The study on collapse they thought you should not read – yet

31 07 2018

This is an extraordinary piece of reporting that needs to go viral in my opinion…. written by Jem Bendell, a Professor of Sustainability Leadership and Founder of the Institute for Leadership and Sustainability (IFLAS) at the University of Cumbria (UK). The Institute runs the world’s largest MBA in sustainability, with over 1000 students from over 100 countries. A graduate of the University of Cambridge, he has twenty years of experience in sustainable business and finance, as a researcher, educator, facilitator, advisor, & entrepreneur, having lived & worked in six countries. Clients for his strategy development include international corporations, UN agencies and international NGOs. The World Economic Forum (WEF) has recognised Professor Bendell as a Young Global Leader for his work on sustainable business alliances. With over 100 publications, including four books and five UN reports, he regularly appears in international media on topics of sustainable business and finance, as well as currency innovation. His TEDx talk is the most watched online speech on complementary currencies. In 2012 Professor Bendell co-authored the WEF report on the Sharing Economy. He is a special advisor to the United Nations department that convenes the Sustainable Stock Exchanges initiative. Previously he helped create innovative alliances, including the Marine Stewardship Council, to endorse sustainable fisheries and The Finance Innovation Lab, to promote sustainable finance. In 2007 he wrote a report for WWF on the responsibility of luxury brands, which appeared in over 50 newspapers and magazines worldwide, and inspired a number of entrepreneurs to create businesses in the luxury sector. Professor Bendell now specialises in leadership development, offering coaching and training to senior executives from around the world who have an interest in sustainable enterprise and finance.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

https://jembendell.wordpress.com/

Image result for professor bendellA research paper concluding that climate-induced collapse is now inevitable, was recently rejected by anonymous reviewers of an academic journal.

It has been released directly by the Professor who wrote it, to promote discussion of the necessary deep adaptation to climate chaos.

“I am releasing this paper immediately, directly, because I can’t wait any longer in exploring how to learn the implications of the social collapse we now face,” explained the author Dr Bendell, a full Professor of Sustainability Leadership.  deep adaptation paper

In saying the paper was not suitable for publication, one of the comments from the reviewers questioned the emotional impact that the paper might have on readers. “I was left wondering about the social implications of presenting a scenario for the future as inevitable reality, and about the responsibility of research in communicating climate change scenarios and strategies for adaptation.” wrote one of the reviewers. “As the authors pointed out, denial is a common emotional response to situations that are perceived as threatening and inescapable, leading to a sense of helplessness, inadequacy, and hopelessness and ultimately disengagement from the issue…”

That perspective is discussed in the paper as one that enables denial. Professor Bendell explains in his response to the Editor, that the response may reflect “the self-defeating hierarchical attitude towards society that many of us have in both academia and sustainability, where we censure our own exploration of a topic due to what we consider should or should not be communicated. There is both scholarship and experience on the impact of communicating about disaster, and I discuss that in the paper.” Moreover, Bendell consulted with practicing psychotherapists on both the motivational and mental health implications of this analysis and was reassured that perceptions of a collective tragic future should not in itself be a cause for depression. Instead, it could trigger transformative reflection which could be supported – and would be inevitable one day, given the inevitability of mortality for all human life.

The paper offers a new framing for beginning to make sense of the disaster we face, called “deep adaptation.” It is one that Professor Bendell proposed in a keynote lecture two years ago and has influenced community dialogue on climate change in Britain in the past two years, including in Peterborough and Newcastle as well as being used by the Dark Mountain network.

The paper “Deep Adaptation: A Map for Navigating Climate Tragedy” is downloadable as a pdf from here.

The response of Professor Bendell to the Editor of the journal follows below.

A list of resources to support people as they process this information, including emotional support is here.

A LinkedIn group on Deep Adaptation exists to support professional discussion of the topic.

Letter to the Editor of SAMPJ, Professor Carol Adams, from Professor Jem Bendell, 26th July 2018.

Dear Professor Adams,

It is an odd situation to be in as a writer, but I feel compassion for anyone reading my Deep Adaptation article on the inevitability of near term social collapse due to climate chaos! I am especially grateful for anyone taking the time to analyse it in depth and provide feedback. So, I am grateful to you arranging that and the reviewers for providing their feedback. Some of the feedback, particularly recommendations for a better introduction, were helpful. However, I am unable to work with their main requests for revisions, as they are, I believe, either impossible or inappropriate, as I will seek to explain.

I agree with Professor Rob Gray that “The journal’s constant exploration of new and challenging perspectives on how accountability and sustainability might play out in organisations ensures a stimulating source of articles, experiences and ideas.” It is why I was pleased to guest edit an issue last year and bring critical perspectives on leadership to its readership. However, the topic of inevitable collapse from climate change is so challenging it is not surprising it didn’t find support from the anonymous peer reviewers.

I would have had difficulty finding motivation for undertaking a complete re-write given the conclusion of the paper – that the premise of the “sustainable business” field that the journal is part of is no longer valid. Indeed, the assumptions about progress and stability that lead us to stay in academia in the field of management studies are also now under question.

The first referee questioned “to which literature (s) does this article actually contribute” and stated that “the research question or gap that you intend to address must be drawn from the literature,” continuing that “to join the conversation, you need to be aware of the current conversation in the field, which can be identified by reviewing relevant and recent articles published in these journals.” That is the standard guidance I use with my students and it was both amusing and annoying to read that feedback after having dozens of peer reviewed articles published over the last 20 years. The problem with that guidance is when the article is challenging the basis of the field and where there are not any other articles exploring or accepting the same premise. For instance, there are no articles in either SAMPJ or Organisation and Environment that explore implications for business practice or policy of a near term inevitable collapse due to environmental catastrophe (including those that mention or address climate adaptation). That isn’t surprising, because the data hasn’t been so conclusive on that until the last couple of years.

It is surprising therefore that the first reviewer says “the paper does not contain any new or significant information. The paper reiterates what has already been told by many studies.” The reviewer implies therefore that the paper is about climate change being a big problem. But the article doesn’t say that. It says that we face an unsolvable predicament and great tragedy. When the reviewer says “There are not clear contributions that can be derived from the article” then I wonder whether that is wilful blindness, as the article is saying that the basis of the field is now untenable.

At a couple of points, I attempted to cut through the unemotional way that research is presented. Or instance, when I directly address the reader about the implications of the analysis for their own likely hunger and safety, it is to elicit an emotional response. I say in the text why I express myself in that way and that although it is not typical in some journals the situation we face suggests to me that we do try to communicate emotively. The reviewer comments “the language used is not appropriate for a scholarly article.”

The second reviewer summarises the paper as “the introduction of deep adaptation as an effective response to climate change” which suggests to me a fundamental misunderstanding despite it being made clear throughout the paper. There is no “effective” response. The reviewer also writes “I am not sure that the extensive presentation of climate data supports the core argument of the paper in a meaningful way.” Yet the summary of science is the core of the paper as everything then flows from the conclusion of that analysis. Note that the science I summarise is about what is happening right now, rather than models or theories of complex adaptive systems which the reviewer would have preferred.

One piece of feedback from the 2nd reviewer is worth quoting verbatim:

“The authors stress repeatedly that “climate-induced societal collapse is now inevitable” as if that was a factual statement… I was left wondering about the social implications of presenting a scenario for the future as inevitable reality, and about the responsibility of research in communicating climate change scenarios and strategies for adaptation. As the authors pointed out, denial is a common emotional response to situations that are perceived as threatening and inescapable, leading to a sense of helplessness, inadequacy, and hopelessness and ultimately disengagement from the issue…”

This perspective is one I discuss in some detail in the paper, as one that enables denial. It reflects the self-defeating hierarchical attitude towards society that many of us have in both academia and sustainability, where we censure our own exploration of a topic due to what we consider should or should not be communicated. There is both scholarship and experience on the impact of communicating about disaster, and I discuss that in the paper.

The trauma from assessing our situation with climate change has led me to become aware of and drop some of my past preoccupations and tactics. I realise it is time to fully accept my truth as I see it, even if partially formed and not polished yet for wider articulation. I know that academia involves as much a process of wrapping up truth as unfolding it. We wrap truth in disciplines, discrete methodologies, away from the body, away from intuition, away from the collective, away from the everyday. So as that is my truth then I wish to act on it as well, and not keep this analysis hidden in the pursuit of academic respect. Instead, I want to share it now as a tool for shifting the quality of conversations that I need to have. Therefore, I have decided to publish it simply as an IFLAS Occasional Paper.

The process has helped me realise that I need to relinquish activities that I no longer have passion for, in what I am experiencing as a dramatically new context. Therefore, I must step back from the Editorial team of the journal. Thank you for having involved me and congratulations on it now being in the top ten journals in business, management and accounting.

Please pass on my thanks to the reviewers. On my website http://www.jembendell.com I will be listing some links to articles, podcasts, videos and social networks that are helping people explore and come to terms with a realisation of near term collapse (and even extinction), which they may be interested in. 

Yours sincerely,

Jem Bendell





Sustainability lost…….

30 07 2018

Two weeks ago, I left my cocoon in Geevo and flew to Queensland for the first time in over two years…  and no, I will not be driving back in another ute!  Glenda was supposed to join me in Tasmania around now, but, as they say, life puts paid to the best laid plans, and her mother now aged 94 had a fall, breaking her wrist and fracturing her pelvis, never a good idea at such a ripe old age.

My flight was delayed for over an hour, and I didn’t arrive in Brisbane until past 11PM, then Virgin put my luggage on the wrong carousel, while my son was waiting outside to take me to his new place he shares with his partner and one other in a new apartment near the river. I’d heard all about this apartment, especially the bit about going from student poverty to working man riches…. but the view is so stunning, I had to pinch myself to make sure it wasn’t all a dream! I never thought I’d think of our son as “how the other half lives”!

IMG_20180714_110732

He might as well enjoy it while he can I guess, they have to live somewhere, and it’s sited unbelievably close to public transport.

I brought the cold weather with me it appeared, my first morning there was the coldest Queensland had experienced in a very long time; mornings were actually several degrees less cold in Geeveston, though of course it never warmed up to 20 degrees at the Fanny Farm.

The hustle and bustle of “the big smoke” always shocks me after the quiet life in Southern Tasmania, even though I lived in Brisbane for decades, and I of all people should not be shocked after writing reams about the unsustainability of our civilisation…. but it nevertheless brings it all home to me.

What was also brought home to me is the unsustainability of keeping old people alive, using world best practice technology of course….. This is, like population, a very ticklish issue that nobody talks about. I’m almost thirty years younger than my mother in law, and I have already come to grips with the fact my days are numbered, even if they are not quite as numbered as hers, but the amount of resources, money, and energy spent on keeping her alive for what may not be more than three months is staggering…….

How anyone measures what is or is not appropriate to keep a very old person comfortable is anyone’s guess. Can anyone even pass judgement? We do what we do, as my old friend Bruce once said to me, because we can. It’s how I flew up at short notice. Speaking of noticing, airfares have gone up 50% since last time I did this….

The flurry of activity since Betty’s return from hospital is amazing. A new ramp that probably cost $3000 has been built so her wheelchair can accommodate the single step difference between the house floor and the ground outside. We’ve had physios, occupational therapists and a social worker call to assess the situation. Tomorrow, ‘a builder’ is coming to install a hook for Betty’s shower, presumably so she can be showered sitting down….. and I have no idea who’s paying for all this.

A couple of days ago, she suddenly became quite ill, an ambulance was called, and I had to follow it all the way to Nambour Hospital (and of course return), a 100km trip. Luckily, she was transferred to Noosa which is just ten minutes away, but all the same, the amount of driving I am currently undertaking as the nominated driver is amazing. It’s a good thing Glenda’s little car runs on the smell of fumes because this amount of driving is easily four times as much as I am used to!

Trained as I am by my INTJ personality to only see the amount of energy and resources needed to achieve these results, I feel like I have actually flown to a different planet. Then there’s the traffic…..  and it’s not just me, friends I have since spoken to agree that congestion around Noosa is definitely on the up, and every second car is a SUV…. This place used to be a sleepy village, but no more.

I also feel like I have lost control of what I eat. I haven’t managed to find a decent loaf of bread yet. Everything I buy is cheaper than what I’m used to, but it’s all wrapped in plastic…. and I hate it. I’ve even put on two kilos since largely going off my high protein diet to fit in with everybody else and eating cake and biscuits with visitors celebrating the old lady’s 94th birthday……

But I had to do this, my poor wife is carrying quite a burden, and she needed the moral support, and by doing things around the place to keep the show running, she has more time to spend nursing her mother……

Since leaving Geevo, the weather has been doing its Tasmanian winter thing, lots of rain, mud everywhere, unlike here which is just like a Tasmanian summer; it’s unlikely I would have been able to do much around the farm anyway. Plus it stops me working on the house before my concrete reaches maximum strength… and building roofs in the rain is problematic at best.monster house

While here, I watched some stupid TV show about “Extreme Homes” that featured Far North Queensland houses, all so far over the top I was stunned….  but one in particular stood out.  Here I am, feeling guilty about the 80 m³ of concrete I have now poured into Mon Abri, and this place comes up boasting, wait for it, 15,000 m³ of concrete……. I’m actually really really hoping it’s misreporting, and that maybe it was tonnes (each m³ of concrete weighs 2.5 tonnes). This monster house has apparently no timber whatever in it and is capable of withstanding category 5 cyclones. With 18kW (!) of PVs on its roof, the program classified it as zero energy house……. never mind the fact that this much concrete would emit nearly 20,000 tonnes of CO2 or 2000 years worth of emissions from your average Australian.

When stupidity like this is spread on TV to people who will certainly believe it, what chance have we got? This will make more and more people, probably, aspire to building some similar monument to unsustainability…..

world on fire

Meanwhile, the Earth is burning, or where it’s not burning, it’s flooding, like Japan which just finished dealing with floods and landslides and is now facing a severe typhoon….

climate variability.jpg

This diagram of how the climate statistics are changing just came up in my news feed. It pays to understand standard distribution curves I guess, but it’s a good explanation of what we’ll be facing in the future.

I may stay in Queensland for another two weeks, but any longer will make me go mad. At least in Tassie I can sort of pretend I won’t be affected, and stick my head back in the sand. Everybody else is doing it….

 

 





Peak Shale Oil?

26 07 2018

The largest shale oil producer in the Permian spent $264 million more than they made from operations drilling 63 new wells in the Permian and only added a net 9,000 barrels per day of oil equivalent.  Now, how economical is that???

From SRSRocco’s website…..

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

While the U.S. reached a new record of 11 million barrels of oil production per day last week, the top five shale oil fields also suffered the highest monthly decline rate ever.  This is bad news for the U.S. shale industry as it must produce more and more oil each month, to keep oil production from falling.

According to the newest EIA Drilling Productivity Report, the top five U.S. Shale Oil fields monthly oil decline rate is set to surpass a half million barrels per day in August.  Thus, the companies will have to produce at last 500,000 barrels of new oil next month just to keep production flat.

Here are the individual shale oil field charts from the EIA’s July Drilling Productivity Report:

Top-Shale-Oil-Fields-Decline-Rate-Aug-2018

The figures that are shown above the UP arrow denote the forecasted new production added next month while the figures above the DOWN arrow provide the monthly legacy decline rate.  For example, the chart on the bottom right-hand side is for the Permian Region.  The EIA forecasts that the Permian will add 296,000 barrels per day (bpd) of new shale oil production in August, while the existing wells in the field will decline by 223,000 bpd.

If we add up these top five shale oil fields monthly decline rate for August will be 503,000 bpd.  Thus, the shale oil companies must produce at least 503,000 bpd of new oil supply next month just to keep production from falling.  And, we must remember, this decline rate will continue to increase as shale oil production rises.

We can see this in the following chart below.  Again, according to the EIA’s figures, the top five U.S. shale oil fields monthly legacy decline rate increased from 398,000 bpd in January to 503,000 bpd for August:

In just the first seven months of 2018, the total monthly decline rate from these top shale fields increased by 26%.  These massive decline rates are the very reason the shale oil and gas companies are struggling to make money.  A perfect example of this is PXD, Pioneer Resources.  Pioneer is the largest shale oil producer in the Permian.  According to Pioneer’s Q1 2018 Report:

Producing 260 thousand barrels oil equivalent per day (MBOEPD) in the Permian Basin, an increase of 9 MBOEPD, or 3%, compared to the fourth quarter of 2017; first quarter Permian Basin production was at the top end of Pioneer’s production guidance range of 252 MBOEPD to 260 MBOEPD; as previously announced, freezing temperatures in early January resulted in production losses of approximately 6 MBOEPD; Permian Basin oil production increased to 170 thousand barrels of oil per day (MBOPD); 63 horizontal wells were placed on production.

Pioneer spent $818 million on capital expenditures (CapEx) for additions to oil and gas properties (drilling and completion costs) during Q1 2018, brought on 63 horizontal wells in the Permian, and only added 9,000 barrels per day of oil equivalent over the previous quarter.  So, how much Free Cash Flow did Pioneer make with oil prices at the highest level in almost four years??  Well, you’re not going to believe me… so here is Pioneer’s Cash Flow Statement below:

Pioneer reported $554 million in cash from operations and spent $818 million drilling and completing oil wells in the Permian and a few other locations.  Thus, Pioneer’s Free Cash Flow was a negative $264 million.  However, Pioneer spent an additional $51 million for additions to other assets and other property and equipment shown right below the RED highlighted line for a total of $869 million in total CapEx spending.  Total net free cash flow for Pioneer is -$315 million if we include the additional $51 million.

Therefore, the largest shale oil producer in the Permian spent $264 million more than they made from operations drilling 63 new wells in the Permian and only added a net 9,000 barrels per day of oil equivalent.  Now, how economical is that???

How long can this insanity go on??

If we look at the Free Cash Flow for some of the top shale energy companies in Q1 2018, here is the result:

Of the ten shale companies in the chart above (in order: Continental, EOG, Whiting, Concho, Marathon, Oasis, Occidental, Hess, Apache & Pioneer), only three enjoyed positive free cash flow, while seven suffered negative free cash flow losses.  The net result of the group was a negative $455 million in free cash flow.  

Even with higher oil prices, the U.S. shale energy companies are still struggling to make money.

So, the question remains.  What happens to these shale oil companies when the oil price falls back towards $30 when the stock market drops by 50+% over the next few years??  And how is the U.S. Shale Energy Industry going to pay back the $250+ billion in debt??





More on Nickel Iron batteries….

24 07 2018

You read a lot of rubbish on the internet about batteries. It’s usually written by people who have very little experience with them too… for instance…:

The BIG reason to NOT buy NiFe batteries is they are incredibly expensive, they are charging you 9x the price of a lead acid and guarantying you only 5x the life. 

In reality, a Nickel Iron battery costs about double the price of a good Lead Acid battery. For example, a 12V, 300Ah Giant Power Sealed AGM Lead Acid Battery cost $669.00 online. This battery is rated at 1,850 cycles @ 30% DOD, which is 5 years. A comparable Nickel Iron Battery would be an Ironcore 12V, 200Ah battery rated at 7200+ cycles, which is 20+ years. This battery will cost you $1480.00……  and in reality give you more capacity than the above. It’s difficult to make a proper comparison, because in truth we’re comparing apples with oranges here….

So, if you are off grid and using your battery everyday, over a 20 years period you would have to replace that lead acid battery bank 4 times, and maybe 5 times….. With Nickel Iron you will never have to replace the battery, so over a 20 or more year period, you would have definitely saved money. More importantly, there will come a time it will be impossible to even replace the batteries!

NiFe batteries are VERY inefficient, which means a significant fraction of the energy you put in, does not get stored, something like around 25%. 

I am going to break this down into 2 parts. First, we are going to talk about Nickel Iron Battery efficiency, and then we will talk about Lead Acid Battery efficiency.

Nickel Iron Batteries are about 75% Efficient. The cells have been tested at the National Renewable Energy Laboratory, and below are the results. Overall at normal temps, they out performed their rated capacity between 75-80% efficiency.

Lead Acid Battery Efficiency – Below is a link to the Sandia National Laboratories results on Lead Acid Battery Efficiency. According to this document, they found out that when you are only using the top 20-30% of a battery, it really only has a charge efficiency of 55%.

http://ironedison.com/images/Spec%20Sheets/Test%20Results/Sandia%20Labs%20Lead%20Acid%20Efficiency%20Test.pdf

So after looking at the actual data – the nickel iron battery is more efficient than a lead acid battery in daily off-grid charging, because you can discharge them as much as you like, and as often as you like without causing any damage whatever…. living with NiFe batteries is a completely different mindset that took me ages to get used to!

They are VERY VERY gassy, that is why there is such a huge head space on them to hold SO MUCH extra water, which MUST be distilled water ONLY. 

Nickel Iron Batteries do off-gas a little more than a lead acid battery, but this is because of the differences in the batteries’ chemistry. Both a wet lead acid and nickel iron battery require to be put in a battery box and I recommend using a vent fan or a whirly bird or two as I did in my container station.

The Nickel Iron Battery produces hydrogen when the battery pushes the oxygen from the water molecule to increase the oxygen concentration on the nickel plate. The head space is not huge on a nickel iron battery, but you do want an area for the electrolyte so you are not having to fill the battery with distilled water all the time. In my experience, I have to top my batteries up three times a year which takes about 20 minutes… 1 minute per cell.

A wet lead acid battery produces hydrogen through inefficient charging, when the electricity not used from charging is spent on splitting a water atom.

Both a wet Lead acid battery and Nickel Iron Battery use distilled water only. A sealed lead acid battery does not need water and does not off-gas, but has a much shorter shorter life if cycled everyday…..  or even if not cycled every day. I had sealed lead acid batteries in Cooran that were floated all day long that lasted just long enough to go out of warranty which was two years! A friend of mine in Queensland bought better quality ones that lasted six years….

They have a high rate of self discharge, so if you just leave them there, they can loose 10% or more of their charge PER DAY.

I reality, Nickel Iron Batteries have a 1% self discharge rate. If you are wanting a battery that will just sit there and not be used, then you might want a sealed lead acid battery. Sealed lead acid batteries are good for people that are not using their battery and want it to just sit there and hold its power in case the power goes out once a year or so…. personally, I think that’s a waste of time money and resources, last time I did this the batteries lasted just two years….

If you plan on using your battery every day, it really does not matter if it discharges 1%, because you are going to charge up the battery and use the batteries power next day. In my experience, that overnight loss is regained in the first twenty minutes after sunrise, so it’s a non argument……

edison EV

Thomas Edison with early EV

Of late, I have been thinking more and more about an eventual conversion of my trusty 4WD Bravo to electric drive. Never forget that NiFe batteries were originally invented for the very purpose of driving electric cars at the turn of the 20th Century……

Ironcore, from whom I bought the powerstation’s battery bank, sell 12V 10Ah batteries (actually 10 x 1.2V cells connected together) for $270. To achieve 120V por motor power, I’d need 10 of those giving me a capacity of 120V x 10 Ah = 1.2kWh or barely what’s in a litre of petrol! The old ute would go about 10km on that amount of fuel, but as electric motors are twice as efficient (or more) than ICE’s, it’s more likely it would go 20km. Furthermore, because NiFe batteries can be discharged far more than other types, it’s possible the ute would actually go farther, but of course that’s hard to predict…

Image result for 12V ironcore battery

10 of these connected together make a 12V battery

By having two such banks in parallel would double the range, which is probably about as far as I would need to go, especially after everything’s shut down from lack of fuel! Gathering firewood would almost certainly be its biggest task, and the forest is not very far away at all.

Out of the blue, an article about enthusiasts like me converting ICE cars to electric drives came up on out ABC internet website, which is what prompted me to write this while spending time in Queensland, supporting my better half looking after her 94 year old mother while the Tasmanian winter weather does its thing…. and the prime subject of these conversions is a ute, though unfortunately, while the batteries are mentioned, they are not shown, so I have no idea what this guy used… there’s a video at the link.

http://www.abc.net.au/news/2018-07-24/make-your-own-electric-car/9918964





Are NEW Chinese buildings really FALLING DOWN?

16 07 2018

Years ago, I remember hearing Nicole Foss saying that those Chinese ghost towns we have all heard about were never built to last; they were built to be finished so the builders could get paid by the government, and to hell with durability……

Well you would not believe how bad it actually is……  and to think that China consumed more cement over a recent three year period than the US consumed during the entire 20th century, for results like this, is simply appalling…. and it’s fast looking like it was all wasted.

ChineseCementDemand2011-2013

Australia’s economy utterly relies on China’s, and China’s is not looking too good now, especially after you watch the video below……. Nicole wrote this way back in 2011..:

Vulnerable Commodity Exporters

Commodity exporting nations, which were insulated from the effects of the 2008 financial crisis by virtue of their ability to export into a huge commodity boom, are indeed feeling the impact of the trend change in commodity prices. All are uniquely vulnerable now. Not only are their export earnings falling and their currencies weakening substantially, but they and their industries had typically invested heavily in their own productive capacity, often with borrowed money. These leveraged investments now represent a substantial risk during this next phase of financial crisis. Canada, Australia, New Zealand, are all experiencing difficulties:

Known as the Kiwi, Aussie, and Loonie, respectively, all three have tumbled to six-year lows in recent sessions, with year-to-date losses of 10-15%. “Despite the fact that they have already fallen a long way, we expect them to weaken further,” said Capital Economists in a recent note. The three nations are large producers of commodities: energy is Canada’s top export, iron ore for Australia and dairy for New Zealand. Prices for all three commodities have declined significantly over the past year, worsening each country’s terms of trade and causing major currency adjustments.

China – Not Just Another BRIC in the Wall

More than anything, the story of both the phantom recovery and the blow-off phase of the commodity boom, has been a story of China. The Chinese boom has quite simply been an unprecedented blow-out the like of which the world has never seen before:

China has, for years now, become the engine of global growth. Its building sprees have kept afloat thousands of mines, its consumers have poured billions into the pockets of car manufacturers around the world, and its flush state-owned enterprises (SOEs) have become de facto bankers for energy, agricultural and other development in just about every country. China holds more U.S. Treasuries than any other nation outside the U.S. itself. It uses 46% of the world’s steel and 47% of the world’s copper. By 2010, its import- and export-oriented banks had surpassed the World Bank in lending to developed countries. In 2013, Chinese companies made $90-billion (U.S.) in non-financial overseas investments.

If China catches a cold, the rest of the world won’t be sneezing – it will be headed for the emergency room.

There’s more to read about this on the Automatic Earth here….. an old article, but more relevant than ever.





The Receding Horizons of Renewable Energy

15 07 2018

Another excellent article by Nicole Foss…  also known as Stoneleigh.

Renewable energy is best used in situ, adjacent to demand. It is best used in conjunction with a storage component which would insulate consumers from supply disruption, but FIT programmes typically prohibit this explicitly. Generators are expected to sell all their production to the grid and buy back their own demand. This leaves them every bit as vulnerable to supply disruption as anyone who does not have their own generation capacity. This turns renewable generation into a personal money generating machine with critical vulnerabilities. It is no longer about the energy, which should be the focus of any publicly funded energy programme.

nicolefoss

Nicole Foss

Stoneleigh: Renewable energy has become a topic of increasing interest in recent years, as fossil fuel prices have been volatile and the focus on climate change has sharpened. Governments in many jurisdictions have been instituting policies to increase the installation of renewable energy capacity, as the techologies involved are not generally able to compete on price with conventional generation.

The reason this is necessary, as we have pointed out before, is that the inherent fossil-fuel dependence of renewable generation leads to a case of receding horizons. We do not make wind turbines with wind power or solar panels with solar power. As the cost of fossil fuel rises, the production cost of renewable energy infrastructure also rises, so that renewables remain just out of reach.

Renewable energy is most often in the form of electricity, hence subsidies have typically been provided through the power system. Capital grants are available in some locations, but it is more common for generators to be offered a higher than market price for the electricity they produce over the life of the project. Some jurisdictions have introduced a bidding system for a set amount of capacity, where the quantity requested is fixed (RFP) and the lowest bids chosen.

Others have introduced Feed-In Tariff (FIT) programmes, where a long-term fixed price is offered essentially to any project willing to accept it. Tariffs vary with technology and project size (and sometimes inversely with resource intensity) with the intention of providing the same rate of return to all projects. FIT programmes have been much more successful in bringing capacity online, especially small-scale capacity, as the rate of return is higher and the participation process much less burdensome than the RFP alternative. Under an RFP system accepted bids often do not lead to construction as the margin is too low.

The FIT approach has been quite widely adopted in Europe and elsewhere over the last decade, and has led to a great deal of capacity construction in early-adopter countries such as Germany, Spain and Denmark. In Canada, Ontario was the first north American jurisdiction to introduce a similar programme in 2009. (I was involved in negotiating its parameters at the time.)

Renewable energy subsidies are becoming increasingly controversial, however, especially where they are very large. The most controversial are those for solar photovoltaics, which are typically very much higher than for any other technology. In a number of countries, solar tariffs are high enough to have produced a bubble, with a great deal of investment being poured into infrastructure production and capacity installation. Many of the countries that had introduced FIT regimes are now backing away from them for fear of the cost the subsidies could add to power prices if large amounts of capacity are added.

As Tara Patel wrote recently for Bloomberg:

EDF’s Solar ‘Time Bomb’ Will Tick On After France Pops Bubble:

To end what it has called a “speculative bubble,” France on Dec. 10 imposed a three-month freeze on solar projects to devise rules that could include caps on development and lowering the so-called feed-in tariffs that pay the higher rate for renewable power. The tariffs were cut twice in 2010. “We just didn’t see it coming,” French lawmaker Francois- Michel Gonnot said of the boom. “What’s in the pipeline this year is unimaginable. Farmers were being told they could put panels on hangars and get rid of their cows.”…. ….EDF received 3,000 applications a day to connect panels to the grid at the end of last year, compared with about 7,100 connections in all of 2008, according to the government and EDF.

Stoneleigh: The policy of generous FIT subsidies seems to be coming to an end, with cuts proposed in many places, including where the programmes had been most successful. The optimism that FIT programmes would drive a wholesale conversion to renewable energy is taking a significant hit in many places, leaving the future of renewable energy penetration in doubt in the new era of austerity:

Germany:

Half of the 13 billion euro ($17.54 billion) reallocation charges pursuant to Germany’s renewable energy act was put into solar PV last year. The sector produced about 7 GW of electricity, surpassing the 5-GW estimate. The government deemed the industry boom as counterproductive, pushing it to reduce subsidies and narrow the market.

The Czech Republic:

In an attempt to get hold of what could be a runaway solar subsidy market, the Senate approved an amendment April 21 that will allow the Energy Regulatory Office (ERÚ) to lower solar energy prices well below the current annual limit of 5 percent cuts. At the start of 2011, the state will now be able to decrease solar energy prices up to 25 percent – if President Klaus signs the amendment into law. Even with a quarter cut, the government’s subsidies for feed-in tariffs remain so high that solar energy remains an attractive investment.

France:

The Ministry of Sustainable Development is expected to cut the country’s generous feed-in tariffs by 12 percent beginning September 1 in an effort to rein in demand and curb spending, according to analysts and news reports from France.

Italy:

Incentives for big photovoltaic (PV) installations with a capacity of more than 5 megawatts (MW) will be slashed every four months by a total of up to 30 percent next year, said Gianni Chianetta, chairman of the Assosolare industry body. Incentives for smaller PV installations will be gradually cut by up to 20 percent next year. One-off 6 percent annual cuts are set for 2012 and 2013 under the new plan, the industry source said.

The UK:

The U.K. government signaled it may cut the prices paid for electricity from renewable energy sources, saying it began a “comprehensive review” of feed-in tariffs introduced last year. Evidence that larger-scale solar farms may “soak up” money meant for roof-top solar panels, small wind turbines and smaller hydropower facilities prompted the study, the Department of Energy and Climate Change said today in an statement. A review was originally planned to start next year.

The move will allow the government to change the above- market prices paid for wind and solar electricity by more than already planned when the new prices come into force in April 2012. The department said it will speed up an analysis of solar projects bigger than 50 kilowatts and that new tariffs may be mandated “as soon as practical.” “This is going to put the jitters into some market segments,” Dave Sowden, chief executive officer of the Solihull, England-based trade group Micropower Council, said today in a phone interview.

Portugal:

The Portuguese government has announced that it will review the existing feed-in tariff mechanism following calls that the subsidies are excessive and contribute to the increase of electricity prices to final consumers.

Ontario

Initial enthusiasm among ratepayers for the scheme is flagging in the wake of perceived links between the FiT and increased energy prices. The FiT passed into law in May 2009 as part of the Green Energy Act, which aims to promote the development of wind and solar generation in the province. With provincial elections slated for 6 October next year, the opposition Progressive Conservative Party is threatening to substantially revise and possibly even scrap the FiT should it win. Even if it the subsidy scheme were to be revoked, the legal implications of rescinding the over 1500MW in existing FiT contracts would be highly problematic.

Stoneleigh: Spain is the example everyone wishes to avoid. The rapid growth in the renewable energy sector paralleled the bubble-era growth of the rest of Spain’s economy. The tariffs offered under their FIT programme now come under the heading of ‘promises that cannot be kept’, like so many other government commitments made in an era of unbridled optimism. Those tariffs are now being cut, and not just for new projects, but for older ones with an existing contract. People typically believe that promises already made are sacrosanct, and that legal committments will not be broken, but we are moving into a time when rules can, and will, be changed retroactively when the money runs out. Legal niceties will have little meaning when reality dictates a new paradigm.

Spain:

Spain’s struggling solar-power sector has announced it will sue the government over two royal decrees that will reduce tariffs retroactively, claiming they will cause huge losses for the industry. In a statement, leading trade body ASIF said its 500 members endorsed filing the suit before the Spanish high court and the European Commission. They will allege that royal decrees 156/10 and RD-L 14/10 run against Spanish and European law. The former prevents solar producers from receiving subsidized tariffs after a project’s 28th year while the latter slashes the entire industry’s subsidized tariffs by 10% and 30% for existing projects until 2014. Both bills are “retroactive, discriminatory and very damaging” to the sector. They will dent the profits of those companies that invested under the previous Spanish regulatory framework, ASIF argued.

Austerity bites:

The government announced soon after that it would introduce retroactive cuts in the feed-in tariff program for the photovoltaic (PV) industry in the context of the austerity measures the country is currently undergoing. According to this plan, existing photovoltaic plants would have their subsidies cut by 30%, a figure that would go up to 45% for any new large scale plants. Smaller scale roof installations would lose 25% of their existing subsidy, while installations with a generating capacity of less than 20 KW would have 5% taken from their tariff.

Spain is too big to fail and too big to bail out:

Spain has been forced to cut back on solar subsidies because of the impact on ratepayers. But Spain’s overall economy is in much worse shape and the subsidies for feed in tariff are threatening to push the country into bailout territory or, at lease, worsen the situation should a bailout be needed.

FIT and Debt:

The strain on government revenue is in part due to the way Spain has designed its feed-in tariff system. Usually, this type of subsidy is paid for by utilities charging more for the electricity they sell to consumers, to cover the cost of buying renewable energy at above-market prices. Therefore no money is actually paid out of government revenues: consumers bear the cost directly by paying higher electricity bills.

In Spain, however, the price of electricity has been kept artificially low since 2000. The burden has been shouldered by utilities, which have been operating at a loss on the basis of a government guarantee to eventually pay them back. The sum of this so-called ‘tariff deficit’ has accumulated to over €16 billion (US$ 20 billion) since 2000. For comparison, Spain’s deficit in 2009 was around €90 billion (US$ 116 billion) in 2009 and its accumulated debt around €508 billion (US$ 653 billion).

Stoneleigh: Ontario threatens to take the Spanish route by instituting retroactive measures after the next election. For a province with a long history of political interference in energy markets, further regulatory uncertainty constitutes a major risk of frightening off any kind of investment in the energy sector. Considering that 85% of Ontario’s generation capacity reaches the end of its design life within 15 years, and that Ontario has a huge public debt problem, alienating investment is arguably a risky decision. FIT programmes clearly sow the seeds of their own destruction. They are an artifact of good economic times that do not transition to hard times when promises are broken.

Ontario

The outcome of an autumn election in Ontario could stunt a budding renewable energy industry in the Canadian province just as it is becoming one of the world’s hot investment destinations. If the opposition Progressive Conservatives win power on Oct. 6, the party has promised to scrap generous rates for renewable energy producers just two years after their launch by the Liberal government. That could threaten a program that has lured billions of dollars in investment and created thousands of jobs.

The Conservatives, who are leading in the polls, have yet to release an official energy manifesto. Even so, the industry is privately voicing concern, especially after the party said it would scrutinize contracts already awarded under Ontario’s feed-in tariff (FIT) program. “They are going to go through the economic viability of the energies and review all of the past contracts … I think that is going to cause a lot of delays, a lot of problems and a lot of risk to Ontario,” said Marin Katusa, chief energy analyst at Casey Research, an investor research service.

George Monbiot, writing for The Guardian in the UK, provides an insightful critique of FIT programmes in general:

The real net cost of the solar PV installed in Germany between 2000 and 2008 was €35bn. The paper estimates a further real cost of €18bn in 2009 and 2010: a total of €53bn in ten years. These investments make wonderful sense for the lucky householders who could afford to install the panels, as lucrative returns are guaranteed by taxing the rest of Germany’s electricity users. But what has this astonishing spending achieved? By 2008 solar PV was producing a grand total of 0.6% of Germany’s electricity. 0.6% for €35bn. Hands up all those who think this is a good investment…. .

As for stimulating innovation, which is the main argument Jeremy [Leggett] makes in their favour, the report shows that Germany’s feed-in tariffs have done just the opposite. Like the UK’s scheme, Germany’s is degressive – it goes down in steps over time. What this means is that the earlier you adopt the technology, the higher the tariff you receive. If you waited until 2009 to install your solar panel, you’ll be paid 43c/kWh (or its inflation-proofed equivalent) for 20 years, rather than the 51c you get if you installed in 2000.

This encourages people to buy existing technology and deploy it right away, rather than to hold out for something better. In fact, the paper shows the scheme has stimulated massive demand for old, clunky solar cells at the expense of better models beginning to come onto the market. It argues that a far swifter means of stimulating innovation is for governments to invest in research and development. But the money has gone in the wrong direction: while Germany has spent some €53bn on deploying old technologies over ten years, in 2007 the government spent only €211m on renewables R&D.

In principle, tens of thousands of jobs have been created in the German PV industry, but this is gross jobs, not net jobs: had the money been used for other purposes, it could have employed far more people. The paper estimates that the subsidy for every solar PV job in Germany is €175,000: in other words the subsidy is far higher than the money the workers are likely to earn. This is a wildly perverse outcome. Moreover, most of these people are medium or highly skilled workers, who are in short supply there. They have simply been drawn out of other industries.

Stoneleigh: Widespread installed renewable electricity capacity would be a very good resource to have available in an era of financial austerity at the peak of global oil production, but the mechanisms that have been chosen to achieve this are clearly problematic. They plug into, and depend on, a growth model that no longer functions. If we are going to work towards a future with greater reliance on renewable energy, there are a number of factors we must consider. These are not typically addressed in the simplistic subsidy programmes that are now running into trouble worldwide.

We have power systems built on a central station model, which assumes that we should build large power station distant from demand, on the grounds of economic efficiency, which favours large-scale installations. This really does not fit with the potential that renewable power offers. The central station model introduces a grid-dependence that renewable power should be able to avoid, revealing an often acute disparity between resource intensity, demand and grid capacity. Renewable power (used in the small-scale decentralized manner it is best suited for) should decrease grid dependence, but we employ it in such a way as to increase our vulnerability to socioeconomic complexity.

Renewable energy is best used in situ, adjacent to demand. It is best used in conjunction with a storage component which would insulate consumers from supply disruption, but FIT programmes typically prohibit this explicitly. Generators are expected to sell all their production to the grid and buy back their own demand. This leaves them every bit as vulnerable to supply disruption as anyone who does not have their own generation capacity. This turns renewable generation into a personal money generating machine with critical vulnerabilities. It is no longer about the energy, which should be the focus of any publicly funded energy programme.

FIT programmes typically remunerate a wealthy few who install renewables in private applications for their own benefit, and who may well have done so in the absence of public subsidies. If renewables are to do anything at all to help run our societies in the future, we need to move from publicly-funded private applications towards public applications benefitting the collective. We do not have an established model for this at present, and we do not have time to waste. Maximizing renewable energy penetration takes a lot of time and a lot of money, both of which will be in short supply in the near future. The inevitable global austerity measures are not going to make this task any easier.

We also need to consider counter-cyclical investment. In Ontario, for instance, power prices have been falling on falling demand and increased conventional supply, and are now very low. In fact, the pool price for power is often negative at night, as demand is less than baseload capacity. Under such circumstances it is difficult to develop a political mandate for constructing additional generation, when the spending commitment would have to be born by the current regime and the political benefits would accrue to another, due to the long construction time for large plants.

Politicians are allergic to situations like that, but if they do not make investments in additional generation capacity soon, most of Ontario’s capacity could end up being retired unreplaced. Large, non-intermittent, plants capable of load following are necessary to run a modern power system. These cannot be built overnight.

Many jurisdictions are going to have to build capacity (in the face of falling prices in an era of deflation) if they are to avoid a supply crunch down the line. Given how dependent our societies are on our electrified life-support systems, this could be a make or break decision. The risk is that we wait too long, lose all freedom of action and are then forced to take a much larger step backwards than might other wise have been the case.

Europe’s existing installed renewable capacity should stand it in good stead when push comes to shove, even though it was bought at a high price. Other locations, such as Ontario, really came too late to the party for their FIT initiatives to do any good. Those who have not built replacement capacity, especially load-following plants and renewables with no fuel cost going forward, could be very vulnerable in the future. They will be buffeted first by financial crisis and then by energy crisis, and there may be precious little they can do about either one.





Eating for a Better World

15 07 2018

Many thanks to Jacqueline who found this excellent “must read” piece on our farming predicaments….. Since buying a farm myself, I am totally convinced everything written here is accurate, and that until people wake up to themselves about this, we will continue on our road to the edge of the cliff with everyone arguing about how much faster we should be going….

Lifted from this excellent website….

“The banality of evil transmutes into the banality of sentimentality. The world is nothing but a problem to be solved by enthusiasm.”
—Teju Cole

It is not surprising that there are growing numbers of vegans and vegetarians worldwide who are becoming dogmatic about their food choices. Many aspects of the hyper-synthetic cityscapes we inhabit are disorienting to mammals such as ourselves. Over the last hundred years, our food systems have undergone drastic change. Food — that basic, life-igniting, community-building element — has become completely outsourced, processed, industrialized, and bland. Worse, animals are distorted and abused beyond recognition to produce it.

The meat we come across in cities looks less and less like a part of the animal it came from, and more like another factory product packaged in layers of thick plastic. We have become detached from the mutualistic relationships we have formed with animals over thousands of years. We are conceptually isolated from trophic cascades. Eating animals in this context surely feels like cheating, since the only models we have for our relationships with them are our relationships with other people.

One by one, city dwellers awaken to the fact that their chicken no longer tastes or looks like chicken and that their bodies are dulled by the meat of the crippled, hormone- and antibiotic-stuffed animals we breed. They begin to feel a visceral, intellectual, and moral repulsion towards the animal products that everyone eats so flippantly.

The slaughtering of animals used to take place within a relationship. There was little room for cowardice, since the act of killing was personal. The hunter looked into the eyes of the deer and was changed by that gaze. The farmer lived in close proximity with her cattle and understood that her own well-being depended on that of her animals. The cook knew how to calm her chicken before she twisted its neck, and let no part of the animal go to waste. The shepherd risked his life to defend his herd. Everyone who ate was intimate with the cycles that brought food to the plate. Ritual mediated relationships, providing for a way for people to both honor and eat the world around them.

Now we are divorced from these processes. Veganism is another reaction to this isolation, and indeed could have only emerged within it.

An urbanite looking for alternatives easily comes across veganism, a mainstream option made attractive through popular books and films and charming cafes in every major city. When continuing to eat feedlot meat and eggs from enslaved chickens becomes impossible, veganism beckons with a practicable solution. But subjective health claims and moral appeals that harness the disgust response too often blind vegans to the many nuances that determine our food culture. It can also blind them to more exciting, systemic antidotes to the plethora of fatal faults in our food systems.

Agriculture that is running off a cliff

Industrial agriculture has wrought many miracles. It has allowed developed countries to produce more food on less land and with fewer people. But it has achieved this wonder by making fertilizer and pesticides out of fossil fuels, eroding topsoil, and reducing the variety of plants in our diet. In other words, we are paying for our cheap food and our disconnection from the land with degraded landscapes and monotony.

Most plants for human consumption today are grown in monocultures. The first step to making a monoculture is to strip a plot of land of its community of plants and animals. This rich web of life is replaced by a single species — a high-yield crop — and every other organism is policed out of the perimeter by chemical and mechanical aggression. The soil, shorn of its cover, languishes and the microorganisms and fungi within it perish. The carbon formerly contained in the soil is released into the atmosphere. To make this impoverished medium keep producing, farmers are obliged to inject it with massive amounts of synthetic nitrogen, a fertilizer that is manufactured from natural gas. So much gas now escapes from fracking sites that it makes ruminants’ emissions pale into insignificance.

The fertilizer then runs off the beaten land into waterways and oceans, where it destabilizes natural ecosystems, rendering them practically barren. Our planet’s oceans are pockmarked by 146 of these dead zones where marine life has been completely choked out.

Photo credit: Wageningen University

Harnessing the genius of nature

But there is another way of doing agriculture, one that turns organic waste into fertilizer and builds soil rather than eroding it. It goes by many names, but we like to call it regenerative agriculture, because it is a way of eliciting food from the land while simultaneously enhancing its ability to produce food for us in the future. It requires fewer inputs but more intelligence. In this sort of system, the farmer is not an industrial conqueror, forcing food from the land until it gives up in exhaustion. Instead, the farmer observes nature and the tendencies of the land. With this knowledge, she leverages its genius, tilting natural ecosystems this way or that to both make them richer and ensure that they produce yields that humans can eat.

These yields are more nutrient dense and often more delicious than their conventional counterparts, coming as they do from vibrant communities of plants and animals expressing their nature in concert. These production systems, when properly managed, regenerate the soil, endowing it with higher quantities of minerals such as magnesium and calcium, which are then transported by fruits, vegetables, and meat into our bodies.

This portrait of food production may sound fantastical, but it is in fact in the mould of nature, which has no trouble making something from nothing, and where thriving ecosystems become more verdant and diverse over time. However, if we want to stick around for the feast on this warming planet, we need to find ways to produce our food that are as generative and enduring. Were it implemented widely, regenerative farming could capture more carbon dioxide than we emit, as demonstrated by the Rodale Institute. So in addition to providing food for human consumption, agriculture plays a central role in addressing climate change.

As it happens, animals are essential to many — if not all — of the cleverest systems that humans have devised for deriving food from landscapes while preserving them. Just as animals are keystones in the rainforest and the wild grasslands, they vitalize agricultural processes as well.

On farms that produce crops, it makes a lot of sense to keep animals that can convert vegetable waste into protein-dense food. In turn, their manure fertilizes crops and their pecking can aid pest control, reducing the need for industrial inputs. Animals raised in this manner have the opportunity to graze on good pastures, enjoy social lives, breathe fresh air, and bathe in the light provided by our star, all while making agriculture more sustainable.

In some geographies, the best way to support the richness of the land and produce food is not by imposing crops, but by properly managed grazing. If the land is water-restricted, the most sensible way to make food is often to use ruminants to convert grass — which humans cannot eat — into nutrient-dense food. This leaves more water in the rivers and aquifers and stimulates the growth of grasses that not only feed cattle but store carbon in the ground.

Photo credit: Phillip Capper

Shades of green

If you are a vegan who only eats plants that come from regenerative, polycropped, organic food systems, it’s certain that your diet has a claim to higher moral ground than the average diet. If you eat this way and also occasionally buy local animal products from food production systems that caringly integrate animals into regenerative landscapes, your claim is much stronger. But if you are not paying careful attention to where your plants come from, how they’ve been processed, or how far they have traveled, it’s likely that for all your efforts you are not improving the lot of animals overall, and neither are you saving the world.

Even if you are persuaded by the environmental arguments, you may have a problem with the idea of killing animals. But if you think deeply, you might find that the immoral thing is not necessarily to deliberately take life. The immoral thing is to live in a way that destroys nature, which industrial agriculture does. In this context, the focus on the welfare of individual domesticated animals might be an extension of the modernist tendency to simplify and discriminate. The morality of living, eating, and dying is more complex than two-word slogans can prescribe. If we care about animals — wild or domesticated — we have to think in terms of entire ecosystems.

If you’re a vegan who eats food from monoculture fields where farm workers are routinely poisoned by synthetic inputs; if you eat food that comes packaged in layers of plastic that choke marine life after they are discarded into the ocean; if your nuts and quinoa are flown in from Brazil on the wings of fossil fuels — then are you really more moral or are you simply disconnected?

Eating to support life

Veganism is perhaps the gateway-par-excellence into conscious eating. In fact, people often feel better when they switch to a vegan diet, especially if it marks the first time they are thinking deliberately about what they are putting into their bodies. But it’s not clear whether the initial benefits that are sometimes felt come from being plant-exclusive or from the elimination of certain toxic foods that were formerly in the diet. It’s also been extensively documented that fasting from particular foods and nutrients for a period of time has health benefits, so long as those periods punctate a diet that is on the whole well-balanced.

There is reason to believe that animal protein—besides having played a leading role in human evolution—is necessary for excellent health. Even so, the debate about whether perfect human health can be achieved without animal products is unsettled. But what is certain is that our croplands and grasslands yearn for the reintegration of animals, and we’re past the point in ecological history where we can afford to not use every good method we’ve got to restore land and habitats. Providing a market for the right kind of animal products is a way to finance the good farmers doing the hard work of regeneration. We can channel our ancestral, vivid appetites into economies that support life.

Veganism is insufficient to maintaining a world where animals of every stripe have space and opportunity to flourish. To build that world, we have to stop cooking the planet by burning fossil fuels to fly out-of-season food around the globe. We have to put more carbon in the ground where it can support life instead of threatening it. We have to stop buying food that comes wrapped in plastic, which later ends up in landfills and oceans. We have to stop poisoning landscapes and people with synthetic pesticides and fertilizers. We have to stop tearing down ecosystems to install monocultures. We have to stop destroying living soil and start creating more of it. Lovingly incorporating animals into regenerative food landscapes is a powerful way to do this, a means of creating a world where life can thrive.

People who reject factory farmed meat are already awake to the damage being caused by industrial farming — and what is more, they are willing to change their lifestyles to unplug from destructive systems. But there are solutions that go deeper and ultimately make a lot more sense, ones that produce good instead of simply abstaining from harm. They offer a way of eating that is active, delicious, and embedded. If we take a good hard look at our relationships with our ecosystems and eat accordingly, we might actually be able to save the world, as the vegan slogan goes.

If you care about people, animals, and the environment, we invite you to steep in these questions for a bit:

  • Is my food in season?
  • How is my food processed?
  • How is the food I buy packaged and where does the packaging go after I discard it?
  • How far has my food traveled?
  • Is the water used in its production sourced and managed in an ecologically sensible way?
  • Is the soil that produced the food languishing or becoming more fecund?
  • Does the landscape it was produced on provide habitats for a variety of wildlife?
  • How are the people involved in the production, transportation, and sale of my food living? Are they treated fairly?

It’s likely that the only way to know the answers will be to get out of the city and meet some farmers. This takes more time that most modern humans are accustomed to dedicating to food provision, but a trip out into the countryside might also ease your alienation.

Either way, we hope you enjoy your food and your place in the trophic cascade of life and death.

Instagram:

Follow us @trophictales

Learn more:

Silvopasture — Project Drawdown

Managed Grazing — Project Drawdown

Regenerative Agriculture — Project Drawdown

Livestock and the transition to sustainable agriculture — FAO

Save our soils: Why dirt matters — University of Melbourne

Don’t abstain from meat, buy good meat — Ariel Greenwood

Permaculture, all grown up — Chris Newman

Levels of Regenerative Agriculture — Terra Genesis

An Animal’s Place — Michael Pollan

The Omnivore’s Dilemma — Michael Pollan

The Third Plate — Dan Barber

Farms we love:

Milkwood Farm — Koanga InstituteRodale InstituteNew Forest Farm — Freestone Ranch — Stone Barns Center FarmPolyface FarmPasturebirdKul Kul FarmRoebuck FarmLa Pateria de Sousa — Zaytuna Farms — Whole Systems Design —Labranto — Proyecto Deveras