Transportation: How long can we adapt before we fall off the Net Energy Cliff?

24 08 2017

This is an older post (2014) from Alice Friedemann’s blog, which somehow flew under the radar……. There is one bullet point in this that stunned me:

  1. America is likely to be outbid by China, India, etc., for oil exports.  At China’s current growth rate, China alone would consume ALL exported oil by 2020.

IF you have been following this humble blog long enough, you might know that I’ve been ‘forecasting’ that Australia will be totally out of oil by around 2020, and will therefore need to import 100% of our liquid fuel needs…….  what happens then?

When I asked Alice for more details, she replied “I suspect when I wrote this it was common knowledge, they’re rising empires as other nation fade. But now with China’s housing and other bubbles, and the corruption in both China and India, and ecological destruction, it’s probably not true now. I’ve met Australians who fear a China invasion someday but don’t know how realistic that is.”

Furthermore, as China’s spectacular growth rates have somewhat shrunk, we may get a few more years relief…. but how long will it last? Here’s Alice’s post, very interesting as usual….


alice_friedemannThe problem we face is a liquid fuel crisis.  Absolutely essential vehicles, such as agricultural tractors and combines, railroads, and trucks run on diesel fuel, ships on bunker fuel.  They can never be battery or fuel-cell operated or electrified, nor do we have the decades it would take to build a new fleet even if there were a solution.

In 2011, the United States burned 29021 trillion BTU’s of mainly petroleum for transportation to move 13 billion tons of freight, worth $11.8 trillion, for 3.5 trillion ton-miles:

  • Trucks: 69%  1.4 trillion miles  9.0 billion tons
  • Trains: 15%   1.3 trillion miles  1.9 billion tons
  • Ships:   3%

Non-essential Transportation Fuel can be given to Trucks & Trains (see Table 1 below)

1) Cars (28%) and light trucks (26%) use 55% of transportation fuel.  All of that 55% could be shifted to essential vehicles.  Implication: That would force anyone who wasn’t 100% self-sufficient to move to a town or city because country gas stations will be closed (though rural freeway stations would remain open for essential long-distance trucks).  Also, petroleum will mainly be refined into diesel (this is already happening actually), which gasoline cars can’t burn.

2) Let’s give most of this fuel to essential vehicles: 7% air travel, 1% recreational water boats, 3% Construction and Mining, 1% recreational vehicles (snowmobiles, etc).  That’s another 11% shifted to essential vehicles (leaving 1% for the above, mainly to maintain and fix infrastructure).

3) Essential vehicles: 20% Medium (class 3-6) and Heavy trucks (class 7-8), 4% ships, 2% rail freight, 3% pipelines, 2% agricultural.  A lot of this freight isn’t essential, so about half of this, 15%, can be saved by not shipping non-essential cargo and shipping essential goods shorter distances.

Essential transportation has been given 81% of diesel from other non-essential sources (55% + 11% + 15%).

Meanwhile, production of oil will be dropping off rapidly, because:

  1. Global peak oil production was reached in 2005
  2. Oil producing countries will export less because they’re using more oil themselves (ELM model)
  3. America is likely to be outbid by China, India, etc., for oil exports.  At China’s current growth rate, China alone would consume ALL exported oil by 2020.
  4. The net energy cliff and the decline in the RATE of what we can get out of the ground now that petroleum is gunky and in remote places.
  5. The financial system can interfere with oil production —  when credit dries up after the next financial crash, the money to drill won’t be available.

Optimistic scenario: 20 years before we hit the wall 

The likely decline rate is expected to accelerate. We’ve been on a plateau since 2005, but once production heads downhill, here’s a guess at what the decline rate might be per year: 4%, 5%, 6%, 7%, 8%, 9%, and 10% from then on.

But not to worry, we’ve got some wiggle room. Remember, of the grand total of 29021 trillion BTU’s of petroleum burned in America (Table 1 below), 81% was reassigned from non-essential vehicles and cargo to essential agriculture, railroads, trucks, industrial infrastructure equipment, and miscellaneous important vehicles (ambulances, police cars, military, etc).

The other 19% — 5,541 trillion BTU — is the rock-bottom amount we need to  keep society going.

With a 4/5/6/7/8/9/10/10 /10/….. decline rate scenario, we’ll dip below the essential transportation fuel needed 16 years from now.

Of course, we can import/export less cargo, grow food locally, stop immigration, encourage 1-child families, ship goods shorter distances, and many other oil-reducing strategies as well.  This is when techno-optimists have a chance to shine, and Postcarbon, Bay Localize, Transition Towns, and many other groups help governments and communities adapt.  If all goes well, panic is avoided, and diesel fuel can be stretched out even further, that could delay collapse another 4 years.

Pessimistic scenario: 1-12 years before we hit the wall

What if states that produce energy and/or have refineries stop sharing diesel and gasoline with other states at some point? In that case, Alaska, California, Texas, Louisiana, etc., might last longer than 20 years and other states would hit the wall sooner.

Also, there are many black swans.  Here’s some wild guesses about how soon collapse might come if one of them strikes:

1 year if there’s a small nuclear war, China or some other nation takes down America’s electric grid(s) in a cyberwar, or a world war erupts.

2-5 years if there’s a major disaster, because that will probably bring down the financial system and also drive up prices of oil, natural gas, electricity, wood, cement, steel, and other resources needed to recover with.

3-8 years if the financial system collapses and several other events are triggered, such as social chaos, no credit left for new oil wells to be drilled, and other knock-on effects.

5 years if nations go back to negotiating deals between producing and non-producing nations and bypass the international oil market. That could suddenly cut off America’s oil imports. We’re already seeing this with the historic deal Russia and China just cut for natural gas. China, India, and other countries can afford to pay more than the United States for oil. Other nations are far closer to Russia and OPEC nations, where 83% of world reserves lie.

8-10 years if America decides to go back to the Middle east to keep other nations from getting the 2/3 of oil reserves there. Our military can’t fight without oil, so that means a lot less for everyone else

Okay. I’m going to stop guessing.  I have no idea how much sooner collapse would occur given various events, or what the actual decline rates will be.  But here are a few more black swans to think about:

  • Oil shocks make investors “Peak Oil Aware” and world-wide stock markets crash
  • Decline rates even higher than posited above due to a combination of the Export Land Model and middle eastern countries having lied about how much oil reserves they had.
  • Oil choke-points are blocked by terrorists or nearby nations
  • War breaks out in the Middle East
  • Peak coal, peak natural gas, peak uranium, peak sand, peak water, peak topsoil, peak phosphorous, etc
  • Electric grid outages increasingly common
  • Our infrastructure is falling apart, many bridges are beyond their life-span or dangerously in need of repair, ports, energy pipelines, water treatment, sewage treatment, and other essential infrastructure has a life-span less than 50 years. The steel is rusting and the concrete is falling apart.

So, what do you think?


What’s really driving the global economic crisis is net energy decline

3 08 2017

And there’s no going back. So let’s step into the future.

By Jonathan Rutherford

Source: Doug Menuez

Published by INSURGE INTELLIGENCE, a crowdfunded investigative journalism project for people and planet. Support us to keep digging where others fear to tread.

In the fifth contribution to our symposium, ‘Pathways to the Post-Carbon Economy’, Jonathan Rutherford explores the fundamental driver of global economic malaise: not debt; not banks; but a protracted, slow-burn crisis of ‘net energy decline.’

Cutting through the somewhat stale debate between advocates and critics of ‘peak oil’, Rutherford highlights some of the most interesting and yet little-known scientific literature on the intimate relationship between the global economy and energy.

Whatever happens with the shift to renewables, he argues, we are moving into an era in which fossil fuels will become increasingly defunct, especially after mid-century.

The implications for the future of the global economy will not be pretty — but if we face up to it, the transition to more sustainable societies will be all the better for facing reality, rather than continuing with our heads in the sand (or, as per the image above, stuck up the bull’s behind).

As argued in more detail by Ted Trainer in this symposium the best hope for transition to a ‘post carbon’ — or, better, a sustainable society (a much broader goal) — lies in a process of radical societal reconstruction, focused on the building, in the here and now, of self-governing and self-reliant settlements, starting at the micro-local level.

The ‘Simpler Way’ vision we promote, in my view, is an inspiring alternative that we can and should work for. The hope is that these local movements — which have already begun to emerge — will network, educate and scale up, as the global crisis intensifies.

In what follows, I want to complement this view, by sketching why I think the global economy will inevitably face a terminal crisis of net energy in coming years. In making this prediction, I am assuming that global transnational elites (i.e. G7 elites), as well as subordinate national elites — who manage the globalised neoliberal economy — will pursue economic growth at all costs, as elites have done since the birth of the capitalist system in Britain 300+ years ago.

That is, they will not voluntarily pursue a process of organised ‘degrowth’. In my view, at best, they will vigorously pursue ‘green’ growth, i.e. via the rapid scaling up of renewable energy and promoting efficiency etc., but with no intention of actively reducing the overall level of energy consumption — indeed, most of the mainstream ‘green growth’ scenarios assume a doubling of global energy demand by 2050 (for a critical review of one report, see here).

I am focusing on energy but, of course we can, and should, add to this picture the wider multidimensional ecological crisis (climate change impacts, soil depletion, water stress, biodiversity loss etc) which, among other things, means that an ever increasing proportion GDP growth takes the form of “compensatory and defensive costs” (See i.e Sarkar, The Crisis of Capitalism, p.267–275) to deal with past and expected future ecological damage.

Energy and GDP Growth

Axiom 1: As the biophysical economists have shown global economic growth is closely correlated with growth in energy consumption.

Professor Minqi Li of Utah University’s Department of Economics, for example, shows that between 2005 and 2016:

‘an increase in economic growth rate by one percentage point is associated with an increase in primary energy consumption by 0.96 percent.’

GDP growth also depends on improvements in energy efficiency — Li reports that over the last decade energy efficiency improved by an average of 1.7% per annum.

One of the future uncertainties is how rapidly we are likely to improve energy efficiency — future supply constraints are likely to incentivise this strongly, and there will be scope for significant efficiency improvements, but there is also to be diminishing returns once the low hanging fruit has been picked.

Axiom 2: Economic growth depends not just on increases in gross energy consumption and energy efficiency, but the availability of net energy. Net energy can be defined as the energy left over after subtracting the energy used to attain energy — i.e. the energy used during the process of extraction, harvesting and transportation of energy. Net energy is critical because it alone powers the non-energy sectors of the global economy.

Without net energy all non-energy related economic activity would cease to function.

Insight: An important implication is that net energy can be in decline, even while gross primary energy supply is constant or even increasing.

Below I will make my case for a probably intensifying global net energy contraction by discussing, first, broad factors shaping the probable trajectory of global primary energy growth, followed by a discussion of overall net energy. Most of the statistics are drawn from Minqi Li’s latest report which, in turn, draws on the latest BP’s Statistical Review of World Energy.

Prospects for Gross Energy Consumption

Over the last decade, world primary energy consumption grew at an average annual rate of 1.8 percent. It’s important to note, however, as Jean- Jancovici shows, that in per-capita terms the rate of energy growth has significantly slowed since the 1980s, increasing at an average annual rate of 0.4% since that time, compared to 1.2% in the century prior. This is mainly due to the slowing growth in world oil supply, since the two oil shocks in the 1970s.

There are strong reasons for thinking that the rate of increase in gross energy availability will slow further in coming decades. Recently a peer reviewed paper estimated the maximum rate at which humanity could exploit all ultimately recoverable fossil fuel resources. It found that depending on assumptions, the peak in all fossil fuels would be reached somewhere between 2025–2050 (a finding that aligns with several other studies see i.e Maggio and Cacciola 2012; Laherrere, 2015).

This is highly significant because today fossil fuels make up about 86% of global primary energy use — a figure that, notwithstanding all global efforts to date, has barely changed in three decades. This surprising early peak estimate is substantially associated with the recent radical down-scaling of estimated economically and technically recoverable coal reserves.

The situation for oil is particularly critical, especially given that it is by far the world’s major source of liquid fuel, powering 95% of all transport. A recent HSBC report found that, already today, somewhere between 60–80% of conventional oil fields are in terminal decline. It estimated that by 2040 the world would need to find four Saudi Arabia’s (the largest oil supplier) worth of additional oil just to maintain current rates of supply and more than double that to meet 2040 projected demand.

And yet, as the same report showed, new oil discoveries have been in long term decline — lately reaching record lows notwithstanding record investments between 2001–2014. Moreover, new discoveries are invariably smaller fields with more rapid peak and decline rates. The recent boom in US tight oil — a bubble fueled by low interest rates and record oil industry debts — has been responsible for most additional supply since the peak in conventional oil in 2005, but is likely to be in terminal decline within the next 5–10 years, if it has not already peaked.

All this, as Nafeez Ahmed has argued, is generating the conditions within the next few years (once the current oil glut has been drawn down) for an oil supply crunch and price spike that has the potential to send the debt-ridden global economy into a bigger and better global financial crisis tailspin. It may well be a seminal event that future historians look back as marking the beginning of the end for the oil age.

An alternative currently fashionable view is that peak oil will be effectively trumped by a near-term voluntary decline in oil demand (so called ‘peak demand’), mainly due to the predicted rise of electric vehicles. One reason (among several), however, to be skeptical of such forecasts is that currently there is absolutely no evidence that oil demand is in decline — on the contrary, it continues to increase every year, and since the oil price drop in 2014, at an accelerating rate.

When peak oil does arrive, there are likely to be powerful incentives to implement coal-to-liquids or gas-to-liquids but, apart from the huge logistical and infrastructure problems involved, a move in this direction will only accelerate the near-term peaking of coal and gas supply, especially given the energetic inefficiencies involved in fuel conversion. Peak oil will also likely incentivise the acceleration towards electrification of transport and renewable energy, to which I will now turn.

Given peak fossil fuels, the prospects for increasing, or even just maintaining, gross energy depends heavily on how fast renewable energy and nuclear power can be scaled up. Nuclear energy currently accounts for 4.5% of energy supply, but globally is in decline and there are good reasons for thinking that it will not — and should not —play a major role in the future energy mix (see i.e Our Renewable Future, Heinberg & Findlay, 2016, p132–135).

In 2016, all forms of renewable electricity (i.e. excluding bio-fuel) accounted for about 10% of global energy consumption in 2016, but a large portion of this was hydroelectricity, which has limited potential for expansion. Wind, Solar PV and Concentrated Solar Power (CSP) are generally agreed to be the major renewable technologies capable of a large increase in capacity but, notwithstanding rapid growth in recent years, in 2016 they still accounted for just 2.2% of world primary energy consumption.

Insight: In recent years many ‘green-growth’ reports have been published with optimistic renewable energy forecasts — one even claiming that renewables could supply all world energy (not just electricity) by 2050. But, it should be recognised that this would require a very dramatic increase in the rate of growth in renewable capacity.

In the last six years, new investment (including government, private sector etc) in all forms of renewable energy has leveled off at around the $300 billion a year. Heinberg and Finlay (p.123) estimate that this rate of investment would have to multiplied by more than a factor of ten and continued each year for several decades, if renewable energy was to meet current global energy demand, let alone the projected doubling of demand in most mainstream energy scenarios.

In other words, it would require an upfront annual investment of US$3 trillion a year (and more over the entire life cycle). By comparison, in 2014 the IEA estimated that global investment for all energy supply (i.e fossil fuels and renewables etc) in 2035 would be US $2 trillion per year. In addition, if fossil fuel capacity is to be phased out entirely by 2050, it would require much premature scrapping of existing capital — depriving investors of making full returns on their capital — which can be expected to trigger fierce resistance from large sections, if not the entire, transnational capitalist class.

Currently both oil and gas supply, if not coal, are growing much faster than all renewables, at least in absolute if not percentage terms. No wonder that the most ambitious IPCC emission reduction scenarios assume continued large scale use of fossil fuels through to 2050, and rely instead on highly uncertain and problematic ‘net emission’ technologies (i.e Carbon Capture and Storage, massive planting of trees etc).

Based on current trends, Minqi Li’s recent energy forecast predicts that the growth of renewable energy will, at best, offset the inevitable decline in fossil fuel energy over coming decades. He forecasts that a peak in gross global energy supply (including fossil fuels and renewables) will be reached by about 2050.

This of course does not include the very real possibility of serious energy ‘bottlenecks,’ resulting, for example, from the peak in oil — for which no government is adequately preparing — and with no alternative liquid fuel source, on the scale required, readily available.

The Net Energy Equation

The foregoing has just been about gross energy, but as mentioned above, the real prospects for the growth-industrial economy depend on net energy, which alone fuels the non-energy sectors of the economy. This is where the picture gets really challenging.

With regards to fossil fuels, EROI is on a downward trajectory. The current estimate (in 2014) for global oil & gas is that EROI is about 18:1. And while it’s true that technological innovation can improve the efficiency of oil extraction, in general this is being overwhelmed by the increasing global reliance on lower EROI unconventional oil & gas sources — a trend which will continue from now until the end of the fossil fuel age.

Axiom 3: What is often overlooked, is that declining EROI will exacerbate the problem of peak fossil fuels.

As Charles Hall explains, declining EROI will accelerate the advent of peak fossil fuels, because more energy is needed just to maintain the ratio of net energy needed to fuel the economy. And when, inevitably, we begin to move down the other side of Hubbert’s peak, things will get even more challenging. At this point, decreasing gross supply will be combined with ever greater reliance on lower EROI supplies, rapidly reducing the amount of net energy available to society.

The situation would be improved if the main renewables could provide an additional source of high net energy (i.e EROI). But, while this question is the subject of much current scholarly debate, and is quite unsettled, it seems highly likely that any future 100% renewable energy system (as opposed to individual technology) will provide far less net-energy than humanity — or at least, the minority of us in the energy rich affluent regions — has enjoyed during the fossil fuel epoch. This is for the following theoretical reasons outlined by energy experts Moriarty and Honnery in a recent paper:

  • Due to the more energy diffuse nature of renewable energy flows (sun and wind), harvesting this energy to produce electricity, requires the construction of complex industrial technologies. Currently, this requires the ‘hidden subsidy’ of fossil fuels, which are involved in the entire process of resource extraction, manufacturing and maintenance of these industrial technologies. As fossil fuels deplete, this subsidy will become costlier in both financial and energy terms, reducing the net-energy of renewable technologies.
  • The non-renewable resources (often rare) needed for construction of renewable technologies will deplete over time, and will thus take more energy to extract, again, reducing net energy.
  • Due to the intermittency of solar and wind, a 100% renewable energy system (or even a large portion of renewable energy within the overall mix) requires investment in either large amounts of redundant capacity (to ensure there is security of supply during calm and cloudy weather) or, alternatively, large amounts of (currently unforeseen on the scale needed) storage capacity — or both. Ultimately, either option will require energy investment for the total system.
  • Because the main renewable technologies generate electricity, there will be a large amount of energy lost through conversion (i.e. via hydrogen) to the many current energy functions that cannot easily be electrified (i.e. trucks, industrial heating processors etc). In fairness, the conversion of fossil fuels to electricity also involves substantial energy loss (i.e. about 2/3 on average), but given that about 80% of global primary energy is currently in a non-electrical form, this appears to be a far bigger problem for a future 100% renewable system.
  • As renewable energy capacity expands, it will inevitably have to be built in less ideal locations, reducing gross energy yield.

Axiom 4: Regardless of the net energy that a future 100% renewable energy system would provide, it is important to recognize that attempts to ramp up renewable energy at very fast rates — far from adding to the overall energy output of the global economy — will inevitably come at a net energy cost.

This is because there would need to be a dramatic increase in energy demand associated with the transitional process itself.

Modelling done by Josh Floyd has found that in their ‘baseline scenario’ (described here) — which looks to phase out fossil fuels in 50 years — net energy services for the global economy would decline during that transition period by more than 15% before recovering.

This would be true of any rapid energy transition, but the problem is particularly acute for a transition to renewable technologies due to their much higher upfront capital (and therefore energy) costs, compared to fossil fuel technologies.


The implication of the above arguments is that over the coming decades, the global economy will very likely face an increasing deterioration in net energy supply that will increasingly choke off economic growth. What will this look like for people in real life?

Economically, it will likely be revealed in terms of stagnating (or falling) real wages, rising costs of living, decreasing discretionary income and decreasing employment opportunities — symptoms, as Tim Morgan argues, we are already beginning to see, albeit, to varying extents across the globe — but which will intensify in coming years.

How slow or fast this happens nobody knows. But given capitalism is a system which absolutely depends on endless capital accumulation for its effective economic functioning and social legitimacy, this will prove to be a terminal crisis, from which the system cannot ultimately escape.

We therefore have no choice but to prepare for a future economy in which net energy is far lower than what we have been used to in the industrial era.

Insight: To be clear, crisis by itself, will not lead to desirable outcomes — far from it. Our collective fate, as Trainer explains, depends largely on the rapid emergence of currently small scale new society movements — building examples of the sane alternative in the shell of the old — and rapidly multiplying and scaling up, as the legitimacy of the system declines.

Jonathan Rutherford is coordinator of the new international bookshop, Melbourne Australia. He is involved in various local sustainability projects where he lives in Belgrave.

Book review of Failing states, collapsing systems biophysical triggers of political violence by Nafeez Ahmed

6 06 2017

I have written at length about the collapse of Egypt over the years, and Syria too. I’ve also discussed Nafeez Ahmed’s views on the unraveling now happening in the Middle East, and my most recent item here from the Doomstead Diner has attracted a lot of attention….. including from Alice Friedemann who pointed out to me that she has published an extensive review of Ahmed’s new book “Failing states, collapsing systems biophysical triggers of political violence”. It’s a long read (the references alone are almost as long as the article and would keep you busy for weeks!), but I was totally riveted by it and felt the compulsion to republish it here as it needs to be read as widely as possible. In fact, this review is so good, you may not need to buy the book……. as I’ve been saying for a very long time now, 2020 is when things start to get really ugly, all the way to 2030, by which time it’s likely the state of the world will be unrecognisable.

The overview of biophysical factors table below is alone really telling……

If after reading this latest piece you are not convinced collapse is indeed underway, then there’s no hope for you….!


alice_friedemann[ In this post I summarize the sections of Nafeez’s book about the biophysical factors that bring nations down (i.e. climate change drought & water scarcity, declining revenues after peak oil, etc.) The Media tend to focus exclusively on economic and political factors.

My book review is divided into 3 parts: 

  • Why states collapse for reasons other than economic and political
  • How BioPhysical factors contribute to systemic collapse in Syria, Yemen, Iraq, Saudi Arabia Egypt, Nigeria
  • Predictions of when collapse will begin in Middle East, India, China, Europe, Russia, North America

In my opinion, war is inevitable in the Middle East where over half of oil reserves exist.  Oil is life itself.  If war happens,  collapse of the Middle East, India, and China could happen well before 2030.  If nuclear weapons are used, most nations collapse from the nuclear winter and ozone depletion that would follow.   Indonesia blew up their oil refineries to keep Japan from getting oil in WWII. If Middle Eastern governments or terrorists do the same after they’re attacked, that brings on the energy crisis sooner.  Although this would leave some high EROI oil in the ground, the energy to rebuild refineries, pipelines, oil rigs, roads, and other infrastructure would lower the EROI considerably.

Alice Friedemann  author of “When Trucks Stop Running: Energy and the Future of Transportation”, 2015, Springer and “Crunch! Whole Grain Artisan Chips and Crackers”. Podcasts: Practical Prepping, KunstlerCast 253, KunstlerCast278, Peak Prosperity , XX2 report ]

Ahmed, Nafeez. 2017. Failing States, Collapsing Systems BioPhysical Triggers of Political Violence. Springer.

1) Why states collapse for reasons other than economic and political

Since the 2008 financial crash, there’s been an unprecedented outbreak of social protest: Occupy in the US and Western Europe, the Arab Spring, and civil unrest from Greece to Ukraine, China to Thailand, Brazil to Turkey, and elsewhere. Sometimes civil unrest has resulted in government collapse or even wars, as in Iraq-Syria and Ukraine- Crimea. The media and experts blame it on poor government, usually ignoring the real reasons because all they know is politics and economics.

In the Middle East, experts should also talk about geology.  Oil-producing nations like Syria, Yemen, Egypt, Nigeria, and Iraq have all reached peak oil and declining government revenues after that force rulers to raise the prices of food and oil.  This region was already short on water, and now climate change (from fossil fuels) is making matters much worse with drought and heat waves causing even greater water scarcity, which in turn lowers agricultural production.  Many of these nations have some of the highest rates of population growth on earth at a time when resources essential to life itself are declining.

The few nations still producing much of the oil – Russia, Saudi Arabia, and the U.S. are about to join the club and stop exporting oil so they can provide for their domestic population.

Ahmed points out that “because these and other factors are so nested and interconnected, even small perturbations and random occurrences in one can amplify effects on other parts of the system, sometimes in a feedback process that continues.  If thresholds are reached, these tipping points can re-order the whole system”.  These ecological and geological factors result in social disorder, which makes it even harder for government to do anything, such as putting more money into water and food production infrastructure, which accelerates climate change and energy decline impacts, which leads to even more violence at an accelerating rate until state failure.

2) How BioPhysical factors contribute to systemic collapse in Syria, Yemen, Iraq, Saudi Arabia Egypt, Nigeria


Table 1. Overview of biophysical factors (water scarcity, peak oil, population) for nations Ahmed discusses in this book

The UN defines a region as not having water scarcity above 1700 cubic meters per capita (green).  Water stressed nations have 1000 to 1700 cubic meters per capita (yellow).  Water scarcity is 500-1000 per capita (orange) and absolute water scarcity 0-500 (red).  Countries already experiencing water stress or far worse include Egypt, Jordan, Turkey, Iraq, Israel, Syria, Yemen, India, China, and parts of the United States. Many, though not all, of these countries are experiencing protracted conflicts or civil unrest (Patrick 2015).


The media portray warfare in Syria as due to the extreme repression of President Bashar al-Assad and the support he receives from Russia.  Although there has been awareness that climate change drought played a role in causing conflict, there is no recognition that peak oil was one of the main factors.

Here’s a quick summary of how peak oil and consequent declining revenues from oil production, rising energy and food prices, drought, water scarcity, and population growth led to social unrest, violence, terrorism and war.

It shouldn’t be surprising that peak oil in 1996 triggered the tragic events we see today.  After all, the main source of Syrian revenue came from their production of 610,000 barrels per day (bpd).  By 2010 oil production had declined by half. Falling revenues caused Syria to seek help from the IMF by 2001, and the onerous market reform policies required resulted in higher unemployment and poverty, especially in rural Sunni regions, while at the same time enriching and corrupting ruling minority Alawite private and military elites.

In 2008 the government had to triple oil prices resulting in higher food prices. Food prices rose even more due to the global price of wheat doubling in 2010-2011. On top of that, the 2007-2010 drought was the worst on record, causing widespread crop failures. This forced mass migrations of farming families to cities (Agrimoney 2012; Kelley et al. 2015). The drought wouldn’t have been so bad if half the water hadn’t been wasted and overused previously from 2002 to 2008 (Worth 2010). All of these violence-creating events were worsened by one of the highest birth rates growth on earth, 2.4%.  Most of the additional 80,000 people added in 2011 were born in the hardest-hit drought areas (Sands 2011).

Rinse and repeat.  Social unrest and violence led to war, oil production dropped further, so there is even less money to end unrest with subsidized food and energy or more employment, aid farmers, and build desalination plants.

Syria, once able to feed its people, now depends on 4 million tonnes of grain imports at a time when revenues continue to drop.  Syrian oil production didn’t really take off until 1968 when there were 6.4 million people.  Since oil revenues allowed their population to explode, another 13.6 million have been born.


Like Syria, Iraq’s agricultural production has been reduced by heat, drought, heavy rain, water scarcity, rapid population growth, and the inability of government to import food and provide goods and services as oil revenues decline.  ISIS has worsened matters and filled in the gaps of state-level failure.  Peak oil is likely by 2025.  Or sooner given the ongoing war, lack of investment to keep existing production flowing, and low oil prices (Dipaola 2016).


Like Syria, Iraq, and Iran, Yemen has long faced serious water scarcity issues. The country is consuming water far faster than it is being replenished, an issue that has been identified by numerous experts as playing a key background role in driving local inter-tribal and sectarian conflicts (Patrick 2015).

Yemen is one of the most water-scarce countries in the world. In 2012, the average Yemeni had access to just 140 cubic meters of water a year for all uses and just three years later a catastrophic 86 m3, far below the 1000 m3 level minimum requirement standards.    Cities often only have sporadic access to running water— every other week or so.  Sanaa could become the first capital in the world to run out of water (IRIN 2012).

Yemen reached peak oil production in 2001, declining from 450,000 barrels per day (bpd) to 100,000 bpd in 2014, and will be zero by 2017 (Boucek 2009).   This has led to a drastic decline in Yemen’s oil exports, which has eaten into government revenues, 75% of which had depended on oil exports. Oil revenues also account for 90% of the government’s foreign exchange reserves. The decline in post-peak Yemen state revenues has reduced the government’s capacity to sustain even basic social investments. When the oil runs out … the capacity to sustain a viable state-structure will completely collapse.

Yemen has 25 million people and an exorbitantly high growth rate and predicted to double by 2050. In 2014 experts warned that within the next decade, these demographic trends would demolish the government’s ability to meet the population’s basic needs in education, health and other essential public services. This is already happening to over 15 million people (Qaed 2014).  Over half the Yemeni population lives below the poverty line, and unemployment is at 40% (60% of young people).

To cope, too many people have turned to growing qat (a mild narcotic) on 40% of Yemen’s irrigated land, increasing water use to 3.9 billion cubic meters (bcm), but the renewable water supply is just 2.5 bcm. The 1.4 bcm shortfall is made up by pumping water from underground water reserves that are starting to run dry.

Energy, overpopulation, drought, water scarcity, poverty, and a government unable to do much of anything without oil revenue is in a downward loop of social tensions, local conflicts and even mass displacements.  This in turn adds to the dynamics of the wider sectarian and political conflicts between the government, the Houthis, southern separatists and al-Qaeda affiliated militants.

Violence undermines food security, feeding back into the downward spiraling loop.  Making matters worse is that rain-fed agriculture has dropped by about 30% since 1970, making Yemen ever more food import dependent at a time when revenues are shrinking. The country now imports over 85% of its food, including 90% of its wheat and all of its rice (World Bank 2014). Most Yemenis are hungry because they can’t afford to buy food, which also rises in price when global prices rise.  The rate of chronic malnutrition as high as 58%, second only to Afghanistan (Arashi 2013).

Epidemic levels of government corruption, mismanagement and incompetence, have meant that what little revenue the government receives ends up in Swiss bank accounts.  With revenues plummeting in the wake of the collapse of its oil industry, the government has been forced to slash subsidies while cranking up fuel and diesel prices. This has, in turn, cranked up prices of water, meat, fruits, vegetables and spices, leading to fuel and food riots (Mawry 2015).

Is Saudi Arabia Next?

Summary: Within the next decade, Saudi Arabia will become especially vulnerable to the downward feedback loop of peak oil.  The most likely date for peak oil is 2028 (Ebrahimi 2015). But because the Saudi exports have been going down since 2005 at 1.4% a year as their own population rises and consumes more and more, world exports could end as soon as 2031 (Brown and Foucher 2008).

Saudi revenues will decline to zero, so the Saudis will be less able to buy their way out of food shortages.  Their own food production will drop as well from drought and water scarcity — the kingdom is one of the most water scarce in the world, at 98 m³ per inhabitant per year.

Most water comes from groundwater, 57% of which is non-renewable, and 88% of it goes to agriculture. Desalination plants produce 70% of the kingdom’s domestic water supplies. But desalination is very energy intensive, accounting for more than half of domestic oil consumption. As oil exports run down, along with state revenues, while domestic consumption increases, the kingdom’s ability to use desalination to meet its water needs will decrease (Patrick 2015; Odhiambo 2016).

According to the Export Land Model (ELM) created by Texas petroleum geologist Jeffrey J Brown and Dr. Sam Foucher, the key issue is the timing of when there will be no more exports because the domestic population of oil producing nations is using it all for domestic consumption.   Brown and Foucher showed that the tipping point to watch out for is when an oil producer can no longer increase the quantity of oil sales abroad because of the need to meet rising domestic energy demand.

Saudi Arabia is the region’s largest energy consumer. Domestic demand has increased 7.5% over the last 5 years, mainly due to population growth. Saudi population may grow from 29 million people now to 37 million by 2030, using ever more oil and therefore less available for export.

Declining Saudi peak oil exports will affect every nation on earth that imports Saudi oil, especially top customers China, Japan, the United States, South Korea, and India.  As Saudi oil declines, there will be few other places oil for importing nations to turn to, since other exporting nations will also be using their oil domestically.

A report by Citigroup predicted net exports would plummet to zero in the next 15 years. This means that 80% of money from oil sales the Saudi state depends on are trending downward, eventually terminally (Daya 2016). In this case, the peak oil production date could happen well before 2028, as well as violent social unrest, since so far, Saudi Arabia’s oil wealth, and its unique ability to maintain generous subsidies for oil, housing, food and other consumer items, has kept civil unrest at bay. Energy subsidies alone make up about a fifth of Saudi’s gross domestic product. But as revenues are increasingly strained by decreasing exports after peak oil, the kingdom will need to slash subsidies (Peel 2013).  Even now a quarter of the Saudi’s live in poverty, and unemployment is 12%, especially young people who have a 30% unemployment level. [Saudi Arabia recently started taxing fuel at the bowsers]

Saudi Arabia is experiencing climate change as temperatures rise in the interior and far less rainfall occurs in the north.  By 2040, local average temperatures are expected to increase by as much as 4 °C at the same time rain levels are falling, resulting in more extreme weather events like the 2010 Jeddah flooding when a year of rain fell in 4 hours.  The combination could dramatically impact agricultural productivity, which is already facing challenges from overgrazing and unsustainable industrial agricultural practices leading to accelerated desertification (Chowdhury 2013).

80% of Saudi Arabia’s food requirements are purchased through heavily subsidized imports.  Without the protection of oil revenue subsidies, and potential rises in the global prices of food (Taha 2014), the Saudi population would be heavily impacted. But with net oil revenues declining to zero—potentially within just 15 years—Saudi Arabia’s capacity to finance continued food imports will be in question.


Like Syria, Egypt has had increasing problems paying for food, goods, and services after peak oil in 1993 while at the same time population keeps growing.   Worse yet, there are no oil revenues at all, because since 2010 the population has been using more oil than what is produced and has had to import oil, with no oil revenues to pay for food, goods, and services.  Two-thirds of Egypt’s oil reserves have likely been depleted and oil produced now is declining at 3.4% a year.

Nor are there revenues coming from natural gas sales made up for the loss of oil revenues.  Over the past decade domestic use nearly doubled to consumption of nearly all the production (Kirkpatrick 2013a).

The Egyptian population since 2000 has grown 21% to 88 million people and isn’t slowing down, with 20 million more expected over the next 10 years.  A quarter are children half of them living in poverty and unemployed  (EI 2012) at the same time the elites have grown wealthier from IMF and World Bank policies.

In the 1960s there were 2800 cubic meters of water per capita, now just 660 – well below the international standard of water poverty of 1000 per person (Sarant 2013).   Water scarcity and population growth lave led to tens of thousands of hectares of farmland to be abandoned.  There is some water that can be obtained, but most farmers can’t afford the price of diesel fuel to power pumps  (Kirkpatrick 2013b)

Egypt was self-sufficient in food production in the 1960s but now imports 70% of its food (Saleh 2013). One of the many reasons Mubarak fell was the doubling of wheat prices in 2011 since half of Egypt’s people depend on food rations.  But the democratically-elected Muslim Brotherhood party and their leader Morsi couldn’t alleviate declining government revenues due to the biophysical realities of food, water, and energy shortages either.  Morsi desperately tried to get a $4.8 billion IMF loan by slashing energy subsidies and raising sales taxes, but the economic crisis made it hard to make the payments and wheat imports dropped to a third of what was imported a year ago.

This led to Morsi being ousted by army chief Abdul Fateh el-Sisi in a coup.  Like his predecessors, El-Sisi has also been unable to meet IMF demands for increased hydrocarbon production and has resorted to unprecedented levels of brutal force to crush protests. He has also rationed electricity, which led to key industries cutting production, leading to further economic losses, declining exports and foreign reserves.  Without more money, energy companies can’t be paid, so energy production continues to drop, and debt goes up, reducing the value of Egyptian currency and higher costs for imports and shortages of energy for industrial production. Egypt’s energy and economy find themselves caught in an amplifying feedback loop (Barron 2016).

How Boko Haram arose in Nigeria

Nigeria’s climate change has led to water and land shortages from desertification, which in turn has led to illness, hunger, and unemployment followed by conflict (Sayne 2011).

Perhaps the Boko Haram wouldn’t have arisen, if the Maitatsine sect in northern Nigeria hadn’t been hit so hard by ecological disasters.  To survive they fanned out to search for food, water, shelter, and work (Sanders 2013).  Niger and Chad refugees from drought and floods also became Boko Haram foot soldiers, some 200,000 displaced farmers and herdsmen.

In northern Nigeria, where Boko Haram is from, about 70% of the population subsists on less than a dollar a day. As noted by David Francis, one of the first western reporters to cover Boko Haram: “Most of the foot soldiers of Boko Haram aren’t Muslim fanatics; they’re poor kids who were turned against their corrupt country by a charismatic leader” (Francis 2014)

The Nigerian military sees a correlation between regional climatic events, and an upsurge in extremist violence: “It has become a pattern; we saw it happen in 2006; it happened again in 2008 and in 2010. President Obasanjo had to deploy the military in 2006 to Yobe State, Borno State and Katsina State. These are some of the states bordering Niger Republic and today they are the hotbeds of the Boko Haram” (Mayah 201).

Drought caused desertification is decreasing food production, in turn leading to “economic decline; population displacement and disruption of legitimized authoritative institutions and social relations.” The net effect was an acceleration of the attractiveness of groups like “Boko Haram and other forms of Jihadi ideology,” resulting in escalating “herder-farmer clashes emanating from the north since 1980s” (Onyia 2015).

The rapid spread of Boko Haram also coincided with Lake Chad’s shrinking from 25,000 square km in 1963 to less than 2500 square km today, mainly due to climate change. At this rate, Lake Chad is will dry up in 20 years, and has already caused millions of people to lose their livelihoods.

The government has exacerbated problems by cutting fuel subsidies, which led to fuel shortages, angering the public who engaged in civil unrest  (Omisore 2014).

A senior Shell official said that crude oil production decline rates are as high as 15–20%.  But Nigeria doesn’t have the money to explore to find more oil to offset this high decline rate. Nigeria’s petroleum resources department said that Nigeria had reached a plateau of production in the Niger Delta and were already going down (Ahmed 2014).

About $15 billion of investment is required just to maintain current production levels and compensate for a natural decline in production of about 250,000 b/d each year. A 2011 study by two Nigerian scholars concluded that “there is an imminent decline in Nigeria’s oil reserve since peaking could have occurred or just about to occur (Akuru and Okoro 2011). A 2013 report backs this up, finding that Nigeria’s crude oil production has decreased since its peak in 2005, largely due to the impact of internal conflicts, leading to the withdrawal of oil companies and lack of investments. Since then production has fluctuated along a plateau. The UK Department for International Development report noted that new offshore fields might bring additional oil on-stream, surpassing the 2005 peak—but also noted that rising domestic demand “at some point in the future may cut into the amount of oil available for export” (Hall et al. 2014).

POPULATION. With Nigeria’s population expected to rise from 160 to 250 million by 2025 and oil accounting for some 96% of export revenue as well as 75% of government revenue, the state has resorted to harsh austerity measures. Sharp reductions in public spending, power cuts, fuel shortages and conditional new loans will probably widen economic inequalities and further stoke the grievances that feed groups like Boko Haram in the North. With domestic oil production decline undermining Nigeria’s oil export revenues and consequent fuel subsidy cuts, the public grows poorer and increases the number of young men more likely to join Islamist terrorist groups.

3) Predictions of when collapse will begin in Middle East, India, China, Europe, Russia, North America

When will  Middle-East oil producing nations fail?

Ahmed says that so far after peak oil production, Middle-Eastern economies have declined as revenues declined, leading to systemic state-failure in roughly 15 years, more or less, depending on how hard hit a nation was by additional (climate-change) factors such as drought, water scarcity, food prices, and overpopulation.

Saudi Arabia, and much of the rest of Arabian Gulf peninsula, may experience state-failure well within 10 to 20 years. If forecasts of Saudi oil depletion are remotely accurate, then by 2030 the country will simply not exist as we know it. Coupled with the accelerating impacts of climate-induced water scarcity, the Kingdom is bound to begin experiencing systemic state-failure at most within 20 years, and probably much earlier.

Marin Katusa, chief energy strategist at Casey Research, reports that “many Middle Eastern countries may stop exporting oil and gas altogether within the next few years, while some already have” (Katusa 2016). Oil analysts at Lux Research estimate that OPEC oil reserves may have been overstated by as much as 70%. True OPEC reserves could be as low as 429 billion barrels, which could mean a global net export crunch as early as 2020 (Lazenby 2016).

The period from 2020 to 2030 will see Middle East oil exporters experiencing a systemic convergence of energy and food crises.

When will India & China collapse?

India and China are widely assumed to be the next superpowers, but at this stage of energy and resource depletion, can’t possibly mimic the exponential growth of the Western world.

India, South Asia, and China face enormous ecological challenges Irregularities in the pattern of monsoon rains and drought are likely to lower food production and increase water scarcity, while higher temperatures will increase the range of vector-borne diseases such as malaria and become prevalent year-round (DCDC 2013). As sea levels rise, millions of people will be displaced permanently.

These impacts will unravel regional political and economic order well within 20 years and manifest at first as civil unrest.  Depending on how the Indian and Chinese states respond, it is likely that these outbreaks of domestic disorder will become more organized, and will eventually undermine state territorial integrity before 2030.  Near-term growth will further undermine environmental health and deplete resources, making these nations even more vulnerable to climate and food crises.

European and Russian collapse timeframe

Within Europe, resource depletion has meant that the European Union as a whole has become increasingly dependent on energy imports from Russia, the Middle East, Central Asia and Africa. Yet exports from these regions will become tighter as major oil producers approach production limits.

The geopolitical turmoil that has unfolded in Ukraine provides a compelling indication that such processes are rapidly moving from the periphery of the global system into the core. For the most part, the Euro-Atlantic core—traditionally representing the most powerful sections of the world system—has insulated itself from global crisis convergence impacts by diversifying energy supply sources. However, there is only so much that diversification can achieve when the total energetic and economic quality of global hydrocarbon resource production is declining.


Faced with these converging crises, the Euro-Atlantic core will continue to see the creation of cheap debt-money through quantitative easing as an immediate solution to generate emergency funds to stabilize the financial system and shore-up ailing industries. This will likely play out in one of these business-as-usual scenarios:

  1. The lower resource quality (EROI) of the global energy system may act as a fundamental geophysical ceiling on the capacity of the economy to grow. It may act as an invisible brake on growth in demand, so fossil fuel prices would remain at chronically low levels, endangering the profitability of the fossil fuel industries. This would lead to an acceleration of the demise of the fossil fuel industries, which could lead to debt-defaults across industries in the financial system. Declining hydrocarbon energy production would cause a self-reinforcing recessionary economic process. This would escalate vulnerability to water, food and energy crises and hugely strain the capacity of European and American states to deliver goods and services to even their own populations, and other nations dependent as much on importing food as they are oil.
  2. Scarcity of net exports on the world market may raise oil prices and provide some sectors of ailing fossil fuel industries to be profitable again. But previous slashing of investments and cutbacks in exploration will mean that only the most powerful sections of the industry would be able to capitalize on this, which means production is unlikely to return to former high levels. Price spikes would trigger economic recession, causing a drop in demand, while lower production levels would exacerbate the economy’s inability to grow substantially, if at all. In effect, the global economy would likely still experience a self-reinforcing recessionary economic process.

In both scenarios, escalating economic crises are likely to invite the Euro-Atlantic core to respond by using debt-money to shore-up as much of the existing core financial and energy industries as possible. Prices spikes and shortages in water, food and energy would be experienced by general populations as a dramatic lowering of purchasing power, leading to an overall decrease in quality of life, an increase in poverty, and a heightening of inequality. This would undermine their internal cohesion, giving rise to new divisive, nationalist and xenophobic movements, and lead states into a tightening spiral of militarization to police domestic order. As instability in the Middle East and elsewhere intensifies, manifesting in further unrest, political violence and terrorist activity, states will also be drawn increasingly into short- sighted military solutions. In particular, scarcity of net oil exports on the world market will heighten geopolitical and military competition to control and/or access the world’s remaining hydrocarbon energy resources. With the Middle East still holding the vast bulk of the world’s reserves, the region will remain a central flashpoint for such competition, even as major producers such as Saudi Arabia approach systemic state-failure due to reaching inevitable production declines.

It is difficult to avoid the conclusion that as we near 2045, the European and American projects will face escalating internal challenges to their internal territorial integrity, increasing the risk of systemic state-failure. Likewise, after 2030, Europe, India, China (and other Asian nations) will begin to experience symptoms of systemic state-failure.


Adel, Mohamed. 2016. Eni to Increase Zohr Field Gas Production to 2bn Cubic Feet Per Day by End of 2019. Daily News Egypt, May 9. eni-increase-zohr-field-gas-production-2bn-cubic-feet-per-day-end-2019/ .

Agrimoney. 2012. Unrest, Bad Weather Lift Syrian Grain Import Needs., March 14.–4278.html

Ahmed, Nafeez Mosaddeq. 2009. The Globalization of Insecurity: How the International Economic Order Undermines Human and National Security on a World Scale. Historia Actual Online 0(5): 113–126.

Ahmed, Nafeez. 2010. A User’s Guide to the Crisis of Civilisation: And How to Save It. London: Pluto Press.

———. 2011. The International Relations of Crisis and the Crisis of International Relations: From the Securitisation of Scarcity to the Militarisation of Society. Global Change, Peace & Security 23(3): 335–355. doi: 10.1080/14781158.2011.601854 .

———. 2013a. Peak Oil, Climate Change and Pipeline Geopolitics Driving Syria Conflict. The Guardian, May 13, sec. Environment. insight/2013/may/13/1

———. 2013b. How Resource Shortages Sparked Egypt’s Months-Long Crisis. The Atlantic, August 19.

———. 2014. Behind the Rise of Boko Haram—Ecological Disaster, Oil Crisis, Spy Games. The Guardian, May 9, sec. Environment.

———. 2015. The US-Saudi War with OPEC to Prolong Oil’s Dying Empire. Middle East Eye. May 8.

———. 2016a. Climate Change Fuels Boko Haram. Women Across Frontiers Magazine. February 29.

———. 2016b. At the Root of Egyptian Rage Is a Deepening Resource Crisis. Quartz. Accessed August 16.

———. 2016c. Return of the Reich: Mapping the Global Resurgence of Far Right Power. Investigative Report. London: Tell MAMA and INSURGE Intelligence. return-of-the-reich

———. 2016d. FEMA Contractor Predicts ‘Social Unrest’ Caused by 395% Food Price Spikes. Motherboard. Accessed August 21. predicts-social-unrest-caused-by-395-food-price-spikes

Akuru, Udochukwu B., and Ogbonnaya I. Okoro. 2011. A Prediction on Nigeria’s Oil Depletion Based on Hubbert’s Model and the Need for Renewable Energy. International Scholarly Research Notices, International Scholarly Research Notices 2011: e285649. doi: 10.5402/2011/285649 .

Al-Sinousi, Mahasin, and Amira Saleh. 2008. International Expert Warns Of Egypt’s Oil And Gas Reserves Depletion In 2020. Al-Masry Al-Youm, May 17, 1434 edition.

Arashi, Fakhri. 2013. Wheat Imports Cause Yemen Heavy Losses—National Yemen.

Aston, T.H., Trevor Henry Aston, and C.H.E. Philpin. 1987. The Brenner Debate: Agrarian Class Structure and Economic Development in Pre-Industrial Europe. Cambridge: Cambridge University Press.

Aucott, Michael L., and Jacqueline M. Melillo. 2013. A Preliminary Energy Return on Investment Analysis of Natural Gas from the Marcellus Shale. Journal of Industrial Ecology 17(5): 668– 679. doi: 10.1111/jiec.12040 .

Azevedo, Ligia B., An M. De Schryver, A. Jan Hendriks, and Mark A.J. Huijbregts. 2015. Calcifying Species Sensitivity Distributions for Ocean Acidification. Environmental Science & Technology 49(3): 1495–1500. doi: 10.1021/es505485m .

Badgley, Catherine, and Ivette Perfecto. 2007. Can Organic Agriculture Feed the World? Renewable Agriculture and Food Systems 22(2): 80–85.

Bardi, Ugo. 2014. Extracted: How the Quest for Mineral Wealth Is Plundering the Planet. Vermont: Chelsea Green Publishing.

Barnett, Tim P., and David W. Pierce. 2008. When Will Lake Mead Go Dry? Water Resources Research 44(3): W03201. doi: 10.1029/2007WR006704

Barron, Robert. 2016. Facing Rumors of Money Troubles, Egypt Denies Tension with Foreign Oil, Gas Firms. Mada Masr. January 27. facing-rumors-money-troubles-egypt-denies-tension-foreign-oil-gas-firms

Berger, Daniel, William Easterly, Nathan Nunn, and Shanker Satyanath. 2013. Commercial Imperialism? Political Influence and Trade during the Cold War. American Economic Review 103(2): 863–896. doi: 10.1257/aer.103.2.863

Berman, Arthur, and Ray Leonard. 2015. Years Not Decades: Proven Reserves and the Shale Revolution. Houston Geological Society Bulletin 57(6): 35–39.

Bhardwaj, Mayank. 2016. Food Imports Rise as Modi Struggles to Revive Rural India. Reuters India. February 2.

Bindi, Marco, and Jørgen E. Olesen. 2010. The Responses of Agriculture in Europe to Climate Change. Regional Environmental Change 11(1): 151–158. doi: 10.1007/s10113-010-0173-x

Bose, Prasenjit. 2016. A Budget That Reveals the Truth about India’s Growth Story. The Wire. March 2. .

Boucek, Christopher. 2009. Yemen: Avoiding a Downward Spiral. Carnegie Endowment for International Peace. September.

Bove, Vincenzo, Leandro Elia, and Petros G. Sekeris. 2014. US Security Strategy and the Gains from Bilateral Trade. Review of International Economics 22(5): 863–885. doi: 10.1111/ roie.12141

Bove, Vincenzo, Kristian Skrede Gleditsch, and Petros G. Sekeris. 2015. ‘Oil above Water’ Economic Interdependence and Third-Party Intervention. Journal of Conflict Resolution, January 27: 0022002714567952. doi: 10.1177/0022002714567952 .

Bove, Vincenzo, and Petros G. Sekeris. 2016. Fueling Conflict: The Role of Oil in Foreign Interventions. IPI Global Observatory. Accessed July 19.

Brandt, Adam R., Yuchi Sun, Sharad Bharadwaj, David Livingston, Eugene Tan, and Deborah Gordon. 2015. Energy Return on Investment (EROI) for Forty Global Oilfields Using a Detailed Engineering-Based Model of Oil Production. PLOS ONE 10(12): e0144141.

Brown, Jeffrey J., and Samuel Foucher. 2008. A Quantitative Assessment of Future Net Oil Exports by the Top Five Net Oil Exporters. Energy Bulletin. January 8.

Brown, James H., William R. Burnside, Ana D. Davidson, John P. DeLong, William C. Dunn, Marcus J. Hamilton, Norman Mercado-Silva, et al. 2011. Energetic Limits to Economic Growth. BioScience 61(1): 19–26.

Buckley. 2016. Coal Decline Steepens in 2016 in India, China, U.S. Institute for Energy Economics & Financial Analysis. May 16.

Capellán-Pérez, Iñigo, Margarita Mediavilla, Carlos de Castro, Óscar Carpintero, and Luis Javier Miguel. 2014. Fossil Fuel Depletion and Socio-Economic Scenarios: An Integrated Approach. Energy 77: 641–666.

Castillo-Mussot, Marcelo del, Pablo Ugalde-Véle, Jorge Antonio Montemayor-Aldrete, Alfredo de la Lama-García, and Fidel Cruz. 2016. Impact of Global Energy Resources Based on Energy Return on Their Investment (EROI) Parameters. Perspectives on Global Development and Technology 15(1–2): 290–299.

Chen, Shuai, Xiaoguang Chen, and Xu. Jintao. 2016. Impacts of Climate Change on Agriculture: Evidence from China. Journal of Environmental Economics and Management 76: 105–124. doi: 10.1016/j.jeem.2015.01.005

Chowdhury, Shakhawat, and Muhammad Al-Zahrani. 2013. Implications of Climate Change on Water Resources in Saudi Arabia. Arabian Journal for Science and Engineering 38(8): 1959– 1971.

Clarkson, M.O., S.A. Kasemann, R.A. Wood, T.M. Lenton, S.J. Daines, S. Richoz, F. Ohnemueller, A. Meixner, S.W. Poulton, and E.T. Tipper. 2015. Ocean Acidification and the Permo-Triassic Mass Extinction. Science 348(6231): 229–232. doi: 10.1126/science.aaa0193

Cleveland, Cutler J., and Peter A. O’Connor. 2011. Energy Return on Investment (EROI) of Oil Shale. Sustainability 3(11): 2307–2322.

Coleman, Isabel. 2012. Reforming Egypt’s Untenable Subsidies. Council on Foreign Relations. April 6.

Cook, Benjamin I., Toby R. Ault, and Jason E. Smerdon. 2015. Unprecedented 21st Century Drought Risk in the American Southwest and Central Plains. Science Advances 1(1): e1400082. doi: 10.1126/sciadv.1400082

Coumou, Dim, Alexander Robinson, Stefan Rahmstorf. 2013. Global increases in record-breaking 0668-1.

Csereklyei, Zsuzsanna, and David I. Stern. 2015. Global Energy Use: Decoupling or Convergence? Energy Economics 51: 633–641.

Cunningham, Nick. 2016. Decline of Coal Demand Is ‘irreversible. February 19.

Dawson, Terence P., Anita H. Perryman, and Tom M. Osborne. 2014. Modelling Impacts of Climate Change on Global Food Security. Climatic Change 134(3): 429–440. doi: 10.1007/ s10584-014-1277-y.

Daya, Ayesha, and Dana El Baltaji. 2016. Saudi Arabia May Become Oil Importer by 2030, Citigroup Says. Accessed August 11.

DCDC. 2013. Regional Survey—South Asia Out to 2040. Strategic Trends Programme. UK Ministry of Defence, Defence Concepts and Doctrines Centre.

Department Of State, Bureau of Public Affairs. 2014. Syria. Press Release|Fact Sheet. U.S. Department of State. March 20.

Diffenbaugh, Noah S., Daniel L. Swain, and Danielle Touma. 2015. Anthropogenic Warming Has Increased Drought Risk in California. Proceedings of the National Academy of Sciences 112(13): 3931–3936. doi: 10.1073/pnas.1422385112

Dipaola, Anthony. 2016. Iraq’s Oil Output Seen by Lukoil at Peak as Government Cuts Back. May 19.

Dittmar, Michael. 2016. Regional Oil Extraction and Consumption: A Simple Production Model for the Next 35 Years Part I. BioPhysical Economics and Resource Quality 1(1): 7. doi: 10.1007/ s41247-016-0007-7

Dodge, Robert. 2016. Unconventional Drilling for Natural Gas in Europe. In The Global Impact of Unconventional Shale Gas Development, ed. Yongsheng Wang and William E. Hefley, 97–130. Natural Resource Management and Policy 39. Springer International Publishing.

EASAC. 2014. Shale Gas Extraction: Issues of Particular Relevance to the European Union. European Academies Science Advisory Council.

Ebrahimi, Mohsen, and Nahid Ghasabani. 2015. Forecasting OPEC Crude Oil Production Using a Variant Multicyclic Hubbert Model. Journal of Petroleum Science and Engineering 133: 818– 823.

El. 2012. Youth Are Quarter of Egypt’s Population, and Half of Them Are Poor | Egypt Independent. Egypt Independent. August 12.

EIA. 2016. Petroleum & Other Liquids Weekly Supply Estimates. US Energy Information Administration.  .

Evans-Pritchard, Ambrose. 2015. Saudi Arabia May Go Broke before the US Oil Industry Buckles. The Telegraph, August 5, sec. 2016.

Famiglietti, J.S. 2014. The Global Groundwater Crisis. Nature Climate Change 4(11): 945–948.

Farmer, J., M. Doyne, C. Gallegati, A. Hommes, P. Kirman, S. Ormerod, A. Sanchez Cincotti, and D. Helbing. 2012. A Complex Systems Approach to Constructing Better Models for Managing Financial Markets and the Economy. The European Physical Journal Special Topics 214(1): 295–324.

Feely, Richard, Christopher L. Sabine, and Victoria J. Fabry. 2006. Carbon Dioxide and our Ocean Legacy. Pew Trust.

Foster, John Bellamy, Brett Clark, and Richard York. 2010. The Ecological Rift: Capitalism’s War on the Earth. New York: NYU Press.

Fournier, Valérie. 2008. Escaping from the Economy: The Politics of Degrowth. International Journal of Sociology and Social Policy 28(11/12): 528–545.

Francis. 2014. Boko Haram, Al Shabaab and Al Qaeda 2.0—Islamic Extremism in Africa. Humanosphere. May 7.

Friedman, Thomas L. 2013. The Scary Hidden Stressor. The New York Times, March 2. http://

Fritz, Martin, and Max Koch. 2014. Potentials for Prosperity without Growth: Ecological Sustainability, Social Inclusion and the Quality of Life in 38 Countries. Ecological Economics 108: 191–199.

Gagnon, Nathan, Charles A.S. Hall, and Lysle Brinker. 2009. A Preliminary Investigation of Energy Return on Energy Investment for Global Oil and Gas Production. Energies 2(3): 490– 503.

García-Olivares, Antonio, and Joaquim Ballabrera-Poy. 2015. Energy and Mineral Peaks, and a Future Steady State Economy. Technological Forecasting and Social Change 90, Part B (January): 587–598.

Ghafar, Adel Abdel. 2015. Egypt’s New Gas Discovery: Opportunities and Challenges | Brookings Institution. Brookings. September 10.

Guilford, Megan C., Charles A.S. Hall, Peter O’Connor, and Cutler J. Cleveland. 2011. A New Long Term Assessment of Energy Return on Investment (EROI) for U.S. Oil and Gas Discovery and Production. Sustainability 3(10): 1866–1887.

Gülen, Gürcan, John Browning, Svetlana Ikonnikova, and Scott W. Tinker. 2013. Well Economics Across Ten Tiers in Low and High Btu (British Thermal Unit) Areas, Barnett Shale, Texas. Energy 60: 302–315.

Hall, Charles A. S., and Kent A. Klitgaard. 2012. Energy and the Wealth of Nations. New York, NY: Springer New York.

Hall, Charles A.S., Cutler J. Cleveland, and Robert K. Kaufmann. 1992. Energy and Resource Quality: The Ecology of the Economic Process. Niwot, CO: University Press of Colorado

Hall, Charles A.S., Jessica G. Lambert, and Stephen B. Balogh. 2014. EROI of Different Fuels and the Implications for Society. Energy Policy 64: 141–152.

Hallock Jr., John L., Wei Wu, Charles A.S. Hall, and Michael Jefferson. 2014. Forecasting the Limits to the Availability and Diversity of Global Conventional Oil Supply: Validation. Energy 64: 130–153.

Ho, Mae-Wan. 1999. Are Economic Systems Like Organisms? In Sociobiology and Bioeconomics, ed. Peter Koslowski, 237–258. Studies in Economic Ethics and Philosophy. Berlin: Springer.

Holling, C.S. 2001. Understanding the Complexity of Economic, Ecological, and Social Systems. Ecosystems 4(5): 390–405.

Holthaus, Eric. 2014. Hot Zone. Slate, June 27. tense/2014/06/isis_water_scarcity_is_climate_change_destabilizing_iraq.single.html

Homer-Dixon, Thomas. 2011. Carbon Shift: How Peak Oil and the Climate Crisis Will Change Canada (and Our Lives). Toronto: Random House of Canada.

Hook, Leslie. 2013. China’s Appetite for Food Imports to Fuel Agribusiness M&A. Financial Times, June 6.

Hughes, J. David. 2013. Energy: A Reality Check on the Shale Revolution. Nature 494(7437): 307–308.

ICEF. 2016. Growing Chinese Middle Class Projected to Spend Heavily on Education through 2030. ICEF Monitor.

IEA. 2009. World Energy Outlook. Washington, DC: International Energy Agency.

———. 2015. India Energy Outlook. World Energy Outlook Special Report. International Energy Agency.

Inman, Mason. 2014. Natural Gas: The Fracking Fallacy. Nature 516(7529): 28–30.

IRIN. 2008. Bread Subsidies Under Threat as Drought Hits Wheat Production. IRIN. June 30.

———. 2010. Growing Protests over Water Shortages. IRIN. July 27. .

———. 2012. Time Running Out for Solution to Water Crisis. IRIN. August 13.

Jackson, Tim. 2009. Prosperity Without Growth: Economics for a Finite Planet. London: Earthscan.

Jackson, Peter M., and Leta K. Smith. 2014. Exploring the Undulating Plateau: The Future of Global Oil Supply. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 372(2006): 20120491.

Jancovici, Jean-Marc. 2013. A Couple of Thoughts in the Energy Transition. Manicore. http://

Jefferson, Michael. 2016. A Global Energy Assessment. Wiley Interdisciplinary Reviews: Energy and Environment 5(1): 7–15

Johanisova, Nadia, and Stephan Wolf. 2012. Economic Democracy: A Path for the Future? Futures, Special Issue: Politics, Democracy and Degrowth, 44(6): 562–570.

Johnstone, Sarah, and Jeffrey Mazo. 2011. Global Warming and the Arab Spring. Survival 53(2): 11–17.

Kaminska, Izabella. 2014. Energy Is Gradually Decoupling from Economic Growth. FT Alphaville, January 17.

Katusa, Marin. 2016. How to Pocket Extraordinary Profits from Unconventional Oil. Casey Energy Report.

Kavanagh, Jennifer. 2013. Do U.S. Military Interventions Occur in Clusters? Product Page.

Kelley, Colin P., Shahrzad Mohtadi, Mark A. Cane, Richard Seager, and Yochanan Kushnir. 2015. Climate Change in the Fertile Crescent and Implications of the Recent Syrian Drought. Proceedings of the National Academy of Sciences 112(11): 3241–3246.

King, Carey W. 2015. Comparing World Economic and Net Energy Metrics, Part 3: Macroeconomic Historical and Future Perspectives. Energies 8(11): 12997–12920.

King, Carey W., John P. Maxwell, and Alyssa Donovan. 2015a. Comparing World Economic and Net Energy Metrics, Part 1: Single Technology and Commodity Perspective. Energies 8(11): 12949–12974.

———. 2015b. Comparing World Economic and Net Energy Metrics, Part 2: Total Economy Expenditure Perspective. Energies 8(11): 12975–12996.

Kirkpatrick, David D. 2013a. Egypt, Short of Money, Sees Crisis on Food and Gas. The New York Times, March 30. money-sees-crisis-on-food-and-gas.html

———. 2013b. Egypt, Short of Money, Sees Crisis on Food and Gas. The New York Times, March 30.

Klump, Edward, and Jim Polson. 2016. Shale-Gas Skeptic’s Supply Doubts Draw Wrath of Devon. Accessed July 11.

Kothari, Ashish. 2014. Degrowth and Radical Ecological Democracy: A View from the South— Blog Postwachstum. Postwatchstum, Wuppertal Institute. June 27.

Kundu, Tadit. 2016. Nearly Half of Indians Survived on Less than Rs38 a Day in 2011–2012.

Lagi, Marco, Karla Z. Bertrand, and Yaneer Bar-Yam. 2011. The Food Crises and Political Instability in North Africa and the Middle East.

Lazenby, Henry. 2016. Opec Believed to Overstate Oil Reserves by 70%, Reserves Depleted Sooner. Mining Weekly. Accessed August 22.

Lelieveld, J., Y. Proestos, P. Hadjinicolaou, M. Tanarhte, E. Tyrlis, and G. Zittis. 2016. Strongly Increasing Heat Extremes in the Middle East and North Africa (MENA) in the 21st Century. Climatic Change 137(1–2): 245–260.

LePoire, David, and Argonne National Laboratory, Argonne, IL, USA. 2015. Interpreting ‘big History’ as Complex Adaptive System Dynamics with Nested Logistic Transitions in Energy Flow and Organization—Emergence: Complexity and Organization. Emergence, March. transitions-in-energy-flow-and-organization/

Lesk, Corey, Pedram Rowhani, and Navin Ramankutty. 2016. Influence of Extreme Weather Disasters on Global Crop Production. Nature 529(7584): 84–87. doi: 10.1038/nature16467

Li, Minqi. 2014. Peak Oil, Climate Change, and the Limits to China’s Economic Growth. New York: Routledge.

MacDonald, Gregor. 2010. Think OPEC Exports Won’t Decline? You’re Living In A Dreamworld. Business Insider. August 14.

Matsumoto, Ken’ichi, and Vlasios Voudouris. 2014. Potential Impact of Unconventional Oil Resources on Major Oil-Producing Countries: Scenario Analysis with the ACEGES Model. Natural Resources Research 24(1): 107–119.

Mawry, Yousef. 2015. Yemen Fuel Crisis Ignites Street Riots. Middle East Eye. February 12. http://

May, Robert M., Simon A. Li, Minqi. 2014. Peak Oil, Climate Change, and the Limits to China’s Economic Growth. New York: Routledge.

MacDonald, Gregor. 2010. Think OPEC Exports Won’t Decline? You’re Living In A Dreamworld. Business Insider. August 14.

Matsumoto, Ken’ichi, and Vlasios Voudouris. 2014. Potential Impact of Unconventional Oil Resources on Major Oil-Producing Countries: Scenario Analysis with the ACEGES Model. Natural Resources Research 24(1): 107–119.

Mawry, Yousef. 2015. Yemen Fuel Crisis Ignites Street Riots. Middle East Eye. February 12. http://

May, Robert M., Simon A. Levin, and George Sugihara. 2008. Complex Systems: Ecology for Bankers. Nature 451(7181): 893–895.

Mayah, Emmanuel. 2012. Climate Change Fuels Nigeria Terrorism. Africa Review. February 24. 4m5dlu/index.html

McGlade, Christophe, Jamie Speirs, and Steve Sorrell. 2013. Unconventional Gas—A Review of Regional and Global Resource Estimates. Energy 55: 571–584.

Meighan, Brendan. 2016. Egypt’s Natural Gas Crisis. Carnegie Endowment for International Peace. January.

Moeller, Devin, and David Murphy. 2016. Net Energy Analysis of Gas Production from the Marcellus Shale. BioPhysical Economics and Resource Quality 1(1): 1–13.

Mohr, Steve. 2010. Projection of World Fossil Fuel Production with Supply and Demand Interactions. Callaghan: University of Newcastle.

Mohr, S.H., and G.M. Evans. 2009. Forecasting Coal Production until 2100. Fuel 88(11): 2059– 2067.

———. 2010. Long Term Prediction of Unconventional Oil Production. Energy Policy 38(1): 265–276.

Mohr, S.H., J. Wang, G. Ellem, J. Ward, and D. Giurco. 2015. Projection of World Fossil Fuels by Country. Fuel 141: 120–135

Mora, Camilo, Abby G. Frazier, Ryan J. Longman, Rachel S. Dacks, Maya M. Walton, Eric J. Tong, Joseph J. Sanchez, et al. 2013a. The Projected Timing of Climate Departure from Recent Variability. Nature 502(7470): 183–187.

Mora, Camilo, Chih-Lin Wei, Audrey Rollo, Teresa Amaro, Amy R. Baco, David Billett, Laurent Bopp, et al. 2013b. Biotic and Human Vulnerability to Projected Changes in Ocean Biogeochemistry over the 21st Century. PLOS Biol 11(10): e1001682.

Morgan, Geoffrey. 2016. Average Oil Production to Decline This Year, Grow More Slowly in the Future: CAPP. Financial Post, June 23.

Morrissey, John. 2016. US Central Command and Liberal Imperial Reach: Shaping the Central Region for the 21st Century. The Geographical Journal 182(1): 15–26.

Murphy, David J. 2014. The Implications of the Declining Energy Return on Investment of Oil Production. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 372(2006): 20130126. doi:10.1098/rsta.2013.0126.

Murphy, David J., and Charles A.S. Hall. 2011. Energy Return on Investment, Peak Oil, and the End of Economic Growth. Annals of the New York Academy of Sciences 1219(1): 52–72.

Nandi, Sanjib Kumar. 2014. A Study on Hubbert Peak of India’s Coal: A System Dynamics Approach. International Journal of Scientific & Engineering Research 9(2).

Nekola, Jeffrey C., Craig D. Allen, James H. Brown, Joseph R. Burger, Ana D. Davidson, Trevor S. Fristoe, Marcus J. Hamilton, et al. 2013. The Malthusian–Darwinian Dynamic and the Trajectory of Civilization. Trends in Ecology & Evolution 28(3): 127–130. doi: 10.1016/j. tree.2012.12.001

OBG. 2016. New Discoveries for Egyptian Oil Producers. Oxford Business Group. January 27.

Odhiambo, George O. 2016. Water Scarcity in the Arabian Peninsula and Socio-Economic Implications. Applied Water Science, June, 1–14.

Odum, Howard Thomas. 1994. Ecological and General Systems: An Introduction to Systems Ecology. Niwot, CO: University Press of Colorado.

Omisore, Bolanle. 2014. Nigerians Face Fuel Shortages In the Shadow of Plenty. National Geographic News. April 11. nigeria-fuel-shortage-oil/

Onyia, Chukwuma. 2015. Climate Change and Conflict in Nigeria: The Boko Haram Challenge. American International Journal of Social Science 4(2)

Owen, Nick A., Oliver R. Inderwildi, and David A. King. 2010. The Status of Conventional World Oil reserves—Hype or Cause for Concern? Energy Policy 38(8): 4743–4749.

Patrick, Roger. 2015. When the Well Runs Dry: The Slow Train Wreck of Global Water Scarcity. Journal—American Water Works Association 107: 65–76.

Patzek, Tad W., Frank Male, and Odum, Howard Thomas. 1994. Ecological and General Systems: An Introduction to Systems Ecology. Niwot, CO: University Press of Colorado.

Omisore, Bolanle. 2014. Nigerians Face Fuel Shortages In the Shadow of Plenty. National Geographic News. April 11. nigeria-fuel-shortage-oil/

Onyia, Chukwuma. 2015. Climate Change and Conflict in Nigeria: The Boko Haram Challenge. American International Journal of Social Science 4(2). .

Owen, Nick A., Oliver R. Inderwildi, and David A. King. 2010. The Status of Conventional World Oil reserves—Hype or Cause for Concern? Energy Policy 38(8): 4743–4749.

Patrick, Roger. 2015. When the Well Runs Dry: The Slow Train Wreck of Global Water Scarcity. Journal—American Water Works Association 107: 65–76.

Patzek, Tad W., Frank Male, and Michael Marder. 2013. Gas Production in the Barnett Shale Obeys a Simple Scaling Theory. Proceedings of the National Academy of Sciences 110(49): 19731–19736.

Pearce, Joshua M. 2008. Thermodynamic Limitations to Nuclear Energy Deployment as a Greenhouse Gas Mitigation Technology. International Journal of Nuclear Governance, Economy and Ecology 2(1): 113.

Peel, Michael. 2013. Subsidies ‘Distort’ Saudi Arabia Economy Says Economy Minister. Financial Times. May 7. 2016. Minority Rules: Scientists Discover Tipping Point for the Spread of Ideas. Accessed August 21.

Pichler, Franz. 1999. Modeling Complex Systems by Multi-Agent Holarchies. In Computer Aided Systems Theory—EUROCAST’99, ed. Peter Kopacek, Roberto Moreno-Díaz, and Franz Pichler, 154–168. Lecture Notes in Computer Science 1798. Springer Berlin Heidelberg.

Pierce, Charles P. 2016. What Happens When the American Southwest Runs Out of Water? Esquire. June 1.

Pracha, Ali S., and Timothy A. Volk. 2011. An Edible Energy Return on Investment (EEROI) Analysis of Wheat and Rice in Pakistan. Sustainability 3(12): 2358–2391.

Pritchard, Bill. 2016. The Impacts of Climate Change for Food and Nutrition Security: Issues for India. In Climate Change Challenge (3C) and Social-Economic-Ecological Interface-Building. Environmental Science and Engineering. Springer.

Pueyo, Salvador. 2014. Ecological Econophysics for Degrowth. Sustainability 6(6): 3431–3483.

Qaed, Samar. 2014. Expanding Too Quickly? Yemen Times. February 25.

Qi, Ye, Nicholas Stern, Tong Wu, Jiaqi Lu, and Fergus Green. 2016. China’s Post-Coal Growth. Nature Geoscience 9.

Reganold, John P., and Jonathan M. Wachter. 2016. Organic Agriculture in the Twenty-First Century. Nature Plants 2(2): 15221.

Rioux, Sébastien, and Frédérick Guillaume Dufour. 2008. La sociologie historique de la théorie des relations sociales de propriété. Actuel Marx 43(1): 126.

RiskMetrics Group. 2010. Canada’s Oil Sands: Shrinking Window of Opportunity. Ceres, Inc.

Rockström, Johan, Will Steffen, Kevin Noone, Persson Åsa, F. Stuart Chapin, Eric F. Lambin, Timothy M. Lenton, et al. 2009. A Safe Operating Space for Humanity. Nature 461(7263): 472–475.

Ross, John, and Adam P. Arkin. 2009. Complex Systems: From Chemistry to Systems Biology. Proceedings of the National Academy of Sciences 106(16): 6433–6434.

Salameh, M. G. 2012. Impact of US Shale Oil Revolution on the Global Oil Market, the Price of Oil & Peak Oil.

Saleh, Hebah. 2013. Egypt Weighs Burden of IMF Austerity. Financial Times. March 11.

Sanders, Jim. 2013. The Hidden Force behind Islamic Militancy in Nigeria? Climate Change. The Christian Science Monitor. July 8.

Sands, Phil. 2011. Population Surge in Syria Hampers Country’s Progress | The National. The National, March 6.

Sarant, Louise. 2013. Climate Change and Water Mismanagement Parch Egypt | Egypt Independent. Egypt Independent. February 26.

Sayne, Aaron. 2011. Climate Change Adaptation and Conflict in Nigeria. Special Report. United States Institute of Peace.

Schneider, E.D., and J.J. Kay. 1994. Life as a Manifestation of the Second Law of Thermodynamics. Mathematical and Computer Modelling 19(6): 25–48.

Schneider, François, Giorgos Kallis, and Joan Martinez-Alier. 2010. Crisis or Opportunity? Economic Degrowth for Social Equity and Ecological Sustainability. Introduction to This Special Issue. Journal of Cleaner Production, Growth, Recession or Degrowth for Sustainability and Equity? 18(6): 511–518.

Schrodinger, Erwin. 1944. What Is Life?

Schwartzman, David, and Peter Schwartzman. 2013. A Rapid Solar Transition Is Not Only Possible, It Is Imperative! African Journal of Science, Technology. Innovation and Development 5(4): 297–302.

Shahine, Alaa. 2016. Egypt Had FDI Outflows of $482.7 Million in 2011. Accessed August 16.

Shaw, Martin. 2005. Risk-Transfer Militarism and the Legitimacy of War after Iraq. In September 11, 2001: A Turning-Point in International and Domestic Law? ed. Paul Eden and T. O’Donnell. Transnational Publishers.

Simms, Andrew. 2008. The Poverty Myth. New Scientist 200(2678): 49.

Smith-Nonini, Sandy. 2016. The Role of Corporate Oil and Energy Debt in Creating the Neoliberal Era. Economic Anthropology 3(1): 57–67.

Söderbergh, Bengt, Fredrik Robelius, and Kjell Aleklett. 2007. A Crash Programme Scenario for the Canadian Oil Sands Industry. Energy Policy 35(3): 1931–1947.

Steffen, Will, et al. 2015. January 15, 2015. Planetary Boundaries: Guiding Human Development on a Changing Planet. Science.

Stewart, Ian. 2015. Debt-Driven Growth, Where Is the Limit? Deloitte: Monday Briefing. February 2.

Stokes, Doug, and Sam Raphael. 2010. Global Energy Security and American Hegemony. Baltimore: JHU Press. Stott, Peter. 2016. How Climate Change Affects Extreme Weather Events. Science 352(6293): 1517–1518.

Street, 1615 L., NW, Suite 800 Washington, and DC 20036 Media Inquiries. 2014. Attitudes about Aging: A Global Perspective. Pew Research Center’s Global Attitudes Project. January 30.

Taha, Sharif. 2014. Kingdom Imports 80% of Food Products. Arab News. April 20.

Tainter, Joseph. 1990. The Collapse of Complex Societies. Cambridge: Cambridge University Press.

Tao, Fulu, Masayuki Yokozawa, Yousay Hayashi, and Erda Lin. 2003. Future Climate Change, the Agricultural Water Cycle, and Agricultural Production in China. Agriculture, Ecosystems & Environment 95(1): 203–215.

TE. 2016. Egypt Government Debt to GDP 2002-2016. Trading Economics.

Terzis, George, and Robert Arp, eds. 2011. Information and Living Systems: Philosophical and Scientific Perspectives. MIT Press.

Thevard, Benoit. 2012. Europe Facing Peak Oil. Momentum Institute/Greens-EFA Group in European Parliament.

Timms, Matt. 2016. Resource Mismanagement Has Led to a Critical Water Shortage in Asia. World Finance, July 21.

Tong, Shilu et al. 2016. Climate Change, Food, Water and Population Health in China. Bulletin of the World Health Organization, July.

Tranum, Sam. 2013. Powerless: India’s Energy Shortage and Its Impact. India: Sage.

Trendberth, Kevin, Jerry Meehl, Jeff Masters, and Richard Somerville. 2012. Heat Waves and Climate Change. Waves_and_Climate_Change.pdf

Tverberg, Gail. 2016. China: Is Peak Coal Part of Its Problem? Our Finite World. June 20.

UN 2015. World Population Prospects. United Nations Department of Economic & Social Affairs, Population Division.

UN News Center, United Nations News Service. 2012. UN News—Despite End-of-Year Decline, 2011 Food Prices Highest on Record—UN. UN News Service Section. January 12.

Victor, Peter. 2010. Questioning Economic Growth. Nature 468(7322): 370–371.

Vyas, Kejal, and Timothy Puko. 2016. Venezuela Oil Production Drops Sharply in May. Wall Street Journal, June 14, sec. World.

Wang, Jinxia, Robert Mendelsohn, Ariel Dinar, Jikun Huang, Scott Rozelle, and Lijuan Zhang. 2009. The Impact of Climate Change on China’s Agriculture. Agricultural Economics 40(3): 323–337.

Wang, Ke, Lianyong Feng, Jianliang Wang, Yi Xiong, and Gail E. Tverberg. 2016. An Oil Production Forecast for China Considering Economic Limits. Energy 113: 586–596.

Weijermars, Ruud. 2013. Economic Appraisal of Shale Gas Plays in Continental Europe. Applied Energy 106: 100–115. doi: 10.1016/j.apenergy.2013.01.025

Wiedmann, Thomas O., Heinz Schandl, Manfred Lenzen, Daniel Moran, Sangwon Suh, James West, and Keiichiro Kanemoto. 2015. The Material Footprint of Nations. Proceedings of the National Academy of Sciences 112(20): 6271–6676.

Wilkinson, Henry. 2016. Political Violence Contagion: A Framework for Understanding the Emergence and Spread of Civil Unrest. Lloyd’s.

Williams, Selina, and Bradley Olson. 2016. Big Oil Companies Binge on Debt. Wall Street Journal, August 24.

Wood, Ellen Meiksins. 1981. The Separation of the Economic and the Political in Capitalism. New Left Review, I 127: 66–95. World Bank. 2014. Future Impact of Climate Change Visible Now in Yemen.

World Bank. November 24.

Worth, Robert F. 2010. Drought Withers Lush Farmlands in Syria. The New York Times, October 13.

Yaritani, Hiroaki, and Jun Matsushima. 2014. Analysis of the Energy Balance of Shale Gas Development. Energies 7(4): 2207–2227.

EROI explained and defended by Charles Hall, Pedro Prieto, and others

29 05 2017

Yes, another post on ERoEI……  why do I bang on about this all the time…?  Because it is the defining issue of our time, the issue that will precipitate Limits to Growth to the forefront, and eventually collapse civilisation as we know it.

There are two ways to collapse civilisation:
1) don’t end the burning of oil
2) end burning oil

And if that wasn’t enough, read this from 

While the U.S. oil and gas industry struggles to stay alive as it produces energy at low prices, there’s another huge problem just waiting around the corner.  Yes, it’s true… the worst is yet to come for an industry that was supposed to make the United States, energy independent.  So, grab your popcorn and watch as the U.S. oil and gas industry gets ready to hit the GREAT ENERGY DEBT WALL.

So, what is this “Debt Wall?”  It’s the ever-increasing amount of debt that the U.S. oil and gas industry will need to pay each year.  Unfortunately, many misguided Americans thought these energy companies were making money hand over fist when the price of oil was above $100 from 2011 to the middle of 2014.  They weren’t.  Instead, they racked up a great deal of debt as they spent more money drilling for oil than the cash they received from operations.


alice_friedemannAlice Friedemann  author of “When Trucks Stop Running: Energy and the Future of Transportation”, 2015, Springer and “Crunch! Whole Grain Artisan Chips and Crackers”. Podcasts: Practical Prepping, KunstlerCast 253, KunstlerCast278, Peak Prosperity , XX2 report ]

Questions about EROI at 2015-2017

Khalid Abdulla, University of Melbourne asks:  Why is quality of life limited by EROI with renewable Energy? There are many articles explaining that the Energy Return on (Energy) Invested (EROI, or EROEI) of the sources of energy which a society uses sets an upper limit on the quality of life (or complexity of a society) which can be enjoyed (for example this one).  I understand the arguments made, however I fail to understand why any energy extraction process which has an external EROI greater than 1.0 cannot be “stacked” to enable greater effective EROI.  For example if EROI for solar PV is 3.0, surely one can get an effective EROI of 9.0 by feeding all output energy produced from one solar project as the input energy of a second? There is obviously an initial energy investment required, but provided the EROI figure includes all installation and decommissioning energy requirements I don’t understand why this wouldn’t work. Also I realise there are various material constraints which would come into play; but why does this not work from an energy point of view?

Charles A. S. Hall replies:  As the person who came up with the term  EROI in the 1970scharles-hall (but not the concept: that belongs to Leslie White, Fred Cotrell, Nicolas Georgescu Roegan and Howard Odum) let me add my two cents to the existing mostly good posts.  The problem with the “stacked” idea is that if you do that you do not deliver energy to society with the first (or second or third) investment — it all has to go to the “food chain” with only the final delivering energy to society.  So stack two EROI 2:1 technologies and you get 4:2, or the same ratio when you are done.

The second problem is that you do not need just 1.1:1 EROI to operate society.  We (Hall, Balogh and Murphy 2009) studied how much oil would need to be extracted to drive a truck including the energy to USE the energy.  So we added in the energy to get, refine and deliver the oil (about 10% at each step) and then the energy to build and maintain the roads, bridges, vehicles and so on.  We found you needed to extract 3 liters at the well head to use 1 liter in the gas tank to drive the truck, i.e. an EROI of 3:1 was needed.

But even this did not include the energy to put something in the truck (say grow some grain)  and also, although we had accounted for the energy for the depreciation of the truck and roads,  but not the depreciation of the truck driver, mechanic, street mender, farmer etc.: i.e. to pay for domestic needs, schooling, health care etc. of their replacement.    Pretty soon it looked like we needed an EROI of at least 10:1 to take care of the minimum requirements of society, and maybe 15:1 (numbers are very approximate) for a modern civilization. You can see that plus implications in Lambert 2014.

I think this and incipient “peak oil” (Hallock et al.)  is behind what is causing most Western economies to slow or stop  their energy and economic growth.   Low EROI means more expensive oil (etc) and lower net energy means growth is harder as there is less left over after necessary “maintenance metabolism”. This is explored in more depth in Hall and Klitgaard book  “Energy and the wealth of Nations” (Springer).

Khalid Abdulla asks: I’m still struggling a little bit with gaining an intuition of why it is not possible to stack/compound EROI. If I understand your response correctly part of the problem is that while society is waiting around for energy from one project to be fed into a second project (etc.) society needs to continue to operate (otherwise it’d all be a bit pointless!) and this has a high energy overhead.  I understand that with oil it is possible to achieve higher external EROI by using some of the oil as the main source of energy for extraction/processing. Obviously this means less oil is delivered to the outside world, but it is delivered at a higher EROI which is more useful. I don’t understand why a similar gearing is not possible with renewables.  Is it something to do with the timing of the input energy required VS the timing of the energy which the project will deliver over its life?

Charles A. S. Hall replies: Indeed if you update the QUALITY of the energy you can come out “ahead”.  My PhD adviser Howard Odum wrote a lot about that, and I am deeply engaged in a discussion about the general meaning of Maximum Power (a related concept) with several others.  So you can willingly turn more coal into less electricity because the product is more valuable.   Probably pretty soon (if we are not already) we will be using coal to make electricity to pump out ever more difficult oil wells….

I have also been thinking about EROI a lot lately and about what should the boundaries of analysis be.  One of my analyses is available in the book “Spain’s PV revolution: EROI and.. available from Springer or Amazon.

To me the issue of boundaries remains critical. I think it is proper to have very wide boundaries. Let’s say we run an economy just on a big PV plant. If the EROI is 8:1 (which you might get, or higher, from examining just the modules) then it seems like you could make your society work. But let’s look closer. If you add in security systems, roads, and financial services and the EROI drops to 3:1 then it seems more problematic. But if you add in labor (i.e. the energy it takes to make the food, housing etc that labor buys with its salaries, calculated from national mean energy intensities times salaries for all necessary workers) it might drop to 1:1. Now what this means is that the energy from the PV system will support all the purchases of the workers that are building/maintaining the PV system, let’s say 10% will be taken care of, BUT THERE WILL BE NO PRODUCTION OF GOODS AND SERVICES for the rest of the population. To me this is why we should include salaries of the entire energy delivery system (although I do not because it remains so controversial). I think this concept, and the flat oil production in most of the world, is why we need to think about ALL the resources necessary to deliver energy from a project/ technology/nation.”

Khalid Abdulla: My main interest is whether the relatively low EROI of renewable energy sources fundamentally limits the complexity of a society that can be fueled by them.

Charles A. S. Hall replies: Perhaps the easiest way to think about this is historical: certainly we had lots of sunshine and clever minds in the past.  But we did not have a society with many affluent people until the industrial revolution, based on millions of years of accumulated net energy from sunshine. An affluent king, living a life of affluence less than most people in industrial societies now, was supported by the labor of thousands or millions of serfs harvesting solar energy.  The way to get rich was to exploit the stored solar energy of other societies through war (see Plutarch or Tainter’s the collapse of complex societies).

But most renewable energy (good hydropower is an exception) are low EROI or else seriously constrained by intermittency. Look at all the stuff required to support “free” solar energy. We (and Palmer and Weisbach independently) found EROIs of about 3:1 at best when all costs are accounted for.

The lower the EROI the larger the investment needed for the next generation: that is why fossil fuels with EROIs of 30 or 50 to one have led to such wealth: the other 29 or 49 have been deliverable to society to do economic work or that can be invested in getting more fossil fuels.  If the EROI is 2:1 obviously half has to go into the next generation for the growth and much less is delivered to society.   One can speculate or fantasize about what one can do with some future technology but having been in the energy business for 50 years I have seen many come and go.  Meanwhile we still get about 75-80% of our energy from fossil fuels (with their attendant high EROI).

Obviously we could have some kind of culture with labor intensive, low energy input systems if people were willing to take a large drop in their life style.  I fear the problem might be that people would rather go to war than accept a decline in life style.

Lee’s assessment of the traditional  Kung hunter gatherer life style implies an EROI of 10:1 and lots of leisure (except during droughts–which is the bottleneck).  Past agricultural societies obviously had a positive EROI based on human labor input — otherwise they would have gone extinct.  But it required something like a hectare per person.  According to Jared Diamond cultures became more complex with agriculture vs hunter gatherer.

The best assessment I have about EROI and quality of life possible is in:  Lambert, Jessica, Charles A.S. Hall, Stephen Balogh, Ajay Gupta, Michelle Arnold 2014 Energy, EROI and quality of life. Energy Policy Volume 64:153-167 — It is open access.  Also our book:  Hall and Klitgaard, Energy and the wealth of nations.   Springer

At the moment the EROI of contemporary agriculture is 2:1 at the farm gate but much less, perhaps one returned for 5 invested  by the time the food is processed, distributed and prepared (Hamilton 2013).

As you can see from these studies to get numbers with any kind of reliability requires a great deal of work.

Sourabh Jain asks: Would it be possible to meet the EROI goal of, say for example 10:1, in order to maintain our current life style by mixing wind, solar and hydro? Can we have an energy system various renewable energy sources of different EROI to give a net EROI of 10:1?

Charles A. S. Hall replies:  Good question.  First of all I am not sure that we can maintain our current life style on an EROI of 10:1, but let’s assume we can (Hall 2014, Lambert 2014).  We would need liquid fuels of course for tractors , airplanes and ships — I cannot quite envision running those machines on electricity.

The problem with wind is that it tends to blow only 30% of the time, so we would need massive storage.  To the degree that we can meet intermittency with hydro that is good, although it is tough on the fish and insects below the dam.  The energy cost of that would be huge, prohibitive with respect to batteries, huge with respect to pumped storage, and what happens when the wind does not blow for two weeks, as is often the case?

Solar PV may or may not have an EROI of 10:1 (I assume you know of the three studies that came up with about 3:1: Prieto and Hall, Graham Palmer, Weisbach — but there are others higher and certainly the price and hence presumed energy cost is coming down –but you should also know that many structures are lasting only 12, not 25 years) — — this needs to be sorted out ).  But again the storage issue will be important.   (Palmer’s rooftop study included storage).

These are all important issues.  So I would say the answer seems to be no, although it might work well for let’s say half of our energy use.   As time goes on that percentage might increase (or decrease).

Jethro Betcke writes: Charles Hall: You make some statements that are somewhat inaccurate and could easily mislead the less well informed: Wind turbines produce electricity during 70 to 90% of the time. You seems to have confused capacity factor with relative time of operation.  Using a single number for the capacity factor is also not so accurate. Depending on the location and design choices the capacity factor can vary from 20% to over 50%.  With the lifetime of PV systems you seem to have confused the inverter with the system as a whole. The practice has shown that PV modules last much longer than the 25 years guaranteed by the manufacturer. In Oldenburg we have a system from 1976 that is still producing electricity and shows little degradation loss [1]. Inverters are the weak point of the system and sometimes need to be replaced. Of course, this would need to be considered in an EROEI calculation. But this is something different than what you state. [1]

Charles A. S. Hall replies: I resent your statement that I am misleading anyone.   I write as clearly, accurately and honestly as I can, almost entirely in peer reviewed publications, and always have. I include sensitivity analysis while acknowledging legitimate uncertainty (for example p. 115 in Prieto and Hall).  Some people do not like my conclusions. But no one has shown with explicit analysis that Prieto and Hall is in any important way incorrect.  At least three other peer reviewed papers) (Palmer 2013, 2014; Weisbach et al. 2012 and Ferroni and Hopkirk (2016) have come up with similar conclusions on solar PV.  I am working on the legitimate differences in technique with legitimate and credible solar analysts with whom I have some differences , e.g. Marco Raugei.  All of this will be detailed in a new book from Springer in January on EROI.

First I would like to say that the bountiful energy blog post is embarrassingly poor science and totally unacceptable. As one point the author does not back his (often erroneous) statements with references. The importance of peer review is obvious from this non peer-reviewed post.

Second I do not understand your statement about wind energy producing electricity 70-90 percent of the time.  In England, for example, it is less than 30 percent (Jefferson 2015).

Third your statement on the operational lifetime of actual operational PV systems is incorrect. Of course one can find PV systems still generating electricity after 30 years.  But actual operational systems requiring serious maintenance (and for which we do not yet have enough data) often do not last more than 18-20 years, For example Spain’s “Flagship ” PV plant (which was especially well maintained) is having all modules replaced and treated as “electronic trash” after 20 years :    Ferroni and Hopkirk found an 18 year lifespan in Switzerland.

Pedro Prieto replies: The production of electricity of wind turbines the 70-90% of time is a very inaccurate quote. Every wind turbine has a nominal capacity in MW. The important factor is not how many hours they move the blades at any working regime, but how many EQUIVALENT peak hours they work at the end of the year. That is, to know how much real energy they generate within one year. This is what the industry uses as a general and accurate measurement and it is the load factor or capacity factor.

Of course, this factor may change from the location or the design choices, but there is an incontrovertible figure: when we take the total world installed wind power in MW (435 Gw as of 2015) from January 2004 up to December 2015 and the total energy generated in Twh (841 Twh as of 2015) in the same period and calculate the averaged capacity factor, the resulting figure slightly varies around 15% AT WORLD LEVEL. This is REAL LIFE, much more than your unsupported theoretical figures of 20 to over 50% capacity factor in privileged wind fields for privileged wind turbines.

Interesting enough, some countries like the US, United Kingdom or Spain have capacity factors reaching 20% in the last years, but the world total installed capacity has not really improved so much in the last ten years, despite of theoretically much more efficient wind turbines (i.e. multipole with permanent magnets), very likely for the reasons that good wind fields in some countries were already used up. Other countries like China, India or France show, on the contrary very poor capacity factors even in 2015.


With respect to the lifetime of the PV systems, nor Charles Hall neither myself have confused the inverter lifetime with the solar PV system as a whole. The practice has not shown that modules have lasted more than 25 years in general over the world installed base. The fact that one single system is still working after more than 30 years of operation, if it was carefully manufactured with high quality materials, and was well cared, cleaned and free from environmental pollutants, like several modules we have also in Spain, does not mean AT ALL that the massive deployments (about 250 GW as of 2015) are going to last over 25 years.

I have to clarify also a common mistake: almost all main world manufacturers guarantee a maximum of 25 years (NOT 30) to the modules, but this is the “power” guarantee. This means that they “guarantee” (assuming they will be still alive as companies in 25 years from the sales period, something which is rather difficult for many of the manufacturers that went out of business in shorter periods of time than the guarantee of their modules. Of course, this guarantee is given with the subsequent module degradation specs over time, which in many cases has been proved be higher than specified.

But not only that. Most of the module manufacturers have a second guarantee: the “material’s guarantee”. And this is offered for between 5 and 10 years. This is the one by which the manufacturer guarantees the module replacement if it fails. Beyond that date, if the module fails, the buyer has to buy a new one (if still being manufactured, with the same specs power and size), because the second guarantee SUPERSEDES the first one.

Last but not least, there is already quite a large experience in Europe (Germany, France, Switzerland, Spain, Italy, etc.) of the number of faulty modules that have been decommissioned in the last years (i.e. period 2010-2015) as for instance, accounted by PV-Cycle, a company specialized in decommission and recycling modules in Europe. As the installed base is well known in volumes per year, it is relatively easy to calculate, in a very conservative (optimistic) mode the percentage over the total that failed and the number of years that lasted in this period and the average years for that sample that died before the theoretical 25-30 years lifetime and make the proportion on the total installed base.

The study conducted by Ferroni and Hopkirk gives an approximate lifetime for the installed base of lower than 20 years. And this is Europe, where the maintenance is supposed to be much better made than in the rest of the developing world. And the figures of failed modules given by PV-Cycle did not include the many potential plants that did not deliver their failed modules to this company for recycling

What it seems impossible for some academic people is to recognize that perhaps the “standards” they adhered to (namely IEA PVPS Task 12 in this case) and through which they published a big number of papers, should be revisited, because they lacked some essential measurements that could help to understand why renewables are not replacing fossils at the required speed, despite having claimed for years that they reached grid parity or that their Levelized Cost of Electricity (LCOE) is cheaper than coal, nuclear or gas. 

I am afraid that peer reviewed authors are not immune to having preconceived ideas even more difficult to eradicate. Excessive pride, lack of humility, considerable distance between the academy (i.e. imagined solar production levels versus real data from actual solar PV plants and lack of a systemic vision due to an excess of specialization are the main hurdles. Of course in my humble opinion.


  • Hall, C.A.S., Balogh, S., Murphy, D.J.R. 2009. What is the Minimum EROI that a Sustainable Society Must Have? Energies, 2: 25-47.
  • Hall, Charles  A.S., Jessica G.Lambert, Stephen B. Balogh. 2014.  EROI of different fuels  and the implications for society Energy Policy Energy Policy. Energy Policy, Vol 64 141-52
  • Hallock Jr., John L., Wei Wu, Charles A.S. Hall, Michael Jefferson. 2014. Forecasting the limits to the availability and diversity of global conventional oil supply: Validation. Energy 64: 130-153. (here)
  • Hamilton A , Balogh SB, Maxwell A, Hall CAS. 2013. Efficiency of edible agriculture in Canada and the U.S. over the past 3 and 4 decades. Energies 6:1764-1793.
  • Lambert, Jessica, Charles A.S. Hall, et al.  Energy, EROI and quality of life.  Energy Policy

Your Oil wake up call.

8 04 2017


Ted Trainer

My old mate Ted Trainer has for decades been a limits to growth advocate. Ted lectured in limits to growth and other subjects during a long teaching career at the University of New South Wales. He is author of a number of books on living in a simpler way, including the book that changed my life, Abandon Affluence…… here is his latest offering.

ALMOST NO ONE has the slightest grasp of the oil crunch that will hit them, probably within a decade. When it does it will literally mean the end of the world as we know it. Here is an outline of what recent publications are telling us. Nobody will, of course, take any notice.

It is gradually being understood that the amount of oil reserves and increases in them due to, for instance, fracking, is of little significance and that what matters is their EROI (Energy Return on Energy Invested). If you found a vast amount of oil, but to deliver a barrel of it you would need to use as much energy as there is in a barrel of oil, then there would be no point drilling the field.

When oil was first discovered the EROI in producing it was over 100/1. But Murphy (2013) estimates that by 2000 the global figure was about 30, and a decade later it was around 17. These approximate figures are widely quoted and accepted although not precise or settled.

Scarcer and difficult to produce

In other words, oil is rapidly getting scarcer and more difficult to find and produce. Thus, they are having to go to deep water sources (ER of 10 according to Murphy), and to develop unconventional sources such as tar sands (ER of 4 according to Ahmed), and shale (Murphy estimates an ER of 1.5, and Ahmed reports 2.8 for the oil and gas average.)

As a result, the capital expenditure on oil discovery, development and production is skyrocketing but achieving little or no increase in production. Heinberg and Fridley (2016) show that capital expenditure trebled in a decade, while production fell dramatically. This rapid acceleration in costs is widely noted, including by Johnson (2010) and Clarke (2017).

Why can’t we keep getting the quantities we want just by paying more for each barrel? Because the price of the oil in a barrel cannot be greater than the economic value the use of the barrel of oil creates.

Ahmed (2016) refers to a British government report that:

“…the decline in EROI has meant that an increasing amount of the energy we extract is having to be diverted back into getting new energy out, leaving less for other social investments … This means that the global economic slowdown is directly related to the declining resource quality of fossil fuels.”

Everything depends on how rapidly EROI is deteriorating. Various people, such as Hall, Ballogh and Murphy (2009), and Weisbach et al. (2013) do not think a modern society can tolerate an ER under 6 – 10. If this is so, how long have we got if the global figure has fallen from 30 to 18 in about a decade?

Several analysts claim that because of the deteriorating resource quality and rising production costs the companies must be paid $100 a barrel to survive. But oil is currently selling for c$50/barrel. Clarke details how the companies are carrying very large debt and many are going bankrupt: “The global oil industry is in deep trouble.”

Ignorance, debt bubble and catastrophic implosion

Why haven’t we noticed? Very likely for the same reason we haven’t noticed the other signs of terminal decay… because we don’t want to.

We have taken on astronomical levels of debt to keep the economy going. In 1994 the ratio of global debt to GDP was just over 2; it is now about 6, much higher than before the GFC (Global Financial Crisis), and it is continuing to climb.

Everybody knows this cannot go on for much longer. Debt is lending on the expectation that the loan will be repaid plus interest, but that can only be done if there is growth in the real economy, in the value of goods and services produced and sold …but the real economy (as distinct from the financial sector) has been stagnant or deteriorating for years.

The only way huge debt bubbles are resolved is via catastrophic implosion. A point comes where the financial sector realizes that its (recklessly speculative) loans are not going to be repaid, so they stop lending and call in bad debts … and the credit the real economy needs is cut, so the economy collapses, further reducing capacity to pay debts in a spiral of positive feedback that next time will deliver the mother of all GFCs.

There is now considerable effort going into working out the relationships between these factors, ie. deteriorating energy EROI, economic stagnation, and debt. The situation is not at all clear. Some see EROI as already being the direct and major cause of a terminal economic breakdown, others think at present more important causal factors are increasing inequality, ecological costs, aging populations and slowing productivity.

Whatever the actual causal mix is, it is difficult to avoid the conclusion that within at best a decade deteriorating EROI is going to be a major cause of enormous disruption.

Peaking oil production, national income and resource detorioration

But there is a far more worrying aspect of your oil situation than that to do with EROI. Nafeez Ahmed has just published an extremely important analysis of the desperate and alarming situation that the Middle East oil producing countries are in, entitled Failing States, Collapsing Systems, (2016). He confronts us with the following basic points:

  • in several countries oil production has peaked, and energy return on oil production is falling; thus their oil export income is being reduced
  • in recent decades populations have exploded, due primarily to decades of abundant income from oil exports; the 1960 – 2014 multiples for Yemen, Saudi Arabia, Iraq, Nigeria, Egypt, India and China have been 5.5, 4.6, 5.3, 4.2, 3.4, 3.0 and 2.1 respectively
  • there has been accelerating deterioration in land, water and food resources. If water use per capita is under 1700 m3 pa, there is water stress; the amounts for the above countries, (and the percentage fall since 1960), are Yemen 86 m3 (71% fall), Saudi Arabia 98 m3 (82% fall), Iraq 998 m3 (88% fall), Nigeria 1245 m3 (73% fall), Egypt 20 m3 (70% fall).

Climate change will make these numbers worse.

The consequences of these trends are:

  • more of the falling oil income now has to go into importing food
  • increasing amounts of oil are having to go into other domestic uses, reducing the amounts available for export to the big oil consuming countries.
  • in many of the big exporting countries these trends are likely to more or less eliminate oil exports in a decade or so, including Saudi Arabia.
  • these mostly desert countries have nothing else to earn export income from, except sand
  • falling oil income means that governments can provide less for their people, so they have to cut subsidies and raise food and energy prices
  • these conditions are producing increasing discontent with government as well as civil unrest and conflict between tribes over scarce water and land; religious and sectarian conflicts are fuelled; unemployed, desperate and hungry farmers and youth have little option but to join extremist groups such as ISIS, where at least they are fed; our media ignore the biophysical conditions generating conflicts, refugee and oppression by regimes, giving the impression that the troubles are only due to religious fanatics
  • the IMF makes the situation worse; failing states appeal for economic assistance and are confronted with the standard recipe — increased loans on top of already impossible debt, given on condition that they gear their economies to paying the loans back plus interest, imposing austerity, privatizing and selling off assets
  • local elite authoritarianism and corruption make things worse; rulers need to crack down on disruption and to force the belt tightening; the rich will not allow their privileges to be reduced in order to support reallocation of resources to mass need; the dominant capitalist ideology weighs against interfering with market forces, ie. with the freedom for the rich to develop what is most profitable to themselves.
  • thus there is a vicious positive feedback downward spiral from which it would seem there can be no escape because it is basically due to the oil running out in a context of too many people and too few land and water resources
  • there will at least be major knock-on effects on the global economy and the rich (oil consuming) countries, probably within a decade; it is quite likely that the global economy will collapse as the capacity to import oil will be greatly reduced; when the fragility of the global financial system is added (remember, debt now six times GDP), instantaneous chaotic breakdown is very likely
  • nothing can be done about this situation; it is the result of ignoring fifty years of warnings about the limits to growth.

A tightening noose

So, the noose tightens around the brainless, taken for granted ideology that drives consumer-capitalist society and that cannot be even thought about, let alone dealt with.

We are far beyond the levels of production and consumption that can be sustained or that all people could ever rise to. We haven’t noticed because the grossly unjust global economy delivers most of the world’s dwindling resource wealth to the few who live in rich countries. Well, the party is now getting close to being over.

You don’t much like this message? Have a go at proving that it’s mistaken. Nar, better to just ignore it as before.

A way out?

If the foregoing account is more or less right, then there is only one conceivable way out. That is to face up to transition to lifestyles and systems that enable a good quality of life for all on extremely low per capita resource use rates, with no interest in getting richer or pursuing economic growth.

There is no other way to defuse the problems now threatening to eliminate us, the resource depletion, the ecological destruction, the deprivation of several billion in the Third World, the resource wars and the deterioration in our quality of life.

Such a Simpler Way is easily designed, and built…if that’s what you want to do (see: Many in voluntary simplicity, ecovillage and Transition Towns movements have moved a long way towards it. Your chances of getting through to it are very poor, but the only sensible option is to join these movements.

Is the mainstream working on the problem? Is the mainstream worried about the problem? Does the mainstream even recognize the problem? I checked the Sydney Daily Telegraph yesterday and 20 percent of the space was given to sport.


Ahmed, N. M., (2016); We Could Be Witnessing the Death of the Fossil Fuel Industry — Will It Take the Rest of the Economy Down With It?, Resilience, April, 26.

Ahmed, N. M., (2017); Failing States, Collapsing Systems, Dordrecht, Springer. Alice Friedmann’s summary is at:

Clarke, T., (2017); The end of the Oilocene; The demise of the global oil industry and the end of the global economy as we know it, Resilience, 17th Jan.

Friedmann, A., (2017); Book review of Failing states, collapsing systems biophysical triggers of political violence by Nafeez Ahme, energyskeptic January 31:

Hall, C. A. S., Balogh, S. Murphy, D. J. R., (2009); What is the minimum EROI that a sustainable society must have? Energies, 2, 25–47.

Heinberg, R., and D. Fridley, (2016); Our Renewable Future, Santa Rosa, California, Post Carbon Institute.

Johnson, C., (2010); Oil exploration costs rocket as risks rise, Industries, London, February 11.

Murphy, D. J., (2013), The implications of the declining energy return on investment of oil production; Philosophical Transactions of the Royal Society, December 2013.DOI: 10.1098/rsta.2013.0126

The Simpler Way website:

Weisback, D., G. Ruprecht, A. Huke, K. Cserski, S. Gottlleib and A. Hussein, (2013);Energy intensities, EROIs and energy payback times of electricity generating power plants, Energy, 52, 210- 221.

An idiot’s guide to the ERoEI of tar sands

31 03 2017

I know about the environmental issues surrounding tar sands of course, but the rampant destruction producing crude from tar sands entails never ceases to blow me away.. I had little clue about the complete energy inefficiency of the process. If we include shale and oil/tar sands in our peak oil calculations, the notion that we’ve hit 50% of reserves becomes moot…… we’ve more likely hit something like 2.5% capacity. If we assume sweet crude ERoEI to be ~20, then tar sands is 3 at best…… The process for refining tar sands goes something like the following…:

Dig a pit around 100m deep, and you’ll hit tar sands, or as the Canadians like to call it, oil sands. Mix with water and separate the oil. There’s a lot of Sulfur in tar sands, and we don’t like Sulfur. So we take CH4, strip the carbon off, and bubble the hydrogen through the tar sand slop. This will form H2S. Precipitate the elemental sulfur in an ice bath, release the hydrogen into the atmosphere, waste natural gas and throw the Hydrogen away, and you get all of this goodness…….:

Sulfur Stockpile

No, I’m not kidding you, those huge yellow blocks are made of pretty well pure Sulfur…… and those dotty things, they’re cars and trucks….. Apparently there’s a glut of Sulfur in the market, so that it just sits there in all its inimitable yellowness, unwanted…….. Piles upon growing piles of Sulfur cakes.

The above process is of course over-simplified, but that doesn’t alter the fact that its completely insane. The size of the Athabascan tar sands hellhole is equivalent to Saudi Arabia’s oil field before it was pilfered. The government of Alberta thinks it can push production beyond 3 million barrels per day. Hard to imagine a world in which we’re not reliant on oil when we keep finding ever more idiotic ways to extract it. Oh except that stuff by now must surely be making an energy loss…….

Peak Airplane Speed

10 03 2017

Having just flown over 5000km (return) to visit my family for my recent retirement milestone, I was attracted to this story… and I have to say that while everyone else in the plane takes the experience for granted, it never ceases to amaze me when it takes off that we are able (still..?) to do this.

Recently, a story surfaced on Facebook that had me in stitches…:

Airbus is looking to a future faster than the speed of sound as it filed another patent intended to help aircraft fly supersonically.

Details have emerged of a (sic) application filed in the US by the pan-European aerospace company for a design of a spaceplane capable of taking off and landing like a normal aircraft but able to fly at supersonic speeds at altitudes “of at least 100 kilometres”.

Even funnier, it was illustrated with the following image……

Image result for patented supersonic airbus

Just look at that thing…….. it doesn’t even look like it can fly, way too fat for its wings, almost a cartoon of an airplane actually. And I doubt any plane manufacturer has ever taken out a patent for an entire plane. Bits of planes, for sure, but a whole plane..? Which goes to show you can’t believe anything you read in the Telegraph, though mind you, it seems quite a few other media outlets were also taken in…… there’s a hilarious video by some unknown Indian man demonstrating how little he knows about aerodynamics there too.

Even if this were serious, it would never fly, because it takes years to develop projects like this, and I doubt that plane manufacturers are not aware of our energy predicaments, even if they son’t say so publicly.

Then along comes this latest article from Ugo Bardi……

So, it is true: planes fly slower nowadays! The video, above, shows that plane trips are today more than 10% longer than they were in the 1960s and 1970s for the same distance. Airlines, it seems, attained their “peak speed” during those decades.

Clearly, airlines have optimized the performance of their planes to minimize costs. But they were surely optimizing their business practices also before the peak and, at that time, the results they obtained must have been different. The change took place when they started using the current oil prices for their models and they found that they had to slow down. You see in the chart below what happened to the oil market after 1970. (Brent oil prices, corrected for inflation, source)

It is remarkable how things change. Do you remember the hype of the 1950s and 1960s? The people who opposed the building of supersonic passenger planes were considered to be against humankind’s manifest destiny. Speed had to increase because it had always been doing so and technology would have provided us with the means to continue moving faster.

Rising oil prices dealt a death blow to that attitude. The supersonic Concorde was a flying mistake that was built nevertheless (a manifestation of French Grandeur). Fortunately, other weird ideas didn’t make it, such as the sub-orbital plane that should have shot passengers from Paris to New York in less than one hour.

If this story tells us something is that, in the fight between technological progress and oil depletion, oil depletion normally wins. Airlines are especially fuel-hungry and they have no alternatives to liquid fuels. So, despite all the best technologies, the only way for them to cope with higher oil prices was to slow down planes, it was as simple as that.

Even slower planes, though, still need liquid fuels that are manufactured from oil. We may go back to propeller planes for even better efficiency, but the problem remains: no oil, no planes, at least not the kind of planes that allow normal people to fly, something that, nowadays, looks like an obvious feature of our life. But, as I said before, things change!