase in debt, and a resulting spike in economic inequality), America certainly won’t be “great again”; instead, we’ll just proceed through the five stages of collapse helpfully identified by Dmitry Orlov.

Rather than coming to grips with our society’s fundamental biophysical contradictions, we have clung to the convenient lies that markets will always provide, and that there are plenty of resources for as many humans as we can ever possibly want to crowd onto this little planet. And if people are struggling, that must be the fault of [insert preferred boogeyman or group here]. No doubt many people will continue adhering to these lies even as the evidence around us increasingly shows that modern industrial society has already entered a trajectory of decline.

While Trump is a symptom of both the end of economic growth and of the denial of that new reality, events didn’t have to flow in his direction. Liberals could have taken up the issues of declining wages and globalization (as Bernie Sanders did) and even immigration reform. For example, Colin Hines, former head of Greenpeace’s International Economics Unit and author of Localization: A Global Manifesto, has just released a new book, Progressive Protectionism, in which he argues that “We must make the progressive case for controlling our borders, and restricting not just migration but the free movement of goods, services and capital where it threatens environment, wellbeing and social cohesion.”

But instead of well-thought out policies tackling the extremely complex issues of global trade, immigration, and living wages, we have hastily written executive orders that upend the lives of innocents. Two teams (liberal and conservative) are lined up on the national playing field, with positions on all significant issues divvied up between them. As the heat of tempers rises, our options are narrowed to choosing which team to cheer for; there is no time to question our own team’s issues. That’s just one of the downsides of increasing political polarization—which Trump is exacerbating dramatically.

Just as Team Trump covers its actions with a smokescreen of controversial falsehoods, our society hides its biggest lie of all—the lie of guaranteed, unending economic growth—behind a camouflage of political controversies. Even in relatively calm times, the über-lie was watertight: almost no one questioned it. Like all lies, it served to divert attention from an unwanted truth—the truth of our collective vulnerability to depletion, pollution, and the law of diminishing returns. Now that truth is more hidden than ever.

Our new government shows nothing but contempt for environmentalists and it plans to exit Paris climate agreement. Denial reigns! Chaos threatens! So why bother bringing up the obscured reality of limits to growth now, when immediate crises demand instant action? It’s objectively too late to restrain population and consumption growth so as to avert what ecologists of the 1970s called a “hard landing.” Now we’ve fully embarked on the age of consequences, and there are fires to put out. Yes, the times have moved on, but the truth is still the truth, and I would argue that it’s only by understanding the biophysical wellsprings of change that can we successfully adapt, and recognize whatever opportunities come our way as the pace of contraction accelerates to the point that decline can no longer successfully be hidden by the elite’s strategies.

Perhaps Donald Trump succeeded because his promises spoke to what civilizations in decline tend to want to hear. It could be argued that the pluralistic, secular, cosmopolitan, tolerant, constitutional democratic nation state is a political arrangement appropriate for a growing economy buoyed by pervasive optimism. (On a scale much smaller than contemporary America, ancient Greece and Rome during their early expansionary periods provided examples of this kind of political-social arrangement). As societies contract, people turn fearful, angry, and pessimistic—and fear, anger, and pessimism fairly dripped from Trump’s inaugural address. In periods of decline, strongmen tend to arise promising to restore past glories and to defeat domestic and foreign enemies. Repressive kleptocracies are the rule rather than the exception.

If that’s what we see developing around us and we want something different, we will have to propose economic, political, and social forms that are appropriate to the biophysical realities increasingly confronting us—and that embody or promote cultural values that we wish to promote or preserve. Look for good historic examples. Imagine new strategies. What program will speak to people’s actual needs and concerns at this moment in history? Promising a return to an economy and way of life that characterized a past moment is pointless, and it may propel demagogues to power. But there is always a range of possible responses to the reality of the present. What’s needed is a new hard-nosed sort of optimism (based on an honest acknowledgment of previously denied truths) as an alternative to the lies of divisive bullies who take advantage of the elites’ failures in order to promote their own patently greedy interests. What that actually means in concrete terms I hope to propose in more detail in future essays.

How “Green” is Lithium?

17 04 2016

Originally published on the KITCO website in 2014….. interesting how this makes no mention of NiFe batteries, they are simply ‘under the radar’……


The market for battery electric and hybrid vehicles is growing slowly but steadily – from 0.4% in 2012 to 0.6% in 2013 and 0.7% in 2014 (year-to-date) in the United States alone.

Consumers buy these vehicles despite lower gas prices out of a growing conscience and concern for the environment. With this strong attraction to alternative energy, grows the demand for lithium, which is predominantly mined and imported from countries like Bolivia, Chile, China and Argentina.

Within the U.S., only Nevada, future home of Tesla’s new “Gigafactory” for batteries, produces lithium. However, the overall ecological impact of lithium ion batteries remains somewhat unclear, as does the “well-to-wheel” effort and cost to recharge such batteries.

To fully grasp the relevance and environmental impact of lithium it is important to note that lithium ion batteries are also found in most mobile phones, laptop computers, wearable electronics and almost anything else powered by rechargeable batteries.

Dozens of reports are available on the ecological impact of lithium mining. Unfortunately, many of them are influenced by the perspective of the organizations or authors releasing them. Reducing the available information to studies carried out by government bodies and research institutes around the world, a picture emerges nonetheless:

  • Elemental lithium is flammable and very reactive. In nature, lithium occurs in compounded forms such as lithium carbonate requiring chemical processing to be made usable.
  • Lithium is typically found in salt flats in areas where water is scarce. The mining process of lithium uses large amounts of water. Therefore, on top of water contamination as a result of its use, depletion or transportation costs are issues to be dealt with. Depletion results in less available water for local populations, flora and fauna.
  • Toxic chemicals are used for leaching purposes, chemicals requiring waste treatment. There are widespread concerns of improper handling and spills, like in other mining operations around the world.
  • The recovery rate of lithium ion batteries, even in first world countries, is in the single digit percent range. Most batteries end up in landfill.
  • In a 2013 report, the U.S. Environmental Protection Agency (EPA) points out that nickel and cobalt, both also used in the production of lithium ion batteries, represent significant additional environmental risks.

A 2012 study titled “Science for Environment Policy” published by the European Union compares lithium ion batteries to other types of batteries available (lead-acid, nickel-cadmium, nickel-metal-hydride and sodium sulphur). It concludes that lithium ion batteries have the largest impact on metal depletion, suggesting that recycling is complicated. Lithium ion batteries are also, together with nickel-metal-hydride batteries, the most energy consuming technologies using the equivalent of 1.6kg of oil per kg of battery produced. They also ranked the worst in greenhouse gas emissions with up to 12.5kg of CO2 equivalent emitted per kg of battery. The authors do point out that “…for a full understanding of life cycle impacts, further aspects of battery use need to be considered, such as length of usage, performance at different temperatures, and ability to discharge quickly.”

Technology will of course improve, lithium supplies will be sufficient for the foreseeable future, and recycling rates will climb. Other issues like the migration of aging cars and electronic devices to countries with less developed infrastructures will, however, remain. As will the reality of lithium mining and processing. It is therefore conceivable that new battery technologies (sea water batteries or the nano-flowcell, for instance) will gain more importance in years to come, as will hydrogen fuel cells.

We will report about the pros and cons of each of these alternatives in future issues of Tech Metals Insider.

Bodo Albrecht,

The other side of the global crisis: entropy and the collapse of civilizations

6 03 2016

This is a post from Ugo Bardi’s website. When I first read it, I found so many errors of spelling and syntax that I found it hard going….. but then I realised it had been written by an Italian, and frankly, if I could write an article as good as this in Italian (or even in French, my ‘native language’), I’d be very happy with myself.  So I went through it with a fine tooth comb and re-edited it.  Once or twice, I wasn’t actually sure what the author meant, so I hope I haven’t run astray with my effort to ‘fix it’…….  well worth the read, especially if ‘you’re into’ entropy.

Guest post by Jacopo Simonetta

When we discuss the impending crisis of our civilisation, we mainly look at the resourcesjacopo-6 our economy needs in growing quantity. And we explain why the Diminishing Returns of resource exploitation pose a growing burden on  the possibility of a further growing of the global economy. It is a very interesting topic, indeed, but here I suggest we turn 180 degrees around and take a look at the “other side;” that is to what happens where the used resources are discarded.

Eventually, our society (as any other society in history) is a dissipative structure. It means that it exist only because it is able to dissipate energy in order to stock information inside itself. And there is a positive feedback: more energy permits to implement more complexity; and more complexity needs, but also permits a larger energy flow. This, I think, is a crucial point: at the very end, wealth is information stocked inside the socio-economic system in different forms (such livestock, infrastructures, agrarian facilities, machines, buildings, books, the web and so on). Human population is peculiar because it is a large part of the information stocked inside the society system. So, from a thermodynamic point of view, it is the key part of “wealth”, while from an economic point of view people can be seen as the denominator of global wealth.

The accumulation of information inside a system is possible only by an increment of entropy outside the same system. This is usual with all the dissipative structures, but our civilisation is unique in its dimension. Today about 97% of the terrestrial vertebrate biomass is composed of humans and of their symbionts and we use about 50% of the primary production (400 TW?), plus a little less than 20 TW we get from fossil fuels and other inorganic sources.

At the beginning, our modern civilisation performed in the same way as all the others in history: appropriating energy forms such as food, livestock, commodities, slaves, oil, carbon and so on, and throwing entropy to the biosphere in different forms such as pollutants, ecosystems transformations, extinctions, heat and so on; while throwing entropy to other societies as war, migration, etcetera.

As the industrial economy overruled and substituted all others, it became the only economy in the world, and so, necessarily, found more and more difficulties in dissipating energy outside itself. In practice, sinks become problematic before wells do. But remember that in order to implement its own complexity, a dissipative system needs a growing energy flow; that is, it needs cornucopian energy wells.

Today, both global pollution and massive immigration into the more industrialized countries is evidence that our system is no longer able to expel entropy out of itself. But if entropy is not discharged out of the system, it necessarily grows inside it. And when there is more energy, there is more entropy in a typical diminishing returns dynamic. Maybe, we can see here a negative feedback which has stopped economic growth and that will possibly crash the global economy in some decades.  [Ed- this is highly optimistic, the crash has started, and ‘in some decades’ the economy will simpy no longer exist!]

If this reasoning is correct, the political and the economic crisis, social disruption and, finally, failing states are nothing less than the visible aspect of the growing entropy inside our own meta-system. Eventually, global society is so large and complex as is obvious in many correlated sub-systems that we are now managing it in order to concentrate entropy inside the less powerful ones: some yet problematic countries, lower classes and, especially, the young. But these phenomena produce political shifts, riots and mass migrations at the core of the system. This also means that the elites have lost the capability to understand and/or control the internal dynamic of the global socio-economic system.

In the meantime, the overloading of the sinks is starting to cause the deterioration of the wells. This is evident, for instance, with air and water pollution, ocean acidification, mass extinction, ecosystems disruption, and much more. In the end, as the economy grows, the global system necessarily loses the capacity to dissipate energy, condemning itself to disruption.

We can find the same phenomenon at smaller scales, such as for a single organism, or such as in a single human being. If a good energy flow is available in the form of food and heat, a baby can develop into a strong and healthy adult. Good flows of energy during adult life mean a better life and the possibility to develop culture, skills, art, science and to keep one’s health for a long time. Insufficient energy means starvation and illness. But it is also true that if the body absorbs a quantity of energy larger than its capacity to dissipate it, then we have problems such as, illness, obesity and, finally, a bad life and premature death.

We found the very same phenomenon at larger scales as well. The Earth as a whole is also a dissipative, complex system. It does not have any problems with its main energy well, the Sun. We can be sure that the 86,000 TW that we receive from the sun on average are not going away, although they will gradually increase over very long time spans. But the whole biosphere is collapsing in one of the most serious crisis it has ever faced during the 4.5 billions years of its history. This crisis is the result of human activity that reduces the capability of the ecosystem to dissipate the energy input, in particular as a result of the greenhouse effect caused by the combustion of fossil fuels. So the internal entropy grows with the consequence of harming even more the ecosystems and reducing complexity, possibly leading to a global disaster at a geological scale.

In conclusion, I suggest that, in the coming decades, entropy will be a much more challenging problem than that of the energy supply. Only a drastic reduction in the energy input could save the biosphere. But this is a high price to pay because a reduction of energy flow means necessarily a reduction of complexity and information stored inside the human sub-system. It means misery and death for much of the human population, although it also means hope for the future one (assuming that it will exist, but humans are too adaptable and resilient to go extinct as long as a functioning biosphere exists) So, new civilizations will appear but, in order for that to occur, the present civilization will have to collapse fast enough to leave a livable planet to our descendants.

Richard Wolff on the coming crash…….

30 05 2015

Of course, zero mention of Limits to Growth here………

Why We Have an Oversupply of Almost Everything (Oil, labor, capital, etc.)

7 05 2015

The Wall Street Journal recently ran an article called, Glut of Capital and Labor Challenge Policy Makers: Global oversupply extends beyond commodities, elevating deflation risk. To me, this is a very serious issue, quite likely signaling that we are reaching what has been called Limits to Growth, a situation modelled in 1972 in a book by that name.

What happens is that economic growth eventually runs into limits. Many people have assumed that these limits would be marked by high prices and excessive demand for goods. In my view, the issue is precisely the opposite one: Limits to growth are instead marked by low prices and inadequate demand. Common workers can no longer afford to buy the goods and services that the economy produces, because of inadequate wage growth. The price of all commodities drops, because of lower demand by workers. Furthermore, investors can no longer find investments that provide an adequate return on capital, because prices for finished goods are pulled down by the low demand of workers with inadequate wages.

Evidence Regarding the Connection Between Energy Consumption and GDP Growth

We can see the close connection between world energy consumption and world GDP using historical data.

Figure 1. World GDP in 2010$ compared (from USDA) compared to World Consumption of Energy (from BP Statistical Review of World Energy 2014).

This chart gives a clue regarding what is wrong with the economy. The slope of the line implies that adding one percentage point of growth in energy usage tends to add less and less GDP growth over time, as I have shown in Figure 2. This means that if we want to have, for example, a constant 4% growth in world GDP for the period 1969 to 2013, we would need to gradually increase the rate of growth in energy consumption from about 1.8% = (4.0% – 2.2%) growth in energy consumption in 1969 to 2.8% = (4.0% – 1.2%) growth in energy consumption in 2013. This need for more and more growth in energy use to produce the same amount of economic growth is taking place despite all of our efforts toward efficiency, and despite all of our efforts toward becoming more of a “service” economy, using less energy products!

Figure 2. Expected change in GDP growth corresponding to 1% growth in total energy, based on Figure 1 fitted line.

To make matters worse, growth in world energy supply is generally trending downward as well. (This is not just oil supply whose growth is trending downward; this is oil plus everything else, including “renewables”.)

Figure 3. Three year average percent change in world energy consumption, based on BP Statistical Review of World Energy 2014 data.

There would be no problem, if economic growth were something that we could simply walk away from with no harmful consequences. Unfortunately, we live in a world where there are only two options–win or lose. We can win in our contest against other species (especially microbes), or we can lose. Winning looks like economic growth; losing looks like financial collapse with huge loss of human population, perhaps to epidemics, because we cannot maintain our current economic system.

The symptoms of losing the game are the symptoms we are seeing today–low commodity prices (temporarily higher, but nowhere nearly high enough to maintain production), not enough good paying jobs for common workers, and lack of investment opportunities, because workers cannot afford the high prices of goods that would be required to provide adequate return on investment.

How We Have Won in Our Contest with Other Species–Early Efforts 

The “secret formula” humans have had for winning in our competition against other species has been the use of supplemental energy, adding to the energy we get from food. There is a physics reason why this approach works: total population by all species is limited by available energy supply. Providing our own external energy supply was (and still is) a great work-around for this limitation. Even in the days of hunter-gatherers, humans used three times as much energy as could be obtained through food alone (Figure 1).

Figure 1

Earliest supplementation of food energy came by burning sticks and other biomass, starting one million years ago. Using this approach, humans were able to gain an advantage over other species in several ways:

  1. We were able to cook some of our food. This made a wider range of plants and animals suitable for food and made the nutrients from these foods more easily available to our bodies.
  2. Because less energy was needed for chewing and digesting, our bodies could put energy into growing a larger brain, thus giving us an advantage over other animals.
  3. The use of cooked food freed up time for such activities as hunting and making clothes, because less time was needed for chewing.
  4. Heat from burning plant material could be used to keep warm in cold areas, thereby extending our range and increasing total human population that could be supported.
  5. Fire could be used to chase off predatory animals and hunt prey animals.

Our bodies are now adapted to the need for supplemental energy. Our teeth are smaller, and our jaws and digestive apparatus have shrunk in size, as our brain has grown. The large population of humans that are alive today could not survive without supplemental energy for many purposes, such as cooking food, heating homes, and fighting illnesses that spread when humans are in as close proximity as they are today.

Our Modern Formula For Winning the Battle Against Other Species

In my view, the formula that has allowed humans to keep winning the battle against other species is the following:

  1. Use increasing amounts of inexpensive supplemental energy to leverage human energy so that finished goods and services produced per worker rises each year.
  2. Pay for this system with debt, because (if supplemental energy costs are cheap enough), it is possible to repay the debt, plus the interest on the debt, with the additional goods and services made possible by the cheap additional energy.
  3. This system gradually becomes more complex to deal with problems that come with rising population and growing use of resources. However, if the output of goods per worker is growing rapidly enough, it should be possible to pay for the costs associated with this increased complexity, in addition to interest costs.
  4. The whole system “works” as long as the total quantity of finished goods and services rises rapidly enough that it can fund all of the following: (a) a rising standard of living for common workers so that they can afford increasing amounts of debt to buy more goods, (b) debt repayment, and interest on the debt of the system, and (c) and an increasing amount of “overhead” in the form of government services, medical care, educational services, and salaries of high paid officials (in business as well as government). This overhead is needed to deal with the increasing complexity that comes with growth.

The formula for a growing economy is now failing. The rate of economic growth is falling, partly because energy supply is slowing (Figure 3), and partly because we need more and more growth of energy supply to produce a given amount of economic growth (Figure 2). With this lowered world economic growth, the amount of goods and services being produced is not rising fast enough to support all of the functions that it needs to cover: interest payments, growing wages of common workers, and growing “overhead” of a more complex society.

Some Reasons the Economic Growth Cycle is Now Failing

Let’s look at a few areas where we are reaching obstacles to this continued growth in final goods and services. An overarching problem is diminishing returns, which is reflected in increasingly higher prices of production.

1. Energy supplies are becoming more expensive to extract.

We extract the easiest to extract energy supplies first, and as these deplete, need to use the more expensive to extract energy supplies. We hear much about “growing efficiency” but, in fact, we are becoming less efficient in the production of energy supplies.

In the US, EIA data shows that we are becoming less efficient at coal production, in terms of coal production per worker hour (Figure 5).

Figure 5. US coal production per worker, on a Btu basis based on EIA data.

With oil, growing inefficiency is shown by the steeply rising cost of oil exploration and production since 1999 (Figure 6).

Figure 6. Figure by Steve Kopits of Westwood Douglas showing trends in world oil exploration and production costs per barrel.

Thus, it is for a fairly recent period, namely the period since about 2000, that we have been encountering rising costs both for US coal and for worldwide oil extraction.

The extra workers and extra costs required for producing the same amount of energy  counteract the tendency toward growth in the rest of the economy. This occurs because the rest of the economy must produce finished products with fewer workers and less resources as a result of the extra demands on these resources by the energy sector.

2. Other materials, besides energy products, are experiencing diminishing returns. 

Other resources, such as metals and other minerals and fresh water, are also becoming increasingly expensive to extract. The issue with mineral ores is similar to that with fossil fuels. We start with a fixed amount of ores in good locations and with high mineral percentages. As we move to less desirable ores, both human labour and more energy products are required, making the extraction process less efficient.

With fresh water, the issue is likely to be a need for desalination or long distance transport, to satisfy the needs of a growing population. Workarounds again involve more human labour and more resource use, making the production of fresh water less efficient.

In both of these cases, growing inefficiency leaves the rest of the economy with less human energy and less energy products to produce the finished goods and services that the economy needs.

3. Growing pollution is taking its toll.

Instead of just producing end products, we are increasingly finding ourselves fighting pollution. While this is a benefit to society, it really is only offsetting what would otherwise be a negative. Thus, it acts like overhead, rather than producing economic growth.

From the point of view of workers having to pay for higher cost energy in order to fight pollution (say, substitution of a higher cost energy source, or paying for more pollution controls), the additional cost acts like a tax. Workers need to cut back on other expenditures to afford the pollution control workarounds. The effect is thus recessionary.

4. The amount of “overhead” to the world economy has been growing rapidly in recent years, for a number of reasons: 

  • The amount of overhead is growing because we are reaching natural barriers. For example, population per acre of arable land is growing, so we need more intensity of development to produce food for a rising population.
  • With greater population density and increased bacterial antibiotic resistance, disease transmission becomes a more of a problem.
  • Increasing education is being encouraged, whether or not there are jobs available that will make use of that education. Education that cannot be used in a productive way to produce more goods and services can be considered overhead for the economy. Educational expenses are frequently financed by debt. Repayment of this debt leads to a decrease in demand for other goods, such as new homes and vehicles.
  • We have more elderly to whom we have promised benefits, because with the benefit of better nutrition and medical care, more people are living longer.

5. We are reaching debt limits.

As economic growth has slowed, we have been adding more and more debt, to try to mitigate the problem. This additional debt becomes a problem in many ways: (a) without cheap energy to leverage human labour, there are not many productive investments that can be made; (b) the addition of more debt leads to a need for more interest payments; and (c) at some point debt ratios become overwhelmingly high.

At least part of the slowdown in economic growth that we are seeing today is coming from a slowdown in the growth of debt. Without debt growth, it is hard to keep commodity prices high enough. Investment in new manufacturing plants is also affected by low growth in debt.

Reasons for Confusion in Understanding Our Current Predicament

1. Not understanding that all of the symptoms we are seeing today are manifestations of the same underlying “illness”. 

Most analysts think that the economy has stubbed its toe and has a headache, rather than recognizing that it has a serious underlying illness.

2. Academia is focused way too narrowly, and tied too closely to what has been written before. 

Academics, because of their need to write papers, focus on what previous papers have said. Unfortunately, previous papers have not understood the nature of our problem. Academics have developed models based on our situation when we were away from limits. The issues we are facing cover such diverse subjects as physics, geology, and finance. It is hard for academics to become knowledgeable in many areas at once.

3. Models that seemed to work before are no longer appropriate.

We take models like the familiar supply and demand model of economists and assume that they represent everlasting truths.

Figure 7. (Source Wikipedia). The price P of a product is determined by a balance between production at each price (supply S) and the desires of those with purchasing power at each price (demand D). The diagram shows a positive shift in demand from D1 to D2, resulting in an increase in price (P) and quantity sold (Q) of the product.

Unfortunately, as we get close to limits, things change. Both wage levels and debt levels have an impact on demand; the quantity goods available is also affected by diminishing returns. The model that worked in the past may be totally inappropriate now.

Even a complex model like the climate change model being used by the IPCC is likely to be affected by financial limits. If near-term financial limits are to be expected, IPCC’s estimate of future carbon from fuels is likely to be too high. At a minimum, the findings of the IPCC need to be framed differently: climate change may be one of a number of problems facing those people who manage to survive a financial crash.

4. Too much wishful thinking.

Everyone would like to present a positive result, especially when grants are being given for academic research will support some favourable finding.

A favourite form of wishful thinking is believing that higher costs of energy products will not be a problem. Higher cost energy products, whether they are renewable or not, are a problem for many reasons:

  • They represent growing inefficiency in the economy. With growing inefficiency, we produce fewer finished goods and services per worker, not more.
  • Countries using more of the higher cost types of energy become less competitive in the world market, and because of this, may develop financial problems. The countries most affected by the Great Recession were countries using a high percentage of oil in their energy mix.
  • The amount workers have available to spend is limited. If a worker has $100 to spend on energy supply, he can buy 100 times as much in energy supplies priced at $1 as he can energy supplies priced at $100. This same principle works even if the cost difference is much lower–say $3.50 gallon vs. $3.00 gallon.

5. Too much faith in, “We pay each other’s wages.”

There is a common belief that growing inefficiency is OK; the wages we pay for unneeded education will work its way through the system as more wages for other workers.

Unfortunately, the real secret to economic growth is not paying each other’s wages; it is growing output of finished products per worker through increased use of cheap energy (and perhaps technology, to make this cheap energy useful).

Increased overhead for the system is not helpful.

6.  An “upside down” peak oil story.

Most people in the peak oil community believe what economists say about supply and demand–namely, that oil prices will rise if there is a supply problem. They have not realized that in a networked economy, wages and prices are tightly linked. The way limits apply is not necessarily the way we expect. Limits may come through a lack of good paying jobs, and because of this lack of jobs, inability to purchase products containing oil.

The connection between energy and jobs is clear. Good jobs require the use of energy, such as electricity and oil; lack of good-paying jobs is likely to be a manifestation of an inadequate supply of cheap energy. Also, high paying jobs are what allow rising buying power, and thus keep demand high. Thus, oil limits may appear as a demand problem, with low oil prices, rather than as a high oil price problem.

In my opinion, what we are seeing now is a manifestation of peak oil. It is just happening in an upside down way relative to what most were expecting.


One way of viewing our problem today is as a crisis of affordability. Young people cannot afford to start families or buy new homes because of a combination of the high cost of higher education (leading to debt), the high cost of fuel-efficient new cars (again leading to debt), the high cost of resale homes, and the relatively low wages paid to young workers. Even older workers often have an affordability problem. Many have found their wages stagnating or falling at the same time that the cost of healthcare, cars, electricity, and (until recently) oil rises. A recent Gallop Survey showed an increasing share of workers categorize themselves as “working class” rather than “middle class.”

It is this affordability crisis that is bringing the system down. Without adequate wages, the amount of debt that can be added to the system lags as well. It becomes impossible to keep prices of commodities up at a high enough level to encourage production of these commodities. Return on investment tends to be low for the same reason. Most researchers have not recognized these problems, because they are narrowly focused and assume that models that worked in the past will continue to work today.

Dmitry Orlov at his very best

26 03 2015

I suppose many (most?) of you already follow Orlov’s great blog and have already read this piece.  As far as I’m concerned, it’s one of the very best analyses of the predicaments we face all wrapped up in a concise and easy to understand piece of journalism.
 Originally published here.

Financial Feudalism

Once upon a time—and a fairly long time it was—most of the thickly settled parts of the world had something called feudalism. It was a way of organizing society hierarchically. Typically, at the very top there was a sovereign (king, prince, emperor, pharaoh, along with some high priests). Below the sovereign were several ranks of noblemen, with hereditary titles. Below the noblemen were commoners, who likewise inherited their stations in life, be it by being bound to a piece of land upon which they toiled, or by being granted the right to engage in a certain type of production or trade, in case of craftsmen and merchants. Everybody was locked into position through permanent relationships of allegiance, tribute and customary duties: tribute and customary duties flowed up through the ranks, while favours, privileges and protection flowed down.

It was a remarkably resilient, self-perpetuating system, based largely on the use of land and other renewable resources, all ultimately powered by sunlight. Wealth was primarily derived from land and the various uses of land. Here is a simplified org chart showing the pecking order of a medieval society.

Feudalism was essentially a steady-state system. Population pressures were relieved primarily through emigration, war, pestilence and, failing all of the above, periodic famine. Wars of conquest sometimes opened up temporary new venues for economic growth, but since land and sunlight are finite, this amounted to a zero-sum game.

But all of that changed when feudalism was replaced with capitalism. What made the change possible was the exploitation of nonrenewable resources, the most important of which was energy from burning fossilized hydrocarbons: first peat and coal, then oil and natural gas. Suddenly, productive capacity was decoupled from the availability of land and sunlight, and could be ramped up almost, but not quite, ad infinitum, simply by burning more hydrocarbons. Energy use, industry and population all started going up exponentially. A new system of economic relations was brought into being, based on money that could be generated at will, in the form of debt, which could be repaid with interest using the products of ever-increasing future production. Compared with the previous, steady-state system, the change amounted to a new assumption: that the future will always be bigger and richer—rich enough to afford to pay back both principal and interest.

With this new, capitalistic arrangement, the old, feudal relationships and customs fell into disuse, replaced by a new system in which the ever-richer owners of capital squared off against increasingly dispossessed labour. The trade union movement and collective bargaining allowed labour to hold its own for a while, but eventually a number of factors, such as automation and globalization, undermined the labour movement, leaving the owners of capital with all the leverage they could want over a demoralized surplus population of former industrial workers. In the meantime, the owners of capital formed their own pseudo-aristocracy, but without the titles or the hereditary duties and privileges. Their new pecking order was predicated on just one thing: net worth. How many dollar signs people have next to their name is all that’s necessary to determine their position in society.

But eventually almost all the good, local sources of hydrocarbon-based energy became depleted, and had to be replaced using lower-quality, more remote, harder-to-produce, more expensive ones. This took a big bite out of economic growth, because with each passing year more and more of it had to be plowed right back into producing the energy needed to simply sustain, never mind grow, the system. At the same time, industry produced a lot of unpleasant byproducts: environmental pollution and degradation, climate destabilization and other externalities. Eventually these started showing up as high insurance premiums and remediation costs for natural and man-made disasters, and these too put a damper on economic growth.

Population growth has its penalties too. You see, bigger populations translate to bigger population centers, and research results show that the bigger the city, the higher is its energy use per capita. Unlike biological organisms, where the larger the animal, the slower is its metabolism, the intensity of activity needed to sustain a population center increases along with population. Observe that in big cities people talk faster, walk faster, and generally have to live more intensely and operate on a tighter schedule just to stay alive. All of this hectic activity takes energy away from constructing a bigger, richer future. Yes, the future may be ever more populous (for now) but the fastest-growing form of human settlement on the planet is the urban slum—lacking in social services, sanitation, rife with crime and generally unsafe.

What all of this means is that growth is self-limiting. Next, observe that we have already reached these limits, and have in some cases gone far beyond them. The currently failing fad of hydraulic fracturing of shale deposits and steaming oil out of tar sands is indicative of the advanced state of depletion of fossil fuel sources. Climate destabilization is producing ever more violent storms, ever more severe droughts (California now has just a year’s worth of water left) and is predicted to wipe out entire countries because of rising ocean levels, failing monsoon seasons and dwindling irrigation water from glacial melt. Pollution has likewise reached its limits in many areas: urban smog, be it in Paris, Beijing, Moscow or Teheran, has become so bad that industrial activities are being curtailed simply so that people can breathe. Radioactivity from the melted-down nuclear reactors at Fukushima in Japan is showing up in fish caught on the other side of the Pacific Ocean.

All of these problems are causing a very strange thing to happen to money. In the previous, growth phase of capitalism, money was borrowed into existence in order to bring consumption forward and by so doing to stimulate economic growth. But a few years ago a threshold was reached in the US, which was at the time still the epicenter of global economic activity (since eclipsed by China), where a unit of new debt produced less than one unit of economic growth. This made borrowing from the future with interest no longer possible.

Whereas before money was borrowed in order to produce growth, now it had to be borrowed, in ever-larger amounts, simply to prevent financial and industrial collapse. Consequently, interest rates on new debt were reduced all the way to zero, in something that came to be known as ZIRP, for Zero Interest Rate Policy. To make it even sweeter, central banks accepted the money they loaned out at 0% interest as deposits, which earned a tiny bit of interest, allowing banks to make a profit by doing absolutely nothing.

glutUnsurprisingly, doing absolutely nothing proved to be rather ineffective, and around the world economies started to shrink. Many countries resorted to forging their statistics to paint a rosier picture, but one statistic that doesn’t lie is energy consumption. It is indicative of the overall level of economic activity, and it is down across the entire world. A glut of oil, and a much lower oil price, is what we are currently witnessing as a result. Another indicator that doesn’t lie is the Baltic Dry Index, which tracks the level of shipping activity, and it has plummeted too.

And so ZIRP set the stage for the latest, most queer development: interest rates have started to go negative, both on loans and deposits. Good bye, ZIRP, hello, NIRP! Central banks around the world are starting to make loans at small negative rates of interest. That’s right, certain central banks now pay certain financial institutions to borrow money! In the meantime, interest rates on bank deposits have gone negative as well: keeping your money in the bank is now a privilege, for which one must pay.

But interest rates are certainly not negative for everyone. Access to free money is a privilege, and those who are privileged are the bankers, and the industrialists they fund. Those who have to borrow to finance housing are less privileged; those who borrow to pay for education even less so. Those not privileged at all are those who are forced to buy food using credit cards, or take out payday loans to pay rent.

The functions which borrowing once played in capitalist economies have been all but abandoned. Once upon a time, the idea was that access to capital could be obtained based on a good business plan, and that this allowed entrepreneurship to flourish and many new businesses to be formed. Since anybody, and not just the privileged, could take out a loan and start a business, this meant that economic success depended, at least to some extent, on merit. But now business formation has gone in reverse, with many more enterprises going out of business than are being formed, and social mobility has become largely a thing of the past. What is left is a rigidly stratified society, with privileges dispensed based on hereditary wealth: those at the top get paid to borrow, and get to surf on a wave of free money, while those at the bottom are driven ever further into debt servitude and destitution.

Can NIRP underpin a new feudalism? It certainly cannot reverse the downward slide, because the factors that are putting limits on growth are not amenable to financial manipulation, being physical in nature. You see, no amount of free money can make new natural resources spring into existence. What it can do, however, is freeze the social hierarchy among the owners of capital—for a while, but not forever.

Everywhere you care to look, the ever-shrinking economy eventually results in populist revolt, war and national bankruptcy, and these cause money to stop working in a number of ways. There is usually devaluation, bank failures, inability to finance imports, and the demise of pensions and of the public sector. The desire to survive causes people to focus on getting direct access to physical resources, distributing them among friends and family.

In turn, this causes market mechanisms to become extremely opaque and distorted, and often to stop functioning altogether. Under these circumstances, how many dollar signs someone has next to their name becomes rather a moot point, and we should expect the social hierarchy among the owners of capital to become unstable and capsize. A few among them have the talents to become warlords, and these few fleece the rest out of existence. But overall, in a situation where financial institutions have failed, where factories and other enterprises are no longer functioning, and where real estate holdings have been overrun by marauding mobs and/or invaded by squatters, one’s net worth becomes rather difficult to compute. And so we should expect the org chart of the post-capitalist society, in spreadsheet terms, to look like this. (“#REF!” is what Excel displays when it encounters an invalid cell reference in a formula.)

A good, precise term for this state of affairs is “anarchy.” Once a new, low level of steady-state subsistence is reached, the process of aristocratic formation can begin anew. But unless a new source of cheap fossil fuels is somehow magically discovered, this process would have to proceed along the traditional, feudal lines.

Earth is halfway to being inhospitable to life, scientist says

21 03 2015

A Swedish scientist claims in a new theory that humanity has exceeded four of the nine limits for keeping the planet hospitable to modern life, while another professor told RT Earth may be seeing an impending human-made extinction of various species.

Environmental science professor Johan Rockstrom, the executive director of the Stockholm Resilience Centre in Sweden, argues that there are nine “planetary boundaries” in a new paper published in Science – and human beings have already crossed four of them.

Those nine include carbon dioxide concentrations, maintaining biodiversity at 90 percent, the use of nitrogen and phosphorous, maintaining 75 percent of original forests, aerosol emissions, stratospheric ozone depletion, ocean acidification, fresh water use and the dumping of pollutants.

The planet has been our best friend by buffering our actions and showing its resilience,” said Rockstrom. “But for the first time ever, we might shift the planet from friend to foe.”

Image from

Image from

Rockstrom’s planetary boundary theory was first conceived in 2007. His new paper reveals that because of climate stability, which began when the Ice Age ended 11,000 years ago, a planetary calm helped our ancestors to cultivate wheat, domesticate animals, and launch industrial and communications revolutions. But those advances have strained the stability of the planet, and Rockstrom says we have broken four boundaries: too much nitrogen has been added to ecosystems, too many forests have been cut down, the climate is changing too quickly and species are going extinct at too great a rate.

Speaking to RT’s Ben Swann, Professor of Ethics Bron Taylor from the University of Florida said that we have accelerated the extinction crisis through deforestation and ocean acidification, a development which is driving species to extinction.

“[Human] beings have increased, even from 1925, from 2 billion – which is considered to be a sustainable population for human beings, according to northern European consumption standards – to 7.2 billion at this point,” he said.