The Bumpy Road Down, Part 3

17 01 2018

Irv Mills has now published the third episode in his “Bumpy Road Down” series. It’s gotten a lot of interest on Facebook, and I think his own blog is getting a lot of hits too, as the interest in collapse ramps up everywhere as more and more people are waking up to the fact most things are going awry in the world….

I’ve already told him I disagree with his collapse diagram. For starters, the carrying capacity line is neither straight nor flat. So much farm land, particularly in India and North America has been decimated by fossil fuled fertilisers, that re-instating them to their former organic glory will be a huge challenge that will require a long time during which a lot of people will unfortunately starve. On top of this, we have wrecked global fisheries, which were an important pre FF source of food…  My best take on this is Paul Chefruka’s diagram which I published with his article here…  It too shows a bumpy road down, and no carrying capacity limit. I think the post FF carrying capacity will be the same as the pre FF carrying capacity, only worse thanks to the ecological damage our insane use of FFs has caused. How one quatifies this, I don’t know, but I’m sure it would take a lot of research.

Anyhow, enjoy the read, and make sure you comment, I’m always interested in what you think. Leave comments at Irv’s site too….  I’m sure he’d like the feedback!



Irv Mills

In the last post in this series I talked about the next financial crash and how it may well be serious enough to spread into the non-financial sectors of the economy and effect supply chains and critical systems in ways that we did not see in the Global Financial Crisis of 2007-08. Systems that most of us depend on for the necessities of life may fail and many kollapsniks see this leading immediately and inevitably to a hard, fast and permanent crash of industrial civilization.

I disagree, seeing this as just one more bump on the road down, the cyclic pattern of crash and partial recovery that I believe will characterize the rest of the age of scarcity.

To understand why I hold this opinion, I said we need to do a couple of things:

1) take a systems dynamic approach to the events we are talking about. Specifically, we need to look at what happens when overshoot occurs in nature, in systems like the one we inhabit. Which is, after all, a subset of the ecosphere. Overshoot is a common enough phenomenon and usually works in fairly predictable ways.

2) look at the sort of things governments, communities and individuals can do to limit the damage of a financial crash and its spread to other critical systems.

Today we are going to do that.

(Note: all three of the graphs below are smoothed out, idealized and imprecise representations of the processes they illustrate. The point is to allow me to make some points visually. I hope not to get into much in the way of quibbling over minor details, of which no doubt a few are missing, inaccurate or outright wrong.)

So, first, let’s take a look at how overshoot works. Take moment or two with your favourite search engine and you will find a graph that looks something like this:

1) typical overshoot situation with constant carrying capacity

The green line shows the behaviour over time of the population of a species which finds itself initially at a level well below the carrying capacity of its environment (the dashed blue line). Because that environment provides lots of whatever the species need to grow, it does grow. This tendency to grow in response to favourable conditions seems to be an inhernet property of life. As is always the case, this is exponential growth—it starts out slowly but eventually reaches a point where it takes off and quickly exceeds the carrying capacity of the environment.

What happens then is interesting, especially since we currently find ourselves in just such a situation. You get some oscillation of the species population, above and below the carrying capacity, until it finally settles out somewhat below the carrying capacity.

First, let’s be clear that it is possible to exceed carrying capacity in the short run, at the cost of damaging the environment and reducing its capacity—overpopulation has a negative effect on that capacity. There is also some time delay built in to the effect of population growth, as newly born individuals add relatively little to the species impact on the environment compared to what they will add once they have grown up. The negative feedback and the time delay result in the oscillation shown in the graph.

Of course, the straight line representing carrying capacity would actually have some peaks and valleys, corresponding to how the environment responds to the stress of overpopulation and how it recovers when the population falls. If we idealized both the blue and green lines into something like a sine wave, we would see that the variation in the carrying capacity leads the variation in the population by about 90 degrees.

The red line, by the way, represents a fast and permanent collapse. In order for this to happen the carrying capacity has to fall all the way down to basically nothing. This can happen for a variety of reasons, but overshoot isn’t one of them, because as soon as the population falls off below the carrying capacity, the stress on the environment is relieved and it begins to recover.

There is, in fact, no such thing as a “balance of nature” and it is by no means inevitable that the oscillations damp out and the population settles down just below the carrying capacity. In many cases what we actually get is the situation in the next graph, where populations oscillate on an ongoing basis.

2) continual oscillation of predator and prey populations such as foxes and rabbits

You might think that the population of rabbits and foxes in an ecosystem would level out at steady values, but that is not in fact what is observed.

If we start at a moment when there are relatively few of each species, we see that the population of rabbits (the prey, dashed blue line) grows rapidly. It is well below the carrying capacity of the ecosystem for rabbits and there are relatively few foxes (the predators, green line). But the increasing number of rabbits make hunting easier for the foxes, and their population starts to increase too. Eventually there are enough foxes to overhunt the rabbits, resulting in a crash in the rabbit population. This is followed by a crash in the fox population, since there are no longer enough rabbits to support it. This brings us back to where we started and the cycle carries on.

The reason the cycle can carry on indefinitely is that the foxes limit the rabbit population so that it never exceeds the carrying capacity of the ecosystem for rabbits—the plants the rabbits are eating never get over grazed.

The situation for the human population of this planet is, as you might expect, more complex.

The impact (I) that the human population has on our environment is determined not just by the size of that population (P), but also by the level of affluence (A) we are living at and effectiveness of the technology (T) we are using to maintain that affluence.

This gives us the famous equation, I=PAT. Since I am going to be using the term “T” in another equation shortly, I’ll change this to I=PAD, where “D” stands for decoupling. Decoupling is the use of technology to produce affluence at a lower cost to thge environment and it is a number between 0 and 1, with 0 being the goal we would aim for, eliminating our impact altogether. In fact it is proving so difficult to get decoupling anywhere near zero that it is very unlikely to be the solution to our problems.

Carrying capacity (C) also works somewhat differently for human populations.

We can increase the size (S) of our environment by expanding into new areas of the world and habitats previously occupied by other species or by “indigenous” humans.

We can tap into forms of energy (E) beyond just food. For somewhere between two and three million years we’ve been using fire for landscaping, for cooking our food and for heating our shelters. In each case we were using the energy in burning biomass to increase the carrying capacity of our environment, increase the value of our food, and/or expand the range of environments that we can live in. For the last few hundred years we’ve been using the energy of fossil fuels to radically increase the carrying capacity of our environment in many seemingly clever ways.

Since whatever method we use to acquire energy consumes energy in the process, it’s actually the energy that is left over, available for use (the surplus energy) that’s important. This is best expressed as “Energy Returned on Energy Invested”, EROEI. This is a dimensionless number and the larger it is, the more surplus energy. When the EROEI is equal to one, the process is just breaking even and there is no point in doing it—we want a much higher EROEI.

Hunter-gatherer and pre-industrial agricultural societies managed average EROEI’s in the high single digits at best. Industrial societies based on fossil fuels in the twentieth century had EROEI’s many times that high, which made possible high levels of growth and the development and use of technologies which had previously been completely out of reach. Today the average global EROEI is around 11.

Which brings us to our use of tools and technology (T). With just Neolithic technology (fire, stone tools, weaving, tanning, pottery, boats, agriculture) we spread over the whole planet except for the Antarctic, occupying and thriving in environments very different from the ones where we evolved. Since the Renaissance, the Enlightenment and the Industrial Revolution our use of technology has exploded. And not just material technology, but financial, organizational and information technologies as well. All of which has enabled both our population and affluence to grow at heretofore unprecedented rates.

So, the carrying capacity of this planet for the human race can be represented by the equation C=SET. Clearly, I (Impact) must be less than C (carrying capacity) or we are in overshoot. And since sometime in the late 1970s we have indeed been in overshoot. Currently the level of overshoot is around 60%. That is, our impact on the environment is 1.6 times what can be sustained on an ongoing basis.

3) oscillating overshoot with declining carrying capacity

From left side of this graph to point “a” we see the long and very slow growth of the human population before the discovery of the New World. After point “a” the carrying capacity began to increase significantly as the size of our environment effectively took a large jump with the European settlement of the New World, as the use of fossil fuels greatly increased the amount of surplus energy available and as we developed numerous new technologies to use that energy. Human impact increased with the carrying capacity, as our population grew and affluence increased.

The growth of carrying capacity continued until the last quarter of the twentieth century, point “b”, when depletion of fossil fuels and reduction of their EROEI, diminishing returns on technological innovation and stress on the environment from human activities started to reduce the carrying capacity.

Human impact has continued to grow since then, and is now so far above carrying capacity that one has to expect a crash in the near future, point “c”. As I said in my last post, this is likely to start with a financial crash. The financial sector of the economy, since it deals largely with non-material things that don’t have much inertia, can change very quickly. It is currently under a lot of strain from huge amounts of risky debt. I favour a scenario where a spike in the price of oil, brought about as the current surplus of oil bottoms out, sets off a currency crash in one of more countries, leading to a wave of bankruptcies and governments defaulting on their debts. After point “c” human impact will start to decrease rapidly, primarily due to the effect of the financial crash on affluence.

Note that I have again included a red line (and a light blue line), which represent a fast and permanent crash of both carrying capacity and population. This is possible and some would argue that climate change and ocean acidification (among other things) may be damaging the environment enough to make it the most likely outcome. I don’t think so. The ecosphere is amazingly resilient, once human impact is reduced. People have gotten the wrong impression about this because we have been playing the silly game of upping our impact and then wondering why the situation keeps getting worse, as if it wasn’t our fault.

To the right is a little chart that contains some shocking information. The top 20% of the human population (in terms of affluence) is responsible for 76.6% of our impact. A financial crash will be very hard on those top 20% and in the process will drastically reduce human impact. Sadly, myself and most of my readers are in that top 20%.

Referring back to diagram 3, I expect that at point “d”, where “I” is finally less than “C”, the carrying capacity will begin to recover, and a while later at point “e”, human impact will begin to increase once again as well.

Remember also that carrying capacity is defined by C=SET, and there is much that humanity can do to change the value of “T” in that equation. I am by no means saying that we will find a “solution” to our problems based on material technology. What I mean is that a major factor in the big decrease in carrying capacity during the upcoming crash will be the failure of our financial and organizational technology to cope with the situation. And there is a lot we can do to reorganize our financial, economic and political systems to work better under the new conditions. Once we are forced to do it. So I do expect there will be a recovery after this crash.

It is very likely that during the crash the financial chaos will spread to the rest of the economy and that there will be some reduction in the growth rate of our population as the support structures provide by industrial civilization fail completely in some parts of the world. But it seems likely that human population will continue to grow until it once again outstrips carrying capacity, at point “f”. And then at point “g” we will have another crash. I suspect depletion of fossil fuels, water for irrigation and phosphorous for fertilizer, and the effects of climate change will lead to a collapse of agriculture in many parts of the world. Famine and epidemics will at that point start to rapidly reduce our population and eventually reduce it back below a once more reduced carrying capacity (point “h”) and another recovery will begin (point “i”).

Beyond point “i” it is hard to say much about exact details or how many more crashes will take place. But the trend of continued oscillation with decreases in both carrying capacity and human impact will continue. The downward trend is because our current system relies on non-renewable resources that we are using up. That trend will continue until our impact can be sustained solely by renewable resources. Along the way we will go through some very hard times (point “i” and subsequent valleys in the green line) because of the damage done to the planet in the process. But eventually, with our impact drastically reduced, the ecosystems will recover. I expect that at this point we will have retained some of our technology and because of this the overall carrying capacity and our population/impact will settle out a bit above what it was in pre-industrial times.

One further thing I want to emphasize is how uneven this whole process will be. Yes it is likely that the impending financial crash, because it involves systems that are highly interconnected and global in scale, will be felt to some extent over the whole planet. But the degree to which the financial chaos spreads to the rest of the economy will vary greatly from place to place. And subsequent crashes, once the high degree of global interconnection has been broken, will most likely occur at different times in different places.

Wherever people are not completely dependent on global supply chains, the effects will be less severe. To the extent that they are not ravaged by climate change, some parts of the developing world where subsistence agriculture is practiced may continue on with little change. Unfortunately many areas will suffer the ravages of climate change—droughts, flooding and heat waves. Many countries (particularly in Africa and the Middle East) do not produce enough food for their own populations. With supply chains broken and agriculture struggling everywhere, these areas will find it difficult to continue importing the food they rely on. Supplies of energy and water will also prove problematical.

I am well aware that all these graphs and explanations do not constitute a proof of my assertions about the bumpy road down. But I hope I have succeeded in making what I’m trying to say much clearer. It’s up to you to decide if there is anything to it or not, now that you know what “it” is.

The other area I wanted to touch on today is the sort of things governments, communities and individuals can do to limit the damage when a financial crash spreads to other critical systems.

As the financial crash starts to gain momentum, governments will (to whatever extent they can) use the same tools as they did in 2008 to get things under control— loans and bailouts for faltering businesses, and keeping interest rates very low. It also seems likely that, as the situation worsens, “bail-ins” will be used as well, where depositors are required to accept discounts on their deposits to reduce the pressure on failing banks. And “haircuts” where bond holders have to accept discounts on the value of those bonds in order to reduce the pressure on the governments that issued them.

These efforts will have mixed results and the crash will no doubt spread to the non-financial sectors of the economy. Many governments will try switching failing critical systems over to a direct command “martial law” economy. This will be done with varying degrees of skill (or ineptitude as the case may be) and varying degrees of co-operation from their citizens. Vital materials which are in short supply due to supply chain and production breakdowns will be placed under government control and rationed (food, energy—especially diesel fuel, water treatment and medical supplies), and attempts will be made to patch supply chains and production facilities back together with whatever comes to hand.

I have no doubt that this can be made to work, at least to some extent. It does require convincing the public that it is necessary and that it is being done fairly—applied equally to the rich and powerful as it is to the poor and weak. And inevitably there will be thriving black markets.

Governments that already operate some of these systems directly will be better prepared and experience greater success. System that have been contracted out to the lowest bidder—companies that are primarily responsible to their stock holders rather than their customers—may fail in a variety of ghastly ways.

On the other hand, I think there will also be quite a bit of quiet heroism on the part of companies and individuals in critical industries whose job it is to keep things working. These folks are for the most part competent and highly motivated, and their efforts will be more successful than you might think.

Some governments will be so successful that their citizens may hardly be aware that anything is going on. In other countries, people will be reduced to relying almost entirely on what can be done locally, with locally available resources. Right wing capitalist governments whose primary obligation is to the rich and power will begin to practice wholesale abandonment of the poor and unfortunate.

There are also things that can be done by local communities, families and individuals to be more self sufficient—to be able to carry on during those periods when industrial society fails to supply the necessities. Increasing local inventories in order to be more resilient in response to supply chain failures would be a good beginning. But just being clear about what the necessities are and not wasting resources try to maintain luxuries will be one of the biggest challenges. The first step is realizing that much of what we consider necessary is, in fact, not.

So, as I’ve already said, I’m expecting a recovery, or rather a series of recoveries after a series of crashes. These crises are going to cause some changes in the way things work, resulting in a very different world. We’ll have a look at the trends that will lead to that new world in my next post.



18 responses

17 01 2018

“I’ve already told him I disagree with his collapse diagram.”

Where did you tell him that? Your comment at his blog doesn’t say that and neither does your FB share. I’d be interested in his reply.

17 01 2018

It was on FB…. sometimes these articles get multiple posted, and if you’re on the wrong post, you’ll miss it… this was his reply..:

it took me a while, but I read (and read re-read) Paul Chefurka’s article, and I think I understand what he is saying. Good article and I agree with most of it.
My overshoot number of around 1.6 came from reading people like Dennis Meadows and Richard Heinberg, and I am pretty sure they are getting those numbers from “ecological footprint” approach. I see the problems with this, and I suspect that if I had the time and resources to calculate an overshoot value using my own equation C=SET, that its current value would be higher than 1.6.
But if you look closely at graph 3 in my blog post, you’ll see that the finally carrying capacity and impact (mainly from population at that point) are a small fraction of today’s levels. This is mainly because fossil fuels will no longer be available to allow us to artificially inflate the carrying capacity. But my WAG (wild ass guess) is that our population at that point will be in the range from 50 million to 500 million. At the low end I’m not too far from Chefurka’s number.
One further thought is that a lot of the thinking on carrying capacity seems tome to be based on the idea of a “balance of nature”, which is just a myth. I can recommend John Kricher’s excellent book “The Balance of Nature–Ecology’s Enduring Myth”.
Populations go up and down and sometimes disappear, and it is all “natural”. No reason to assume our species is any different.

17 01 2018

Thanks, Mike. I must have missed it. I’ll take another look at Chefurka’s work. It’s a while since I looked at his site.

17 01 2018
Chris Harries

Most collapse charts I’ve seen are more like a staircase – a series of catastrophic drops interspersed by plateaux.

Long-term carrying capacity was probably originally somewhere like 2 billion humans. Exceeding that dramatically has been enabled by fossil fuels. Subtract availability of fossil fuels then add irreversible degradation of renewable resources and global pollution and the global carrying capacity of humans thereafter must be less than the original.

I guess in a few thousand years some environmental recovery will occur, but only if human intervention is driven right down to rock bottom. Too hard to precisely predict the ultimate fate of human civilisation, nor its timing, but it will be a small residue of what we have, no matter what.

18 01 2018

I agree. His collapse prognosis is far too optimistic, seeing we are now in extreme overshoot, and have severely damaged our environment. We’ll be lucky to avoid the red line.

18 01 2018

“…….. as the interest in collapse ramps up everywhere as more and more people are waking up to the fact most things are going awry in the world….”

Here is a recent article from the mainstream New Zealand Herald – “ I got the end of humanity blues” by award winning journalist Rachel Stewart.

18 01 2018

All the comments I am seeing here (and elsewhere) sound like they are referring to graph 1 in my blog post, which I gave as an example of a simplistic approach and then said that the actual carrying capacity would vary as the population under and over shoots.
If you want to see what I am really talking about, you need to hang in there a bit and have a lot at graph 3, which shows both the carrying capacity and human impact declining in an “oscillatory” fashion and ending up quite low.

18 01 2018
david higham

One thing we can be certain of is that anyone’s detailed analysis of how
collapse will proceed will be incorrect. There are too many unknown factors.
For example,have a read of the two ‘Climate Wars’ books. There is a very high probability that wars,and all the supply disruptions,large scale migration
of war and climate refugees,etc,will be important factor impacting on all of us this century.

19 01 2018

@ david higham
I can concur with all of that, David.

18 01 2018
david higham

The energy section of this article does not explain how energy INefficient
industrial agriculture is. David Pimental’s analysis in ‘Food,Energy and Society’ shows that when the energy requirements of production,processing
and transportation are included,industrial agriculture uses about 10 calories of fossil fuel energy(mainly oil and gas ) for every calorie of food energy
produced. As a comparison, the energy analysis of a New Guinea Highlander
producing sweet potatoes is about 12 calories for every calorie of energy
input. (muscle power,no fossil fuel input). Thus about 120 times more efficient than the industrial average .Industrial agriculture is far more efficient
in terms of man-hours of labour per unit of food produced,but that ‘efficiency’
is only possible due to the energy input of fossil fuels.
Albert Bartlett has correctly described industrial agriculture as a system for converting fossil fuels into food. The enormous ‘Bubble’ human population
of our current world is completely dependent on fossil fuels for its existence.
That bubble will be bursting sometime this century.

19 01 2018

David, I agree completely about industrial agriculture–too much energy, to many other inputs. If this doesn’t become a huge problem during the first crash, it almost certainly will during the second one, another decade or two down the road.
“If you feed them, they will breed.” is a pretty cynical but sadly true statement.

18 01 2018

There are widespread concerns that current trends in resource-use are unsustainable, but possibilities of overshoot/collapse remain controversial. Collapses have occurred frequently in history, often followed by centuries of economic, intellectual, and population decline. Many different natural and social phenomena have been invoked to explain specific collapses, but a general explanation remains elusive.

In this paper, we build a human population dynamics model by adding accumulated wealth and economic inequality to a predator–prey model of humans and nature. The model structure, and simulated scenarios that offer significant implications, are explained. Four equations describe the evolution of Elites, Commoners, Nature, and Wealth. The model shows Economic Stratification or Ecological Strain can independently lead to collapse, in agreement with the historical record.

The measure “Carrying Capacity” is developed and its estimation is shown to be a practical means for early detection of a collapse. Mechanisms leading to two types of collapses are discussed. The new dynamics of this model can also reproduce the irreversible collapses found in history. Collapse can be avoided, and population can reach a steady state at maximum carrying capacity if the rate of depletion of nature is reduced to a sustainable level and if resources are distributed equitably.

19 01 2018

Another plausible thought experiment. A very different approach from mine, but quite interesting.

19 01 2018
Chris Harries

Out of curiosity it’s worth thinking about the sorts of social order and governance that may accompany collapse. Quite possibly a dog eat dog, violent free for all. On the other hand – individual survival depending vitally on cooperation – maybe a high level of order ultimately coming into being, albeit in a markedly reduced population.

Most likely humans will revert to some form of feudalism – the dominant form of society that human societies shared across Europe, the Middle East and Asia during our pre-industrial ascent, when resources were scarce and human labour was valued. In those conditions our competitive natures will ensure that some will rise to power and opportunistically grab what resources are available, forcefully exerting control over their surrounding domain.

But also likely would be a reversion to earlier forms of smaller scale tribalism, where small groups of humans coalesce to defend their patch. By then humanity will have become so mixed up with migration and whatever that what will glue people together may no longer be dominated by race or ethnicity or status, though some new forms of mythological belief will undoubtedly emerge. That’s one thing that seems locked into our brain wiring.

The other lcoked-in thing is patriarchal dominance. But you never know.

21 01 2018

Individual survival will depend to a great extent on cooperation. Lone individuals or even families aren’t going to make it.
But the idea that we’ll return to feudalism and patriarchal dominance is a failure of imagination. The future won’t be a replay of the past–different people, different circumstances, different things will be tried. So, yes, feudalism may get tried, but it won’t be anything like the only option. Small scale tribalism is much more likely, with a consensus style of decision making.
People do change, especially when events force them to and sometimes they change in reaction to things that didn’t work.Thus my feeling that feudalism and patriarchies won’t be popular. Capitalism is, after all, just feudalism dressed up in modern clothes.

23 01 2018
Chris Harries

I didn’t claim that society will necessarily revert to feudalism or maintain patriarchal dominance. Just surmising possible futures. What will be similar to earlier feudal times will be a lack of resources and and ability for small numbers to harbour those limited resources and exert control over servile labour. No doubt if this patter repeats there will be some differences.

This is not the only possibility by any means. As for patriarchal dominance, it could be that patriarchal drive suited our ascendency whereas matriarchal dominance may come to the fore during the difficult changes ahead. I won’t foreclose on any possibilities. You may even persuade me that humans will change their basic pattern of behaviour and as the need arises reject competition and become resoundingly cooperative, this being necessary for basic survival.

Jared Diamond had a fair bit to say about how societies that are strapped for resources are much more egalitarian (less hierarchical) than those that have greater access.

23 01 2018

Sounds reasonable to me,Chris. One thing is for sure, we’ll be living in smaller groups and thus will be able to get by with less complex organization.
I think that at least initially the shape of things will be somewhat determined by what modern people are willing to accept, which will be much different that what was acceptable in the past.

23 01 2018
Chris Harries

Yes, to a point, but modern people don’t really like to be overlorded by the 1% Wall Street crowd. I somehow think that a large hunk of modern democracy will go out the window when the going gets tough. I was impressed with an argument that the first thing that will be closed down is the Internet, because it allows for free flow of information and an antidote to visible forces of control. (i.e. early on, before the technology era breaks down anyway through resource scarcity and social chaos.)

But still… humans have accepted a lot of principles and most people understand what empowerment means these days and it’s hard to see all of that book knowledge and awareness disappearing into thin air.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: