Problems, Predicaments, and Technology

27 11 2019

ERIK MICHAELS·FRIDAY, NOVEMBER 22, 2019·

We often see people bring out certain ideas that they claim are some sort of “solution” or that “they work” and I want to try to explain why (once again) these ideas are nothing more than ideas and not “solutions” of any sort. One of the things I most would like to get others to see is the bigger picture. Many people focus on reductionist ideas such as non-renewable “renewable” energy, or alternative energy ideas such as hydrogen, or technological ideas, but fail to see how those ideas don’t really change anything and only allow for continued environmental destruction (and consolidate capital in the hands of the elite) instead.

Before I go any further, I should make it clear that climate change (and most of the topics in our files) is a predicament. A predicament has an outcome, not a solution or answer. Solutions and answers are reserved for PROBLEMS. Many people get these two mixed up and tend to see predicaments as problems. Wikipedia calls a predicament a “wicked problem” but this doesn’t change the simple fact that predicaments or dilemmas do not have solutions (https://en.wikipedia.org/wiki/Wicked_problem).

One of the first things I constantly harp about is technology. Technology has been great for those of us who can afford to use it, but it came at a huge cost to the environment AND to us over the long haul. It is our use of technology which CONTINUES the exponential expansion of the predicaments we face and it is our insistence upon not only using existing technology but on developing NEW technology to “solve” the predicaments technology caused to begin with that is itself one of the biggest parts of our predicaments.

Technology REQUIRES three things: mining (extraction), energy use (fossil fuel burning in most cases), and industrial civilization (the entire system we are embedded within and live within). Because these three things (along with technology use itself) are unsustainable and are killing all life on this planet, it is technology use which itself is unsustainable. This makes ANYTHING requiring technology under today’s conditions only capable of further destruction of our biosphere. Technology includes the wheel, fire, and agriculture and modern agriculture combines all three of these. Some folks have brought up regenerative agriculture as one of these so-called “solutions” that they believe will help. Regenerative agriculture can indeed “work” to do things like sequestering small amounts of carbon in soil, but what these folks have forgotten is that it does nothing to stop industrial civilization upon which agriculture is the bedrock of to begin with. As long as industrial civilization continues, so too does the continuing worsening of the biosphere upon which we depend. This makes agriculture of ALL types guilty of allowing the continuation of the very system destroying us. In addition, as the climate changes and extreme weather events worsen, ALL agriculture will suffer as a result.

This is where the fault of logic is – it is similar to the smoker who decides to treat his addiction to nicotine with more nicotine in a different form (such as a “patch” or “lozenge” or e-cigarette or chewing tobacco). The same thing can be said of utilizing different energy sources to “replace” fossil fuels. We are simply treating our addiction to energy with more energy in a never-ending vicious circle. As long as we don’t recognize our addiction, we wind up continuing the hamster wheel in a slightly different form while continuing to cause yet more damage.

Don’t get me wrong, this isn’t to throw the baby out with the bathwater and claim that none of these ideas have any redeeming qualities, as many of them do. Provided the right conditions are met with regenerative ag, it CAN sequester carbon in the soil. In the nicotine example, reducing nicotine intake by utilizing other sources and then reducing the amount of nicotine gradually CAN help a smoker quit permanently. Ocean fertilization CAN help promote phytoplankton growth if several other conditions are met at the same time. But none of them stop industrial civilization, so the ongoing damage to the environment continues unabated.

Not until society realizes that technology itself is part of the predicaments in and of itself will people come to realize that technology can never solve what it has caused – it can only make conditions worse.

Techno-fix futures will only accelerate climate chaos—don’t believe the hype:

https://phys.org/news/2019-10-techno-fix-futures-climate-chaosdont-hype.html





Why Climate Change Isn’t Our Biggest Environmental Problem, and Why Technology Won’t Save Us

27 11 2019

Richard Heinberg

August 17, 2017


Our core ecological problem is not climate change. It is overshoot, of which global warming is a symptom. Overshoot is a systemic issue. Over the past century-and-a-half, enormous amounts of cheap energy from fossil fuels enabled the rapid growth of resource extraction, manufacturing, and consumption; and these in turn led to population increase, pollution, and loss of natural habitat and hence biodiversity. The human system expanded dramatically, overshooting Earth’s long-term carrying capacity for humans while upsetting the ecological systems we depend on for our survival. Until we understand and address this systemic imbalance, symptomatic treatment (doing what we can to reverse pollution dilemmas like climate change, trying to save threatened species, and hoping to feed a burgeoning population with genetically modified crops) will constitute an endlessly frustrating round of stopgap measures that are ultimately destined to fail.

The ecology movement in the 1970s benefitted from a strong infusion of systems thinking, which was in vogue at the time (ecology—the study of the relationships between organisms and their environments—is an inherently systemic discipline, as opposed to studies like chemistry that focus on reducing complex phenomena to their components). As a result, many of the best environmental writers of the era framed the modern human predicament in terms that revealed the deep linkages between environmental symptoms and the way human society operates. Limits to Growth (1972), an outgrowth of the systems research of Jay Forrester, investigated the interactions between population growth, industrial production, food production, resource depletion, and pollution. Overshoot (1982), by William Catton, named our systemic problem and described its origins and development in a style any literate person could appreciate. Many more excellent books from the era could be cited.

However, in recent decades, as climate change has come to dominate environmental concerns, there has been a significant shift in the discussion. Today, most environmental reporting is focused laser-like on climate change, and systemic links between it and other worsening ecological dilemmas (such as overpopulation, species extinctions, water and air pollution, and loss of topsoil and fresh water) are seldom highlighted. It’s not that climate change isn’t a big deal. As a symptom, it’s a real doozy. There’s never been anything quite like it, and climate scientists and climate-response advocacy groups are right to ring the loudest of alarm bells. But our failure to see climate change in context may be our undoing.

Why have environmental writers and advocacy organizations succumbed to tunnel vision? Perhaps it’s simply that they assume systems thinking is beyond the capacity of policy makers. It’s true: if climate scientists were to approach world leaders with the message, “We have to change everything, including our entire economic system—and fast,” they might be shown the door rather rudely. A more acceptable message is, “We have identified a serious pollution problem, for which there are technical solutions.” Perhaps many of the scientists who did recognize the systemic nature of our ecological crisis concluded that if we can successfully address this one make-or-break environmental crisis, we’ll be able to buy time to deal with others waiting in the wings (overpopulation, species extinctions, resource depletion, and on and on).

If climate change can be framed as an isolated problem for which there is a technological solution, the minds of economists and policy makers can continue to graze in familiar pastures. Technology—in this case, solar, wind, and nuclear power generators, as well as batteries, electric cars, heat pumps, and, if all else fails, solar radiation management via atmospheric aerosols—centers our thinking on subjects like financial investment and industrial production. Discussion participants don’t have to develop the ability to think systemically, nor do they need to understand the Earth system and how human systems fit into it. All they need trouble themselves with is the prospect of shifting some investments, setting tasks for engineers, and managing the resulting industrial-economic transformation so as to ensure that new jobs in green industries compensate for jobs lost in coal mines.

The strategy of buying time with a techno-fix presumes either that we will be able to institute systemic change at some unspecified point in the future even though we can’t do it just now (a weak argument on its face), or that climate change and all of our other symptomatic crises will in fact be amenable to technological fixes. The latter thought-path is again a comfortable one for managers and investors. After all, everybody loves technology. It already does nearly everything for us. During the last century it solved a host of problems: it cured diseases, expanded food production, sped up transportation, and provided us with information and entertainment in quantities and varieties no one could previously have imagined. Why shouldn’t it be able to solve climate change and all the rest of our problems?

Of course, ignoring the systemic nature of our dilemma just means that as soon as we get one symptom corralled, another is likely to break loose. But, crucially, is climate change, taken as an isolated problem, fully treatable with technology? Color me doubtful. I say this having spent many months poring over the relevant data with David Fridley of the energy analysis program at Lawrence Berkeley National Laboratory. Our resulting book, Our Renewable Future, concluded that nuclear power is too expensive and risky; meanwhile, solar and wind power both suffer from intermittency, which (once these sources begin to provide a large percentage of total electrical power) will require a combination of three strategies on a grand scale: energy storage, redundant production capacity, and demand adaptation. At the same time, we in industrial nations will have to adapt most of our current energy usage (which occurs in industrial processes, building heating, and transportation) to electricity. Altogether, the energy transition promises to be an enormous undertaking, unprecedented in its requirements for investment and substitution. When David and I stepped back to assess the enormity of the task, we could see no way to maintain current quantities of global energy production during the transition, much less to increase energy supplies so as to power ongoing economic growth. The biggest transitional hurdle is scale: the world uses an enormous amount of energy currently; only if that quantity can be reduced significantly, especially in industrial nations, could we imagine a credible pathway toward a post-carbon future.

Downsizing the world’s energy supplies would, effectively, also downsize industrial processes of resource extraction, manufacturing, transportation, and waste management. That’s a systemic intervention, of exactly the kind called for by the ecologists of the 1970s who coined the mantra, “Reduce, reuse, and recycle.” It gets to the heart of the overshoot dilemma—as does population stabilization and reduction, another necessary strategy. But it’s also a notion to which technocrats, industrialists, and investors are virulently allergic.

The ecological argument is, at its core, a moral one—as I explain in more detail in a just-released manifesto replete with sidebars and graphics (“There’s No App for That: Technology and Morality in the Age of Climate Change, Overpopulation, and Biodiversity Loss”).  Any systems thinker who understands overshoot and prescribes powerdown as a treatment is effectively engaging in an intervention with an addictive behavior. Society is addicted to growth, and that’s having terrible consequences for the planet and, increasingly, for us as well. We have to change our collective and individual behavior and give up something we depend on—power over our environment. We must restrain ourselves, like an alcoholic foreswearing booze. That requires honesty and soul-searching.

In its early years the environmental movement made that moral argument, and it worked up to a point. Concern over rapid population growth led to family planning efforts around the world. Concern over biodiversity declines led to habitat protection. Concern over air and water pollution led to a slew of regulations. These efforts weren’t sufficient, but they showed that framing our systemic problem in moral terms could get at least some traction.

Why didn’t the environmental movement fully succeed? Some theorists now calling themselves “bright greens” or “eco-modernists” have abandoned the moral fight altogether. Their justification for doing so is that people want a vision of the future that’s cheery and that doesn’t require sacrifice. Now, they say, only a technological fix offers any hope. The essential point of this essay (and my manifesto) is simply that, even if the moral argument fails, a techno-fix won’t work either. A gargantuan investment in technology (whether next-generation nuclear power or solar radiation geo-engineering) is being billed as our last hope. But in reality it’s no hope at all.

The reason for the failure thus far of the environmental movement wasn’t that it appealed to humanity’s moral sentiments—that was in fact the movement’s great strength. The effort fell short because it wasn’t able to alter industrial society’s central organizing principle, which is also its fatal flaw: its dogged pursuit of growth at all cost. Now we’re at the point where we must finally either succeed in overcoming growthism or face the failure not just of the environmental movement, but of civilization itself.

The good news is that systemic change is fractal in nature: it implies, indeed it requires, action at every level of society. We can start with our own individual choices and behavior; we can work within our communities. We needn’t wait for a cathartic global or national sea change. And even if our efforts cannot “save” consumerist industrial civilization, they could still succeed in planting the seeds of a regenerative human culture worthy of survival.

There’s more good news: once we humans choose to restrain our numbers and our rates of consumption, technology can assist our efforts. Machines can help us monitor our progress, and there are relatively simple technologies that can help deliver needed services with less energy usage and environmental damage. Some ways of deploying technology could even help us clean up the atmosphere and restore ecosystems.

But machines won’t make the key choices that will set us on a sustainable path. Systemic change driven by moral awakening: it’s not just our last hope; it’s the only real hope we’ve ever had.





The Danger of Inspiration: A Review of On Fire: The (Burning) Case for a Green New Deal

11 09 2019

Naomi Klein’s new book, On Fire: The (Burning) Case for a Green New Deal, has one crippling flaw—it’s inspiring. At this moment in history, inspiring talk about solutions to multiple, cascading ecological crises is dangerous. Republished from the Resilience site……

At the conclusion of these 18 essays that bluntly outline the crises and explain a Green New Deal response, Klein bolsters readers searching for hope: “[W]hen the future of life is at stake, there is nothing we cannot achieve.” It is tempting to embrace that claim, especially after nearly 300 pages of Klein’s eloquent writing that weaves insightful analysis together with honest personal reflection.

The problem, of course, is that the statement is not even close to being true. With nearly 8 billion people living within a severely degraded ecosphere, there are many things we cannot, and will not, achieve. A decent human future—perhaps any human future at all—depends on our ability to come to terms with these limits. That is not a celebration of cynicism or a rationalization for nihilism, but rather the starting point for rational planning that takes seriously not only our potential but also the planet’s biophysical constraints.

Klein’s essays in this volume make it clear that she is well aware of those limits, but the book’s subtitle suggests that she is writing not only to inform but also to mobilize support for Green New Deal proposals. This tension runs throughout the book—when Klein reports on and analyzes the state of the world, the prose challenges readers to face difficult realities, but when making the case for those policy proposals, she sounds more like an organizer rallying supporters.

That’s not a dig—Klein is a writer who doesn’t sit on the sidelines but gets involved with movements and political projects. Her commitment to activism and organizing is admirable, but it can pull a writer in conflicting directions.

This critique should not lead anyone to ignore On Fire, which is an excellent book that should be read cover to cover, without skipping chapters that had been previously published. Collections of essays can fall flat because of faded timeliness or unnecessary repetition, but neither are a problem here. As always, Klein’s sharp eye for detail makes her reporting on events compelling, whether she’s describing disasters (natural and unnatural) or assessing political trends. And, despite the grim realities we face, the book is a pleasure to read.

Before explaining concerns with the book’s inspirational tone, I want to emphasize key points Klein makes that I agree are essential to a left/progressive analysis of the ecological crises:

  • First-World levels of consumption are unsustainable;
  • capitalism is incompatible with a livable human future;
  • the modern industrial world has undermined people’s connections to each other and the non-human world; and
  • we face not only climate disruption but a host of other crises, including, but not limited to, species extinction, chemical contamination, and soil erosion and degradation.

In other words, business-as-usual is a dead end, which Klein states forthrightly:

I feel confident in saying that a climate-disrupted future is a bleak and an austere future, one capable of turning all our material possessions into rubble or ash with terrifying speed. We can pretend that extending the status quo into the future, unchanged, is one of the options available to us. But that is a fantasy. Change is coming one way or another. Our choice is whether we try to shape that change to the maximum benefit of all or wait passively as the forces of climate disaster, scarcity, and fear of the “other” fundamentally reshape us.

On Fire focuses primarily on the climate crisis and the Green New Deal’s vision, which is widely assailed as too radical by the two different kinds of climate-change deniers in the United States today—one that denies the conclusions of climate science and another that denies the implications of that science. The first, based in the Republican Party, is committed to a full-throated defense of our pathological economic system. The second, articulated by the few remaining moderate Republicans and most mainstream Democrats, imagines that market-based tinkering to mitigate the pathology is adequate.

Thankfully, other approaches exist. The most prominent in the United States is the Green New Deal’s call for legislation that recognizes the severity of the ecological crises while advocating for economic equality and social justice. Supporters come from varied backgrounds, but all are happy to critique and modify, or even scrap, capitalism. Avoiding dogmatic slogans or revolutionary rhetoric, Klein writes realistically about moving toward a socialist (or, perhaps, socialist-like) future, using available tools involving “public infrastructure, economic planning, corporate regulation, international trade, consumption, and taxation” to steer out of the existing debacle.

One of the strengths of Klein’s blunt talk about the social and ecological problems in the context of real-world policy proposals is that she speaks of motion forward in a long struggle rather than pretending the Green New Deal is the solution for all our problems. On Firemakes it clear that there are no magic wands to wave, no magic bullets to fire.

The problem is that the Green New Deal does rely on one bit of magical thinking—the techno-optimism that emerges from the modern world’s underlying technological fundamentalism, defined as the faith that the use of evermore advanced technology is always a good thing. Extreme technological fundamentalists argue that any problems caused by the unintended consequences of such technology eventually can be remedied by more technology. (If anyone thinks this definition a caricature, read “An Ecomodernist Manifesto.”)

Klein does not advocate such fundamentalism, but that faith hides just below the surface of the Green New Deal, jumping out in “A Message from the Future with Alexandria Ocasio-Cortez,” which Klein champions in On Fire. Written by U.S. Rep. Ocasio-Cortez (the most prominent legislator advancing the Green New Deal) and Avi Lewis (Klein’s husband and collaborator), the seven-and-a-half minute video elegantly combines political analysis with engaging storytelling and beautiful visuals. But one sentence in that video reveals the fatal flaw of the analysis: “We knew that we needed to save the planet and that we had all the technology to do it [in 2019].”

First, talk of saving the planet is misguided. As many have pointed out in response to that rhetoric, the Earth will continue with or without humans. Charitably, we can interpret that phrase to mean, “reducing the damage that humans do to the ecosphere and creating a livable future for humans.” The problem is, we don’t have all technology to do that, and if we insist that better gadgets can accomplish that, we are guaranteed to fail.

Reasonable people can, and do, disagree about this claim. (For example, “The science is in,” proclaims the Nature Conservancy, and we can have a “future in which catastrophic climate change is kept at bay while we still power our developing world” and “feed 10 billion people.”) But even accepting overly optimistic assessments of renewable energy and energy-saving technologies, we have to face that we don’t have the means to maintain the lifestyle that “A Message from the Future” promises for the United States, let alone the entire world. The problem is not just that the concentration of wealth leads to so much wasteful consumption and wasted resources, but that the infrastructure of our world was built by the dense energy of fossil fuels that renewables cannot replace. Without that dense energy, a smaller human population is going to live in dramatically different fashion.

Welcome to the third rail of contemporary political life. The question that the multiple, cascading ecological crises put squarely in front of us is, “What is a sustainable human population?” That question has to be split in two: “How many people? Consuming how much?”

It’s no surprise that political candidates ignore these questions, but progressive writers and activists should not back away. Honestly engaging these issues takes us well beyond the Green New Deal.

On the second of those questions—“consuming how much?”—Klein frequently highlights the problem, but with a focus on “profligate consumption.” She stresses the need to:

  • “scale back overconsumption”;
  • identify categories in which we must contract, “including air travel, meat consumption, and profligate energy use”; [I do wish people would get off the back of meat consumption and point the finger at industrial scale agriculture instead…]
  • end “the high-carbon lifestyle of suburban sprawl and disposable consumption”;
  • reject capitalism’s faith in “limitless consumption” that locks us in “the endless consumption cycle”; and
  • make deep changes “not just to our energy consumption but to the underlying logic of our economic system.”

No argument with any of those statements, especially because Klein rejects the notion that simply improving efficiency will solve our problems, a common assumption of the techno-optimists. But challenging “overconsumption by the comparatively wealthy” focuses on the easy target: “The bottom line is that an ecological crisis that has its roots in the overconsumption of natural resources must be addressed not just by improving the efficiency of our economies, but also by reducing the amount of material stuff that the wealthiest 20 percent of people on the planet consume.”

My goal is not to defend rich people or their consumption habits. However, constraining the lifestyles of the rich and famous is a necessary but not sufficient condition for sustainability. Here we have to deal with the sticky question of human nature. Klein rightly rejects capitalism’s ideological claim that people’s capacity to act out of greed and short-term self-interest (which all of us certainly are capable of doing) is the dominant human trait. Human nature also includes the capacity to act out of compassion in solidarity with others, of course, and different systems reward different parts of our nature. Capitalism encourages the greed and discourages the compassion, to the detriment of people and planet.

But we are organic creatures, and that means there is a human nature, or what we might more accurately call our human-carbon nature. As Wes Jackson of The Land Institute puts it, life on Earth is “the scramble for energy-rich carbon,” and humans have gotten exceedingly good at grabbing lots of carbon. Not all cultures go after it with the same intensity, of course, but that scramble predates capitalism and will continue after capitalism. This doesn’t mean we are condemned to make the planet unlivable for ourselves and other creatures, but public policy has to recognize that we not only need carbon to survive but that most people—including most environmentalists—like the work that carbon can do for us when we burn those fossil fuels. And once we get a taste of what that carbon can do, it’s not easy to give it up.

As Klein points out, curbing our carbon-seeking is not merely a test of will power and matter of individual virtue; collective action through public policy is needed. I believe that requires a hard cap on carbon—limits that we can encourage people to accept through cultural advocacy but in the end must be imposed through law. A sensible approach, called “cap and adapt,” has been proposed by Larry Edwards and Stan Cox. In a forthcoming book, Cox will expand on a cap-and-ration strategy that could help in “drawing the human economy back within necessary ecological limits,” a follow-up to, and expansion of, his earlier book that made a compelling case for a rationing.

There’s no simple answer to how much energy and material resources we can consume without undermining the ecosystems on which our own lives depend, but I’m confident in saying that it’s dramatically less that we consume today, and that reducing aggregate consumption—even if we could create equitable societies—will be difficult. But that’s the easy part. Much more difficult is the first question—“how many people?”

On the question of population, On Fire is silent, and it’s not hard to understand, for several reasons. First, the Earth has a carrying capacity for any species but it’s impossible to predict when we will reach it (or did reach it), and failed attempts at prediction in the past have made people wary. Second, some of the most vocal supporters of population control also espouse white supremacy, which has tainted even asking the question. Third, while we know that raising the status of women and educating girls reduces birth rates, it’s difficult to imagine a non-coercive strategy for serious population reduction on the scale necessary. Still, we should acknowledge ecological carrying capacity while pursuing social justice and rejecting anti-immigration projects. Progressives’ unwillingness to address the issue cedes the terrain to “eco-fascists,” those who want to use ecological crises to pursue a reactionary agenda.

There’s no specific number to offer for a sustainable human population, but I’m confident in saying that it’s fewer than 8 billion and that finding a humane and democratic path to that lower number is difficult to imagine. [I’ll offer one, and it’s well below one billion – https://damnthematrix.wordpress.com/2015/03/12/losing-our-energy-slaves/ ]

The fact that these questions are troubling and/or impossible to answer does not mean the questions do not matter. For now, my answer—a lot fewer people and a lot less stuff—is adequate to start a conversation: “A sustainable human presence on the planet will mean fewer people consuming less.” Agree or disagree? Why or why not?

Two responses are possible from Green New Deal supporters: (1) I’m nuts, or (2) I’m not nuts, but what I’m suggesting is politically impossible because people can’t handle all this bad news.

If I am nuts, critics have to demonstrate what is unsound about the argument, without resorting to the cliché that “necessity is the mother of invention” and the faith-based claims of the technological fundamentalists.

If I am not, then those Green supporters face a quandary. When mainstream Democrats tell progressive folks that the Green New Deal is doomed to fail because it is not politically viable at this moment, supporters counter, appropriately, by saying that anything less is inadequate in the face of the crises. Those supporters argue, appropriately, that the real failure is supporting policies that don’t do enough to create sustainable human societies and that we need to build a movement for the needed change. I agree, but by that logic, if the Green New Deal itself is inadequate to create sustainability, then we must push further.

The Green New Deal is a start, insufficiently radical but with the potential to move the conversation forward—if we can be clear about the initiative’s limitations. That presents a problem for organizers, who seek to rally support without uncomfortable caveats—“Support this plan! But remember that it’s just a start, and it gets a lot rougher up ahead, and whatever we do may not be enough to stave off unimaginable suffering” is, admittedly, not a winning slogan.

Back to what I think Klein is right about, and eloquent in expressing:

Because while it is true that climate change is a crisis produced by an excess of greenhouse gases in the atmosphere, it is also, in a more profound sense, a crisis produced by an extractive mind-set, by a way of viewing both the natural world and the majority of its inhabitants as resources to use up and then discard. I call it the “gig and dig” economy and firmly believe that we will not emerge from this crisis without a shift in worldview at every level, a transformation to an ethos of care and repair.

The domination/subordination dynamic that creates so much suffering within the human family also defines the modern world’s destructive relationship to the larger living world. Throughout the book, Klein presses the importance of telling a new story about all those relationships. Scientific data and policy proposals matter, but they don’t get us far without a story for people to embrace. Klein is right, and On Fire helps us imagine a new story for a human future.

I offer a friendly amendment to the story she is constructing: Our challenge is to highlight not only what we can but also what we cannot accomplish, to build our moral capacity to face a frightening future but continue to fight for what can be achieved, even when we know that won’t be enough.

One story I would tell is of the growing gatherings of people, admittedly small in number today, who take comfort in saying forthrightly what they believe, no matter how painful—people who do not want to suppress their grief, yet do not let their grief overwhelm them.

What kind of person wants to live like that? I can offer a real-life example, my late friend Jim Koplin. He once told me, in a conversation about those multiple, cascading ecological crises (a term I stole from him, with his blessing), “I wake up every morning in a state of profound grief.” He was neither depressed nor irrational but simply honest. Jim, a Depression-era farm boy who had been permanently radicalized in the 1960s, felt that grief more deeply than anyone I have known, yet every day he got up to work in his garden and then offer his time and energy to a variety of political, community, and arts groups that were fighting for a better world.

Klein speaks of this grief in On Fire, in what for me were the most moving passages, often involving her young son’s future in the face of this “planetary death spiral”:

There is no question that the strongest emotions I have about the climate crisis have to do with [Toma] and his generation—the tremendous intergenerational theft under way. I have flashes of sheer panic about the extreme weather we have already locked in for these kids. Even more intense than this fear is the sadness about what they won’t ever know. They are growing up in a mass extinction, robbed of the cacophonous company of so many fast-disappearing life forms. It feels so desperately lonely.

The escape from loneliness, for me, starts with recognizing that Jim’s “state of profound grief” was not only wholly rational but also emotionally healthy. When told that even if this harsh assessment is correct, people can’t handle it, I agree. No one can handle all this. Jim couldn’t handle it every waking minute. I don’t handle it as well as he did. At best, we struggle to come to terms with a “bleak and austere” future.

But that’s exactly why we need to engage rather than avoid the distressing realities of our time. If we are afraid to speak honestly, we suffer alone. Better that we tell the truth and accept the consequences, together.





Eight essential steps to transform our economy

30 07 2019

We’re running out of time. There’s spreading awareness of the institutional failure that is driving humans toward self-extinction, and related calls for a deep transformation of our economy. This is happening in every quarter, from college campuses to the Vatican to the U.S. presidential debates. Everywhere we hear calls for an economy that serves the well-being of people and Earth.

David Korten wrote this opinion piece for YES! Magazine as part of his series of biweekly columns on “A Living Earth Economy.” David is co-founder and board chair of YES! Magazine and president of the Living Economies Forum. Follow him on Twitter @dkorten and on Facebook. As do all YES! columnists he writes here in his personal voice.

Pope Francis has spoken of the social and environmental failures of an economy devoted to the idolatry of moneyWorkers and their unions are joining in with the wrenching observation that, “There are no good jobs on a dead planet.”

There is a related rising awareness of the need for a serious update to how we study and think about economics and prepare our future leaders. With few exceptions, economics, as it’s taught in universities, relies on the same badly flawed theories and ethical principles that bear major responsibility for the unfolding crisis. It values life only for its market price; uses GDP growth as the defining measure of economic performance; assures students that maximizing personal financial return benefits society; recommends policies that prioritize corporate profits over human and planetary well-being; and ignores the natural limits of a finite planet.

Here are eight guiding principles for a reformed economic theory to guide our path to a new economy for the 21st century.

Principle 1: Evaluate the economy’s performance by indicators of the well-being of people and planet; not the growth of GDP.

Growing GDP serves well if our goal is only to increase the financial assets of the rich so they can claim an ever-growing share of the remaining real wealth of a dying Earth. If our priority is to meet the essential needs for food, water, shelter, and other basics for all the world’s people, then we must measure for those results so that we can get the outcomes we really want.

Principle 2: Seek only that which benefits life; not that which harms life.

We should seek to eliminate war, financial speculation, consumption of harmful or unnecessary products, and industrial agriculture that pollutes the soil, air, and water and produces food of questionable nutritional value. We can eliminate most driving by designing infrastructure to support people living close to where they work, shop, and play. We can eliminate most global movement of people and goods by keeping production and consumption local, using recycled materials, and substituting electronic communication for global business travel.

The labor and resources thus freed up can be redirected to raising and educating our children, caring for the elderly, restoring the health and vitality of Earth’s regenerative systems, rebuilding the social infrastructure of community, and rebuilding physical infrastructure in ways that reduce dependence on fossil fuels and simultaneously strengthen our beneficial connections with one another and nature.

Principle 3: Honor and reward all who provide beneficial labor, including nature; not those who exploit it to get rich.

Life depends on the labor of nature and people. Too often, the current economic system rewards those claiming ownership rather than those performing useful labor. Instead we should follow the model set by traditional societies, in which we earn our share in the surplus of the commons through our labor in service of it. Much of the current economy’s dysfunction can be overcome by eliminating the division of society between owners and workers—a problem corrected throughworker ownership combined with an ethical frame that recognizes our well-being depends on much more than just financial return.

Principle 4: Create society’s money supply through a transparent public process to advance the common good; not through proprietary processes that grow the profits of for-profit banks.

In a modern society, those who control the creation and allocation of money control the lives of everyone. It defies reason to assume that society benefits from giving this power to global for-profit banks dedicated to maximizing profits for the already richest among us. The system of money creation and allocation must be public, transparent, and accountable to the people. It must reside in democratic governments and be administered by public banks supplemented by individual community-owned, cooperative banks whose lending supports local home and business ownership.

Principle 5: Educate for a lifetime of learning in service to life-seeking communities; not for service to for-profit corporations.

Most university economics courses currently promote societal psychopathology as a human ideal and give legitimacy to institutions that serve only to make money, without regard for the common good. We must prepare youth for future leadership that builds on a moral foundation that recognizes our responsibility for one another and Earth, favors cooperation over competition, and prioritizes life over money and community well-being over corporate profits.

No one knows how to get where we now must go, and education cannot provide us with answers we do not have. Education can, however, prepare us to be lifelong learners, skilled in asking the right questions and in working together to find and share answers.

Principle 6: Create and apply technology only to serve life; not to displace or destroy it.

Technology must be life’s servant. Deciding how to apply technology based solely on what will produce the greatest short-term financial return is madness. Humans have the right and the means to assure that technology is used only to serve humanity as a whole, such as by eliminating destructive environmental impacts, restoring the regenerative capacity of Earth systems, facilitating global understanding, and advancing social justice, cooperation, and learning.

Principle 7: Organize as cooperative, inclusive, self-reliant, regenerative communities that share knowledge and technology to serve life; not as incorporated pools of money competing to grow by exploiting life.

We can meet our needs through constant cyclical flows of resources. That was our standard way of living until less than 100 years ago. We can do it again. Urban and rural dwellers can rediscover their interdependence as cities source food, timber, fiber, pulp, and recreational opportunities from nearby rural areas and rural areas regenerate their soils with biowastes from nearby urban areas and enjoy the benefits of urban culture. Suburbs can convert to urban or rural habitats.

Principle 8: Seek a mutually beneficial population balance between humans and Earth’s other species; not the dominance of humans over all others.

The health of any natural ecosystem depends on its ability to balance the populations of its varied species. This means maintaining free access to reproductive health care options and removing barriers to women in education and the workplace. Only starting from this point can we both maintain a free society and manage our population size.

The basic frame of 21st century economics contrasts sharply with that of the 20th century economics it must now displace. The new frame is far more complex and nuanced. Yet most people can readily grasp it because it is logical, consistent with foundational ethical principles, and reflects the reality that most people are kind, honest, find pleasure in helping others, and recognize that we all depend on the health of our Mother Earth.

This article was first published in YES! Magazine.





Interesting times ahead…..

29 11 2018

Very few people join all the dots, and as usual, Gail Tverberg does her best to do so here again…. There are so many signals on the web now pointing to a major reset it’s not funny.

Low Oil Prices: An Indication of Major Problems Ahead?

Many people, including most Peak Oilers, expect that oil prices will rise endlessly. They expect rising oil prices because, over time, companies find it necessary to access more difficult-to-extract oil. Accessing such oil tends to be increasingly expensive because it tends to require the use of greater quantities of resources and more advanced technology. This issue is sometimes referred to as diminishing returns. Figure 1 shows how oil prices might be expected to rise, if the higher costs encountered as a result of diminishing returns can be fully recovered from the ultimate customers of this oil.

In my view, this analysis suggesting ever-rising prices is incomplete. After a point, prices can’t really keep up with rising costs because the wages of many workers lag behind the growing cost of extraction.

The economy is a networked system facing many pressures, including a growing level of debt and the rising use of technology. When these pressures are considered, my analysis indicates that oil prices may fall too low for producers, rather than rise too high for consumers. Oil companies may close down if prices remain too low. Because of this, low oil prices should be of just as much concern as high oil prices.

In recent years, we have heard a great deal about the possibility of Peak Oil, including high oil prices. If the issue we are facing is really prices that are too low for producers, then there seems to be the possibility of a different limits issue, called Collapse. Many early economies seem to have collapsed as they reached resource limits. Collapse seems to be characterized by growing wealth disparity, inadequate wages for non-elite workers, failing governments, debt defaults, resource wars, and epidemics. Eventually, population associated with collapsed economies may fall very low or completely disappear. As Collapse approaches, commodity prices seem to be low, rather than high.

The low oil prices we have been seeing recently fit in disturbingly well with the hypothesis that the world economy is reaching affordability limits for a wide range of commodities, nearly all of which are subject to diminishing returns. This is a different problem than most researchers have been concerned about. In this article, I explain this situation further.

One thing that is a little confusing is the relative roles of diminishing returns and efficiency. I see diminishing returns as being more or less the opposite of growing efficiency.

The fact that inflation-adjusted oil prices are now much higher than they were in the 1940s to 1960s is a sign that for oil, the contest between diminishing returns and efficiency has basically been won by diminishing returns for over 40 years.

Oil Prices Cannot Rise Endlessly

It makes no sense for oil prices to rise endlessly, for what is inherently growing inefficiency. Endlessly rising prices for oil would be similar to paying a human laborer more and more for building widgets, during a time that that laborer becomes increasingly disabled. If the number of widgets that the worker can produce in one hour decreases by 50%, logically that worker’s wages should fall by 50%, not rise to make up for his/her growing inefficiency.

The problem with paying higher prices for what is equivalent to growing inefficiency can be hidden for a while, if the economy is growing rapidly enough. The way that the growing inefficiency is hidden is by adding Debt and Complexity (Figure 4).

Growing complexity is very closely related to “Technology will save us.” Growing complexity involves the use of more advanced machinery and ever-more specialized workers. Businesses become larger and more hierarchical. International trade becomes increasingly important. Financial products such as derivatives become common.

Growing debt goes hand in hand with growing complexity. Businesses need growing debt to support capital expenditures for their new technology. Consumers find growing debt helpful in affording major purchases, such as homes and vehicles. Governments make debt-like promises of pensions to citizen. Thanks to these promised pensions, families can have fewer children and devote fewer years to child care at home.

The problem with adding complexity and adding debt is that they, too, reach diminishing returns. The easiest (and cheapest) fixes tend to be added first. For example, irrigating a field in a dry area may be an easy and cheap way to fix a problem with inadequate food supply. There may be other approaches that could be used as well, such as breeding crops that do well with little rainfall, but the payback on this investment may be smaller and later.

A major drawback of adding complexity is that doing so tends to increase wage and wealth disparity. When an employer pays high wages to supervisory workers and highly skilled workers, this leaves fewer funds with which to pay less skilled workers. Furthermore, the huge amount of capital goods required in this more complex economy tends to disproportionately benefit workers who are already highly paid. This happens because the owners of shares of stock in companies tend to overlap with employees who are already highly paid. Low paid employees can’t afford such purchases.

The net result of greater wage and wealth disparity is that it becomes increasingly difficult to keep prices high enough for oil producers. The many workers with low wages find it difficult to afford homes and families of their own. Their low purchasing power tends to hold down prices of commodities of all kinds. The higher wages of the highly trained and supervisory staff don’t make up for the shortfall in commodity demand because these highly paid workers spend their wages differently. They tend to spend proportionately more on services rather than on commodity-intensive goods. For example, they may send their children to elite colleges and pay for tax avoidance services. These services use relatively little in the way of commodities.

Once the Economy Slows Too Much, the Whole System Tends to Implode

A growing economy can hide a multitude of problems. Paying back debt with interest is easy, if a worker finds his wages growing. In fact, it doesn’t matter if the growth that supports his growing wages comes from inflationary growth or “real” growth, since debt repayment is typically not adjusted for inflation.

Both real growth and inflationary growth help workers have enough funds left at the end of the period for other goods they need, despite repaying debt with interest.

Once the economy stops growing, the whole system tends to implode. Wage disparity becomes a huge problem. It becomes impossible to repay debt with interest. Young people find that their standards of living are lower than those of their parents. Investments do not appear to be worthwhile without government subsidies. Businesses find that economies of scale no longer work to their advantage. Pension promises become overwhelming, compared to the wages of young people.

The Real Situation with Oil Prices

The real situation with oil prices–and in fact with respect to commodity prices in general–is approximately like that shown in Figure 6.

What tends to happen is that oil prices tend to fall farther and farther behind what producers require, if they are truly to make adequate reinvestment in new fields and also pay high taxes to their governments. This should not be too surprising because oil prices represent a compromise between what citizens can afford and what producers require.

In the years before diminishing returns became too much of a problem (back before 2005, for example), it was possible to find prices that were within an acceptable range for both sellers and buyers. As diminishing returns has become an increasing problem, the price that consumers can afford has tended to fall increasingly far below the price that producers require. This is why oil prices at first fall a little too low for producers, and eventually seem likely to fall far below what producers need to stay in business. The problem is that no price works for both producers and consumers.

Affordability Issues Affect All Commodity Prices, Not Just Oil

We are dealing with a situation in which a growing share of workers (and would be workers) find it difficult to afford a home and family, because of wage disparity issues. Some workers have been displaced from their jobs by robots or by globalization. Some spend many years in advanced schooling and are left with large amounts of debt, making it difficult to afford a home, a family, and other things that many in the older generation were able to take for granted. Many of today’s workers are in low-wage countries; they cannot afford very much of the output of the world economy.

At the same time, diminishing returns affect nearly all commodities, just as they affect oil. Mineral ores are affected by diminishing returns because the highest grade ores tend to be extracted first. Food production is also subject to diminishing returns because population keeps rising, but arable land does not. As a result, each year it is necessary to grow more food per arable acre, leading to a need for more complexity (more irrigation or more fertilizer, or better hybrid seed), often at higher cost.

When the problem of growing wage disparity is matched up with the problem of diminishing returns for the many different types of commodity production, the same problem occurs that occurs with oil. Prices of a wide range of commodities tend to fall below the cost of production–first by a little and, if the debt bubble pops, by a whole lot.

We hear people say, “Of course oil prices will rise. Oil is a necessity.” The thing that they don’t realize is that the problem affects a much bigger “package” of commodities than just oil prices. In fact, finished goods and services of all kinds made with these commodities are also affected, including new homes and vehicles. Thus, the pattern we see of low oil prices, relative to what is required for true profitability, is really an extremely widespread problem.

Interest Rate Policies Affect Affordability

Commodity prices bear surprisingly little relationship to the cost of production. Instead, they seem to depend more on interest rate policies of government agencies. If interest rates rise or fall, this tends to have a big impact on household budgets, because monthly auto payments and home payments depend on interest rates. For example, US interest rates spiked in 1981.

This spike in interest rates led to a major cutback in energy consumption and in GDP growth.

Oil prices began to slide, with the higher interest rates.

Figure 11 indicates that the popping of a debt bubble (mostly relating to US sub-prime housing) sent oil prices down in 2008. Once interest rates were lowered through the US adoption of Quantitative Easing (QE), oil prices rose again. They fell again, when the US discontinued QE.

While these charts show oil prices, there is a tendency for a broad range of commodity prices to move more or less together. This happens because the commodity price issue seems to be driven to a significant extent by the affordability of finished goods and services, including homes, automobiles, and restaurant food.

If the collapse of a major debt bubble occurs again, the world seems likely to experience impacts somewhat similar to those in 2008, depending, of course, on the location(s) and size(s) of the debt bubble(s). A wide variety of commodity prices are likely to fall very low; asset prices may also be affected. This time, however, government organizations seem to have fewer tools for pulling the world economy out of a prolonged slump because interest rates are already very low. Thus, the issues are likely to look more like a widespread economic problem (including far too low commodity prices) than an oil problem.

Lack of Growth in Energy Consumption Per Capita Seems to Lead to Collapse Scenarios

When we look back, the good times from an economic viewpoint occurred when energy consumption per capita (top red parts on Figure 12) were rising rapidly.

The bad times for the economy were the valleys in Figure 12. Separate labels for these valleys have been added in Figure 13. If energy consumption is not growing relative to the rising world population, collapse in at least a part of the world economy tends to occur.

The laws of physics tell us that energy consumption is required for movement and for heat. These are the basic processes involved in GDP generation, and in electricity transmission. Thus, it is logical to believe that energy consumption is required for GDP growth. We can see in Figure 9 that growth in energy consumption tends to come before GDP growth, strongly suggesting that it is the cause of GDP growth. This further confirms what the laws of physics tell us.

The fact that partial collapses tend to occur when the growth in energy consumption per capita falls too low is further confirmation of the way the economics system really operates. The Panic of 1857occurred when the asset price bubble enabled by the California Gold Rush collapsed. Home, farm, and commodity prices fell very low. The problems ultimately were finally resolved in the US Civil War (1861 to 1865).

Similarly, the Depression of the 1930s was preceded by a stock market crash in 1929. During the Great Depression, wage disparity was a major problem. Commodity prices fell very low, as did farm prices. The issues of the Depression were not fully resolved until World War II.

At this point, world growth in energy consumption per capita seems to be falling again. We are also starting to see evidence of some of the same problems associated with earlier collapses: growing wage disparity, growing debt bubbles, and increasingly war-like behavior by world leaders. We should be aware that today’s low oil prices, together with these other symptoms of economic distress, may be pointing to yet another collapse scenario on the horizon.

Oil’s Role in the Economy Is Different From What Many Have Assumed

We have heard for a long time that the world is running out of oil, and we need to find substitutes. The story should have been, “Affordability of all commodities is falling too low, because of diminishing returns and growing wage disparity. We need to find rapidly rising quantities of very, very cheap energy products. We need a cheap substitute for oil. We cannot afford to substitute high-cost energy products for low-cost energy products. High-cost energy products affect the economy too adversely.”

In fact, the whole “Peak Oil” story is not really right. Neither is the “Renewables will save us” story, especially if the renewables require subsidies and are not very scalable. Energy prices can never be expected to rise high enough for renewables to become economic.

The issues we should truly be concerned about are Collapse, as encountered by many economies previously. If Collapse occurs, it seems likely to cut off production of many commodities, including oil and much of the food supply, indirectly because of low prices.

Low oil prices and low prices of other commodities are signs that we truly should be concerned about. Too many people have missed this point. They have been taken in by the false models of economists and by the confusion of Peak Oilers. At this point, we should start considering the very real possibility that our next world problem is likely to be Collapse of at least a portion of the world economy.

Interesting times seem to be ahead.





The Third Industrial Revolution

21 08 2018

I belong to a degrowth group on facebook. The owner of this group posted a link to a youtube video titled “The Third Industrial Revolution: A Radical New Sharing Economy”. I downloaded it sight unseen so that I could watch it on my TV while it’s Jeremy_Rifkinpissing down with rain outside and I frankly have nothing else better to do……. luckily for those up North in terrible drought, we’ll be sending some your way next weekend. I’ve never liked Jeremy Rifkin’s crazy ideas, and had I realised he was the star attraction of this film, I probably would not have downloaded it in the first place, but having done so, and under the abovemnetioned weather conditions, I went ahead anyway……

The first half hour was for me the best part, because he clearly explains – with some crucial left out items – why we’re in deep shit. What really leaves me flumoxed is how someone who clearly understands thermodynamics and entropy cannot come to grips with their repercussions.

A ‘Third Industrial Revolution’ Would Seal Our Fate — Why Jeremy Rifkin is Dead Wrong

For me, it was extraordinarily hard to find where to start my criticism — not because of the lack of strength of his arguments, but simply because it is just plain hard to even know where to start! Explaining in the face of such universal ignorance of simple ecological limits and boundaries, and for such a long (1 3/4 hours) presentation, I fear I may ramble a bit during this difficult essay.

While I hope this post won’t offend anyone, I just think that some of us have to speak up to show him and his admirers that our generation blindly following his progressivist ideas  – at least not in its entirety – is almost as dumb as doing nothing at all…..

His ideas are not ‘radically new’. they are just a new version of the same old ‘more is better’ paradigm — more technology, more energy, more people, more jobs, more work, more impact, more control. He is after all a business man, and his main problem is that he simply doesn’t get the growth problem…. Maybe we have to try something that really is completely new:

Small is better. Simple is better. Local is better. Independent is better.

Less technology, less pollution, fewer cars (to be fair, he does say we’ll reduce the number of cars by 85%), fewer airplanes,  highways, fewer shopping malls, less noise, less trade, less work, less destruction, less disruption, less control, less worries… This doesn’t sound so bad after all, does it? But it is the complete opposite of what Rifkin has in mind for this world……

He makes it quite clear that in his ‘radically’ new economy, everything is smart. Smart phones, smart vehicles, smart roads and smart houses…..  he talks of retrofitting houses, which I know from experience does not work. Once you’ve built a lemon, a lemon it remains. That’s why I’m going through all the hassles of building my own…

There are serious concerns, expressed many times in this very blog, about the environmental impact that such changes would bring about. As far as we know it is highly unlikely that we have sufficient reserves of resources for producing so called “green/clean” technologies, on a global scale, good enough to replace the current, all-encompassing, fossil fuel-based system……

From what I saw in the video, there will be markets, corporations, stocks, products, consumers, factories, roads, cars, drones, workers, bosses, currency, more debts, taxes, laws — which all seems an awful lot like the system we currently have…. A truly ‘radical’ new economy would, surely, not see the exact same elements as its predecessor?

Rifkin forgets that there already was a “sharing economy”, usually referred to as ‘gift economy’ by anthropologists, and that this original sharing economy lasted for over 95% of our species’ two-hundred-thousand-years existence here on Earth. Ironically, this ancient economic system happens to be the closest to a sustainable form of economy that we have ever known. No resource was overexploited, no ecosystem disrupted and absolutely no pollution resulted….  and most of that was the result of infinitesimally smaller population numbers.

While it’s obvious Rifkin has some understanding of science, he remains an economist after all! Here are some of his failings as I see them…..

Chemistry

Chemistry matters because when we look at the periodic table of elements, we see all there is in our world. In the whole Universe actually… There are only 118 elements available to us. And we will never find replacements for those elements, they simply do not exist…… Of increasing interest are 17 different Rare Earth Elements (REE’s), elements 57–71 (the lanthanides) and scandium and yttrium, most of which are used to create solar panels, batteries, magnets, displays and touchscreens, hardware and other advanced technological appliances.

Figure 1. Slide by Alicia Valero showing that almost the entire periodic table of elements is used for computers.

To obtain them we have to rape and pillage the biosphere. This puts us into a predicament that Rifkin fails to address.  Those elements are used because of their unique and desirable qualities, such as the ability to absorb certain wavelengths (particularly efficient in the case of solar panels), produce strong magnets for the massive generators used in wind turbines, and colorful lights for the displays of our mobile phones, computers and TV’s.

Of the 17 REE’s, the only one that is not found in smartphones is the radioactive promethium! I guess the line is drawn at putting radioactive stuff to one’s ear….. Modern smartphones contain almost three quarters of all the elements in the periodic table, and all of them are essential for those devices to function. It is chemically not possible to create something like a smartphone without certain elements; and it is impossible to obtain those elements without destroying vast swaths of the already battered environment.

Geology

From a geological point of view Rifkin’s plans are highly unlikely. We simply don’t have enough resources left to do any of his proposed ‘revolutions’ in the realms of energy and communication.

Biology

Overshoot is what happens when a species follows simple biological laws: if you increase the food availability of any species, its population will increase, period. This is what we humans have done for the past 10,000 years, since the widespread adoption of agriculture. As a result of the food surplus that industrial agriculture creates (as opposed to the “just-enough” food quantity obtained by foragers), human population exploded. The biggest increase in human population was directly caused by the “Green” Revolution, when fossil fuelled chemical fertilizers, pesticides and herbicides were first used on a continental scale. It was like agriculture on steroids…..

I didn’t realise Rifkin was a vegetarian/vegan activist until watching this. He yet again displays his ignorance of the difference between industrial animal husbandry and regenerative agriculture, which, in my not so humble opinion, will be the third revolution…. Maybe someone needs to invent smart cows! Just kidding…….

The fact that Rifkin fails to adequately address overpopulation is reason enough for me to question his competence.

Ecology

Ecosystems function best and are at their most stable, resilient and effective when all components stay within their naturally imposed limits. From an ecological view, anthropocentrism has no foundation whatsoever. Instead of controlling our environment, we would have to let go of all control and hand the reins back to Mother Nature…… Ecosystems are networks (Rifkin, fond of technological and digital metaphors, would probably call them an ‘Internet’!) that seem resilient even when they suffer severe damage. But once a ‘tipping point’ is reached, like human overshoot, collapse is rapid and ruthless. The first of those tipping points might be reached as soon as the 2020’s mark, with increasingly extreme weather events threatening breadbasket regions around the world. Rifkin’s assertion that we have forty years to fix the mess just blew me away…..

Like it or not, we are inevitably a part of the ecosystem surrounding us, whether we act like it or not. Everything we do – and nothing we do is sustainable – has a direct impact on our immediate environment. Thanks to globalization, ecosystems are now impacted on a global scale.

The extraction and processing of REM’s needed to produce all our technology is directlysamarco connected to the destruction of ecosystems all around the globe. Several major ecological catastrophes were directly caused by the mining and extraction of REE’s, such as the Samarco tailings dam collapse (2015) in Brazil or the silicon tetrachloride spill by a solar energy company in Henan province, China (2008). As implied by  recent, peer reviewed study (paywall) in the prestigious journal Nature, there is no reason to believe that this risk is going to decrease if global demand rises as predicted by all involved scholars and institutions.

Green Clean Smart technology

It should be obvious by now, especially to all followers of this blog, that neither solar panels, wind turbines, hydroelectric facilities, and electric cars, nor smartphones, computers and other high-tech gadgets come even close to being what might be termed “green” or “clean”. But what Rifkin proposes is nothing short of megalomania.

Smartphones (smart vehicles, smart roads, smart houses, smart toilets and any other ‘smart’ gadget), computers, televisions, electric cars, wind turbines, solar panels, lasers, camera lenses, missiles and numerous other technologies all contain a broad spectrum of rare earth elements (REE’s), without which the production of those gadgets would be utterly impossible (strictly chemically speaking). The production and use of ‘screens’ technology alone, according to Jancovici, consumes one third of all the electricity produced worldwide….. The growth of renewables cannot even keep up with the growth of the internet.

Rifkin makes much ado about a meeting he had with Angela Merkel – herself a scientist – and the amount of renewable energy deployed in Germany, claiming Germany gets 30% of its electricity from these technologies. This isn’t even true…. it might be correct on paper, and on perfect days even more might be generated, but his hopium filled rhetoric would have you believe his dream is already happening…..  it isn’t. The recent demolition of a historic church to clear the way for the expansion of an open-cast brown coal mine has outraged locals in western Germany and environmentalists, as politicians moot giving up their own clean energy targets…….

Many of the minerals needed to produce smartphones and electric vehicles are considered ‘conflict minerals’ and are mined under slave-like conditions in Congo and other ‘undeveloped’ countries. The most common conflict minerals, cassiterite (a byproduct of tin mining), wolframite (extracted from tungsten), coltan (extracted from tantalum), cobalt, and gold ore, are all mined in eastern Congo. There is ample evidence to assume that Western corporations have a high economic interest in the region remaining unstable, since they get much better prices for the minerals desperately needed for the production of mobile phones, laptops, and other digital technology

It is impossible to produce even a single smartphone without causing enormous damage to the biosphere in the process. As the graphic above shows (click on it for a larger view), the materials and compounds come from all corners of the world and have to be transported conveniently and cheaply for the industry to continue to function properly and profitably. Container vessels are the backbone of the global economy, and without them nothing would function. They can’t be replaced with anything “renewable”, since no electric engine has as yet been invented that can move such masses over distances longer than 80km!!  The 16 biggest container ships (out of a total of about 100,000 vessels) produce as much pollution as all the cars in the world….

In case you’ve never heard this before, the shipping lobby works hard to hide and downplay their impact on climate breakdown from the public.  The UN body that polices the world’s shipping business, the International Maritime Organization (IMO), has been absent without leave when it comes to avoiding or even addressing pollution caused by those ships.  By international law, nobody is allowed to burn the thick, sulphur-laden fuel  called bunker oil,  yet the shipping industry does not have to comply with that law. And sulphur is far from being the only pollutant. Every year it is estimated that container vessels belch out one billion tons of CO2 , as much as the entire aviation industry……. click on image for larger view.

Deindustrialise or perish

When we take a careful look at our species’ short history, it becomes obvious in which direction we must go. We got along quite well before people started thinking that they were better than other creatures, and better than their fellow men, the new mindset that emerged after the Agricultural Revolution……..entropy

If we want to stop pathological behavior, pollution, destruction, violence, chronic depression and mental health problems, discontent, and exploitation, if we want to share real things, communicate meaningfully, live in harmony with the biosphere, and nurture the world around us, we have to recognize our true Nature:  The Nature within us, the Wilderness that still lays deep in our heart, and the Nature and the Wilderness that are still around us, the biosphere, at the edges of the wastelands we’ve created and in between the cracks in the asphalt and the concrete we’ve coated the living Earth with, and that they are actually the same.





Earth Battery

2 07 2018

I don’t know how this podcast ever flew under the radar, but it’s ‘must listen to’ material….. two of my favourite peakniks, Chris Martenson and Tom Murphy, discuss our predicaments in the clearest possible way.

The standout for me was Tom calling our fossil fuels sources a gigantic solar battery in which millions of years of solar energy was stored, only to be virtually short circuited to be discharged in what is the blink of an eyelid in geological terms……