Economics for the future – Beyond the superorganism

7 12 2019


Nate Hagens has written a substantial paper, four months in the writing, ten years in the making he tells me….


  1. Overview
    Despite decades of warnings, agreements, and activism, human
    energy consumption, emissions, and atmospheric CO2 concentrations
    all hit new records in 2018 (Quéré et al., 2018). If the global economy
    continues to grow at about 3.0% per year, we will consume as much
    energy and materials in the next ∼30 years as we did cumulatively in
    the past 10,000. Is such a scenario inevitable? Is such a scenario possible?
  2. Simultaneously, we get daily reminders the global economy isn’t
    working as it used to (Stokes, 2017) such as rising wealth and income
    inequality, heavy reliance on debt and government guarantees, populist political movements, increasing apathy, tension and violence, and ecological decay. To avoid facing the consequences of our biophysical reality, we’re now obtaining growth in increasingly unsustainable ways. The developed world is using finance to enable the extraction of things we couldn’t otherwise afford to extract to produce things we otherwise couldn’t afford to consume.

    With this backdrop, what sort of future economic systems are now
    feasible? What choreography would allow them to come about? In the
    fullness of the Anthropocene, what does a hard look at the relationships between ecosystems and economic systems in the broadest sense suggest about our collective future? Ecological economics was ahead of its time in recognizing the fundamental importance of nature’s services and the biophysical underpinnings of human economies. Can it now assemble a blueprint for a ‘reconstruction’ to guide a way forward?

    Before articulating prescriptions, we first need a comprehensive
    diagnosis of the patient. In 2019, we are beyond a piecemeal listing of
    what’s wrong. A coherent description of the global economy requires a
    systems view: describing the parts, the processes, how the parts and
    processes interact, and what these interactions imply about future
    possibilities. This paper provides a brief overview of the relationships
    between human behavior, the economy and Earth’s environment. It
    articulates how a social species self-organizing around surplus has
    metabolically morphed into a single, mindless, energy-hungry
    “Superorganism.” Lastly, it provides an assessment of our constraints
    and opportunities, and suggests how a more sapient economic system
    might develop.
  3. Introduction
    For most of the past 300,000 years, humans lived in sustainable,
    egalitarian, roaming bands where climate instability and low CO2 levels made success in agriculture unlikely (Richerson et al., 2001).
    Around 11,000 years ago the climate began to warm, eventually plateauing at warmer levels than the previous 100,000 years (Fig. 1).

  1. This stability allowed agriculture to develop in at least seven separate locations around the world. For the first time, groups of humans began to organize around physical surplus – production exceeding the group’s immediate caloric needs. Since some of the population no longer had to devote their time to hunting and gathering, this surplus allowed the development of new jobs, hierarchies, and complexity (Gowdy and Krall, 2013). This novel dynamic led to widespread agriculture and large-scale state societies over the next few thousand years (Gowdy and Krall, 2014).

    In the 19th century, this process was accelerated by the large-scale
    discovery of fossil carbon and the invention of technologies to use it as
    fuel. Fossil carbon provided humans with an extremely dense (but finite) source of energy extractable at a rate of their choosing, unlike the highly diffuse and fixed flow of sunlight of prior eras.

    This energy bounty enabled the 20th century to be a unique period
    in human history:
  2. more (and cheaper) resources led to sharp productivity
    increases and unprecedented economic growth, a debt
    based financial system cut free from physical tethers allowed expansive credit and related consumption to accelerate,
  3. all of which fueled resource surpluses enabling diverse and richer societies. The 21st century is diverging from that trajectory: 1) energy and resources are again becoming constraining factors on economic and societal development, 2) physical expansion predicated on credit is becoming riskier and will eventually reach a limit, 3) societies are becoming polarized and losing trust in governments, media, and science and, 4) ecosystems are being degraded as they absorb large quantities of energy and material waste from human systems.
    Where do we go from here?
  4. Human behavior
    Humans are unique, but in the same ways tree frogs or hippos are
    unique. We are still mammals, specifically primates. Our physical
    characteristics (sclera in eyes, small mouth, lack of canines etc.) are the products of our formative social past in small bands (Bullet et al., 2011; Kobayashi and Kohshima, 2008). However, our brains and behaviors too are products of what worked in our past. We don’t consciously go through life maximizing biological fitness, but instead act as ‘adaptation executors’ seeking to replicate the daily emotional states of our successful ancestors (Barkow et al., 1992). Humans have an impressive ability to process information, cooperate, and discover things, which is what brought us to the state of organization and wealth we experience today. But our stone-age minds areresponding to modern technology, resource abundance and large, fluid, social groups in emergent ways. These behaviors – summarized below – underpin many of our current planetary and cultural predicaments (Whybrow, 2013).

    3.1. Status and relative comparison Humans are a social species. Each of us is in competition for status and resources. As biological organisms we care about relative status. Historically, status was linked to providing resources for the clan, leadership, respect, storytelling, ethics, sharing, and community (Gowdy, 1998; von Rueden and Jaeggi, 2016). But in the modern culture we compete for status with resource intensive goods (cars, homes, vacations, gadgets), using money as an intermediary driver (Erk et al., 2002). Although most of the poorest 20% in advanced economies live materially richer lives than the middle class in the 1900′s, one’s income rank, as opposed to the absolute income, is what predicts life satisfaction (Boyce et al., 2010). For those who don’t ‘win’, a lack of perceived status leads to depression, drinking, stockpiling of guns and other adverse
    behaviors (Katikireddi et al., 2017; Mencken and Froese, 2019).
    Once basic needs are satisfied, we are primed to respond to the comparison of “better vs.worse” more than we do to “a little” vs. “a lot.”

    3.2. Supernormal stimuli and addiction In our ancestral environment, the mesolimbic dopamine pathways were linked to motivation, action and (calorific) reward. Modern technology and abundance can hijack this same reward circuitry. The brain of a stock trader making a winning trade lights up in an fMRI the same way a chimpanzee’s (and presumably our distant ancestors’) does when finding a nut or berry. But when trading stocks, playing video games or building shopping centers, there is no instinctual ‘full’ signal in modern brains – so we become addicted to the ‘unexpected reward’ of the next encounter, episode, or email, at an ever increasing pace (Hagens, 2011; Schultz et al., 1997). Our brains require flows (feelings) that we satisfy today mostly using non-renewable stocks. In modern resource rich culture, the ‘wanting’ becomes a stronger emotion than the ‘having’.Overview

    3.3. Cognitive biases
    We didn’t evolve to have a veridical view of our world (Mark et al.,
    2010). We think in words and images disconnected from physical reality. This imagined reality commonly seems more real than science, logic and common sense. Beliefs that arise from this virtual interface become religion, nationalism, or quixotic goals such as terraforming Mars (Harari, 2018). For most of history, we maintained groups by sharing social myths like these. Failure to believe those myths led to ostracism and death. Beliefs usually precede the reasons we use to explain them, and thus are far more powerful than facts (Gazzaniga, 2012).

    Psychologists have identified hundreds of cognitive biases whereby
    common human behaviors depart from economic rationality. These
    include: motivated reasoning, groupthink, authority bias, bystander
    effect, etc. Rationality is from a newer part of our brain that is still
    dominated by the more primitive, intuitive, and emotional brain
    structures of the limbic system. Modern economics assumes the rational brain is in charge, but it’s not. Combined with our tribal, in-group nature, it’s understandable that fake news works, and that people resist uncomfortable notions involving limits to growth, energy descent, and climate change. Evolution selects for fitness, not truth (Hoffman, 2019).

    We typically only value truth if it rewards us in the short term. Rationality is the exception, not the rule.

    3.4. Time bias (steep discount rates)
    For good evolutionary reasons (short life spans, risk of food expropriation, unstable environment, etc.) we disproportionately care
    about the present more than the future, measured by economists via a
    ‘discount rate’(Hagens and Kunz, 2010). The steeper the discount rate,
    the more the person is ‘addicted to the present.’ (Laibson et al., 2007).
    Drug users and drinkers, risk takers, people with low I.Q. scores, people who have heavy cognitive workloads, and men (vs. women) tend to more steeply discount events or issues in the future (Chabris et al., 2010).

    Unfortunately, most of our modern challenges are ‘in the future’.
    Recognition that the future exists and that we are part of it springs from a relatively new brain structure, the neocortex. It has no direct connection to deep-brain motivational centers that communicate urgency. When asked to plan a snack for next week between chocolate or fruit, people chose fruit 75% of the time. When choosing a snack for today, 70% select chocolate. When choosing a movie to watch next week 63% choose an educational documentary but when choosing a film for tonight 66% pick a comedy or sci-fi (Read et al., 1999). We have great intentions for the future, until the future becomes today. Our neocortex can imagine them, but we are emotionally blind to long-term issues like climate change or energy depletion. Emotionally, the future isn’t real.

    3.5. Cooperation and group behavior Group behavior has shaped us as much as individual behavior (Wilson and Wilson, 2008). Humans are strongly ‘groupish’ (Haidt, 2013), and before agriculture were aggressively egalitarian (Pennisi, 2014 Boehm, 1993). Those historic tribes that could act as a cohesive unit facing a common threat outcompeted tribes without such social cohesion. Because of this, today we easily and quickly form ingroups and outgroups and
    behave favorably and antagonistically towards them respectively. We are also primed to cooperate with our in-group whether that is a small
    business, large corporation, or even a nation-state – to obtain monetary (or in earlier times, physical) surplus. Me over Us, Us over Them.

    3.6. Cultural evolution, Ultrasociality and the Superorganism
    “What took place in the early 1500s was truly exceptional, something
    that had never happened before and never will again. Two cultural experiments, running in isolation for 15,000 years or more, at last came face to face. Amazingly, after all that time, each could recognize the other’s institutions. When Cortés landed in Mexico he found roads, canals, cities, palaces, schools, law courts, markets, irrigation works, kings, priests, temples, peasants, artisans, armies, astronomers, merchants, sports, theatre, art, music, and books. High civilization, differing in detail but alike in essentials, had evolved independently on both sides of the earth.” Ronald Wright, A
    Short History of Progress (2004, pp50-51)

    “Ultrasociality refers to the most social of animal organizations, with full time division of labor, specialists who gather no food but are fed by others, effective sharing of information about sources of food and danger, self-sacrificial effort in collective defense.” (Campbell, 1974; Gowdy and Krall, 2013).

    Humans are among a small handful of species that are extremely
    social. Phenotypically we are primates, but behaviorally we’re more
    akin to the social insects (Haidt, 2013). Our ultrasociality allows us to
    function at much larger scales than as individuals. At the largest scales, cultural evolution occurs far more rapidly than genetic evolution (Richerson and Boyd, 2005). Via the cultural evolution that began with agriculture, humans have evolved into a globally interconnected civilization, ‘outcompeting’ other human economic models along the way to becoming a defacto ‘superorganism’ (Hölldobler and Wilson, 2008).

    A superorganism can be defined as “a collection of agents which can act in concert to produce phenomena governed by the collective”(Kelly, 1994). Via cooperation (and coordination), fitness transfers from lower levels to higher levels of organization (Michod and Nedelcu, 2003). The needs of this higher-level entity (today for humans; the global economy) mold the behavior, organization and functions of lower-level entities (individual human behavior) (Kesebir, 2011). Human behavior is thus constrained and modified by ‘downward causation’ from the higher level of organization present in society (Campbell, 1974).

    All the ‘irrationalities’ previously outlined have kept our species
    flourishing for 300,000 years. What has changed is not ‘us’ but rather
    the economic organization of our societies in tandem with technology,
    scale and impact. Since the Neolithic, human society has organized
    around growth of surplus, initially measured physically e.g. grain, now measured by digital claims on physical surplus, (or money) (Gowdy and Krall, 2014). Positive human attributes like cooperation have been coopted to become coordination towards surplus production. Increasingly, the “purpose” of a modern human in the ultrasocial global economy is to contribute to surplus for the market (e.g. the economic value of a human life based on discounted lifetime income, the marginal productivity theory of labor value, etc.) (Gowdy 2019, in press).

    3.7. Human behavior – summary
    Our behavioral repertoire is wide, yet informed, and constrained by
    our neurological heritage and the higher level of organization exhibited by our economic system. We are born with heritable modules prepared to react to context in predictable ways. “Who we are” as a species is highly relevant to issues of ecological overshoot, sustainability and our related cultural responses.





Unpacking Extinction Rebellion — Part I: Net-zero Emissions

17 09 2019

Kim Hill

Sep 13 · Originally published by Medium, a very important article needed to be read very widely……..

The Extinction Rebellion (XR) movement has taken off around the world, with millions of people taking to the streets to demand that governments take action on climate change and the broader ecological crisis. The scale of the movement means it has the potential to have an enormous impact on the course of history, by bringing about massive changes to the structure of our societies and economic systems.

The exact nature of the demanded action is not made clear, and warrants a close examination. There is a long history of powerful government and corporate interests throwing their support behind social movements, only to redirect the course of action to suit their own ends, and Extinction Rebellion is no exception.

With the entirety of life on this planet at stake, any course of action needs to be considered extremely carefully. Actions have consequences, and at this late stage, one mis-step can be catastrophic. The feeling that these issues have been discussed long enough and it is now time for immediate action is understandable. However, without clear goals and a plan on how to achieve them, the actions taken are likely to do more harm than good.

Extinction and climate change are among the many disastrous effects of an industrial society. While the desire to take action to stop the extinction of the natural world is admirable, rebelling against the effects without directly confronting the economic and political systems that are the root cause is like treating the symptoms of an illness without investigating or diagnosing it first. It won’t work. Addressing only one aspect of the global system, without taking into account the interconnected industries and governance structures, will only lead to worse problems.

Demand 2: net-zero emissions

The rebellion’s goals are expressed in three demands, under the headings Tell the Truth, Act Now and Beyond Politics. I’m starting with the second demand because net-zero is the core goal of the rebellion, and the one that will have enormous political, economic and social impact.

What does net-zero emissions mean? In the words of Catherine Abreau, executive director of the Climate Action Network: “In short, it means the amount of emissions being put into the atmosphere is equal to the amount being captured.” The term carbon-neutral is interchangeable with net-zero.

Net-zero emissions is Not a Thing. There is no way to un-burn fossil fuels. This demand is not for the extraction and burning to stop, but for the oil and gas industry to continue, while powering some non-existent technology that makes it all okay. XR doesn’t specify how they plan to reach the goal.

Proponents of net-zero emissions advocate for the trading of carbon offsets, so industries can pay to have their emissions captured elsewhere, without reducing any on their part. This approach creates a whole new industry of selling carbon credits. Wind turbines, hydro-electric dams, biofuels, solar panels, energy efficiency projects, and carbon capture are commonly traded carbon offsets. None of these actually reduce carbon emissions in practice, and are themselves contributing to greenhouse gas emissions, so make the problem worse. Using this approach, a supposedly carbon-neutral economy leads to increased extraction and burning, and generates massive profits for corporations in the process. Head of environmental markets at Barclays Capital, Louis Redshaw, predicted in 2007 “carbon will be the world’s biggest commodity market, and it could become the world’s biggest market overall.”

The demand for net-zero emissions has been echoed by a group of more than 100 companies and lobby groups, who say in a letter to the UK government: “We see the threat that climate change poses to our businesses and to our investments, as well as the significant economic opportunities that come with being an early mover in the development of new low-carbon goods and services.” Included in this group are Shell, Nestle and Unilever. This is the same Shell that has caused thousands of oil spills and toxic leaks in Nigeria and around the world, executed protesters, owns 60 per cent of the Athabasca oil sands project in Alberta, and intends to continue extracting oil long into the future; the same Nestle that profits from contaminated water supplies by selling bottled water, while depleting the world’s aquifers; the same Unilever that is responsible for clearing rainforests for palm oil and paper, dumping tonnes of mercury in India, and making billions by marketing plastic-wrapped junk food and unnecessary consumer products to the world’s poorest people. All these companies advocate for free trade and privatization of the commons, and exploit workers and lax environmental laws in the third world. As their letter says, their motivation is to profit from the crisis, not to stop the destruction they are causing.

These are XR’s allies in the call for net-zero emissions.

The nuclear industry also sees the net-zero target as a cause for celebration, and even fracking is considered compatible with the goal.

Net-zero emissions in practice

Let’s look at some of the proposed approaches to achieve net-zero in more detail.

Renewable energy doesn’t reduce the amount of energy being generated by fossil fuels, and doesn’t do anything to reduce atmospheric carbon. Wind turbines and solar panels are made of metals, which are mined using fossil fuels. Any attempt to transition to 100% renewables would require more of some rare earth metals than exist on the planet, and rare earth mining is mostly done illegally in ecologically sensitive areas in China. There are plans to mine the deep sea to extract the minerals needed for solar panels, wind turbines and electric car batteries. Mining causes massive destruction and pollution of forests and rivers, leading to increased rates of extinction and climate change. And huge profits for mining and energy companies, who can claim government subsidies for powering the new climate economy. The amount of fossil fuels needed to power the mines, manufacturing, infrastructure and maintenance of renewables makes the goal of transitioning to clean energy completely meaningless. Wind and solar ‘farms’ are installed on land taken from actual farms, as well as deserts and forests. And the energy generated is not used to protect endangered species, but to power the industries that are driving us all extinct. Not a solution. Not even close. In the net-zero logic of offset trading, renewables are presented as not an alternative to fossil fuel extraction, but instead a way to buy a pass to burn even more oil. That’s a double shot of epic fail for renewables.

Improving efficiency of industrial processes leads to an increase in the amount of energy consumed, not a decrease, as more can be produced with the available energy, and more energy is made available for other uses. The industries that are converting the living world into disposable crap need to be stopped, not given money to destroy the planet more efficiently.

Reforestation would be a great way to start repairing the damage done to the world, but instead is being used to expand the timber industry, which uses terms like ‘forest carbon markets’ and ‘net-zero deforestation’ to legitimize destroying old-growth forests, evicting their inhabitants, and replacing them with plantations. Those seeking to profit from reforestation are promoting genetically engineered, pesticide-dependent monocrop plantations, to be planted by drones, and are anticipating an increase in demand for wood products in the new ‘bioeconomy’. Twelve million hectares of tropical rainforest were cleared in 2018, the equivalent of 30 football fields a minute. Land clearing at this rate has been going on for decades, with no sign of stopping. No carbon offsets or emissions trading can have any effect while forest destruction continues. And making an effort to repair past damage does not make it okay to continue causing harm long into the future. A necessary condition of regenerating the land is that all destructive activity needs to stop.

Carbon capture and storage (CCS) is promoted as a way to extract carbon dioxide from industrial emissions, and bury it deep underground. Large amounts of energy and fresh water are required to do this, and pollutants are released into the atmosphere in the process. The purpose of currently-operational carbon capture installations is not to store the carbon dioxide, but to use it in a process called Enhanced Oil Recovery (EOR), which involves injecting CO2 into near-depleted oil fields, to extract more fossil fuels than would otherwise be accessible. And with carbon trading, the business of extracting oil becomes more profitable, as it can sell offset credits. Again, the proposed solution leads to more fossil fuel use, not less. Stored carbon dioxide is highly likely to leak out into the atmosphere, causing earthquakes and asphyxiating any nearby living beings. This headline says all you need to know: “Best Carbon Capture Facility In World Emits 25 Times More CO2 Than Sequestered”. Carbon capture for underground storage is neither technically nor commercially viable, as it is risky and there is no financial incentive to store the carbon dioxide, so requires government investment and subsidies. And the subsidies lead to coal and gas becoming more financially viable, thus expanding the industry.

Bio-energy with carbon capture and storage (BECCS) is a psychopathic scheme to clear forests, and take over agricultural land to grow genetically modified fuel crops, burn the trees and crops as an energy source, and then bury the carbon dioxide underground (where it’s used to expand oil and gas production). It would require an amount of land almost the size of Australia, or up to 80% of current global cropland, masses of chemical fertilizers (made from fossil fuels), and lead to soil degradation (leading to more emissions), food shortages, water shortages, land theft, massive increase in the rate of extinction, and I can’t keep researching these effects it’s making me feel ill. Proponents of BECCS (i.e. fossil fuel companies) acknowledge that meeting the targets will require “three times the world’s total cereal production, twice the annual world use of water for agriculture, and twenty times the annual use of nutrients.” Of course this will mostly take place on land stolen from the poor, in Africa, South America and Asia. And the energy generated used to make more fighter jets, Hollywood movies, pointless gadgets and urban sprawl. Burning of forests for fuel is already happening in the US and UK, all in the name of clean energy. Attaching carbon capture to bioenergy means that 30% more trees or crops need to be burned to power the CCS facility, to sequester the emissions caused by burning them. And again, it’s an offset, so sold as a justification to keep the fossil fuel industry in business. The Intergovernmental Panel on Climate Change (in the three most likely of its four scenarios) recommends implementing BECCS on a large scale to keep warming below 2°C. Anyone who thinks this is a good idea can go burn in hell, where they can be put to good use as an energy source.

This is what a decarbonised economy looks like in practice. An enormous increase in fossil fuel extraction, land clearing, mining (up to nine times as much as current levels), pollution, resource wars, exploitation, and extinction. All the money XR is demanding that governments invest in decarbonisation is going straight to the oil, gas, coal and mining companies, to expand their industries and add to their profits. The Centre for International Environmental Law, in the report Fuel to the Fire, states “Overall, the US government has been funding CCS research since 1997, with over $5billion being appropriated since 2010.” Fossil fuel companies have been advocating net-zero for some years, as it is seen as a way to save a failing coal industry, and increase demand for oil and gas, because solar, wind, biofuels and carbon capture technologies are all dependent on fossil fuels for their operation.

Anyone claiming that a carbon-neutral economy is possible is not telling the truth. All of these strategies emit more greenhouse gases than they capture. The second demand directly contradicts the first.

These approaches are used to hide the problem, and dump the consequences on someone else: the poor, nonhuman life, the third world, and future generations, all in the service of profits in the present. The goal here is not to maintain a stable climate, or to protect endangered species, but to make money out of pretending to care.

Green growth, net-zero emissions and the Green New Deal (which explicitly states in its report that the purpose is to stimulate the economy, which includes plans to extract “remaining fossil fuel with carbon capture”) are fantasy stories sold to us by energy companies, a shiny advertisement sucking us in with their claims to make life better. In reality the product is useless, and draws us collectively into a debt that we’re already paying for by being killed off at a rate of 200 species a day. With exponential economic growth (a.k.a. exponential climate action) the rate of extinction will also grow exponentially. And the money to pay for it all comes directly from working people, in the form of pension funds, carbon taxes, and climate emergency levies.

The transition to net-zero

There are plans for thousands of carbon capture facilities to be built in the coming years, all requiring roads, pipelines, powerlines, shipping, land clearing, water extraction, pollution, noise, and the undermining of local economies for corporate profits, all for the purpose of extracting more oil. And all with the full support of the rebellion.



To get a sense of the scale of this economic transformation, a billion seconds is almost 32 years. If you were to line up a billion cars and run over them (or run them over) at a rate of one car per second, you’d be running for 32 years non-stop. That’s enough cars to stretch 100 times around the equator. You’d probably need to turn entire continents into a mine site to extract all the minerals required to make them. And even that wouldn’t be enough, as some of the rare earth metals required for batteries don’t exist in sufficient quantities. If all these cars are powered by renewables, you do the math on how much mining would be needed to make all the wind turbines and solar panels. Maybe several more continents. And then a few more covered in panels, turbines, powerlines, substations. And a few more to extract all the oil needed to power the mining and road building. Which all leaves no space for any life. And all for what? So we can spend our lives stuck in traffic? It’s ridiculous and apocalyptic, yet this is what the net-zero lobbyists, with the US and UK governments, and the European Union, have already begun implementing.

Shell’s thought leadership and government advisory schemes appear to be going great, with the US senate passing a number of bills in recent months to increase subsidies for oil companies using carbon capture, and a few more, to subsidise wind, solar, nuclear, coal, gas, research and development, and even more carbon capture, are scheduled to pass in the coming months.

The UK government, with guidance from the creepy-sounding nonprofit Energy and Climate Intelligence Unit, is implementing a transition to net-zero, involving carbon capture, nuclear, bioenergy, hydrogen, ammonia, wind, solar, oil, gas, electric cars, smart grids, offset trading, manufacturing and the obligatory economic growth. And offering ‘climate finance’ to third world countries, to impose this industrial horror on the entire planet. All led by their advisors from the fossil fuel and finance industries, with input from the CCS, oil, gas, bioenergy, renewables, chemical, manufacturing, hydrogen, nuclear, airline, automotive, mining, and agriculture industries.

The European Union, advised by the corporate-funded European Climate Foundation, are implementing a similar plan, aiming to remain competitive with the rest of the industrialised world. The EU intends to commit 25% of its budget to implementing so-called climate mitigation strategies. Other industrialised countries also have plans to transition to a decarbonised economy.

Net-zero emissions is also the goal of the councils that have declared a climate emergency, which now number close to 1000, covering more than 200 million citizens.

This is the plan the rebellion is uniting behind to demand from the world’s governments.





It’s even worse than we are officially told….

12 10 2018

This is a guest post from my Scottish friend Jacqueline Fletcher who has taught in universities all over Europe, and even sent me a wwoofer from Finland some years ago….. she’s a permie and environmental activist beyond the call of duty. 

jacquelineYesterday evening I attended a meeting with a couple of researchers involved with IPCC reports. Dr Katarzyna Tokarska from the GeoSciences Institute at Edinburgh University and psychologist (and Scottish government advisor on mental health) Dr Nadine Andrews from Lancaster University. Tokarska explained the science, how much CO2 the atmosphere can take if we are to stay within the 1.5 degrees warming (X), how much is already in the atmosphere Y, and therefore X minus Y will tell us how much we can still emit before we lock ourselves ino the 1.5 degrees warming point (Z) and upwards towards 2 degrees.

The bad news is that in a BAU scenario, given the amount of CO2 emitted annually, globally, we will emit that amount (Z) in just three years.

We have to do something NOW. So what is on offer by way of suggestions about what to do?

A digression: In 2015 I was living in Paris and a member of the ‘social movement’ and degrowth group ATTAC. Because ATTAC was also one of the 130 or so groups that constituted CoalitionClimate21, I joined up with that too, to organise protests around the COP21 but also to collectively present a document to which all the global NGOs subscribed to the COP with our own suggestions for the transition to a low carbon society. Of course, there was a good deal more than protest; there were workshops, conferences, tribunals, a march was banned and became a human chain, smaller creative interventions and debates around energy etc and 2 colourful demos on the final day.

From the COP21 I took away a depressingly deep sense of the insurmountability of the crisis, not only were governments still trying to provide solutions that would best suit their corporations and chums in the banks, not only were the scientists watering down their reports to get governments on board, but equally the NGOs were so obsessed with fossil fuels that the Extinction Event which is wiping out the life that maintains Earth’s Biosphere was being ignored. Why is this?

I was well aware nothing significant would come out of the Paris Agreement. It was heralded as a triumph but it was a really only a triumph of PR.

Yesterday, I went to the evening organised by Transition Edinburgh feeling a bit more upbeat. This new IPCC report is very clear about how close to the edge we are. Surely, I thought, now the urgency is so obvious, something would be done, we’d get mobilsed, pressurise our government, take personal measures to change our lifestyles. But after the first speaker already, I felt severely depressed by the type of solutions on offer.

The first speaker was seemingly a proponent of BECCS (Biofuel Energy with Carbon Capture and Storage, which Pr Kevin Anderson literally claims is BS) or maybe these were the only statistics she had because the IPCC focuses on technological solutions. For the uninitiated, this entails growing more cash crop forests, burning them for ‘biofuels’, capturing the CO2 and storing it in holes in the ground, like old mines and oil reservoirs, and compressed into rock with technology that is not yet in existence (at scale) In other words yet another linear system, in which a resource is used, waste is produced, the waste is hidden out of sight…a bit like plastic (irony intended). She showed that this was more efficient for storing carbon than afforestation (basically, just not chopping down existing trees). Already this comparison carried a signicant slant.

No mention of the statistics for carbon sequestration through regenerative agriculture using biochar, no dig/till and continuous groundcover and/or holistic grazing. There are plenty of statistics out there, even reports from the UN Rapporteurs on the Right to Food, Food Security etc, and the FAO, the IPES-Food, UNCTAD on agroecology as well as statistics that can be gleaned from the growing number of small farmers doing Regen Ag. Why does agriculture never get into the mindset of people, scientists, governments etc dealing with the CO2 crisis?

I’m going to make my own comparison between BECCS and Regen Ag.

BECCS is a linear system with a waste product that is not organically disposable or recyclable. Is its use of resources really sustainable? It uses land then becomes unavailable for any other purpose and is eroded by the monoculture forestry, and which is also irreparably damaging for ecosystems.

Reg Ag on the other hand uses CO2 to grow soil, to replace the eroded soil that is yet another of our pressing crises (about 40% of the planet’s soil is already eroded). By sequestering CO2 in the living soil, the soil not only grows, but it produces healthy food (without pesticides) by maintaining a healthy soil microbiome. It is the microbial life in the soil that releases nutrients from the minerals to pass to plants and therefore creates nutrient-rich food (as opposed to the crap that comes from an agricultural system that kills the soil microbiome). It produces biomass in the soil that stores water to combat droughts and to allow water to filter naturally through to replenish the aquifers. Regen agroforestry and edible food forests also maintain healthy habitats and forage for wildlife with perennials, trees that also sequester carbon etc. It is a solution that also nurtures the ecosystems that are necessary too for our human survival. There is no waste product, everything is naturally and productively recyclable; biomass can even produce energy through biodigesting and still be returned to the soil. There is no wasteful use of land. BECCS takes land away from agriculture, carbon sequestration through regen ag integrates it.

Of course, the BECCS solution proposed isn’t about farming, it’s about energy. And what governments and corporations want to hear is something that produces energy, to continue to fuel an industrial, consumer-capitalist society at any cost for the sake of growth and profit. And if this remains the current thinking in political, commercial and financial spheres of influence, the old paradigm, the old mentality, then frankly, we really are f***ed.

Most of the 278 people who signed up for the speakers and discussion yesterday evening were young, students from Edinburgh University, from all over the world, and in reality we need to act NOW to save the world for them, and not to save a system of industrial production predicated on a mentality that is fundamentally antagonistic to all life on this planet, human and non-human.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

If the latest warnings contained in Monday’s report by the Intergovernmental Panel on Climate Change (IPCC)—which included pronouncements that the world has less than twelve years to drastically alter course to avoid the worst impacts of human-caused global warming and that nothing less than keeping all fossil fuels in the ground is the solution to avoid future calamities—have you at all frightened or despondent, experts responding to the report have a potentially unwelcome message for your already over-burdened heart and mind: It’s very likely even worse than you’re being told.

“The IPCC understates a key risk: that self-reinforcing feedback loops could push the climate system into chaos before we have time to tame our energy system.” 
—Mario Molina, Nobel Laureate

After the report’s publication there were headlines like: “We have 12 years to act on climate change before the world as we know it is lost. How much more urgent can it get?” and “Science pronounces its verdict: World to be doomed at 2°C, less dangerous at 1.5°C” and “A major new climate report slams the door on wishful thinking.”

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~`

Just two years ago, amid global fanfare, the Paris climate accords were signed — initiating what seemed, for a brief moment, like the beginning of a planet-saving movement. But almost immediately, the international goal it established of limiting global warming to two degrees Celsius began to seem, to many of the world’s most vulnerable, dramatically inadequate; the Marshall Islands’ representative gave it a blunter name, calling two degrees of warming “genocide.”

The alarming new report you may have read about this week from the UN’s Intergovernmental Panel on Climate Change — which examines just how much better 1.5 degrees of warming would be than 2 — echoes the charge. “Amplifies” may be the better term. Hundreds of millions of lives are at stake, the report declares, should the world warm more than 1.5 degrees Celsius, which it will do as soon as 2040, if current trends continue. Nearly all coral reefs would die out, wildfires and heat waves would sweep across the planet annually, and the interplay between drought and flooding and temperature would mean that the world’s food supply would become dramatically less secure. Avoiding that scale of suffering, the report says, requires such a thorough transformation of the world’s economy, agriculture, and culture that “there is no documented historical precedent.” The New York Times declared that the report showed a “strong risk” of climate crisis in the coming decades; in Grist, Eric Holthaus wrote that“civilization is at stake.”

If you are alarmed by those sentences, you should be — they are horrifying. But it is, actually, worse than that — considerably worse. That is because the new report’s worst-case scenario is, actually, a best case. In fact, it is a beyond-best-case scenario. What has been called a genocidal level of warming is already our inevitable future. The question is how much worse than that it will get.





Solving secondary problems first

10 08 2018

Can you run a self-driving car on a desert island?

Of course not: There are no roads; and there is no fuel for the car.

Why do I mention this?  Because the received narrative around climate change and so-called “peak oil demand” is that new technologies like electric self-driving cars are going to ride to our rescue in the near future.  This is a nice fantasy; but I would draw your attention to the fact that while we still have roads, along with much of our infrastructure they are falling apart through neglect.  Without the enabling infrastructure, the proposed new technologies are going nowhere.

Energy, meanwhile, is a far greater problem.  Globally (remember most of the food we eat and the goods we buy are imported) 86 percent of our energy comes from fossil fuels – down just one percent from 1995.  Renewable energy accounts for nearly 10 percent; but most of this is from hydroelectric dams and wood burning.  The modern renewables – solar, wind, geothermal, wave, tidal, and ocean energy – that so many people imagine are going to save the day account for just 1.5 percent of the energy we use.

Modern renewables are a kind of Schrodinger’s energy because they are simultaneously replacements for (some of) the fossil fuel that we are currently using and the additional energy to power all of the new technologies that are going to save the day.  And rather like the benighted feline in Schrodinger’s experiment, so long as nobody actually looks at the evidence, they can continue to fulfil both roles.

Given the potentially catastrophic consequences of not having sufficient energy to continue growing our economy, it is psychologically discomforting even to ask why energy costs are spiralling upward around the world, and why formerly energy independent countries are resorting to difficult, expensive and environmentally toxic fuel sources like hydraulically fractured shale or strip mined bitumen sands.  This, perhaps, explains why so many people focus their attention on solving second order problems – something psychologists refer to as a “displacement activity.”

An example of this appeared in today’s news in the shape of an Australian attempt to revive hydrogen-powered cars.  In theory, hydrogen (which only exists in compounds in nature) is superior to (far less abundant) lithium ion batteries as a store of energy to power electric vehicles.  Crucially, unlike battery-powered electric vehicles, hydrogen cell electric vehicles do not need to be recharged, but can be refuelled in roughly the same time as it takes to refuel a petroleum vehicle.  And, of course, hydrogen vehicles do not require tax payers and energy consumers to foot the bill for the upgrade of the electricity grid needed for battery-powered cars.

hydrogen car

The drawback with hydrogen is that it is difficult to store.  Because hydrogen is the smallest atom, it can gradually corrode and seep out of any container; especially if it is compressed into liquid form.  It is this problem that the Australian researchers appear to have solved.  Using a new technology, they have been able to store hydrogen as ammonia, and then convert it back to hydrogen to fuel their cars.  As Lexy Hamilton-Smith at ABC News reports:

“For the past decade, researchers have worked on producing ultra-high purity hydrogen using a unique membrane technology.

“The membrane breakthrough will allow hydrogen to be safely transported and used as a mass production energy source.”

Unlike batteries, which have only succeeded imperfectly at replacing lightweight vehicles, hydrogen is already used around the world to power much heavier vehicles:

“Hydrogen powered vehicles, including buses, trucks, trains, forklifts as well as passenger cars are being manufactured by leading automotive companies and deployed worldwide as part of their efforts to decarbonise the transport sector.”

Step back for a moment and you will see that this is, indeed, a displacement activity.  Insofar as humans are currently imagining a far more electrified world, then there is a competition to be won on the best form of energy storage.  And there are good reasons for believing that hydrogen is a more versatile battery than lithium ion (which also has a tendency to burst into flames if not stored properly).  However, this competition is predicated on the highly unlikely possibility of our having a large volume of excess energy in future.

Currently, almost all of the hydrogen we use is obtained by chemically separating it out of natural gas.  Using electrolysis to separate hydrogen out of water is simply too expensive by comparison.  But gas reserves are shrinking (which is why fracking is being promoted) and are already required for agriculture, chemicals, for heating and cooking, and for generating much of the electricity that used to come from coal.  Given the Herculean efforts that were required to install the modern renewables that generate just 1.5 percent of our energy, the idea that these are about to deliver enough excess capacity to allow the production of hydrogen from water is fanciful at best.

And that’s the problem.  Until we can secure a growing energy supply both hydrogen and lithium ion cars are going to end up on a global desert island.  One where there is insufficient power and unrepaired infrastructure.  To make matters worse, climate change dictates that the additional power we need in future cannot come from the fuels that currently provide us with 86 percent of our energy.  And, of course, whatever we end up substituting for fossil fuels will have to provide sufficiently cheap energy that the population doesn’t rise up and produce something a great deal worse than Brexit or Donald Trump.

UPDATE

It finally seems even renewable energy pundits are starting to see the light regarding Hydrogen…..  Renew Economy has just published an article titled Beware fossil-gas suppliers bearing hydrogen gifts

Recently there has been a flood of announcements about renewable hydrogen. Some seem fully legitimate and exciting. But in some others, are we seeing a red-herring not unlike clean-coal? Will the public-relations power of renewable hydrogen be harnessed by fossil-fuel interests only to maintain business-as-usual?

In the Aeneid, Virgil had a warning for the Trojans. Something along the lines of “you better have a squiz at this big wooden horse and see what’s up”.  So let’s take a quick break from “electrifying everything” and look at what’s up with the green hydrogen being spruiked across Australia by fossil-gas suppliers.

In Western Australia, the fossil oil and gas company Woodside says “Green hydrogen is the holy grail and if people want green hydrogen, we’re happy to deliver.” But then Woodside goes on to remind us “currently, the best way to export hydrogen is via LNG” (liquefied fossil gas).

ATCO, the Canadian owner of Western Australia’s fossil gas distribution networks will use renewable hydrogen in the quest of “maximising existing network infrastructure”.

(Note: After years of experience, we now know that Australian utility companies seeking to “maximise energy network infrastructure” whether it’s needed or not, is code for maximising utility company returns while driving up consumer energy costs.)

More at the link……..





Catastrophic Agriculture

24 06 2018

Complete and slightly edited interview footage with Richard Manning in 2005 (which explains why he keeps talking about world population of 6 billion…), in preparation for the feature-length documentary What a Way to Go: Life at the End of Empire, from Timothy S. Bennett and Sally Erickson.

Nearly an hour long, so make sure you get a cup of your favourite poison before starting….





Turning marginal land into fertile soil

20 01 2018

Since having my soil epiphany brought on from doing the NRM Small Farm Planning Course, I have been arguing with people who keep banging on about how we have to abandon meat eating to ‘save the planet’….. I disagree.  It’s just another silver bullet, as far as I am concerned, and they simply don’t exist…….  sure, most people might eat too much meat, but for anyone to tell me that marginal land can be turned into crop land, and easily at that, just riles me up……  they obviously have no idea what they’re talking about, nor do they have any experience at doing this.

As I have said before, it took me ten years at my last project to convert that marginal land into something capable of feeding two to three people. Making compost by hand, even when using your own humanure, takes years. And while you are waiting for the soil to improve, you have to buy food from some unsustainable source or other….

From where I sit, we probably have a couple of years of relatively ‘normal’ times left.

IMG_20180107_162322.jpg

Matt smoothing out the terrain

2020 is when things will get suddenly worse, never to improve again. Even if I’m out by as much as five years, it makes no difference at all. The scale of the problem we face is totally out of control.

My current wwoofer, a vegetarian Frenchman who eats non stop (I liken it to livestock eating all day long because grass is useless food…) believes likewise. Even though I am teaching him the hard way how much work is involved!

IMG_20180119_083818

Unloading another tonne and a quarter of compost

When Glenda was still here, I took her to Hobart to pick up a load of compost (about 1250kg, they are very generous cubic metres down there!) and on the way back, I suspect, the thermostat started playing up making ute I overheat on the big hills between here and there….  I could not even get my market garden close to finished without fossil fuels. Certainly in the time constraint I am feeling every day, as I get older, and 2020 gets closer as the clock ticks away….

I even had to get my neighbour to come back with the excavator to level off the soil we moved at the last Permablitz last year. There’s no way my back would have handled doing it by hand with a shovel. As I keep saying……  the power of fossil fuels.

IMG_20180119_091655.jpg

Adding sheep manure

The soil on the second half of the garden, without the advantage of all that black stuff full of decomposed cow manure we scraped off the drive 18 months ago, was even more marginal than what I started with on the first half. I’ll have to get another four loads – five tonnes – to finish the middle section that still needs doing. Plus I will have to drive god knows how far to get another tonne of Calcium rock to amend the pH of the soil to something veggies will grow in…….

To be sure, the feeding of grain to livestock is pure madness and only done to maximise

IMG_20180119_100209.jpg

Tilling it all in with chickens and the rotary hoe

profits. The meat derived therefrom is not even healthy, as it’s full of Omega 6 fatty acids that cause chronic inflamation.  Is it any wonder so many people are sick with diets like that which all the shops supply to unsuspecting consumers……

George Monbiot’s latest effort is what got me started on this – even though I feel the need to chronicle the improvements happening on the Fanny farm. Monbiot writes

When we feed animals on crops, we greatly reduce the number of people that an area of cropland can support. This is because, on average, around two-thirds of the food value of the crops fed to livestock is lost in conversion from plant to animal.

Of course he’s right….  we should not be feeding crops to animals that are perfectly happy to eat grass! The problem is industrial agriculture, not meat eating. And he’s wrong calling his article “Eating the Earth”, because what we are in fact doing, is eating fossil fuels, and that’s not even close to the same predicament.

And finally, here’s a short video of what two of my neighbours have achieved after attending the above mentioned Small Farm Planing course.





A response to Changing the Conversation

8 12 2017

Ed. Note: Richard Smith’s article, Climate Crisis and Managed Deindustrialization: Debating Alternatives to Ecological Collapse, which Saral is responding to this post, can be found on Resilience.org here, or here on DTM where I republished it. My only gripe with Saral’s essay is the total lack of mention of debt abolition…..  canceling debt is the only way forward when we start talking about what to do about all the job losses.

By Saral Sarkar, originally published by Saral Sarkar blog

In his article,1 Richard calls upon his readers to “change the conversation”. He asks, “What are your thoughts?” He says, if we don’t “come up with a viable alternative, our goose is cooked.” I fully agree. So I join the conversation, in order to improve it.

Let me first say I appreciate Richard’s article very much. It is very useful, indeed necessary, to also present one’s cause in a short article – for those who are interested but, for whatever reason, cannot read a whole book. Richard has ably presented the eco-socialist case against both capitalism and “green” capitalism.

But the alternative Richard has come up with is deficient in one very important respect, namely in respect of viability. Allow me to present here my comradely criticisms. It will be short.

Is only Capitalism the Problem?

(1) Richard writes, “Capitalism, not population is the main driver of planetary ecological collapse … .”. It sounds like an echo of statements from old-Marxist-socialism. It is not serious. Is Richard telling us that, while we are fighting a long-drawn-out battle against capitalism in order to overcome it, we can allow population to continuously grow without risking any further destruction of the environment? Should we then think that a world population of ten billion by 2050 would not be any problem?

I would agree if Richard would say that capitalism is, because of its growth compulsion, one of the main drivers of ecological collapse. But anybody who has learnt even a little about ecology knows that in any particular eco-region, exponential growth of any one species leads to collapse of its ecological balance. If we now think of the planet Earth as one whole eco-region and consider all the scientific reports on rapid bio-diversity loss and rapid dwindling of the numbers of larger animals, then we cannot but correlate these facts with the exponential growth of our own species, homo sapiens sapiens, the latter being the cause of the former two.

No doubt, capitalism – together with the development of technologies, especially agricultural and medical technologies – has largely enabled the huge growth of human numbers in the last two hundred years. But human population growth has been occurring even in pre-capitalist and pre-medieval eras, albeit at a slower rate. Parallel to this, also environmental destruction has been occurring and growing in these eras.

It is not good to tell our readers only half the truth. The whole truth is succinctly stated in the equation:

I = P  x  A  x  T

where I stands for ecological impact (we can also call it ecological destruction), P for population, T for Technology and A for affluence. All these three factors are highly variable. Let me here also quote Paul Ehrlich, one of my teachers in political ecology. Addressing leftists, he once wrote, “Whatever [be] your cause, it is a lost cause unless we control population [growth]”. Note the phrase “whatever your cause”. Ehrlich meant to say, and I too think so, the cause may be environmental protection, saving the earth, protecting biodiversity, overcoming poverty and unemployment, women’s liberation, preventing racist and ethnic conflicts and cleansings, preventing huge unwelcome migration flows, preventing crime, fighting modern-day slavery, bringing peace in the world, creating a socialist world order etc. etc. etc., in all cases stopping population growth is a very important factor. Sure, that will in no case be enough. But that is an essential part of the solutions.

Note that in the equation cited above, there is no mention of capitalism. Instead, we find there the two factors technology and affluence. We can call (and we generally do call) the product of T x A (production of affluence by means of industrial technologies) industrialism, of which there has until now been two main varieties: the capitalist one and the planned socialist one (of the soviet type). Nothing will be gained for saving the ecological balance of the Earth if only capitalism is replaced with socialism, and ruling socialists then try to increase production at a higher rate, which they must do under the pressure of a growing population which, moreover, develops higher ambitions and aspirations, and demands all the good things that middle class Americans enjoy.

(2) Modern-day old-socialists do not deny the existence of an ecological problem. They have also developed several pseudo-solutions such as “clean” and “renewable” energies and materials, efficiency revolution, decoupling of GDP growth from resource use etc.

It’s good that Richard rejects the idea that green capitalism can save us. But why can’t it? “Because”, he writes, “companies can’t commit economic suicide to save the humans. There’s just no solution to our crisis within the framework of any conceivable capitalism.” This is good, but not enough. Because there are old-socialists (I know many in Germany) who believe that it is only individual capitalists/companies and the system capitalism that are preventing a rapid transition to 100 percent clean renewable energies and 100 percent recycling of all materials. Thanks to these possibilities, they believe, old-socialist type of industrialism, and even economic and population growth, can be reconciled with the requirements of sustainability. I don’t think that is possible, and I have also earlier elaborately explained why.2 Said briefly, “renewable energies” are neither clean nor renewable, and 100 percent recycling is impossible because the Entropy Law also applies to matter. What Richard thinks is not clear from this article of his. It is necessary to make his thoughts on this point clear.

Is Bottom-up Democracy of Any Use in the Transition Period?

(3) Richard writes, “Rational planning requires bottom-up democracy.” I do not understand the connection between the two, planning and democracy. At the most, one could say that for better planning for the villages, the planning commission should also listen to the villagers. But at the national level? Should, e.g., the inhabitants of each and every 500 souls village in the Ganges basin codetermine in a bottom up democratic planning process how the waters of the said river and its tributaries should be distributed among ca. 500 million inhabitants of the basin? If that were ever to be attempted, the result would be chaos, not planning. Moreover, how do you ensure that the villagers are capable of understanding the national interest and overcoming their particular interests? Such phrases are only illusions.

In his 6th thesis, Richard sketches a rosy, idealistic picture of a future eco-socialist society and its citizens. That may be attractive for him, me and other eco-socialists. But this future lies in distant future. First we would need a long transition period of contracting economies, and that would cause a lot of pain to millions of people spoilt by consumerism or promises of a consumerist future. We shall have to convince such people, and that would be an altogether difficult job. We should tell them the truth, namely that austerity is necessary for saving the earth. We can promise them only one thing, namely that all the pains and burdens as well as the benefits of austerity will be equitably distributed among all.

What to Do About Jobs?

(4) Richard writes: “Needless to say, retrenching and closing down such industries would mean job losses, millions of jobs from here to ChinaYet if we don’t shut down those unsustainable industries, we’re doomed.” And then he puts the question “What to do?” We can be sure that all people who wholly depend on a paid job for their livelihood, whom we must also win over, will confront us with this jobs question. Let me finish my contribution to this conversation with an answer to this question. 

There is not much use talking to ourselves, the already converted. We need to start work, immediately and all over the world, especially in those countries where poverty and unemployment is very high. We know that, generally, these countries are also those where population growth is very high. People from the rich countries cannot simply tell their people, sorry, we have to close down many factories and we cannot further invest in industrializing your countries. But the former can tell the latter that they can help them in controlling population growth. The latter will understand easily that it is an immediately effective way to reduce poverty and unemployment. A massive educative campaign will of course be necessary in addition to concrete monetary and technical help.

In the rich countries, contrary to what Richard perhaps thinks, it will not be possible to provide new equivalent jobs to replace those jobs we need to abolish. For such countries, reducing working hours and job-sharing in the short term, and, in the long term, ostracizing automation and labor-saving technologies, and using labor-intensive methods of production instead, are together the only solution. That is already known. Another thing that would be needed is to negate free trade and international competition. However, it must also be said openly that high wages and salaries cannot be earned under such circumstances. 

We eco-socialist activists must begin the work with a massive world-wide political campaign in favor of such ideas and policies.

Notes and References

1. Smith, Richard (2017) “ Climate Crisis and Managed Deindustrialization: Debating Alternatives to Ecological Collapse.”
https://forhumanliberation.blogspot.de/2017/11/2753-climate-crisis-and-managed.html
and
https://www.commondreams.org/views/2017/11/21/climate-crisis-and-managed-deindustrialization-debating-alternatives-ecological

2. My views expressed in this article have been elaborately presented in my book:
Eco-Socialism or Eco-Capitalism? – A Critical Analysis of Humanity’s Fundamental Choices (1999). London: Zed Books,  and in various articles published in my blog-site
www.eco-socialist.blogspot.com