The Bumpy Road Down, Part 3

17 01 2018

Irv Mills has now published the third episode in his “Bumpy Road Down” series. It’s gotten a lot of interest on Facebook, and I think his own blog is getting a lot of hits too, as the interest in collapse ramps up everywhere as more and more people are waking up to the fact most things are going awry in the world….

I’ve already told him I disagree with his collapse diagram. For starters, the carrying capacity line is neither straight nor flat. So much farm land, particularly in India and North America has been decimated by fossil fuled fertilisers, that re-instating them to their former organic glory will be a huge challenge that will require a long time during which a lot of people will unfortunately starve. On top of this, we have wrecked global fisheries, which were an important pre FF source of food…  My best take on this is Paul Chefruka’s diagram which I published with his article here…  It too shows a bumpy road down, and no carrying capacity limit. I think the post FF carrying capacity will be the same as the pre FF carrying capacity, only worse thanks to the ecological damage our insane use of FFs has caused. How one quatifies this, I don’t know, but I’m sure it would take a lot of research.

Anyhow, enjoy the read, and make sure you comment, I’m always interested in what you think. Leave comments at Irv’s site too….  I’m sure he’d like the feedback!

 

IrvMills

Irv Mills

In the last post in this series I talked about the next financial crash and how it may well be serious enough to spread into the non-financial sectors of the economy and effect supply chains and critical systems in ways that we did not see in the Global Financial Crisis of 2007-08. Systems that most of us depend on for the necessities of life may fail and many kollapsniks see this leading immediately and inevitably to a hard, fast and permanent crash of industrial civilization.

I disagree, seeing this as just one more bump on the road down, the cyclic pattern of crash and partial recovery that I believe will characterize the rest of the age of scarcity.

To understand why I hold this opinion, I said we need to do a couple of things:

1) take a systems dynamic approach to the events we are talking about. Specifically, we need to look at what happens when overshoot occurs in nature, in systems like the one we inhabit. Which is, after all, a subset of the ecosphere. Overshoot is a common enough phenomenon and usually works in fairly predictable ways.

2) look at the sort of things governments, communities and individuals can do to limit the damage of a financial crash and its spread to other critical systems.

Today we are going to do that.

(Note: all three of the graphs below are smoothed out, idealized and imprecise representations of the processes they illustrate. The point is to allow me to make some points visually. I hope not to get into much in the way of quibbling over minor details, of which no doubt a few are missing, inaccurate or outright wrong.)

So, first, let’s take a look at how overshoot works. Take moment or two with your favourite search engine and you will find a graph that looks something like this:

1) typical overshoot situation with constant carrying capacity

The green line shows the behaviour over time of the population of a species which finds itself initially at a level well below the carrying capacity of its environment (the dashed blue line). Because that environment provides lots of whatever the species need to grow, it does grow. This tendency to grow in response to favourable conditions seems to be an inhernet property of life. As is always the case, this is exponential growth—it starts out slowly but eventually reaches a point where it takes off and quickly exceeds the carrying capacity of the environment.

What happens then is interesting, especially since we currently find ourselves in just such a situation. You get some oscillation of the species population, above and below the carrying capacity, until it finally settles out somewhat below the carrying capacity.

First, let’s be clear that it is possible to exceed carrying capacity in the short run, at the cost of damaging the environment and reducing its capacity—overpopulation has a negative effect on that capacity. There is also some time delay built in to the effect of population growth, as newly born individuals add relatively little to the species impact on the environment compared to what they will add once they have grown up. The negative feedback and the time delay result in the oscillation shown in the graph.

Of course, the straight line representing carrying capacity would actually have some peaks and valleys, corresponding to how the environment responds to the stress of overpopulation and how it recovers when the population falls. If we idealized both the blue and green lines into something like a sine wave, we would see that the variation in the carrying capacity leads the variation in the population by about 90 degrees.

The red line, by the way, represents a fast and permanent collapse. In order for this to happen the carrying capacity has to fall all the way down to basically nothing. This can happen for a variety of reasons, but overshoot isn’t one of them, because as soon as the population falls off below the carrying capacity, the stress on the environment is relieved and it begins to recover.

There is, in fact, no such thing as a “balance of nature” and it is by no means inevitable that the oscillations damp out and the population settles down just below the carrying capacity. In many cases what we actually get is the situation in the next graph, where populations oscillate on an ongoing basis.

2) continual oscillation of predator and prey populations such as foxes and rabbits

You might think that the population of rabbits and foxes in an ecosystem would level out at steady values, but that is not in fact what is observed.

If we start at a moment when there are relatively few of each species, we see that the population of rabbits (the prey, dashed blue line) grows rapidly. It is well below the carrying capacity of the ecosystem for rabbits and there are relatively few foxes (the predators, green line). But the increasing number of rabbits make hunting easier for the foxes, and their population starts to increase too. Eventually there are enough foxes to overhunt the rabbits, resulting in a crash in the rabbit population. This is followed by a crash in the fox population, since there are no longer enough rabbits to support it. This brings us back to where we started and the cycle carries on.

The reason the cycle can carry on indefinitely is that the foxes limit the rabbit population so that it never exceeds the carrying capacity of the ecosystem for rabbits—the plants the rabbits are eating never get over grazed.

The situation for the human population of this planet is, as you might expect, more complex.

The impact (I) that the human population has on our environment is determined not just by the size of that population (P), but also by the level of affluence (A) we are living at and effectiveness of the technology (T) we are using to maintain that affluence.

This gives us the famous equation, I=PAT. Since I am going to be using the term “T” in another equation shortly, I’ll change this to I=PAD, where “D” stands for decoupling. Decoupling is the use of technology to produce affluence at a lower cost to thge environment and it is a number between 0 and 1, with 0 being the goal we would aim for, eliminating our impact altogether. In fact it is proving so difficult to get decoupling anywhere near zero that it is very unlikely to be the solution to our problems.

Carrying capacity (C) also works somewhat differently for human populations.

We can increase the size (S) of our environment by expanding into new areas of the world and habitats previously occupied by other species or by “indigenous” humans.

We can tap into forms of energy (E) beyond just food. For somewhere between two and three million years we’ve been using fire for landscaping, for cooking our food and for heating our shelters. In each case we were using the energy in burning biomass to increase the carrying capacity of our environment, increase the value of our food, and/or expand the range of environments that we can live in. For the last few hundred years we’ve been using the energy of fossil fuels to radically increase the carrying capacity of our environment in many seemingly clever ways.

Since whatever method we use to acquire energy consumes energy in the process, it’s actually the energy that is left over, available for use (the surplus energy) that’s important. This is best expressed as “Energy Returned on Energy Invested”, EROEI. This is a dimensionless number and the larger it is, the more surplus energy. When the EROEI is equal to one, the process is just breaking even and there is no point in doing it—we want a much higher EROEI.

Hunter-gatherer and pre-industrial agricultural societies managed average EROEI’s in the high single digits at best. Industrial societies based on fossil fuels in the twentieth century had EROEI’s many times that high, which made possible high levels of growth and the development and use of technologies which had previously been completely out of reach. Today the average global EROEI is around 11.

Which brings us to our use of tools and technology (T). With just Neolithic technology (fire, stone tools, weaving, tanning, pottery, boats, agriculture) we spread over the whole planet except for the Antarctic, occupying and thriving in environments very different from the ones where we evolved. Since the Renaissance, the Enlightenment and the Industrial Revolution our use of technology has exploded. And not just material technology, but financial, organizational and information technologies as well. All of which has enabled both our population and affluence to grow at heretofore unprecedented rates.

So, the carrying capacity of this planet for the human race can be represented by the equation C=SET. Clearly, I (Impact) must be less than C (carrying capacity) or we are in overshoot. And since sometime in the late 1970s we have indeed been in overshoot. Currently the level of overshoot is around 60%. That is, our impact on the environment is 1.6 times what can be sustained on an ongoing basis.

3) oscillating overshoot with declining carrying capacity

From left side of this graph to point “a” we see the long and very slow growth of the human population before the discovery of the New World. After point “a” the carrying capacity began to increase significantly as the size of our environment effectively took a large jump with the European settlement of the New World, as the use of fossil fuels greatly increased the amount of surplus energy available and as we developed numerous new technologies to use that energy. Human impact increased with the carrying capacity, as our population grew and affluence increased.

The growth of carrying capacity continued until the last quarter of the twentieth century, point “b”, when depletion of fossil fuels and reduction of their EROEI, diminishing returns on technological innovation and stress on the environment from human activities started to reduce the carrying capacity.

Human impact has continued to grow since then, and is now so far above carrying capacity that one has to expect a crash in the near future, point “c”. As I said in my last post, this is likely to start with a financial crash. The financial sector of the economy, since it deals largely with non-material things that don’t have much inertia, can change very quickly. It is currently under a lot of strain from huge amounts of risky debt. I favour a scenario where a spike in the price of oil, brought about as the current surplus of oil bottoms out, sets off a currency crash in one of more countries, leading to a wave of bankruptcies and governments defaulting on their debts. After point “c” human impact will start to decrease rapidly, primarily due to the effect of the financial crash on affluence.

Note that I have again included a red line (and a light blue line), which represent a fast and permanent crash of both carrying capacity and population. This is possible and some would argue that climate change and ocean acidification (among other things) may be damaging the environment enough to make it the most likely outcome. I don’t think so. The ecosphere is amazingly resilient, once human impact is reduced. People have gotten the wrong impression about this because we have been playing the silly game of upping our impact and then wondering why the situation keeps getting worse, as if it wasn’t our fault.

To the right is a little chart that contains some shocking information. The top 20% of the human population (in terms of affluence) is responsible for 76.6% of our impact. A financial crash will be very hard on those top 20% and in the process will drastically reduce human impact. Sadly, myself and most of my readers are in that top 20%.

Referring back to diagram 3, I expect that at point “d”, where “I” is finally less than “C”, the carrying capacity will begin to recover, and a while later at point “e”, human impact will begin to increase once again as well.

Remember also that carrying capacity is defined by C=SET, and there is much that humanity can do to change the value of “T” in that equation. I am by no means saying that we will find a “solution” to our problems based on material technology. What I mean is that a major factor in the big decrease in carrying capacity during the upcoming crash will be the failure of our financial and organizational technology to cope with the situation. And there is a lot we can do to reorganize our financial, economic and political systems to work better under the new conditions. Once we are forced to do it. So I do expect there will be a recovery after this crash.

It is very likely that during the crash the financial chaos will spread to the rest of the economy and that there will be some reduction in the growth rate of our population as the support structures provide by industrial civilization fail completely in some parts of the world. But it seems likely that human population will continue to grow until it once again outstrips carrying capacity, at point “f”. And then at point “g” we will have another crash. I suspect depletion of fossil fuels, water for irrigation and phosphorous for fertilizer, and the effects of climate change will lead to a collapse of agriculture in many parts of the world. Famine and epidemics will at that point start to rapidly reduce our population and eventually reduce it back below a once more reduced carrying capacity (point “h”) and another recovery will begin (point “i”).

Beyond point “i” it is hard to say much about exact details or how many more crashes will take place. But the trend of continued oscillation with decreases in both carrying capacity and human impact will continue. The downward trend is because our current system relies on non-renewable resources that we are using up. That trend will continue until our impact can be sustained solely by renewable resources. Along the way we will go through some very hard times (point “i” and subsequent valleys in the green line) because of the damage done to the planet in the process. But eventually, with our impact drastically reduced, the ecosystems will recover. I expect that at this point we will have retained some of our technology and because of this the overall carrying capacity and our population/impact will settle out a bit above what it was in pre-industrial times.

One further thing I want to emphasize is how uneven this whole process will be. Yes it is likely that the impending financial crash, because it involves systems that are highly interconnected and global in scale, will be felt to some extent over the whole planet. But the degree to which the financial chaos spreads to the rest of the economy will vary greatly from place to place. And subsequent crashes, once the high degree of global interconnection has been broken, will most likely occur at different times in different places.

Wherever people are not completely dependent on global supply chains, the effects will be less severe. To the extent that they are not ravaged by climate change, some parts of the developing world where subsistence agriculture is practiced may continue on with little change. Unfortunately many areas will suffer the ravages of climate change—droughts, flooding and heat waves. Many countries (particularly in Africa and the Middle East) do not produce enough food for their own populations. With supply chains broken and agriculture struggling everywhere, these areas will find it difficult to continue importing the food they rely on. Supplies of energy and water will also prove problematical.

I am well aware that all these graphs and explanations do not constitute a proof of my assertions about the bumpy road down. But I hope I have succeeded in making what I’m trying to say much clearer. It’s up to you to decide if there is anything to it or not, now that you know what “it” is.

The other area I wanted to touch on today is the sort of things governments, communities and individuals can do to limit the damage when a financial crash spreads to other critical systems.

As the financial crash starts to gain momentum, governments will (to whatever extent they can) use the same tools as they did in 2008 to get things under control— loans and bailouts for faltering businesses, and keeping interest rates very low. It also seems likely that, as the situation worsens, “bail-ins” will be used as well, where depositors are required to accept discounts on their deposits to reduce the pressure on failing banks. And “haircuts” where bond holders have to accept discounts on the value of those bonds in order to reduce the pressure on the governments that issued them.

These efforts will have mixed results and the crash will no doubt spread to the non-financial sectors of the economy. Many governments will try switching failing critical systems over to a direct command “martial law” economy. This will be done with varying degrees of skill (or ineptitude as the case may be) and varying degrees of co-operation from their citizens. Vital materials which are in short supply due to supply chain and production breakdowns will be placed under government control and rationed (food, energy—especially diesel fuel, water treatment and medical supplies), and attempts will be made to patch supply chains and production facilities back together with whatever comes to hand.

I have no doubt that this can be made to work, at least to some extent. It does require convincing the public that it is necessary and that it is being done fairly—applied equally to the rich and powerful as it is to the poor and weak. And inevitably there will be thriving black markets.

Governments that already operate some of these systems directly will be better prepared and experience greater success. System that have been contracted out to the lowest bidder—companies that are primarily responsible to their stock holders rather than their customers—may fail in a variety of ghastly ways.

On the other hand, I think there will also be quite a bit of quiet heroism on the part of companies and individuals in critical industries whose job it is to keep things working. These folks are for the most part competent and highly motivated, and their efforts will be more successful than you might think.

Some governments will be so successful that their citizens may hardly be aware that anything is going on. In other countries, people will be reduced to relying almost entirely on what can be done locally, with locally available resources. Right wing capitalist governments whose primary obligation is to the rich and power will begin to practice wholesale abandonment of the poor and unfortunate.

There are also things that can be done by local communities, families and individuals to be more self sufficient—to be able to carry on during those periods when industrial society fails to supply the necessities. Increasing local inventories in order to be more resilient in response to supply chain failures would be a good beginning. But just being clear about what the necessities are and not wasting resources try to maintain luxuries will be one of the biggest challenges. The first step is realizing that much of what we consider necessary is, in fact, not.

So, as I’ve already said, I’m expecting a recovery, or rather a series of recoveries after a series of crashes. These crises are going to cause some changes in the way things work, resulting in a very different world. We’ll have a look at the trends that will lead to that new world in my next post.

Advertisements




Book review of Failing states, collapsing systems biophysical triggers of political violence by Nafeez Ahmed

6 06 2017

I have written at length about the collapse of Egypt over the years, and Syria too. I’ve also discussed Nafeez Ahmed’s views on the unraveling now happening in the Middle East, and my most recent item here from the Doomstead Diner has attracted a lot of attention….. including from Alice Friedemann who pointed out to me that she has published an extensive review of Ahmed’s new book “Failing states, collapsing systems biophysical triggers of political violence”. It’s a long read (the references alone are almost as long as the article and would keep you busy for weeks!), but I was totally riveted by it and felt the compulsion to republish it here as it needs to be read as widely as possible. In fact, this review is so good, you may not need to buy the book……. as I’ve been saying for a very long time now, 2020 is when things start to get really ugly, all the way to 2030, by which time it’s likely the state of the world will be unrecognisable.

The overview of biophysical factors table below is alone really telling……

If after reading this latest piece you are not convinced collapse is indeed underway, then there’s no hope for you….!

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

alice_friedemann[ In this post I summarize the sections of Nafeez’s book about the biophysical factors that bring nations down (i.e. climate change drought & water scarcity, declining revenues after peak oil, etc.) The Media tend to focus exclusively on economic and political factors.

My book review is divided into 3 parts: 

  • Why states collapse for reasons other than economic and political
  • How BioPhysical factors contribute to systemic collapse in Syria, Yemen, Iraq, Saudi Arabia Egypt, Nigeria
  • Predictions of when collapse will begin in Middle East, India, China, Europe, Russia, North America

In my opinion, war is inevitable in the Middle East where over half of oil reserves exist.  Oil is life itself.  If war happens,  collapse of the Middle East, India, and China could happen well before 2030.  If nuclear weapons are used, most nations collapse from the nuclear winter and ozone depletion that would follow.   Indonesia blew up their oil refineries to keep Japan from getting oil in WWII. If Middle Eastern governments or terrorists do the same after they’re attacked, that brings on the energy crisis sooner.  Although this would leave some high EROI oil in the ground, the energy to rebuild refineries, pipelines, oil rigs, roads, and other infrastructure would lower the EROI considerably.

Alice Friedemann   www.energyskeptic.com  author of “When Trucks Stop Running: Energy and the Future of Transportation”, 2015, Springer and “Crunch! Whole Grain Artisan Chips and Crackers”. Podcasts: Practical Prepping, KunstlerCast 253, KunstlerCast278, Peak Prosperity , XX2 report ]

Ahmed, Nafeez. 2017. Failing States, Collapsing Systems BioPhysical Triggers of Political Violence. Springer.

1) Why states collapse for reasons other than economic and political

Since the 2008 financial crash, there’s been an unprecedented outbreak of social protest: Occupy in the US and Western Europe, the Arab Spring, and civil unrest from Greece to Ukraine, China to Thailand, Brazil to Turkey, and elsewhere. Sometimes civil unrest has resulted in government collapse or even wars, as in Iraq-Syria and Ukraine- Crimea. The media and experts blame it on poor government, usually ignoring the real reasons because all they know is politics and economics.

In the Middle East, experts should also talk about geology.  Oil-producing nations like Syria, Yemen, Egypt, Nigeria, and Iraq have all reached peak oil and declining government revenues after that force rulers to raise the prices of food and oil.  This region was already short on water, and now climate change (from fossil fuels) is making matters much worse with drought and heat waves causing even greater water scarcity, which in turn lowers agricultural production.  Many of these nations have some of the highest rates of population growth on earth at a time when resources essential to life itself are declining.

The few nations still producing much of the oil – Russia, Saudi Arabia, and the U.S. are about to join the club and stop exporting oil so they can provide for their domestic population.

Ahmed points out that “because these and other factors are so nested and interconnected, even small perturbations and random occurrences in one can amplify effects on other parts of the system, sometimes in a feedback process that continues.  If thresholds are reached, these tipping points can re-order the whole system”.  These ecological and geological factors result in social disorder, which makes it even harder for government to do anything, such as putting more money into water and food production infrastructure, which accelerates climate change and energy decline impacts, which leads to even more violence at an accelerating rate until state failure.

2) How BioPhysical factors contribute to systemic collapse in Syria, Yemen, Iraq, Saudi Arabia Egypt, Nigeria

 

Table 1. Overview of biophysical factors (water scarcity, peak oil, population) for nations Ahmed discusses in this book

The UN defines a region as not having water scarcity above 1700 cubic meters per capita (green).  Water stressed nations have 1000 to 1700 cubic meters per capita (yellow).  Water scarcity is 500-1000 per capita (orange) and absolute water scarcity 0-500 (red).  Countries already experiencing water stress or far worse include Egypt, Jordan, Turkey, Iraq, Israel, Syria, Yemen, India, China, and parts of the United States. Many, though not all, of these countries are experiencing protracted conflicts or civil unrest (Patrick 2015).

SYRIA

The media portray warfare in Syria as due to the extreme repression of President Bashar al-Assad and the support he receives from Russia.  Although there has been awareness that climate change drought played a role in causing conflict, there is no recognition that peak oil was one of the main factors.

Here’s a quick summary of how peak oil and consequent declining revenues from oil production, rising energy and food prices, drought, water scarcity, and population growth led to social unrest, violence, terrorism and war.

It shouldn’t be surprising that peak oil in 1996 triggered the tragic events we see today.  After all, the main source of Syrian revenue came from their production of 610,000 barrels per day (bpd).  By 2010 oil production had declined by half. Falling revenues caused Syria to seek help from the IMF by 2001, and the onerous market reform policies required resulted in higher unemployment and poverty, especially in rural Sunni regions, while at the same time enriching and corrupting ruling minority Alawite private and military elites.

In 2008 the government had to triple oil prices resulting in higher food prices. Food prices rose even more due to the global price of wheat doubling in 2010-2011. On top of that, the 2007-2010 drought was the worst on record, causing widespread crop failures. This forced mass migrations of farming families to cities (Agrimoney 2012; Kelley et al. 2015). The drought wouldn’t have been so bad if half the water hadn’t been wasted and overused previously from 2002 to 2008 (Worth 2010). All of these violence-creating events were worsened by one of the highest birth rates growth on earth, 2.4%.  Most of the additional 80,000 people added in 2011 were born in the hardest-hit drought areas (Sands 2011).

Rinse and repeat.  Social unrest and violence led to war, oil production dropped further, so there is even less money to end unrest with subsidized food and energy or more employment, aid farmers, and build desalination plants.

Syria, once able to feed its people, now depends on 4 million tonnes of grain imports at a time when revenues continue to drop.  Syrian oil production didn’t really take off until 1968 when there were 6.4 million people.  Since oil revenues allowed their population to explode, another 13.6 million have been born.

IRAQ

Like Syria, Iraq’s agricultural production has been reduced by heat, drought, heavy rain, water scarcity, rapid population growth, and the inability of government to import food and provide goods and services as oil revenues decline.  ISIS has worsened matters and filled in the gaps of state-level failure.  Peak oil is likely by 2025.  Or sooner given the ongoing war, lack of investment to keep existing production flowing, and low oil prices (Dipaola 2016).

YEMEN 

Like Syria, Iraq, and Iran, Yemen has long faced serious water scarcity issues. The country is consuming water far faster than it is being replenished, an issue that has been identified by numerous experts as playing a key background role in driving local inter-tribal and sectarian conflicts (Patrick 2015).

Yemen is one of the most water-scarce countries in the world. In 2012, the average Yemeni had access to just 140 cubic meters of water a year for all uses and just three years later a catastrophic 86 m3, far below the 1000 m3 level minimum requirement standards.    Cities often only have sporadic access to running water— every other week or so.  Sanaa could become the first capital in the world to run out of water (IRIN 2012).

Yemen reached peak oil production in 2001, declining from 450,000 barrels per day (bpd) to 100,000 bpd in 2014, and will be zero by 2017 (Boucek 2009).   This has led to a drastic decline in Yemen’s oil exports, which has eaten into government revenues, 75% of which had depended on oil exports. Oil revenues also account for 90% of the government’s foreign exchange reserves. The decline in post-peak Yemen state revenues has reduced the government’s capacity to sustain even basic social investments. When the oil runs out … the capacity to sustain a viable state-structure will completely collapse.

Yemen has 25 million people and an exorbitantly high growth rate and predicted to double by 2050. In 2014 experts warned that within the next decade, these demographic trends would demolish the government’s ability to meet the population’s basic needs in education, health and other essential public services. This is already happening to over 15 million people (Qaed 2014).  Over half the Yemeni population lives below the poverty line, and unemployment is at 40% (60% of young people).

To cope, too many people have turned to growing qat (a mild narcotic) on 40% of Yemen’s irrigated land, increasing water use to 3.9 billion cubic meters (bcm), but the renewable water supply is just 2.5 bcm. The 1.4 bcm shortfall is made up by pumping water from underground water reserves that are starting to run dry.

Energy, overpopulation, drought, water scarcity, poverty, and a government unable to do much of anything without oil revenue is in a downward loop of social tensions, local conflicts and even mass displacements.  This in turn adds to the dynamics of the wider sectarian and political conflicts between the government, the Houthis, southern separatists and al-Qaeda affiliated militants.

Violence undermines food security, feeding back into the downward spiraling loop.  Making matters worse is that rain-fed agriculture has dropped by about 30% since 1970, making Yemen ever more food import dependent at a time when revenues are shrinking. The country now imports over 85% of its food, including 90% of its wheat and all of its rice (World Bank 2014). Most Yemenis are hungry because they can’t afford to buy food, which also rises in price when global prices rise.  The rate of chronic malnutrition as high as 58%, second only to Afghanistan (Arashi 2013).

Epidemic levels of government corruption, mismanagement and incompetence, have meant that what little revenue the government receives ends up in Swiss bank accounts.  With revenues plummeting in the wake of the collapse of its oil industry, the government has been forced to slash subsidies while cranking up fuel and diesel prices. This has, in turn, cranked up prices of water, meat, fruits, vegetables and spices, leading to fuel and food riots (Mawry 2015).

Is Saudi Arabia Next?

Summary: Within the next decade, Saudi Arabia will become especially vulnerable to the downward feedback loop of peak oil.  The most likely date for peak oil is 2028 (Ebrahimi 2015). But because the Saudi exports have been going down since 2005 at 1.4% a year as their own population rises and consumes more and more, world exports could end as soon as 2031 (Brown and Foucher 2008).

Saudi revenues will decline to zero, so the Saudis will be less able to buy their way out of food shortages.  Their own food production will drop as well from drought and water scarcity — the kingdom is one of the most water scarce in the world, at 98 m³ per inhabitant per year.

Most water comes from groundwater, 57% of which is non-renewable, and 88% of it goes to agriculture. Desalination plants produce 70% of the kingdom’s domestic water supplies. But desalination is very energy intensive, accounting for more than half of domestic oil consumption. As oil exports run down, along with state revenues, while domestic consumption increases, the kingdom’s ability to use desalination to meet its water needs will decrease (Patrick 2015; Odhiambo 2016).

According to the Export Land Model (ELM) created by Texas petroleum geologist Jeffrey J Brown and Dr. Sam Foucher, the key issue is the timing of when there will be no more exports because the domestic population of oil producing nations is using it all for domestic consumption.   Brown and Foucher showed that the tipping point to watch out for is when an oil producer can no longer increase the quantity of oil sales abroad because of the need to meet rising domestic energy demand.

Saudi Arabia is the region’s largest energy consumer. Domestic demand has increased 7.5% over the last 5 years, mainly due to population growth. Saudi population may grow from 29 million people now to 37 million by 2030, using ever more oil and therefore less available for export.

Declining Saudi peak oil exports will affect every nation on earth that imports Saudi oil, especially top customers China, Japan, the United States, South Korea, and India.  As Saudi oil declines, there will be few other places oil for importing nations to turn to, since other exporting nations will also be using their oil domestically.

A report by Citigroup predicted net exports would plummet to zero in the next 15 years. This means that 80% of money from oil sales the Saudi state depends on are trending downward, eventually terminally (Daya 2016). In this case, the peak oil production date could happen well before 2028, as well as violent social unrest, since so far, Saudi Arabia’s oil wealth, and its unique ability to maintain generous subsidies for oil, housing, food and other consumer items, has kept civil unrest at bay. Energy subsidies alone make up about a fifth of Saudi’s gross domestic product. But as revenues are increasingly strained by decreasing exports after peak oil, the kingdom will need to slash subsidies (Peel 2013).  Even now a quarter of the Saudi’s live in poverty, and unemployment is 12%, especially young people who have a 30% unemployment level. [Saudi Arabia recently started taxing fuel at the bowsers]

Saudi Arabia is experiencing climate change as temperatures rise in the interior and far less rainfall occurs in the north.  By 2040, local average temperatures are expected to increase by as much as 4 °C at the same time rain levels are falling, resulting in more extreme weather events like the 2010 Jeddah flooding when a year of rain fell in 4 hours.  The combination could dramatically impact agricultural productivity, which is already facing challenges from overgrazing and unsustainable industrial agricultural practices leading to accelerated desertification (Chowdhury 2013).

80% of Saudi Arabia’s food requirements are purchased through heavily subsidized imports.  Without the protection of oil revenue subsidies, and potential rises in the global prices of food (Taha 2014), the Saudi population would be heavily impacted. But with net oil revenues declining to zero—potentially within just 15 years—Saudi Arabia’s capacity to finance continued food imports will be in question.

EGYPT

Like Syria, Egypt has had increasing problems paying for food, goods, and services after peak oil in 1993 while at the same time population keeps growing.   Worse yet, there are no oil revenues at all, because since 2010 the population has been using more oil than what is produced and has had to import oil, with no oil revenues to pay for food, goods, and services.  Two-thirds of Egypt’s oil reserves have likely been depleted and oil produced now is declining at 3.4% a year.

Nor are there revenues coming from natural gas sales made up for the loss of oil revenues.  Over the past decade domestic use nearly doubled to consumption of nearly all the production (Kirkpatrick 2013a).

The Egyptian population since 2000 has grown 21% to 88 million people and isn’t slowing down, with 20 million more expected over the next 10 years.  A quarter are children half of them living in poverty and unemployed  (EI 2012) at the same time the elites have grown wealthier from IMF and World Bank policies.

In the 1960s there were 2800 cubic meters of water per capita, now just 660 – well below the international standard of water poverty of 1000 per person (Sarant 2013).   Water scarcity and population growth lave led to tens of thousands of hectares of farmland to be abandoned.  There is some water that can be obtained, but most farmers can’t afford the price of diesel fuel to power pumps  (Kirkpatrick 2013b)

Egypt was self-sufficient in food production in the 1960s but now imports 70% of its food (Saleh 2013). One of the many reasons Mubarak fell was the doubling of wheat prices in 2011 since half of Egypt’s people depend on food rations.  But the democratically-elected Muslim Brotherhood party and their leader Morsi couldn’t alleviate declining government revenues due to the biophysical realities of food, water, and energy shortages either.  Morsi desperately tried to get a $4.8 billion IMF loan by slashing energy subsidies and raising sales taxes, but the economic crisis made it hard to make the payments and wheat imports dropped to a third of what was imported a year ago.

This led to Morsi being ousted by army chief Abdul Fateh el-Sisi in a coup.  Like his predecessors, El-Sisi has also been unable to meet IMF demands for increased hydrocarbon production and has resorted to unprecedented levels of brutal force to crush protests. He has also rationed electricity, which led to key industries cutting production, leading to further economic losses, declining exports and foreign reserves.  Without more money, energy companies can’t be paid, so energy production continues to drop, and debt goes up, reducing the value of Egyptian currency and higher costs for imports and shortages of energy for industrial production. Egypt’s energy and economy find themselves caught in an amplifying feedback loop (Barron 2016).

How Boko Haram arose in Nigeria

Nigeria’s climate change has led to water and land shortages from desertification, which in turn has led to illness, hunger, and unemployment followed by conflict (Sayne 2011).

Perhaps the Boko Haram wouldn’t have arisen, if the Maitatsine sect in northern Nigeria hadn’t been hit so hard by ecological disasters.  To survive they fanned out to search for food, water, shelter, and work (Sanders 2013).  Niger and Chad refugees from drought and floods also became Boko Haram foot soldiers, some 200,000 displaced farmers and herdsmen.

In northern Nigeria, where Boko Haram is from, about 70% of the population subsists on less than a dollar a day. As noted by David Francis, one of the first western reporters to cover Boko Haram: “Most of the foot soldiers of Boko Haram aren’t Muslim fanatics; they’re poor kids who were turned against their corrupt country by a charismatic leader” (Francis 2014)

The Nigerian military sees a correlation between regional climatic events, and an upsurge in extremist violence: “It has become a pattern; we saw it happen in 2006; it happened again in 2008 and in 2010. President Obasanjo had to deploy the military in 2006 to Yobe State, Borno State and Katsina State. These are some of the states bordering Niger Republic and today they are the hotbeds of the Boko Haram” (Mayah 201).

Drought caused desertification is decreasing food production, in turn leading to “economic decline; population displacement and disruption of legitimized authoritative institutions and social relations.” The net effect was an acceleration of the attractiveness of groups like “Boko Haram and other forms of Jihadi ideology,” resulting in escalating “herder-farmer clashes emanating from the north since 1980s” (Onyia 2015).

The rapid spread of Boko Haram also coincided with Lake Chad’s shrinking from 25,000 square km in 1963 to less than 2500 square km today, mainly due to climate change. At this rate, Lake Chad is will dry up in 20 years, and has already caused millions of people to lose their livelihoods.

The government has exacerbated problems by cutting fuel subsidies, which led to fuel shortages, angering the public who engaged in civil unrest  (Omisore 2014).

A senior Shell official said that crude oil production decline rates are as high as 15–20%.  But Nigeria doesn’t have the money to explore to find more oil to offset this high decline rate. Nigeria’s petroleum resources department said that Nigeria had reached a plateau of production in the Niger Delta and were already going down (Ahmed 2014).

About $15 billion of investment is required just to maintain current production levels and compensate for a natural decline in production of about 250,000 b/d each year. A 2011 study by two Nigerian scholars concluded that “there is an imminent decline in Nigeria’s oil reserve since peaking could have occurred or just about to occur (Akuru and Okoro 2011). A 2013 report backs this up, finding that Nigeria’s crude oil production has decreased since its peak in 2005, largely due to the impact of internal conflicts, leading to the withdrawal of oil companies and lack of investments. Since then production has fluctuated along a plateau. The UK Department for International Development report noted that new offshore fields might bring additional oil on-stream, surpassing the 2005 peak—but also noted that rising domestic demand “at some point in the future may cut into the amount of oil available for export” (Hall et al. 2014).

POPULATION. With Nigeria’s population expected to rise from 160 to 250 million by 2025 and oil accounting for some 96% of export revenue as well as 75% of government revenue, the state has resorted to harsh austerity measures. Sharp reductions in public spending, power cuts, fuel shortages and conditional new loans will probably widen economic inequalities and further stoke the grievances that feed groups like Boko Haram in the North. With domestic oil production decline undermining Nigeria’s oil export revenues and consequent fuel subsidy cuts, the public grows poorer and increases the number of young men more likely to join Islamist terrorist groups.

3) Predictions of when collapse will begin in Middle East, India, China, Europe, Russia, North America

When will  Middle-East oil producing nations fail?

Ahmed says that so far after peak oil production, Middle-Eastern economies have declined as revenues declined, leading to systemic state-failure in roughly 15 years, more or less, depending on how hard hit a nation was by additional (climate-change) factors such as drought, water scarcity, food prices, and overpopulation.

Saudi Arabia, and much of the rest of Arabian Gulf peninsula, may experience state-failure well within 10 to 20 years. If forecasts of Saudi oil depletion are remotely accurate, then by 2030 the country will simply not exist as we know it. Coupled with the accelerating impacts of climate-induced water scarcity, the Kingdom is bound to begin experiencing systemic state-failure at most within 20 years, and probably much earlier.

Marin Katusa, chief energy strategist at Casey Research, reports that “many Middle Eastern countries may stop exporting oil and gas altogether within the next few years, while some already have” (Katusa 2016). Oil analysts at Lux Research estimate that OPEC oil reserves may have been overstated by as much as 70%. True OPEC reserves could be as low as 429 billion barrels, which could mean a global net export crunch as early as 2020 (Lazenby 2016).

The period from 2020 to 2030 will see Middle East oil exporters experiencing a systemic convergence of energy and food crises.

When will India & China collapse?

India and China are widely assumed to be the next superpowers, but at this stage of energy and resource depletion, can’t possibly mimic the exponential growth of the Western world.

India, South Asia, and China face enormous ecological challenges Irregularities in the pattern of monsoon rains and drought are likely to lower food production and increase water scarcity, while higher temperatures will increase the range of vector-borne diseases such as malaria and become prevalent year-round (DCDC 2013). As sea levels rise, millions of people will be displaced permanently.

These impacts will unravel regional political and economic order well within 20 years and manifest at first as civil unrest.  Depending on how the Indian and Chinese states respond, it is likely that these outbreaks of domestic disorder will become more organized, and will eventually undermine state territorial integrity before 2030.  Near-term growth will further undermine environmental health and deplete resources, making these nations even more vulnerable to climate and food crises.

European and Russian collapse timeframe

Within Europe, resource depletion has meant that the European Union as a whole has become increasingly dependent on energy imports from Russia, the Middle East, Central Asia and Africa. Yet exports from these regions will become tighter as major oil producers approach production limits.

The geopolitical turmoil that has unfolded in Ukraine provides a compelling indication that such processes are rapidly moving from the periphery of the global system into the core. For the most part, the Euro-Atlantic core—traditionally representing the most powerful sections of the world system—has insulated itself from global crisis convergence impacts by diversifying energy supply sources. However, there is only so much that diversification can achieve when the total energetic and economic quality of global hydrocarbon resource production is declining.

Post-2030–2045

Faced with these converging crises, the Euro-Atlantic core will continue to see the creation of cheap debt-money through quantitative easing as an immediate solution to generate emergency funds to stabilize the financial system and shore-up ailing industries. This will likely play out in one of these business-as-usual scenarios:

  1. The lower resource quality (EROI) of the global energy system may act as a fundamental geophysical ceiling on the capacity of the economy to grow. It may act as an invisible brake on growth in demand, so fossil fuel prices would remain at chronically low levels, endangering the profitability of the fossil fuel industries. This would lead to an acceleration of the demise of the fossil fuel industries, which could lead to debt-defaults across industries in the financial system. Declining hydrocarbon energy production would cause a self-reinforcing recessionary economic process. This would escalate vulnerability to water, food and energy crises and hugely strain the capacity of European and American states to deliver goods and services to even their own populations, and other nations dependent as much on importing food as they are oil.
  2. Scarcity of net exports on the world market may raise oil prices and provide some sectors of ailing fossil fuel industries to be profitable again. But previous slashing of investments and cutbacks in exploration will mean that only the most powerful sections of the industry would be able to capitalize on this, which means production is unlikely to return to former high levels. Price spikes would trigger economic recession, causing a drop in demand, while lower production levels would exacerbate the economy’s inability to grow substantially, if at all. In effect, the global economy would likely still experience a self-reinforcing recessionary economic process.

In both scenarios, escalating economic crises are likely to invite the Euro-Atlantic core to respond by using debt-money to shore-up as much of the existing core financial and energy industries as possible. Prices spikes and shortages in water, food and energy would be experienced by general populations as a dramatic lowering of purchasing power, leading to an overall decrease in quality of life, an increase in poverty, and a heightening of inequality. This would undermine their internal cohesion, giving rise to new divisive, nationalist and xenophobic movements, and lead states into a tightening spiral of militarization to police domestic order. As instability in the Middle East and elsewhere intensifies, manifesting in further unrest, political violence and terrorist activity, states will also be drawn increasingly into short- sighted military solutions. In particular, scarcity of net oil exports on the world market will heighten geopolitical and military competition to control and/or access the world’s remaining hydrocarbon energy resources. With the Middle East still holding the vast bulk of the world’s reserves, the region will remain a central flashpoint for such competition, even as major producers such as Saudi Arabia approach systemic state-failure due to reaching inevitable production declines.

It is difficult to avoid the conclusion that as we near 2045, the European and American projects will face escalating internal challenges to their internal territorial integrity, increasing the risk of systemic state-failure. Likewise, after 2030, Europe, India, China (and other Asian nations) will begin to experience symptoms of systemic state-failure.

References

Adel, Mohamed. 2016. Eni to Increase Zohr Field Gas Production to 2bn Cubic Feet Per Day by End of 2019. Daily News Egypt, May 9. http://www.dailynewsegypt.com/2016/05/09/ eni-increase-zohr-field-gas-production-2bn-cubic-feet-per-day-end-2019/ .

Agrimoney. 2012. Unrest, Bad Weather Lift Syrian Grain Import Needs. Agrimoney.com, March 14. http://www.agrimoney.com/news/unrest-bad-weather-lift-syrian-grain-import-needs–4278.html

Ahmed, Nafeez Mosaddeq. 2009. The Globalization of Insecurity: How the International Economic Order Undermines Human and National Security on a World Scale. Historia Actual Online 0(5): 113–126.

Ahmed, Nafeez. 2010. A User’s Guide to the Crisis of Civilisation: And How to Save It. London: Pluto Press.

———. 2011. The International Relations of Crisis and the Crisis of International Relations: From the Securitisation of Scarcity to the Militarisation of Society. Global Change, Peace & Security 23(3): 335–355. doi: 10.1080/14781158.2011.601854 .

———. 2013a. Peak Oil, Climate Change and Pipeline Geopolitics Driving Syria Conflict. The Guardian, May 13, sec. Environment. https://www.theguardian.com/environment/earth- insight/2013/may/13/1

———. 2013b. How Resource Shortages Sparked Egypt’s Months-Long Crisis. The Atlantic, August 19. http://www.theatlantic.com/international/archive/2013/08/how-resource-shortagessparked-egypts-months-long-crisis/278802/

———. 2014. Behind the Rise of Boko Haram—Ecological Disaster, Oil Crisis, Spy Games. The Guardian, May 9, sec. Environment. https://www.theguardian.com/environment/earth-insight/2014/may/09/behind-rise-nigeria-boko-haram-climate-disaster-peak-oil-depletion

———. 2015. The US-Saudi War with OPEC to Prolong Oil’s Dying Empire. Middle East Eye. May 8. http://www.middleeasteye.net/columns/us-saudi-war-opec-prolong-oil-s-dyingempire-222413845

———. 2016a. Climate Change Fuels Boko Haram. Women Across Frontiers Magazine. February 29. http://wafmag.org/2016/02/boko-haram-filling-vacuum-nigerias-state-collapses/

———. 2016b. At the Root of Egyptian Rage Is a Deepening Resource Crisis. Quartz. Accessed August 16. http://qz.com/116276/at-the-root-of-egyptian-rage-is-a-deepening-resource-crisis/

———. 2016c. Return of the Reich: Mapping the Global Resurgence of Far Right Power. Investigative Report. London: Tell MAMA and INSURGE Intelligence. https://medium.com/ return-of-the-reich

———. 2016d. FEMA Contractor Predicts ‘Social Unrest’ Caused by 395% Food Price Spikes. Motherboard. Accessed August 21. http://motherboard.vice.com/read/fema-contractor- predicts-social-unrest-caused-by-395-food-price-spikes

Akuru, Udochukwu B., and Ogbonnaya I. Okoro. 2011. A Prediction on Nigeria’s Oil Depletion Based on Hubbert’s Model and the Need for Renewable Energy. International Scholarly Research Notices, International Scholarly Research Notices 2011: e285649. doi: 10.5402/2011/285649 .

Al-Sinousi, Mahasin, and Amira Saleh. 2008. International Expert Warns Of Egypt’s Oil And Gas Reserves Depletion In 2020. Al-Masry Al-Youm, May 17, 1434 edition. http://today.almasryalyoum.com/article2.aspx?ArticleID=105585

Arashi, Fakhri. 2013. Wheat Imports Cause Yemen Heavy Losses—National Yemen. http://nationalyemen.com/2013/03/03/wheat-imports-cause-yemen-heavy-losses/

Aston, T.H., Trevor Henry Aston, and C.H.E. Philpin. 1987. The Brenner Debate: Agrarian Class Structure and Economic Development in Pre-Industrial Europe. Cambridge: Cambridge University Press.

Aucott, Michael L., and Jacqueline M. Melillo. 2013. A Preliminary Energy Return on Investment Analysis of Natural Gas from the Marcellus Shale. Journal of Industrial Ecology 17(5): 668– 679. doi: 10.1111/jiec.12040 .

Azevedo, Ligia B., An M. De Schryver, A. Jan Hendriks, and Mark A.J. Huijbregts. 2015. Calcifying Species Sensitivity Distributions for Ocean Acidification. Environmental Science & Technology 49(3): 1495–1500. doi: 10.1021/es505485m .

Badgley, Catherine, and Ivette Perfecto. 2007. Can Organic Agriculture Feed the World? Renewable Agriculture and Food Systems 22(2): 80–85.

Bardi, Ugo. 2014. Extracted: How the Quest for Mineral Wealth Is Plundering the Planet. Vermont: Chelsea Green Publishing.

Barnett, Tim P., and David W. Pierce. 2008. When Will Lake Mead Go Dry? Water Resources Research 44(3): W03201. doi: 10.1029/2007WR006704

Barron, Robert. 2016. Facing Rumors of Money Troubles, Egypt Denies Tension with Foreign Oil, Gas Firms. Mada Masr. January 27. http://www.madamasr.com/sections/economy/ facing-rumors-money-troubles-egypt-denies-tension-foreign-oil-gas-firms

Berger, Daniel, William Easterly, Nathan Nunn, and Shanker Satyanath. 2013. Commercial Imperialism? Political Influence and Trade during the Cold War. American Economic Review 103(2): 863–896. doi: 10.1257/aer.103.2.863

Berman, Arthur, and Ray Leonard. 2015. Years Not Decades: Proven Reserves and the Shale Revolution. Houston Geological Society Bulletin 57(6): 35–39.

Bhardwaj, Mayank. 2016. Food Imports Rise as Modi Struggles to Revive Rural India. Reuters India. February 2. http://in.reuters.com/article/india-farming-idINKCN0VA3NL

Bindi, Marco, and Jørgen E. Olesen. 2010. The Responses of Agriculture in Europe to Climate Change. Regional Environmental Change 11(1): 151–158. doi: 10.1007/s10113-010-0173-x

Bose, Prasenjit. 2016. A Budget That Reveals the Truth about India’s Growth Story. The Wire. March 2. http://thewire.in/23392/what-the-budget-tells-us-about-indias-growth-story/ .

Boucek, Christopher. 2009. Yemen: Avoiding a Downward Spiral. Carnegie Endowment for International Peace. September. http://carnegieendowment.org/2009/09/10/yemen-avoidingdownward-spiral-pub-23827

Bove, Vincenzo, Leandro Elia, and Petros G. Sekeris. 2014. US Security Strategy and the Gains from Bilateral Trade. Review of International Economics 22(5): 863–885. doi: 10.1111/ roie.12141

Bove, Vincenzo, Kristian Skrede Gleditsch, and Petros G. Sekeris. 2015. ‘Oil above Water’ Economic Interdependence and Third-Party Intervention. Journal of Conflict Resolution, January 27: 0022002714567952. doi: 10.1177/0022002714567952 .

Bove, Vincenzo, and Petros G. Sekeris. 2016. Fueling Conflict: The Role of Oil in Foreign Interventions. IPI Global Observatory. Accessed July 19. https://theglobalobservatory.org/2015/03/civil-wars-oil-above-water-military-intervention/

Brandt, Adam R., Yuchi Sun, Sharad Bharadwaj, David Livingston, Eugene Tan, and Deborah Gordon. 2015. Energy Return on Investment (EROI) for Forty Global Oilfields Using a Detailed Engineering-Based Model of Oil Production. PLOS ONE 10(12): e0144141.

Brown, Jeffrey J., and Samuel Foucher. 2008. A Quantitative Assessment of Future Net Oil Exports by the Top Five Net Oil Exporters. Energy Bulletin. January 8. http://www.resilience.org/stories/2008-01-08/quantitative-assessment-future-net-oil-exports-top-five-net-oil-exporters

Brown, James H., William R. Burnside, Ana D. Davidson, John P. DeLong, William C. Dunn, Marcus J. Hamilton, Norman Mercado-Silva, et al. 2011. Energetic Limits to Economic Growth. BioScience 61(1): 19–26.

Buckley. 2016. Coal Decline Steepens in 2016 in India, China, U.S. Institute for Energy Economics & Financial Analysis. May 16. http://ieefa.org/coal-decline-steepens-2016-2/

Capellán-Pérez, Iñigo, Margarita Mediavilla, Carlos de Castro, Óscar Carpintero, and Luis Javier Miguel. 2014. Fossil Fuel Depletion and Socio-Economic Scenarios: An Integrated Approach. Energy 77: 641–666.

Castillo-Mussot, Marcelo del, Pablo Ugalde-Véle, Jorge Antonio Montemayor-Aldrete, Alfredo de la Lama-García, and Fidel Cruz. 2016. Impact of Global Energy Resources Based on Energy Return on Their Investment (EROI) Parameters. Perspectives on Global Development and Technology 15(1–2): 290–299.

Chen, Shuai, Xiaoguang Chen, and Xu. Jintao. 2016. Impacts of Climate Change on Agriculture: Evidence from China. Journal of Environmental Economics and Management 76: 105–124. doi: 10.1016/j.jeem.2015.01.005

Chowdhury, Shakhawat, and Muhammad Al-Zahrani. 2013. Implications of Climate Change on Water Resources in Saudi Arabia. Arabian Journal for Science and Engineering 38(8): 1959– 1971.

Clarkson, M.O., S.A. Kasemann, R.A. Wood, T.M. Lenton, S.J. Daines, S. Richoz, F. Ohnemueller, A. Meixner, S.W. Poulton, and E.T. Tipper. 2015. Ocean Acidification and the Permo-Triassic Mass Extinction. Science 348(6231): 229–232. doi: 10.1126/science.aaa0193

Cleveland, Cutler J., and Peter A. O’Connor. 2011. Energy Return on Investment (EROI) of Oil Shale. Sustainability 3(11): 2307–2322.

Coleman, Isabel. 2012. Reforming Egypt’s Untenable Subsidies. Council on Foreign Relations. April 6. http://www.cfr.org/egypt/reforming-egypts-untenable-subsidies/p27885

Cook, Benjamin I., Toby R. Ault, and Jason E. Smerdon. 2015. Unprecedented 21st Century Drought Risk in the American Southwest and Central Plains. Science Advances 1(1): e1400082. doi: 10.1126/sciadv.1400082

Coumou, Dim, Alexander Robinson, Stefan Rahmstorf. 2013. Global increases in record-breaking 0668-1.

Csereklyei, Zsuzsanna, and David I. Stern. 2015. Global Energy Use: Decoupling or Convergence? Energy Economics 51: 633–641.

Cunningham, Nick. 2016. Decline of Coal Demand Is ‘irreversible. MINING.com. February 19. http://www.mining.com/web/decline-of-coal-demand-is-irreversible/

Dawson, Terence P., Anita H. Perryman, and Tom M. Osborne. 2014. Modelling Impacts of Climate Change on Global Food Security. Climatic Change 134(3): 429–440. doi: 10.1007/ s10584-014-1277-y.

Daya, Ayesha, and Dana El Baltaji. 2016. Saudi Arabia May Become Oil Importer by 2030, Citigroup Says. Bloomberg.com. Accessed August 11. http://www.bloomberg.com/news/articles/2012-09-04/saudi-arabia-may-become-oil-importer-by-2030-citigroup-says-1-

DCDC. 2013. Regional Survey—South Asia Out to 2040. Strategic Trends Programme. UK Ministry of Defence, Defence Concepts and Doctrines Centre.

Department Of State, Bureau of Public Affairs. 2014. Syria. Press Release|Fact Sheet. U.S. Department of State. March 20. http://www.state.gov/r/pa/ei/bgn/3580.htm

Diffenbaugh, Noah S., Daniel L. Swain, and Danielle Touma. 2015. Anthropogenic Warming Has Increased Drought Risk in California. Proceedings of the National Academy of Sciences 112(13): 3931–3936. doi: 10.1073/pnas.1422385112

Dipaola, Anthony. 2016. Iraq’s Oil Output Seen by Lukoil at Peak as Government Cuts Back. Bloomberg.com. May 19. http://www.bloomberg.com/news/articles/2016-05-19/iraq-s-oiloutput-seen-by-lukoil-at-peak-as-government-cuts-back

Dittmar, Michael. 2016. Regional Oil Extraction and Consumption: A Simple Production Model for the Next 35 Years Part I. BioPhysical Economics and Resource Quality 1(1): 7. doi: 10.1007/ s41247-016-0007-7

Dodge, Robert. 2016. Unconventional Drilling for Natural Gas in Europe. In The Global Impact of Unconventional Shale Gas Development, ed. Yongsheng Wang and William E. Hefley, 97–130. Natural Resource Management and Policy 39. Springer International Publishing.

EASAC. 2014. Shale Gas Extraction: Issues of Particular Relevance to the European Union. European Academies Science Advisory Council.

Ebrahimi, Mohsen, and Nahid Ghasabani. 2015. Forecasting OPEC Crude Oil Production Using a Variant Multicyclic Hubbert Model. Journal of Petroleum Science and Engineering 133: 818– 823.

El. 2012. Youth Are Quarter of Egypt’s Population, and Half of Them Are Poor | Egypt Independent. Egypt Independent. August 12. http://www.egyptindependent.com/news/youth-are-quarter-egypt-s-population-and-half-them-are-poor

EIA. 2016. Petroleum & Other Liquids Weekly Supply Estimates. US Energy Information Administration. http://www.eia.gov/dnav/pet/pet_sum_sndw_dcus_nus_w.htm  .

Evans-Pritchard, Ambrose. 2015. Saudi Arabia May Go Broke before the US Oil Industry Buckles. The Telegraph, August 5, sec. 2016. http://www.telegraph.co.uk/business/2016/02/11/saudi-arabia-may-go-broke-before-the-us-oil-industry-buckles/

Famiglietti, J.S. 2014. The Global Groundwater Crisis. Nature Climate Change 4(11): 945–948.

Farmer, J., M. Doyne, C. Gallegati, A. Hommes, P. Kirman, S. Ormerod, A. Sanchez Cincotti, and D. Helbing. 2012. A Complex Systems Approach to Constructing Better Models for Managing Financial Markets and the Economy. The European Physical Journal Special Topics 214(1): 295–324.

Feely, Richard, Christopher L. Sabine, and Victoria J. Fabry. 2006. Carbon Dioxide and our Ocean Legacy. Pew Trust. http://www.pmel.noaa.gov/pubs/PDF/feel2899/feel2899.pdf

Foster, John Bellamy, Brett Clark, and Richard York. 2010. The Ecological Rift: Capitalism’s War on the Earth. New York: NYU Press.

Fournier, Valérie. 2008. Escaping from the Economy: The Politics of Degrowth. International Journal of Sociology and Social Policy 28(11/12): 528–545.

Francis. 2014. Boko Haram, Al Shabaab and Al Qaeda 2.0—Islamic Extremism in Africa. Humanosphere. May 7. http://www.humanosphere.org/world-politics/2014/05/boko-haram-alshabaab-and-al-qaeda-2-0-islamic-extremism-in-africa/

Friedman, Thomas L. 2013. The Scary Hidden Stressor. The New York Times, March 2. http:// www.nytimes.com/2013/03/03/opinion/sunday/friedman-the-scary-hidden-stressor.html

Fritz, Martin, and Max Koch. 2014. Potentials for Prosperity without Growth: Ecological Sustainability, Social Inclusion and the Quality of Life in 38 Countries. Ecological Economics 108: 191–199.

Gagnon, Nathan, Charles A.S. Hall, and Lysle Brinker. 2009. A Preliminary Investigation of Energy Return on Energy Investment for Global Oil and Gas Production. Energies 2(3): 490– 503.

García-Olivares, Antonio, and Joaquim Ballabrera-Poy. 2015. Energy and Mineral Peaks, and a Future Steady State Economy. Technological Forecasting and Social Change 90, Part B (January): 587–598.

Ghafar, Adel Abdel. 2015. Egypt’s New Gas Discovery: Opportunities and Challenges | Brookings Institution. Brookings. September 10. https://www.brookings.edu/opinions/egypts-new-gasdiscovery-opportunities-and-challenges/

Guilford, Megan C., Charles A.S. Hall, Peter O’Connor, and Cutler J. Cleveland. 2011. A New Long Term Assessment of Energy Return on Investment (EROI) for U.S. Oil and Gas Discovery and Production. Sustainability 3(10): 1866–1887.

Gülen, Gürcan, John Browning, Svetlana Ikonnikova, and Scott W. Tinker. 2013. Well Economics Across Ten Tiers in Low and High Btu (British Thermal Unit) Areas, Barnett Shale, Texas. Energy 60: 302–315.

Hall, Charles A. S., and Kent A. Klitgaard. 2012. Energy and the Wealth of Nations. New York, NY: Springer New York. http://link.springer.com/10.1007/978-1-4419-9398-4

Hall, Charles A.S., Cutler J. Cleveland, and Robert K. Kaufmann. 1992. Energy and Resource Quality: The Ecology of the Economic Process. Niwot, CO: University Press of Colorado

Hall, Charles A.S., Jessica G. Lambert, and Stephen B. Balogh. 2014. EROI of Different Fuels and the Implications for Society. Energy Policy 64: 141–152.

Hallock Jr., John L., Wei Wu, Charles A.S. Hall, and Michael Jefferson. 2014. Forecasting the Limits to the Availability and Diversity of Global Conventional Oil Supply: Validation. Energy 64: 130–153.

Ho, Mae-Wan. 1999. Are Economic Systems Like Organisms? In Sociobiology and Bioeconomics, ed. Peter Koslowski, 237–258. Studies in Economic Ethics and Philosophy. Berlin: Springer.

Holling, C.S. 2001. Understanding the Complexity of Economic, Ecological, and Social Systems. Ecosystems 4(5): 390–405.

Holthaus, Eric. 2014. Hot Zone. Slate, June 27. http://www.slate.com/articles/technology/future_ tense/2014/06/isis_water_scarcity_is_climate_change_destabilizing_iraq.single.html

Homer-Dixon, Thomas. 2011. Carbon Shift: How Peak Oil and the Climate Crisis Will Change Canada (and Our Lives). Toronto: Random House of Canada.

Hook, Leslie. 2013. China’s Appetite for Food Imports to Fuel Agribusiness M&A. Financial Times, June 6.

Hughes, J. David. 2013. Energy: A Reality Check on the Shale Revolution. Nature 494(7437): 307–308.

ICEF. 2016. Growing Chinese Middle Class Projected to Spend Heavily on Education through 2030. ICEF Monitor. http://monitor.icef.com/2016/04/growing-chinese-middle-classprojected-spend-heavily-education-2030/

IEA. 2009. World Energy Outlook. Washington, DC: International Energy Agency.

———. 2015. India Energy Outlook. World Energy Outlook Special Report. International Energy Agency. https://www.iea.org/publications/freepublications/publication/india-energy-outlook2015.html

Inman, Mason. 2014. Natural Gas: The Fracking Fallacy. Nature 516(7529): 28–30.

IRIN. 2008. Bread Subsidies Under Threat as Drought Hits Wheat Production. IRIN. June 30.

———. 2010. Growing Protests over Water Shortages. IRIN. July 27. http://www.irinnews.org/news/2010/07/27/growing-protests-over-water-shortages .

———. 2012. Time Running Out for Solution to Water Crisis. IRIN. August 13. http://www.irinnews.org/analysis/2012/08/13/time-running-out-solution-water-crisis

Jackson, Tim. 2009. Prosperity Without Growth: Economics for a Finite Planet. London: Earthscan.

Jackson, Peter M., and Leta K. Smith. 2014. Exploring the Undulating Plateau: The Future of Global Oil Supply. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 372(2006): 20120491.

Jancovici, Jean-Marc. 2013. A Couple of Thoughts in the Energy Transition. Manicore. http:// www.manicore.com/anglais/documentation_a/transition_energy.html

Jefferson, Michael. 2016. A Global Energy Assessment. Wiley Interdisciplinary Reviews: Energy and Environment 5(1): 7–15

Johanisova, Nadia, and Stephan Wolf. 2012. Economic Democracy: A Path for the Future? Futures, Special Issue: Politics, Democracy and Degrowth, 44(6): 562–570.

Johnstone, Sarah, and Jeffrey Mazo. 2011. Global Warming and the Arab Spring. Survival 53(2): 11–17.

Kaminska, Izabella. 2014. Energy Is Gradually Decoupling from Economic Growth. FT Alphaville, January 17. http://ftalphaville.ft.com/2014/01/17/1745542/energy-is-gradually-decouplingfrom-economic-growth/

Katusa, Marin. 2016. How to Pocket Extraordinary Profits from Unconventional Oil. Casey Energy Report.

Kavanagh, Jennifer. 2013. Do U.S. Military Interventions Occur in Clusters? Product Page. http://www.rand.org/pubs/research_briefs/RB9718.html

Kelley, Colin P., Shahrzad Mohtadi, Mark A. Cane, Richard Seager, and Yochanan Kushnir. 2015. Climate Change in the Fertile Crescent and Implications of the Recent Syrian Drought. Proceedings of the National Academy of Sciences 112(11): 3241–3246.

King, Carey W. 2015. Comparing World Economic and Net Energy Metrics, Part 3: Macroeconomic Historical and Future Perspectives. Energies 8(11): 12997–12920.

King, Carey W., John P. Maxwell, and Alyssa Donovan. 2015a. Comparing World Economic and Net Energy Metrics, Part 1: Single Technology and Commodity Perspective. Energies 8(11): 12949–12974.

———. 2015b. Comparing World Economic and Net Energy Metrics, Part 2: Total Economy Expenditure Perspective. Energies 8(11): 12975–12996.

Kirkpatrick, David D. 2013a. Egypt, Short of Money, Sees Crisis on Food and Gas. The New York Times, March 30. http://www.nytimes.com/2013/03/31/world/middleeast/egypt-short-of- money-sees-crisis-on-food-and-gas.html

———. 2013b. Egypt, Short of Money, Sees Crisis on Food and Gas. The New York Times, March 30. http://www.nytimes.com/2013/03/31/world/middleeast/egypt-short-of-money-sees-crisison-food-and-gas.html

Klump, Edward, and Jim Polson. 2016. Shale-Gas Skeptic’s Supply Doubts Draw Wrath of Devon. Bloomberg.com. Accessed July 11. http://www.bloomberg.com/news/articles/2009-11-17/shalegas-skeptics-supply-doubts-draw-wrath-of-devon-energy

Kothari, Ashish. 2014. Degrowth and Radical Ecological Democracy: A View from the South— Blog Postwachstum. Postwatchstum, Wuppertal Institute. June 27.

Kundu, Tadit. 2016. Nearly Half of Indians Survived on Less than Rs38 a Day in 2011–2012. http://www.livemint.com/Opinion/l1gVncveq4EYEn2zuzX4FL/Nearly-half-of-Indians-survived-on-less-than-Rs38-a-day-in-2.html

Lagi, Marco, Karla Z. Bertrand, and Yaneer Bar-Yam. 2011. The Food Crises and Political Instability in North Africa and the Middle East.

Lazenby, Henry. 2016. Opec Believed to Overstate Oil Reserves by 70%, Reserves Depleted Sooner. Mining Weekly. Accessed August 22. http://www.miningweekly.com/article/opec-believed-to-overstate-oil-reserves-by-70-reserves-depleted-sooner-2012-10-04

Lelieveld, J., Y. Proestos, P. Hadjinicolaou, M. Tanarhte, E. Tyrlis, and G. Zittis. 2016. Strongly Increasing Heat Extremes in the Middle East and North Africa (MENA) in the 21st Century. Climatic Change 137(1–2): 245–260.

LePoire, David, and Argonne National Laboratory, Argonne, IL, USA. 2015. Interpreting ‘big History’ as Complex Adaptive System Dynamics with Nested Logistic Transitions in Energy Flow and Organization—Emergence: Complexity and Organization. Emergence, March. https://journal.emergentpublications.com/article/interpreting-big-history-as-complexadaptive-system-dynamics-with-nested-logistic- transitions-in-energy-flow-and-organization/

Lesk, Corey, Pedram Rowhani, and Navin Ramankutty. 2016. Influence of Extreme Weather Disasters on Global Crop Production. Nature 529(7584): 84–87. doi: 10.1038/nature16467

Li, Minqi. 2014. Peak Oil, Climate Change, and the Limits to China’s Economic Growth. New York: Routledge.

MacDonald, Gregor. 2010. Think OPEC Exports Won’t Decline? You’re Living In A Dreamworld. Business Insider. August 14. http://www.businessinsider.com/think-opec-exports-wontdecline-youre-living-in-a-dreamworld-2010-8

Matsumoto, Ken’ichi, and Vlasios Voudouris. 2014. Potential Impact of Unconventional Oil Resources on Major Oil-Producing Countries: Scenario Analysis with the ACEGES Model. Natural Resources Research 24(1): 107–119.

Mawry, Yousef. 2015. Yemen Fuel Crisis Ignites Street Riots. Middle East Eye. February 12. http:// www.middleeasteye.net/news/yemen-fuel-crises-ignites-ongoing-street-riots-393941730

May, Robert M., Simon A. Li, Minqi. 2014. Peak Oil, Climate Change, and the Limits to China’s Economic Growth. New York: Routledge.

MacDonald, Gregor. 2010. Think OPEC Exports Won’t Decline? You’re Living In A Dreamworld. Business Insider. August 14. http://www.businessinsider.com/think-opec-exports-wontdecline-youre-living-in-a-dreamworld-2010-8

Matsumoto, Ken’ichi, and Vlasios Voudouris. 2014. Potential Impact of Unconventional Oil Resources on Major Oil-Producing Countries: Scenario Analysis with the ACEGES Model. Natural Resources Research 24(1): 107–119.

Mawry, Yousef. 2015. Yemen Fuel Crisis Ignites Street Riots. Middle East Eye. February 12. http:// www.middleeasteye.net/news/yemen-fuel-crises-ignites-ongoing-street-riots-393941730

May, Robert M., Simon A. Levin, and George Sugihara. 2008. Complex Systems: Ecology for Bankers. Nature 451(7181): 893–895.

Mayah, Emmanuel. 2012. Climate Change Fuels Nigeria Terrorism. Africa Review. February 24. http://www.africareview.com/news/Climate-change-fuels-Nigeria-terrorism/979180-1334472- 4m5dlu/index.html

McGlade, Christophe, Jamie Speirs, and Steve Sorrell. 2013. Unconventional Gas—A Review of Regional and Global Resource Estimates. Energy 55: 571–584.

Meighan, Brendan. 2016. Egypt’s Natural Gas Crisis. Carnegie Endowment for International Peace. January. http://carnegieendowment.org/sada/62534

Moeller, Devin, and David Murphy. 2016. Net Energy Analysis of Gas Production from the Marcellus Shale. BioPhysical Economics and Resource Quality 1(1): 1–13.

Mohr, Steve. 2010. Projection of World Fossil Fuel Production with Supply and Demand Interactions. Callaghan: University of Newcastle.

Mohr, S.H., and G.M. Evans. 2009. Forecasting Coal Production until 2100. Fuel 88(11): 2059– 2067.

———. 2010. Long Term Prediction of Unconventional Oil Production. Energy Policy 38(1): 265–276.

Mohr, S.H., J. Wang, G. Ellem, J. Ward, and D. Giurco. 2015. Projection of World Fossil Fuels by Country. Fuel 141: 120–135

Mora, Camilo, Abby G. Frazier, Ryan J. Longman, Rachel S. Dacks, Maya M. Walton, Eric J. Tong, Joseph J. Sanchez, et al. 2013a. The Projected Timing of Climate Departure from Recent Variability. Nature 502(7470): 183–187.

Mora, Camilo, Chih-Lin Wei, Audrey Rollo, Teresa Amaro, Amy R. Baco, David Billett, Laurent Bopp, et al. 2013b. Biotic and Human Vulnerability to Projected Changes in Ocean Biogeochemistry over the 21st Century. PLOS Biol 11(10): e1001682.

Morgan, Geoffrey. 2016. Average Oil Production to Decline This Year, Grow More Slowly in the Future: CAPP. Financial Post, June 23.

Morrissey, John. 2016. US Central Command and Liberal Imperial Reach: Shaping the Central Region for the 21st Century. The Geographical Journal 182(1): 15–26.

Murphy, David J. 2014. The Implications of the Declining Energy Return on Investment of Oil Production. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 372(2006): 20130126. doi:10.1098/rsta.2013.0126.

Murphy, David J., and Charles A.S. Hall. 2011. Energy Return on Investment, Peak Oil, and the End of Economic Growth. Annals of the New York Academy of Sciences 1219(1): 52–72.

Nandi, Sanjib Kumar. 2014. A Study on Hubbert Peak of India’s Coal: A System Dynamics Approach. International Journal of Scientific & Engineering Research 9(2).  http://www.academia.edu/9744358/A_Study_on_Hubbert_Peak_of_Indias_Coal_A_System_Dynamics_Approach

Nekola, Jeffrey C., Craig D. Allen, James H. Brown, Joseph R. Burger, Ana D. Davidson, Trevor S. Fristoe, Marcus J. Hamilton, et al. 2013. The Malthusian–Darwinian Dynamic and the Trajectory of Civilization. Trends in Ecology & Evolution 28(3): 127–130. doi: 10.1016/j. tree.2012.12.001

OBG. 2016. New Discoveries for Egyptian Oil Producers. Oxford Business Group. January 27. http://www.oxfordbusinessgroup.com/overview/fresh-ideas-new-discoveries-have-oilproducers-optimistic-about-future

Odhiambo, George O. 2016. Water Scarcity in the Arabian Peninsula and Socio-Economic Implications. Applied Water Science, June, 1–14.

Odum, Howard Thomas. 1994. Ecological and General Systems: An Introduction to Systems Ecology. Niwot, CO: University Press of Colorado.

Omisore, Bolanle. 2014. Nigerians Face Fuel Shortages In the Shadow of Plenty. National Geographic News. April 11. http://news.nationalgeographic.com/news/enerws/ener nigeria-fuel-shortage-oil/

Onyia, Chukwuma. 2015. Climate Change and Conflict in Nigeria: The Boko Haram Challenge. American International Journal of Social Science 4(2)

Owen, Nick A., Oliver R. Inderwildi, and David A. King. 2010. The Status of Conventional World Oil reserves—Hype or Cause for Concern? Energy Policy 38(8): 4743–4749.

Patrick, Roger. 2015. When the Well Runs Dry: The Slow Train Wreck of Global Water Scarcity. Journal—American Water Works Association 107: 65–76.

Patzek, Tad W., Frank Male, and Odum, Howard Thomas. 1994. Ecological and General Systems: An Introduction to Systems Ecology. Niwot, CO: University Press of Colorado.

Omisore, Bolanle. 2014. Nigerians Face Fuel Shortages In the Shadow of Plenty. National Geographic News. April 11. http://news.nationalgeographic.com/news/enerws/ener nigeria-fuel-shortage-oil/

Onyia, Chukwuma. 2015. Climate Change and Conflict in Nigeria: The Boko Haram Challenge. American International Journal of Social Science 4(2). http://www.aijssnet.com/journal/index/329 .

Owen, Nick A., Oliver R. Inderwildi, and David A. King. 2010. The Status of Conventional World Oil reserves—Hype or Cause for Concern? Energy Policy 38(8): 4743–4749.

Patrick, Roger. 2015. When the Well Runs Dry: The Slow Train Wreck of Global Water Scarcity. Journal—American Water Works Association 107: 65–76.

Patzek, Tad W., Frank Male, and Michael Marder. 2013. Gas Production in the Barnett Shale Obeys a Simple Scaling Theory. Proceedings of the National Academy of Sciences 110(49): 19731–19736.

Pearce, Joshua M. 2008. Thermodynamic Limitations to Nuclear Energy Deployment as a Greenhouse Gas Mitigation Technology. International Journal of Nuclear Governance, Economy and Ecology 2(1): 113.

Peel, Michael. 2013. Subsidies ‘Distort’ Saudi Arabia Economy Says Economy Minister. Financial Times. May 7. http://www.ft.com/cms/s/0/f474cf28-b717-11e2-841e-00144feabdc0.html

Phys.org. 2016. Minority Rules: Scientists Discover Tipping Point for the Spread of Ideas. Accessed August 21. http://phys.org/news/2011-07-minority-scientists-ideas.html

Pichler, Franz. 1999. Modeling Complex Systems by Multi-Agent Holarchies. In Computer Aided Systems Theory—EUROCAST’99, ed. Peter Kopacek, Roberto Moreno-Díaz, and Franz Pichler, 154–168. Lecture Notes in Computer Science 1798. Springer Berlin Heidelberg.

Pierce, Charles P. 2016. What Happens When the American Southwest Runs Out of Water? Esquire. June 1. http://www.esquire.com/news-politics/politics/news/a45398/southwest-desertwater-drought/

Pracha, Ali S., and Timothy A. Volk. 2011. An Edible Energy Return on Investment (EEROI) Analysis of Wheat and Rice in Pakistan. Sustainability 3(12): 2358–2391.

Pritchard, Bill. 2016. The Impacts of Climate Change for Food and Nutrition Security: Issues for India. In Climate Change Challenge (3C) and Social-Economic-Ecological Interface-Building. Environmental Science and Engineering. Springer.

Pueyo, Salvador. 2014. Ecological Econophysics for Degrowth. Sustainability 6(6): 3431–3483.

Qaed, Samar. 2014. Expanding Too Quickly? Yemen Times. February 25.

Qi, Ye, Nicholas Stern, Tong Wu, Jiaqi Lu, and Fergus Green. 2016. China’s Post-Coal Growth. Nature Geoscience 9.

Reganold, John P., and Jonathan M. Wachter. 2016. Organic Agriculture in the Twenty-First Century. Nature Plants 2(2): 15221.

Rioux, Sébastien, and Frédérick Guillaume Dufour. 2008. La sociologie historique de la théorie des relations sociales de propriété. Actuel Marx 43(1): 126.

RiskMetrics Group. 2010. Canada’s Oil Sands: Shrinking Window of Opportunity. Ceres, Inc. http://www.ceres.org/resources/reports/oil-sands-2010

Rockström, Johan, Will Steffen, Kevin Noone, Persson Åsa, F. Stuart Chapin, Eric F. Lambin, Timothy M. Lenton, et al. 2009. A Safe Operating Space for Humanity. Nature 461(7263): 472–475.

Ross, John, and Adam P. Arkin. 2009. Complex Systems: From Chemistry to Systems Biology. Proceedings of the National Academy of Sciences 106(16): 6433–6434.

Salameh, M. G. 2012. Impact of US Shale Oil Revolution on the Global Oil Market, the Price of Oil & Peak Oil.

Saleh, Hebah. 2013. Egypt Weighs Burden of IMF Austerity. Financial Times. March 11. http://www.ft.com/cms/s/0/464a9350-8a6d-11e2-bf79-00144feabdc0.html

Sanders, Jim. 2013. The Hidden Force behind Islamic Militancy in Nigeria? Climate Change. The Christian Science Monitor. July 8.

Sands, Phil. 2011. Population Surge in Syria Hampers Country’s Progress | The National. The National, March 6. http://www.thenational.ae/news/world/middle-east/population-surgein-syria-hampers-countrys-progress

Sarant, Louise. 2013. Climate Change and Water Mismanagement Parch Egypt | Egypt Independent. Egypt Independent. February 26. http://www.egyptindependent.com/news/climate-changeand-water-mismanagement-parch-egypt

Sayne, Aaron. 2011. Climate Change Adaptation and Conflict in Nigeria. Special Report. United States Institute of Peace. http://www.usip.org/publications/climate-change-adaptationand-conflict-in-nigeria

Schneider, E.D., and J.J. Kay. 1994. Life as a Manifestation of the Second Law of Thermodynamics. Mathematical and Computer Modelling 19(6): 25–48.

Schneider, François, Giorgos Kallis, and Joan Martinez-Alier. 2010. Crisis or Opportunity? Economic Degrowth for Social Equity and Ecological Sustainability. Introduction to This Special Issue. Journal of Cleaner Production, Growth, Recession or Degrowth for Sustainability and Equity? 18(6): 511–518.

Schrodinger, Erwin. 1944. What Is Life? http://whatislife.stanford.edu/LoCo_files/What-isLife.pdf

Schwartzman, David, and Peter Schwartzman. 2013. A Rapid Solar Transition Is Not Only Possible, It Is Imperative! African Journal of Science, Technology. Innovation and Development 5(4): 297–302.

Shahine, Alaa. 2016. Egypt Had FDI Outflows of $482.7 Million in 2011. Bloomberg.com. Accessed August 16. http://www.bloomberg.com/news/articles/2012-03-25/egypt-had-fdioutflows-of-482-7-million-in-2011-correct-

Shaw, Martin. 2005. Risk-Transfer Militarism and the Legitimacy of War after Iraq. In September 11, 2001: A Turning-Point in International and Domestic Law? ed. Paul Eden and T. O’Donnell. Transnational Publishers. http://sro.sussex.ac.uk/12462/

Simms, Andrew. 2008. The Poverty Myth. New Scientist 200(2678): 49.

Smith-Nonini, Sandy. 2016. The Role of Corporate Oil and Energy Debt in Creating the Neoliberal Era. Economic Anthropology 3(1): 57–67.

Söderbergh, Bengt, Fredrik Robelius, and Kjell Aleklett. 2007. A Crash Programme Scenario for the Canadian Oil Sands Industry. Energy Policy 35(3): 1931–1947.

Steffen, Will, et al. 2015. January 15, 2015. Planetary Boundaries: Guiding Human Development on a Changing Planet. Science.

Stewart, Ian. 2015. Debt-Driven Growth, Where Is the Limit? Deloitte: Monday Briefing. February 2. http://blogs.deloitte.co.uk/mondaybriefing/2015/02/debt-driven-growth-whereis-the-limit.html

Stokes, Doug, and Sam Raphael. 2010. Global Energy Security and American Hegemony. Baltimore: JHU Press. Stott, Peter. 2016. How Climate Change Affects Extreme Weather Events. Science 352(6293): 1517–1518.

Street, 1615 L., NW, Suite 800 Washington, and DC 20036 Media Inquiries. 2014. Attitudes about Aging: A Global Perspective. Pew Research Center’s Global Attitudes Project. January 30. http://www.pewglobal.org/2014/01/30/attitudes-about-aging-a-global-perspective/

Taha, Sharif. 2014. Kingdom Imports 80% of Food Products. Arab News. April 20. http://www.arabnews.com/news/558271

Tainter, Joseph. 1990. The Collapse of Complex Societies. Cambridge: Cambridge University Press.

Tao, Fulu, Masayuki Yokozawa, Yousay Hayashi, and Erda Lin. 2003. Future Climate Change, the Agricultural Water Cycle, and Agricultural Production in China. Agriculture, Ecosystems & Environment 95(1): 203–215.

TE. 2016. Egypt Government Debt to GDP 2002-2016. Trading Economics. http://www.tradingeconomics.com/egypt/government-debt-to-gdp

Terzis, George, and Robert Arp, eds. 2011. Information and Living Systems: Philosophical and Scientific Perspectives. MIT Press. http://www.jstor.org/stable/j.ctt5hhhvb.

Thevard, Benoit. 2012. Europe Facing Peak Oil. Momentum Institute/Greens-EFA Group in European Parliament.  http://www.greens-efa.eu/fileadmin/dam/Documents/Publications/PIC%20petrolier_EN_lowres.pdf

Timms, Matt. 2016. Resource Mismanagement Has Led to a Critical Water Shortage in Asia. World Finance, July 21.

Tong, Shilu et al. 2016. Climate Change, Food, Water and Population Health in China. Bulletin of the World Health Organization, July.

Tranum, Sam. 2013. Powerless: India’s Energy Shortage and Its Impact. India: Sage.

Trendberth, Kevin, Jerry Meehl, Jeff Masters, and Richard Somerville. 2012. Heat Waves and Climate Change. https://www.climatecommunication.org/wp-content/uploads/2012/06/Heat_ Waves_and_Climate_Change.pdf

Tverberg, Gail. 2016. China: Is Peak Coal Part of Its Problem? Our Finite World. June 20.  https://ourfiniteworld.com/2016/06/20/china-is-peak-coal-part-of-its-problem/

UN 2015. World Population Prospects. United Nations Department of Economic & Social Affairs, Population Division.

UN News Center, United Nations News Service. 2012. UN News—Despite End-of-Year Decline, 2011 Food Prices Highest on Record—UN. UN News Service Section. January 12.

Victor, Peter. 2010. Questioning Economic Growth. Nature 468(7322): 370–371.

Vyas, Kejal, and Timothy Puko. 2016. Venezuela Oil Production Drops Sharply in May. Wall Street Journal, June 14, sec. World. http://www.wsj.com/articles/venezuela-oil-productiondrops-sharply-in-may-1465868354

Wang, Jinxia, Robert Mendelsohn, Ariel Dinar, Jikun Huang, Scott Rozelle, and Lijuan Zhang. 2009. The Impact of Climate Change on China’s Agriculture. Agricultural Economics 40(3): 323–337.

Wang, Ke, Lianyong Feng, Jianliang Wang, Yi Xiong, and Gail E. Tverberg. 2016. An Oil Production Forecast for China Considering Economic Limits. Energy 113: 586–596.

Weijermars, Ruud. 2013. Economic Appraisal of Shale Gas Plays in Continental Europe. Applied Energy 106: 100–115. doi: 10.1016/j.apenergy.2013.01.025

Wiedmann, Thomas O., Heinz Schandl, Manfred Lenzen, Daniel Moran, Sangwon Suh, James West, and Keiichiro Kanemoto. 2015. The Material Footprint of Nations. Proceedings of the National Academy of Sciences 112(20): 6271–6676.

Wilkinson, Henry. 2016. Political Violence Contagion: A Framework for Understanding the Emergence and Spread of Civil Unrest. Lloyd’s.   http://www.lloyds.com/~/media/files/news%20and%20insight/risk%20insight/2016/political%20violence%20contagion.pdf

Williams, Selina, and Bradley Olson. 2016. Big Oil Companies Binge on Debt. Wall Street Journal, August 24. http://www.wsj.com/articles/largest-oil-companies-debts-hit-record-high1472031002

Wood, Ellen Meiksins. 1981. The Separation of the Economic and the Political in Capitalism. New Left Review, I 127: 66–95. World Bank. 2014. Future Impact of Climate Change Visible Now in Yemen.

World Bank. November 24. http://www.worldbank.org/en/news/feature/2014/11/24/future-impactof-climate-change-visible-now-in-yemen

Worth, Robert F. 2010. Drought Withers Lush Farmlands in Syria. The New York Times, October 13. http://www.nytimes.com/2010/10/14/world/middleeast/14syria.html

Yaritani, Hiroaki, and Jun Matsushima. 2014. Analysis of the Energy Balance of Shale Gas Development. Energies 7(4): 2207–2227.





Raul Ilargi at his best……

23 01 2016

Square Holes and Currency Pegs

When David Bowie died, everybody, in what they wrote and said, seemed to feel they owned him, and owned his death, even if they hadn’t thought about him, or listened to him, for years. In the same vein, though the Automatic Earth has been talking about deflation (for 8 years, it’s our anniversary today) and the looming China Ponzi disaster for a long time, now that these things actually play out, everybody talks as if they own the story, and present it as new (because, for one thing, well, after all for them it is new…).

And that’s alright, it’s how people live, and function, they always have, and no-one’s going to change that. It’s just that for me, I’ve been wondering a little about what to write lately, because I’ve already written the deflation and China stories, many times, before most others tuned into them. But still, it’s strange to now, as markets start plunging, read things like ‘Deflation is Here’, as if deflation is something new on the block.

Deflation has been playing out for years. Central bank largesse has largely kept it at bay in the public eye, but that now seems over. Debt deflation is inevitable when -debt- bubbles burst, and when these bubbles are large enough, there’s nothing that can stop the process, not even miracle growth. But you’re not going to understand this if and when you look only at falling prices as the main sign of deflation; they’re merely a small part of the process, and a lagging one at that.

A much better indicator of deflation is the velocity of money, the speed at which ‘consumers’ spend money. And velocity has been going down for years. That’s where and how you notice deflation, when combined with the money and credit supply. Which have soared in most places, but were no match for a much faster declining velocity. People have much less money to spend. Which shouldn’t be a surprise if, just to name an example, new US jobs pay 23% less than the ones they’re -supposedly- replacing.

As I said a few weeks ago, it’s probably only fitting, given its pivotal role in our economies and societies, that it’s oil that’s leading the way down. Other commodities are not far behind, because demand for -and spending on- them has been plummeting too, as overproduction and overinvestment, especially in China, do the rest.

However you look at present global debt, percentage wise, or in absolute numbers, you name it, there’s never been anything like it. We outdid ourselves by so much we don’t have the rational or probably even subconscious ability to oversee what we’ve done. We live in the world’s biggest bubble ever by a margin of god only knows how much. And that bubble will deflate. It is already doing just that.

The next steps in the debt deflation process will of necessity be chaotic. A substantial part of that chaos is bound to emerge from denial, and the reluctance to accept reality. Which often rise from a poor understanding of the processes taking place. It certainly looks as if there’s lots of that in China, where both the working principles of financial markets and the grip authorities -can- have on them, seem to be met with a huge dose of incomprehension.

Mind you, given the levels of comprehension vs outright ‘theoretical religion’ among leading western politicians and economists, the ones who most often rise to decision-making positions in governments and financial institutions, we have nothing on China when it comes to truth and denial.

From all that follows what will be the next leg down in the ‘magnificent slump’: the awfully messy demise of currency pegs.

In a short explainer for the uninitiated, allow me to steal a few words from Investopedia: “There are two types of currency exchange rates—floating and fixed, still in existence. Major currencies, such as the Japanese yen, euro, and the US dollar, are floating currencies—their values change according to how the currency is being traded on forex markets. Fixed currencies, on the other hand, derive value by being fixed (or pegged) to another currency.”

While there are more currency pegs in the world today than we should care to mention -there are dozens-, it seems fair to say that in today’s deflationary environment, practically all are under siege. Most African currencies are pegged to the euro, and they do have to wonder how smart that is going forward. Still, the main, and immediate, problems seem to arise in pegs to the US dollar (with one interesting exception: the Swiss franc – more in a bit).

Most oil producing Gulf nations are pegged to the greenback. So is Hong Kong. And, for all intents and purposes, so is China, though you have to wonder what a peg truly is if you change it on a daily basis. China is on its way to a peg vs a basket of currencies, but that seriously interferes with its stated intention to become a reserve currency -of sorts-. If your currency can’t stand on its own two feet, i.e. float, you’re per definition weak.

China’s vice president Li Yuanchao said this week in Davos that Beijing has no plans to devalue the yuan, i.e. to cut the peg to the dollar. Then again, he also stated that “central command” would ‘look after’ stock market investors. Put the two statements together and you have to wonder what the one on the yuan (couldn’t help myself there) is worth.

The first “link in the chain” that appears vulnerable is the Hong Kong dollar, which is stuck between China and the US, and unlike the yuan still has a solid dollar peg, but, obviously, also has a strong link to the yuan. The issue is that if China continues on its current course of daily small yuan devaluations, the difference with the HKD will grow so large that ever more investments and savings will move to Hong Kong, despite a maze of laws designed to keep just that from happening.

And that is the overall danger to currency pegs as they still exist in today’s rapidly changing global financial world: all economies are falling, but some are falling -much- faster than others.

Not so long ago, the World Bank called on Saudi Arabia to defend its USD peg with its FX reserves. It even looked as if they meant it. But Saudi Arabia has no choice but to deplete those reserves to prevent other nasty things from happening that are much more important than a currency peg. Like social chaos.

It’s somewhat wonderfully ironic that the main most recent experience with abandoning a peg comes from a source that faced -and now feels- the exact opposite of what nations like Saudi Arabia and China do. That is, it became too costly and risky for Switzerland to keep its franc pegged (or ‘capped’, to be precise) to the euro any longer a year ago, because of upward, not downward pressure.

Since then, the euro went from 1.20 franc to 1.09 or thereabouts, which perhaps doesn’t look all that crazy, and many ‘experts’ seek to downplay the effects of the move, but it’s still estimated to have cost the Swiss some $25 billion. For comparison, the US has 40 times as many people as Switzerland’s 8 million, so the per capita bill would be close to $1 trillion stateside. That wouldn’t have added to Yellen’s popularity. Currency pegs and caps can be expensive hobbies.

And that’s why the Saudis and Chinese are so anxious about letting go of their pegs. That and pride. In their cases, their respective currencies wouldn’t, like the franc, rise versus the one they’re pegged to, they would instead lose a lot of value. And in the fake markets we live in today, where price discovery has long since been left behind, there’s no telling how much. Well, unless they seek to keep control, but then it would be just a matter of time until they need to rinse and repeat.

Even if it seems obvious to make a particular move, and if everybody knows you really should, showing what can be perceived as real weakness could be a killer when everything else around you is manipulated to the bone.

Still, neither Beijing nor Riyadh stand a chance in a frozen-over hell, to ultimately NOT sharply devalue their currencies or just simply let go of their pegs. Simply because China’s economy is falling to pieces, and the Saudi’s dependence on oil prices is dragging it into a financial gutter. Just look at what falling prices had done to the riyal vs non-pegged oil producer currencies by October 2015, when Brent was still at $45:

The Saudis could have been paid for their oil in a currency worth perhaps twice as much as their own, the one their domestic economy runs on. That’s overly simplistic, because the Saudi tie to the USD runs far and deep, but that doesn’t make it untrue.

What will bring down the Chinese and Saudi pegs, along with a long list of other pegs, is, how appropriately, the very same markets they’ve been relying on to NOT function. The bets against Hong Kong’s ability to maintain its USD peg have already started, and China is next, along with the House of Saud (the latter two just take more fire-power). Which of course is exactly why they speak their soothing ‘confident’ words. Words that are today interpreted as the very sign of weakness they’re meant to circumvent.

What worked for George Soros in his bet vs the Bank of England and the pound sterling in 1992, will work again unless these countries are ahead of the game and swallow their pride and -ultimately- smaller losses.

Granted, so much will have to be recalibrated if the yuan devalues by 50% or so, and the riyal does something similar (it’s very hard to see either not happening), that it will take some serious time before everyone knows where they -and others- stand. And since volatility tends to feed on itself once there’s enough of it, it seems to make sense that governments would seek control. But that doesn’t mean they -can- actually have any.

Today’s major currency pegs are remnants of a land of long ago lore; they have no place in this world, they are financial misfits. Who’ve been allowed to persist only because central banks and governments have been able to distort markets for as long as they have. But that ability is not infinite, and it’s in nobody’s longer term interest that it would be.

Not even those that now seem to profit most from it. We will end up with societies that function no better for the ridiculous Davos elites than they do for the bottom rung. But no elite will ever see that, let alone admit it voluntarily.

Deflation and foreign exchange chaos. There’s your future. As for stocks and oil, who’s left to buy any? Not the consumer who’s 70% of US and perhaps 60% of EU GDP, they’re maxed out on private debt. So why would investors put their money in either? And if they don’t, where do you see prices go?

Even more importantly, deflation makes a lot of money, and even much more virtual money, vanish into overnight thin air. That’s what everyone is running into when all these currencies, China, Saudi, Gulf states et al, are forced to recalibrate. $17 trillion disappeared from global equities markets in the past 6 months.

How much vanished from the value of ‘official’ oil reserves? How much from iron ore and aluminum? How much do all the world’s behemoth corporations and banks and commodity-exporting countries have their resource ‘wealth’ on their books for in their sunny creative accounting models? And how much of that is just thin hot air too?

We’re about to find out.





Powerdown: has it started?

9 11 2014

When I first discovered Peak Oil all those years ago (is it 14 already?) I got most of my information from Richard Heinberg’s groundbreaking books (at the time), “The Party’s Over”, and “Powerdown”.

Published a whole ten years ago, Richard wrote on his website “If the US continues with its current policies, the next decades will be marked by war, economic collapse, and environmental catastrophe. Resource depletion and population pressures are about to catch up with us, and no one is prepared. The political elites, especially in the US, are incapable of dealing with the situation and have in mind a punishing game of “Last One Standing.”The alternative is “Powerdown,” a strategy that will require tremendous effort and economic sacrifice in order to reduce per-capita resource usage in wealthy countries, develop alternative energy sources, distribute resources more equitably, and reduce the human population humanely but systematically over time. While civil society organizations push for a mild version of this, the vast majority of the world’s people are in the dark, not understanding the challenges ahead, nor the options realistically available.”

Today, the price of oil has fallen to around $78 a barrel, something that seemed unimaginable even three months ago… What on Earth is going on?  All my usual sources for information on these matters have been abuzz with theories, theories like the Americans and the Saudis have linked up arms to sink the Russians who need oil (like almost everybody else!) above $100 a barrel to stay afloat, and punish them over the Ukrainian crisis.  Then, another theory came up that the Saudis were feeling threatened by the rising amounts of shale oil coming out of the US, no matter that it is both financially and energetically unviable.  Demand for oil has fallen, so why are the Saudis flooding the market with cheap oil?  Are they trying to sink both the Russians and the Americans?  Rumours also abound that if the Saudis are not careful, and the resulting drop in revenue from selling oil at cost or maybe even below results in economic problems for their country, a revolution could even occur in Arabia.  Such are the religious tensions in the Middle East, that I have frankly given up trying to predict what will happen next.

If the Saudis are attempting to sink the US shale oil industry, it is starting to work as the shale-oil drilling boom is showing early signs of cracking.  Rigs targeting oil, according to Bloomberg, sank by 14 to 1,568 this week, the lowest since Aug. 22, Baker Hughes Inc. (BHI) said yesterday. The Eagle Ford shale formation in south Texas lost the most, dropping nine to 197. The nation’s oil rig count is down from a peak of 1,609 on Oct. 10.

Drillers are slowing down as crude prices tumbled 24 percent in the past four months. Transocean Ltd. (RIG) said yesterday that its earnings would take a hit by a drop in fees and demand for its rigs. The slide threatens to curb a production boom in U.S. shale formations that has helped bring prices at the pump below $3 a gallon for the first time since 2010 and shrink the nation’s dependence on foreign oil imports.

“We are officially seeing the slowdown in oil drilling,” James Williams, president of energy consulting company WTRG Economics, said by telephone from London, Arkansas, yesterday. “There’s no doubt about it now. We’re already down 49 rigs since the peak in October. It’ll have fallen by more than 100 rigs by the end of year.”

Then, we have coal fired power stations closing down in Australia…..  Business Spectator reported that “Receivers KordaMentha have announced that the 151 megawatt Redbank Coal Power station, in NSW, will be shut down, prompting the question as to whether Anglesea coal power station in Victoria, which Alcoa is looking to offload, will be next.”  This, at a time coal is as cheap as chips, and electricity the dearest it has ever been……  what is going on?

To top it off, ABC TV’s 7.30 program recently aired a fairly extensive item regarding Australia’s oil security that had me almost falling off my chair.  “After steadily cutting domestic oil production and refining, Australia is now more than 90 per cent dependent on oil imports mainly from the Middle East.”  Yeah right…..  we’ve been cutting domestic oil production.  Why would we do that?  Why can’t anyone in mainstream media utter the words “Peak Oil”?

The fact more than 50% of our oil comes through the Strait of Hormuz is news to me also.  It wasn’t that long ago, Vietnam was our biggest supplier, then it was New Zealand (no, you are reading this right!) and obviously something momentous occurred in those countries, and I suspect it’s called the Export Land Model

We used to import a lot of oil from Indonesia.  It was even a member of OPEC.  But once it could no longer export oil, it could no longer be a member of an export cartel, and we had to look elsewhere (check out the red bit at the bottom RH of the Indonesian graph…. that is IMPORT!).  So we in Australia started importing oil from Vietnam, but it too hit the ELM wall, so we started importing from NZ (which frankly amazed me at the time) but it seems NZ must have also hit the wall.  Egypt, one of my favourite ELM examples is now in chaos as it starts to collapse.  The more oil producing nations hit this wall, the more precarious everyone’s oil supplies become, and Australia is no different.  We are running out of countries to import from..

Richard Heinberg’s Powerdown was offered up as a planned descent mechanism.  Nothing about what we are currently seeing is planned.  There can be no other outcome to lack of vision and planning, and that’s chaos, and we could see it happening very soon, maybe even within two short years….





Coming to Understand Abrupt Climate Change

26 01 2014

Paul Beckwith is a PhD student with the laboratory for paleoclimatology and climatology, pbdepartment of geography, University of Ottawa. He teaches second year climatology/meteorology as a part-time professor. His thesis topic is “Abrupt climate change in the past and present.” He holds an M.Sc. in laser physics and a B.Eng. in engineering physics.  Originally published here…….

Paul Beckwith ~ I have been telling people for  over 2 years about the Arctic albedo collapse reducing polar to equator temperature gradients, physically causing the slowing, waving out and stalling of jet streams, causing extreme weather events to skyrocket. For example, my CMOS presentation in January 2012 was seen by >70,000 (by Aug/2012) and still counting.  I have given multiple talks to the public, politicians, scientists. I’ve incessantly tweeted (1200 followers) and facebooked (4000 friends) about these connections.  I started blogging frequently with Sierra Club Canada about a year ago, as well as with Arctic News, the Elephant Journal, BoomerWarrior, Canadian Daily, World Daily. Also I have YouTube videos and radio podcasts (EcoShock radio, Gorilla radio, etc.). I have also educated about 200 students on these connections within my climatology & meteorology classes over the last 2 years. In total, I’ve have reached at least 1 million people with this Arctic – jet stream – extreme weather connection.

The public is really coming to understand that we (collectively) are in great trouble…

Abrupt climate change. It is happening today, big time. The northern hemisphere atmospheric circulation system jetstream is doing its own thing, without the guidance of a stable jet stream. The jet stream is fractured into meandering and stuck streaked segments, which are hoovering up water vapor and directing it day after day to unlucky localized regions, depositing months or seasons worth of rain in only a few days, turning these locales into water worlds and trashing all infrastructure like houses, roads, train tracks and pipelines and also creating massive sinkholes and catastrophic landslides. And climate change is only getting warmed up.

In the Arctic, methane is coming out of the thawing permafrost. Both on land and under the ocean on the sea floor. The Yedoma permafrost in Siberia is now belching out methane at greatly accelerated rates due to intense warming. The collapsing sea ice in the Arctic Ocean is exposing the open ocean to greatly increased solar absorption and turbulent mixing from wave action due to persistent cyclonic activity. Massive cyclonic activity will trash large portions of the sea ice if positioned to export broken ice via the Fram Strait.
What does it all mean?

We have lost our stable climate. Likely permanently. Rates of change are greatly exceeding anything in the paleorecords. By at least 10x, and more likely >30x. We are heading to a much warmer world. The transition will be brutal for civilization.global-warming

Can we avoid this? Stop it? Probably not. Not with climate reality being suppressed by corporations and their government employees in their relentless push for more and more fossil fuel infrastructure and mining and drilling.

Craziness, in a nutshell. Temperatures over land surfaces in the far north have been consistently over 25 C for weeks, due to persistent high pressure atmospheric blocks, leading to clear skies and unblocked solar exposure. Water temperatures in rivers and streams in the far north have resulted in large fish kills as their ecological mortality thresholds have been exceeded. Many other regions are experiencing strange incidences of animal mortality. Mass migrations of animals towards the poles are occurring on land and sea, at startling rates, in an effort for more hospitable surroundings for survival. Shifting food source distributions is causing even hardier, less vulnerable species to be severely stressed. For example, dolphins are being stranded or dying, birds are dropping out of the sky, and new parasites and bacteria are proliferating with warmer temperatures.

In regions of the world undergoing severe droughts the vegetation and soils are drying and fires are exploding in size, frequency, and severity. Especially hard-hit are large regions of the US southwest, southern Europe, and large swaths of Asia. Who knows if forests that are levelled by fire will eventually be reforested; it all depends on what type of climate establishes in the region.

What about coastal regions around the world and sea levels? Not looking too good for the home team. In 2012 Greenland tossed off about 700 Gt (Gt=billion tons) of sea ice, from both melting and calving. As the ice melts,  it is darkening from concentrated contaminants being exposed, from much greater areas of low albedo meltwater pools, and from fresh deposits of black carbon ash from northern forest fires. Even more worrying are ominous signs of increasing movement. GPS sensor anchored to the 3 km thick glaciers hundreds of km from the coast are registering increased sliding. Meltwater moulins are chewing through the ice from the surface to the bedrock and are transporting heat downward, softening up the ice bonded to the bedrock and allowing sliding. Eventually, large chunks will slide into the ocean causing tsunamis and abrupt sea level rises. Many regions of the sea floor around Greenland are scarred from enormous calving episodes in the past.

coastalflooding
On a positive note, this knowledge of our changing climate threat is filtering out to greater numbers of the slumbering public that has been brainwashed into lethargy by the protectors of the status quo. As more and more people see the trees dying in their back yards and their cities and houses and roads buckling under unrelenting torrential rains, they are awaking to the threat. And there will be a threshold crossed and a tipping point reached in human behaviour  with an understanding of the reality of the risks we face. And finally global concerted action. To slash emissions. And change our ways. And retool our economies and reset our priorities. And not take our planet for granted.