The green car myth

28 06 2017

How government subsidies make the white elephant on your driveway look sustainable

And this comes on top of this article that describes how just making electric cars’ battery packs is equivalent to eight years worth of driving conventional happy motoring.

I have written before about the problems with bright green environmentalism. Bright greens suggest that various technological innovations will serve to reduce carbon dioxide emissions enough to avoid catastrophic global warming and other environmental problems. There are a variety of practical problems that I outlined there, including the fact that most of our economic activities are hitting physical limits to energy efficiency.

The solution lies in accepting that we can not continue to expand our economies indefinitely, without catastrophic consequences. In fact, catastrophic consequences are in all likelihood already unavoidable, if we believe the warnings of prominent climatologists who claim that a two degree temperature increase is sufficient to cause significant global problems.

It’s easy to be deceived however and assume that we are in the process of a transition towards sustainable green technologies. The problem with most green technologies is that although their implementation on a limited scale is affordable, they have insufficient scalability to enable a transition away from fossil fuels.

Part of the reason for this limited scalability is because users of “green” technology receive subsidies and do not pay certain costs which users of “grey” technology have to shoulder as a result. As an example, the Netherlands, Norway and many other nations waive a variety of taxes for green cars, taxes that are used to maintain the network of roads that these cars use. As the share of green cars rises, grey cars will be forced to shoulder increasingly higher costs to pay for the maintenance of road networks.

It’s inevitable that these subsidies will be phased out. The idea of course is that after providing an initial gentle push, the transition towards more green driving will have reached critical mass and prove itself sustainable without any further government subsidies. Unfortunately, that’s unlikely to occur. We’ve seen a case study of what happens when subsidies for green technologies are phased out in Germany. After 2011, the exponential growth in solar capacity rapidly came to a stop, as new installs started to drop. By 2014, solar capacity in Germany had effectively stabilized.1 Peak capacity of solar is now impressively high, but the amount of solar energy produced varies significantly from day to day. On bad days, solar and wind hardly contribute anything to the electricity grid.

Which brings us to the subject of today’s essay: The green car. The green car has managed to hide its enormous price tag behind a variety of subsidies, dodged taxes and externalities it has imposed upon the rest of society. Let us start with the externalities. Plug-in cars put significant strain on the electrical grid. These are costs that owners of such cars don’t pay themselves. Rather, power companies become forced to make costs to improve their grid, to avoid the risk of blackouts, costs that are then passed on to all of us.

When it comes to the subsidies that companies receive to develop green cars, it’s important not just to look at the companies that are around today. This is what is called survivorship bias. We focus on people who have succeeded and decide that their actions were a good decision to take. Everyone knows about the man who became a billionare by developing Minecraft. As a result, there are droves of indie developers out there hoping to produce the next big game. In reality, most of them earn less than $500 a year from sales.2

Everyone has heard of Tesla or of Toyota’s Prius. Nobody hears of the manufacturers who failed and went bankrupt. They had to make costs too, costs that were often passed on to investors or to governments. Who remembers Vehicle Production Group, or Fisker automotive? These are companies that were handed 193 million and 50 million dollar in loans respectively by the US Federal government, money the government won’t see again because the companies went bankrupt.3 This brings the total of surviving car manufacturers who received loans from the government to three.

To make matters worse, we don’t just subsidize green car manufacturers. We subsidize just about the entire production chain that ultimately leads to a green car on your driveway. Part of the reason Fisker automotive got in trouble was because its battery manufacturer, A123 Systems, declared bankruptcy. A123 Systems went bankrupt in 2012, but not before raising 380 million dollar from investors in 2009 and receiving a 249 million dollar grant from the U. S. department of energy back in 2010.

Which brings us to a de facto subsidy that affects not just green cars, but other unsustainable projects as well: Central bank policies. When interest rates are low, investors have to start searching for yield. They tend to find themselves investing in risky ventures, that may or may not pay off. Examples are the many shale companies that are on the edge of bankruptcy today. This could have been anticipated, but the current financial climate leaves investors with little choice but to invest in such risky ventures. This doesn’t just enable the growth of a phenomenon like the shale oil industry affects green car companies as well. Would investors have poured their money into A123 Systems, if it weren’t for central bank policies? Many might have looked at safer alternatives.

One company that has benefited enormously from these policies is Tesla. In 2008, Tesla applied for a 465 million dollar loan from the Federal government. This allowed Tesla to produce its car, which then allows Tesla to raise 226 million in an IPO in June 2010, where Tesla receives cash from investors willing to invest in risky ventures as a result of central bank policies. A $7,500 tax credit then encourages sales of Tesla’s Model S, which in combination with the money raised from the IPO allows Tesla to pay off its loan early.

In 2013, Tesla then announces that it has made an 11 million dollar profit. Stock prices go through the roof, as apparently they have succeeded at the task of the daunting task of making green cars economically viable. In reality, Tesla made 68 million dollar that year selling its emission credits to other car companies, without which, Tesla would have made a loss.

Tesla in fact receives $35,000 dollar in clean air credits for every Model S that it sells to customers, which in total was estimated to amount to 250 million dollar in 2013.4 To put these numbers in perspective, buying a Model S can cost anywhere around $70,000, so if the 35,000 dollar cost was passed on to the customer, prices would rise by about 50%, not including whatever sales tax applies when purchasing a car.

We can add to all of this the 1.2 billion of subsidy in the form of tax exemptions and reduced electricity rates that Tesla receives for its battery factory in Nevada.5 The story gets even better when we arrive at green cars sold to Europe, where we find the practice of “subsidy stacking”. The Netherlands exempts green cars from a variety of taxes normally paid upon purchase. These cars are then exported to countries like Norway, where green cars don’t have to pay toll and are allowed to drive on bus lanes.6

For freelancers in the Netherlands, subsidies for electrical cars have reached an extraordinarily high level. Without the various subsidies the Dutch government created to increase the incentive to drive an electrical car, a Tesla S would cost 94.010 Euro. This is a figure that would be even higher of course, if Dutch consumers had to pay for the various subsidies that Tesla receives in the United States. After the various subsidies provided by the Dutch government for freelance workers, Dutch consumers can acquire a Tesla S at a price of just 25,059 Euro.7

The various subsidies our governments provide are subsidies we all end up paying for in one form or another. What’s clear from all these numbers however is that an electric car is currently nowhere near a state where it could compete with a gasoline powered car in a free unregulated market, on the basis of its own merit.

The image that emerges here is not one of a technology that receives a gentle nudge to help it replace the outdated but culturally entrenched technology we currently use, but rather, of a number of private companies that compete for a variety of subsidies handed out by governments who seek to plan in advance how future technology will have to look, willfully ignorant of whatever effect physical limits might have on determining which technologies are economically viable to sustain and which aren’t.

After all, if government were willing to throw enough subsidies at it, we could see NGO’s attempt to solve world hunger using caviar and truffles. It wouldn’t be sustainable in the long run, but in the short term, it would prove to be a viable solution to hunger for a significant minority of the world’s poorest. There are no physical laws that render such a solution impossible on a small scale, rather, there are economic laws related to scalability that render it impossible.

Similarly, inventing an electrical car was never the problem. In 1900, 38% of American cars ran on electricity. The reason the electrical car died out back then was because it could not compete with gasoline. Today the problem consists of how to render it economically viable and able to replace our fossil fuel based transportation system, without detrimentally affecting our standard of living.

This brings us to the other elephant, the one in our room rather than our driveway. The real problem here is that we wish to sustain a standard of living that was built with cheap natural resources that are no longer here today. Coping with looming oil shortages will mean having to take a step back. The era where every middle class family could afford to have a car is over. Governments would be better off investing in public transport and safe bicycle lanes.

The problem America faces however, is that there are cultural factors that prohibit such a transition. Ownership of a car is seen as a marker of adulthood and the type of car tells us something about a man’s social status. This is an image car manufacturers are of course all too happy to reinforce through advertising. Hence, we find a tragic example of a society that wastes its remaining resources on false solutions to the crisis it faces.


1 – http://www.ise.fraunhofer.de/en/publications/veroeffentlichungen-pdf-dateien-en/studien-und-konzeptpapiere/recent-facts-about-photovoltaics-in-germany.pdf Page 12

2 – http://www.gameskinny.com/364n3/report-most-indie-game-devs-made-less-than-500-in-game-sales-in-2013

3 – http://www.forbes.com/sites/joannmuller/2013/05/11/the-real-reason-tesla-is-still-alive-and-other-green-car-companies-arent/

4 – http://evworld.com/news.cfm?newsid=30195

5 – http://www.rgj.com/story/news/2014/09/04/nevada-strikes-billion-tax-break-deal-tesla/15096777/

6 – http://www.elsevier.nl/Economie/achtergrond/2015/4/-1742131W/

7 – https://www.cda.nl/mensen/omtzigt/blog/toon/auto-rijden-op-subsidie/

Advertisements




Healthy soil is the real key to feeding the world

6 04 2017

Image 20170329 8557 1q1xe1z
Planting a diverse blend of crops and cover crops, and not tilling, helps promote soil health.
Catherine Ulitsky, USDA/Flickr, CC BY

David R. Montgomery, University of Washington

One of the biggest modern myths about agriculture is that organic farming is inherently sustainable. It can be, but it isn’t necessarily. After all, soil erosion from chemical-free tilled fields undermined the Roman Empire and other ancient societies around the world. Other agricultural myths hinder recognizing the potential to restore degraded soils to feed the world using fewer agrochemicals.

When I embarked on a six-month trip to visit farms around the world to research my forthcoming book, “Growing a Revolution: Bringing Our Soil Back to Life,” the innovative farmers I met showed me that regenerative farming practices can restore the world’s agricultural soils. In both the developed and developing worlds, these farmers rapidly rebuilt the fertility of their degraded soil, which then allowed them to maintain high yields using far less fertilizer and fewer pesticides.

Their experiences, and the results that I saw on their farms in North and South Dakota, Ohio, Pennsylvania, Ghana and Costa Rica, offer compelling evidence that the key to sustaining highly productive agriculture lies in rebuilding healthy, fertile soil. This journey also led me to question three pillars of conventional wisdom about today’s industrialized agrochemical agriculture: that it feeds the world, is a more efficient way to produce food and will be necessary to feed the future.

Myth 1: Large-scale agriculture feeds the world today

According to a recent U.N. Food and Agriculture Organization (FAO) report, family farms produce over three-quarters of the world’s food. The FAO also estimates that almost three-quarters of all farms worldwide are smaller than one hectare – about 2.5 acres, or the size of a typical city block.

Enter a caption

A Ugandan farmer transports bananas to market. Most food consumed in the developing world is grown on small family farms.
Svetlana Edmeades/IFPRI/Flickr, CC BY-NC-ND

Only about 1 percent of Americans are farmers today. Yet most of the world’s farmers work the land to feed themselves and their families. So while conventional industrialized agriculture feeds the developed world, most of the world’s farmers work small family farms. A 2016 Environmental Working Group report found that almost 90 percent of U.S. agricultural exports went to developed countries with few hungry people.

Of course the world needs commercial agriculture, unless we all want to live on and work our own farms. But are large industrial farms really the best, let alone the only, way forward? This question leads us to a second myth.

Myth 2: Large farms are more efficient

Many high-volume industrial processes exhibit efficiencies at large scale that decrease inputs per unit of production. The more widgets you make, the more efficiently you can make each one. But agriculture is different. A 1989 National Research Council study concluded that “well-managed alternative farming systems nearly always use less synthetic chemical pesticides, fertilizers, and antibiotics per unit of production than conventional farms.”

And while mechanization can provide cost and labor efficiencies on large farms, bigger farms do not necessarily produce more food. According to a 1992 agricultural census report, small, diversified farms produce more than twice as much food per acre than large farms do.

Even the World Bank endorses small farms as the way to increase agricultural output in developing nations where food security remains a pressing issue. While large farms excel at producing a lot of a particular crop – like corn or wheat – small diversified farms produce more food and more kinds of food per hectare overall.

Myth 3: Conventional farming is necessary to feed the world

We’ve all heard proponents of conventional agriculture claim that organic farming is a recipe for global starvation because it produces lower yields. The most extensive yield comparison to date, a 2015 meta-analysis of 115 studies, found that organic production averaged almost 20 percent less than conventionally grown crops, a finding similar to those of prior studies.

But the study went a step further, comparing crop yields on conventional farms to those on organic farms where cover crops were planted and crops were rotated to build soil health. These techniques shrank the yield gap to below 10 percent.

The authors concluded that the actual gap may be much smaller, as they found “evidence of bias in the meta-dataset toward studies reporting higher conventional yields.” In other words, the basis for claims that organic agriculture can’t feed the world depend as much on specific farming methods as on the type of farm.

Cover crops planted on wheat fields in The Dalles, Oregon.
Garrett Duyck, NRCS/Flickr, CC BY-ND

Consider too that about a quarter of all food produced worldwide is never eaten. Each year the United States alone throws out 133 billion pounds of food, more than enough to feed the nearly 50 million Americans who regularly face hunger. So even taken at face value, the oft-cited yield gap between conventional and organic farming is smaller than the amount of food we routinely throw away.

Building healthy soil

Conventional farming practices that degrade soil health undermine humanity’s ability to continue feeding everyone over the long run. Regenerative practices like those used on the farms and ranches I visited show that we can readily improve soil fertility on both large farms in the U.S. and on small subsistence farms in the tropics.

I no longer see debates about the future of agriculture as simply conventional versus organic. In my view, we’ve oversimplified the complexity of the land and underutilized the ingenuity of farmers. I now see adopting farming practices that build soil health as the key to a stable and resilient agriculture. And the farmers I visited had cracked this code, adapting no-till methods, cover cropping and complex rotations to their particular soil, environmental and socioeconomic conditions.

Whether they were organic or still used some fertilizers and pesticides, the farms I visited that adopted this transformational suite of practices all reported harvests that consistently matched or exceeded those from neighboring conventional farms after a short transition period. Another message was as simple as it was clear: Farmers who restored their soil used fewer inputs to produce higher yields, which translated into higher profits.

No matter how one looks at it, we can be certain that agriculture will soon face another revolution. For agriculture today runs on abundant, cheap oil for fuel and to make fertilizer – and our supply of cheap oil will not last forever. There are already enough people on the planet that we have less than a year’s supply of food for the global population on hand at any one time. This simple fact has critical implications for society.

So how do we speed the adoption of a more resilient agriculture? Creating demonstration farms would help, as would carrying out system-scale research to evaluate what works best to adapt specific practices to general principles in different settings.

We also need to reframe our agricultural policies and subsidies. It makes no sense to continue incentivizing conventional practices that degrade soil fertility. We must begin supporting and rewarding farmers who adopt regenerative practices.

Once we see through myths of modern agriculture, practices that build soil health become the lens through which to assess strategies for feeding us all over the long haul. Why am I so confident that regenerative farming practices can prove both productive and economical? The farmers I met showed me they already are.

David R. Montgomery, Professor of Earth and Space Sciences, University of Washington

This article was originally published on The Conversation. Read the original article.





Eight Pitfalls in Evaluating Green Energy Solutions

4 07 2016

Does the recent climate accord between US and China mean that many countries will now forge ahead with renewables and other green solutions? I think that there are more pitfalls than many realize.

Pitfall 1. Green solutions tend to push us from one set of resources that are a problem today (fossil fuels) to other resources that are likely to be problems in the longer term.  

The name of the game is “kicking the can down the road a little.” In a finite world, we are reaching many limits besides fossil fuels:

  1. Soil quality–erosion of topsoil, depleted minerals, added salt
  2. Fresh water–depletion of aquifers that only replenish over thousands of years
  3. Deforestation–cutting down trees faster than they regrow
  4. Ore quality–depletion of high quality ores, leaving us with low quality ores
  5. Extinction of other species–as we build more structures and disturb more land, we remove habitat that other species use, or pollute it
  6. Pollution–many types: CO2, heavy metals, noise, smog, fine particles, radiation, etc.
  7. Arable land per person, as population continues to rise

The danger in almost every “solution” is that we simply transfer our problems from one area to another. Growing corn for ethanol can be a problem for soil quality (erosion of topsoil), fresh water (using water from aquifers in Nebraska, Colorado). If farmers switch to no-till farming to prevent the erosion issue, then great amounts of Round Up are often used, leading to loss of lives of other species.

Encouraging use of forest products because they are renewable can lead to loss of forest cover, as more trees are made into wood chips. There can even be a roundabout reason for loss of forest cover: if high-cost renewables indirectly make citizens poorer, citizens may save money on fuel by illegally cutting down trees.

High tech goods tend to use considerable quantities of rare minerals, many of which are quite polluting if they are released into the environment where we work or live. This is a problem both for extraction and for long-term disposal.

Pitfall 2. Green solutions that use rare minerals are likely not very scalable because of quantity limits and low recycling rates.  

Computers, which are the heart of many high-tech goods, use almost the entire periodic table of elements.

Figure 1. Slide by Alicia Valero showing that almost the entire periodic table of elements is used for computers.

When minerals are used in small quantities, especially when they are used in conjunction with many other minerals, they become virtually impossible to recycle. Experience indicates that less than 1% of specialty metals are recycled.

Figure 2. Slide by Alicia Valero showing recycling rates of elements.

Green technologies, including solar panels, wind turbines, and batteries, have pushed resource use toward minerals that were little exploited in the past. If we try to ramp up usage, current mines are likely to deplete rapidly. We will eventually need to add new mines in areas where resource quality is lower and concern about pollution is higher. Costs will be much higher in such mines, making devices using such minerals less affordable, rather than more affordable, in the long run.

Of course, a second issue in the scalability of these resources has to do with limits on oil supply. As ores of scarce minerals deplete, more rather than less oil will be needed for extraction. If oil is in short supply, obtaining this oil is also likely to be a problem, also inhibiting scalability of the scarce mineral extraction. The issue with respect to oil supply may not be high price; it may be low price, for reasons I will explain later in this post.

Pitfall 3. High-cost energy sources are the opposite of the “gift that keeps on giving.” Instead, they often represent the “subsidy that keeps on taking.”

Oil that was cheap to extract (say $20 barrel) was the true “gift that keeps on giving.” It made workers more efficient in their jobs, thereby contributing to efficiency gains. It made countries using the oil more able to create goods and services cheaply, thus helping them compete better against other countries. Wages tended to rise, as long at the price of oil stayed below $40 or $50 per barrel (Figure 3).

Figure 3. Average wages in 2012$ compared to Brent oil price, also in 2012$. Average wages are total wages based on BEA data adjusted by the CPI-Urban, divided total population. Thus, they reflect changes in the proportion of population employed as well as wage levels.

More workers joined the work force, as well. This was possible in part because fossil fuels made contraceptives available, reducing family size. Fossil fuels also made tools such as dishwashers, clothes washers, and clothes dryers available, reducing the hours needed in housework. Once oil became high-priced (that is, over $40 or $50 per barrel), its favorable impact on wage growth disappeared.

When we attempt to add new higher-cost sources of energy, whether they are high-cost oil or high-cost renewables, they present a drag on the economy for three reasons:

  1. Consumers tend to cut back on discretionary expenditures, because energy products (including food, which is made using oil and other energy products) are a necessity. These cutbacks feed back through the economy and lead to layoffs in discretionary sectors. If they are severe enough, they can lead to debt defaults as well, because laid-off workers have difficulty paying their bills.
  2.  An economy with high-priced sources of energy becomes less competitive in the world economy, competing with countries using less expensive sources of fuel. This tends to lead to lower employment in countries whose mix of energy is weighted toward high-priced fuels.
  3. With (1) and (2) happening, economic growth slows. There are fewer jobs and debt becomes harder to repay.

In some sense, the cost producing of an energy product is a measure of diminishing returns–that is, cost is a measure of the amount of resources that directly and indirectly or indirectly go into making that device or energy product, with higher cost reflecting increasing effort required to make an energy product. If more resources are used in producing high-cost energy products, fewer resources are available for the rest of the economy. Even if a country tries to hide this situation behind a subsidy, the problem comes back to bite the country. This issue underlies the reason that subsidies tend to “keeping on taking.”

The dollar amount of subsidies is also concerning. Currently, subsidies for renewables (before the multiplier effect) average at least $48 per barrel equivalent of oil.1 With the multiplier effect, the dollar amount of subsidies is likely more than the current cost of oil (about $80), and possibly even more than the peak cost of oil in 2008 (about $147). The subsidy (before multiplier effect) per metric ton of oil equivalent amounts to $351. This is far more than the charge for any carbon tax.

Pitfall 4. Green technology (including renewables) can only be add-ons to the fossil fuel system.

A major reason why green technology can only be add-ons to the fossil fuel system relates to Pitfalls 1 through 3. New devices, such as wind turbines, solar PV, and electric cars aren’t very scalable because of high required subsidies, depletion issues, pollution issues, and other limits that we don’t often think about.

A related reason is the fact that even if an energy product is “renewable,” it needs long-term maintenance. For example, a wind turbine needs replacement parts from around the world. These are not available without fossil fuels. Any electrical transmission system transporting wind or solar energy will need frequent repairs, also requiring fossil fuels, usually oil (for building roads and for operating repair trucks and helicopters).

Given the problems with scalability, there is no way that all current uses of fossil fuels can all be converted to run on renewables. According to BP data, in 2013 renewable energy (including biofuels and hydroelectric) amounted to only 9.4% of total energy use. Wind amounted to 1.1% of world energy use; solar amounted to 0.2% of world energy use.

Pitfall 5. We can’t expect oil prices to keep rising because of affordability issues.  

Economists tell us that if there are inadequate oil supplies there should be few problems:  higher prices will reduce demand, encourage more oil production, and encourage production of alternatives. Unfortunately, there is also a roundabout way that demand is reduced: wages tend to be affected by high oil prices, because high-priced oil tends to lead to less employment (Figure 3). With wages not rising much, the rate of growth of debt also tends to slow. The result is that products that use oil (such as cars) are less affordable, leading to less demand for oil. This seems to be the issue we are now encountering, with many young people unable to find good-paying jobs.

If oil prices decline, rather than rise, this creates a problem for renewables and other green alternatives, because needed subsidies are likely to rise rather than disappear.

The other issue with falling oil prices is that oil prices quickly become too low for producers. Producers cut back on new development, leading to a decrease in oil supply in a year or two. Renewables and the electric grid need oil for maintenance, so are likely to be affected as well. Related posts include Low Oil Prices: Sign of a Debt Bubble Collapse, Leading to the End of Oil Supply? and Oil Price Slide – No Good Way Out.

Pitfall 6. It is often difficult to get the finances for an electrical system that uses intermittent renewables to work out well.  

Intermittent renewables, such as electricity from wind, solar PV, and wave energy, tend to work acceptably well, in certain specialized cases:

  • When there is a lot of hydroelectricity nearby to offset shifts in intermittent renewable supply;
  • When the amount added is sufficient small that it has only a small impact on the grid;
  • When the cost of electricity from otherwise available sources, such as burning oil, is very high. This often happens on tropical islands. In such cases, the economy has already adjusted to very high-priced electricity.

Intermittent renewables can also work well supporting tasks that can be intermittent. For example, solar panels can work well for pumping water and for desalination, especially if the alternative is using diesel for fuel.

Where intermittent renewables tend not to work well is when

  1. Consumers and businesses expect to get a big credit for using electricity from intermittent renewables, but
  2. Electricity added to the grid by intermittent renewables leads to little cost savings for electricity providers.

For example, people with solar panels often expect “net metering,” a credit equal to the retail price of electricity for electricity sold to the electric grid. The benefit to electric grid is generally a lot less than the credit for net metering, because the utility still needs to maintain the transmission lines and do many of the functions that it did in the past, such as send out bills. In theory, the utility still should get paid for all of these functions, but doesn’t. Net metering gives way too much credit to those with solar panels, relative to the savings to the electric companies. This approach runs the risk of starving fossil fuel, nuclear, and grid portion of the system of needed revenue.

A similar problem can occur if an electric grid buys wind or solar energy on a preferential basis from commercial providers at wholesale rates in effect for that time of day. This practice tends to lead to a loss of profitability for fossil fuel-based providers of electricity. This is especially the case for natural gas “peaking plants” that normally operate for only a few hours a year, when electricity rates are very high.

Germany has been adding wind and solar, in an attempt to offset reductions in nuclear power production. Germany is now running into difficulty with its pricing approach for renewables. Some of its natural gas providers of electricity have threatened to shut down because they are not making adequate profits with the current pricing plan. Germany also finds itself using more cheap (but polluting) lignite coal, in an attempt to keep total electrical costs within a range customers can afford.

Pitfall 7. Adding intermittent renewables to the electric grid makes the operation of the grid more complex and more difficult to manage. We run the risk of more blackouts and eventual failure of the grid. 

In theory, we can change the electric grid in many ways at once. We can add intermittent renewables, “smart grids,” and “smart appliances” that turn on and off, depending on the needs of the electric grid. We can add the charging of electric automobiles as well. All of these changes add to the complexity of the system. They also increase the vulnerability of the system to hackers.

The usual assumption is that we can step up to the challenge–we can handle this increased complexity. A recent report by The Institution of Engineering and Technology in the UK on the Resilience of the Electricity Infrastructure questions whether this is the case. It says such changes, ” .  .  . vastly increase complexity and require a level of engineering coordination and integration that the current industry structure and market regime does not provide.” Perhaps the system can be changed so that more attention is focused on resilience, but incentives need to be changed to make resilience (and not profit) a top priority. It is doubtful this will happen.

The electric grid has been called the worlds ‘s largest and most complex machine. We “mess with it” at our own risk. Nafeez Ahmed recently published an article called The Coming Blackout Epidemic, discussing challenges grids are now facing. I have written about electric grid problems in the past myself: The US Electric Grid: Will it be Our Undoing?

Pitfall 8. A person needs to be very careful in looking at studies that claim to show favorable performance for intermittent renewables.  

Analysts often overestimate the benefits of wind and solar. Just this week a new report was published saying that the largest solar plant in the world is so far producing only half of the electricity originally anticipated since it opened in February 2014.

In my view, “standard” Energy Returned on Energy Invested (EROEI) and Life Cycle Analysis (LCA) calculations tend to overstate the benefits of intermittent renewables, because they do not include a “time variable,” and because they do not consider the effect of intermittency. More specialized studies that do include these variables show very concerning results. For example, Graham Palmer looks at the dynamic EROEI of solar PV, using batteries (replaced at eight year intervals) to mitigate intermittency.2 He did not include inverters–something that would be needed and would reduce the return further.

Figure 4. Graham Palmer's chart of Dynamic Energy Returned on Energy Invested from "Energy in Australia."

Palmer’s work indicates that because of the big energy investment initially required, the system is left in a deficit energy position for a very long time. The energy that is put into the system is not paid back until 25 years after the system is set up. After the full 30-year lifetime of the solar panel, the system returns 1.3 times the initial direct energy investment.

One further catch is that the energy used in the EROEI calculations includes only a list of direct energy inputs. The total energy required is much higher; it includes indirect inputs that are not directly measured as well as energy needed to provide necessary infrastructure, such as roads and schools. When these are considered, the minimum EROEI needs to be something like 10. Thus, the solar panel plus battery system modeled is really a net energy sink, rather than a net energy producer.  

Another study by Weissbach et al. looks at the impact of adjusting for intermittency. (This study, unlike Palmer’s, doesn’t attempt to adjust for timing differences.) It concludes, “The results show that nuclear, hydro, coal, and natural gas power systems . . . are one order of magnitude more effective than photovoltaics and wind power.”

Conclusion

It would be nice to have a way around limits in a finite world. Unfortunately, this is not possible in the long run. At best, green solutions can help us avoid limits for a little while longer.

The problem we have is that statements about green energy are often overly optimistic. Cost comparisons are often just plain wrong–for example, the supposed near grid parity of solar panels is an “apples to oranges” comparison. An electric utility cannot possibility credit a user with the full retail cost of electricity for the intermittent period it is available, without going broke. Similarly, it is easy to overpay for wind energy, if payments are made based on time-of-day wholesale electricity costs. We will continue to need our fossil-fueled balancing system for the electric grid indefinitely, so we need to continue to financially support this system.

There clearly are some green solutions that will work, at least until the resources needed to produce these solutions are exhausted or other limits are reached. For example, geothermal may be solutions in some locations. Hydroelectric, including “run of the stream” hydro, may be a solution in some locations. In all cases, a clear look at trade-offs needs to be done in advance. New devices, such as gravity powered lamps and solar thermal water heaters, may be helpful especially if they do not use resources in short supply and are not likely to cause pollution problems in the long run.

Expectations for wind and solar PV need to be reduced. Solar PV and offshore wind are both likely net energy sinks because of storage and balancing needs, if they are added to the electric grid in more than very small amounts. Onshore wind is less bad, but it needs to be evaluated closely in each particular location. The need for large subsidies should be a red flag that costs are likely to be high, both short and long term. Another consideration is that wind is likely to have a short lifespan if oil supplies are interrupted, because of its frequent need for replacement parts from around the world.

Some citizens who are concerned about the long-term viability of the electric grid will no doubt want to purchase their own solar systems with inverters and back-up batteries. I see no reason to discourage people who want to do this–the systems may prove to be of assistance to these citizens. But I see no reason to subsidize these purchases, except perhaps in areas (such as tropical islands) where this is the most cost-effective way of producing electric power.

Notes:

[1] In 2013, the total amount of subsidies for renewables was $121 billion according to the IEA. If we compare this to the amount of renewables (biofuels + other renewables) reported by BP, we find that the subsidy per barrel of oil equivalent in was $48 per barrel of oil equivalent. These amounts are likely understated, because BP biofuels include fuel that doesn’t require subsidies, such as waste sawdust burned for electricity.

[2] Palmer’s work is published in Energy in Australia: Peak Oil, Solar Power, and Asia’s Economic Growth, published by Springer in 2014. This book is part of Prof. Charles Hall’s “Briefs in Energy” series.





Another study on the ERoEI of solar PV

10 05 2016

Originally posted by Euan Mearns on his blog Energy Matters, this study makes Pedro Prieto’s look very good….. the differences in ERoEI between the two studies must be a function of the difference in latitude between Spain and the UK, and even possibly by the fact that as the ERoEI of fossil fuels drops like a stone, the ERoEI of renewables must follow suit, as they rely entirely on the former.  Is Mearns a fan of nuclear power?  You make up your mind….

As Fort McMurray burns, and its smoke plume reaches the East coast of the USA, it’s occurred to me that the inevitable efforts and energy smoke-plume-from-fort-mcmurray-fire-reaches-us-east-coastrequired to rebuild it once the fire is out (IF, that is, it doesn’t reach the tar sands and sets them alight…), should be included in the ERoEI of fossil fuels.  Whilst it’s impossible to say Climate Change caused the fire in Alberta Canada, it’s impossible to not make the connection that the only reason it was over 20°C when the fire started was entirely down to the jetstream going haywire because of the arctic melt……  in fact, the energy spent rebuilding destroyed infrastructure caused by Climate Change anywhere should now be included in the ERoEI of fossil fuels….

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 

A new study by Ferroni and Hopkirk [1] estimates the ERoEI of temperate latitude solar photovoltaic (PV) systems to be 0.83. If correct, that means more energy is used to make the PV panels than will ever be recovered from them during their 25 year lifetime. A PV panel will produce more CO2 than if coal were simply used directly to make electricity. Worse than that, all the CO2 from PV production is in the atmosphere today, while burning coal to make electricity, the emissions would be spread over the 25 year period. The image shows the true green credentials of solar PV where industrial wastelands have been created in China so that Europeans can make believe they are reducing CO2 emissions (image credit Business Insider).

I have been asked to write a post reviewing the concept of energy return on energy invested (ER0EI) and as a first step in that direction I sent an email to my State-side friends Charlie Hall, Nate Hagens and David Murphy asking that they send me recent literature. The first paper I read was by Ferruccio Ferroni and Robert J. Hopkirk titled Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation [1] and the findings are so stunning that I felt compelled to write this post immediately.

So what is ERoEI? It is simply the ratio of energy gathered to the amount of energy used to gather the energy (the energy invested):

ERoEI = energy gathered / energy invested

Simple, isn’t it? Well it’s not quite so simple as it appears at first sight. For example, using PV to illustrate the point, the energy gathered will depend on latitude, the amount of sunshine, the orientation of the panels and also on the lifetime of the panels themselves. And how do you record or measure the energy invested? Do you simply measure the electricity used at the PV factory, or do you include the energy consumed by the workers and the miners who mined the silicon and the coal that is used to make the electricity? Ferroni and Hopkirk go into all of these details and come up with an ERoEI for temperate latitude solar PV of 0.83. At this level, solar PV is not an energy source but is an energy sink. That is for Switzerland and Germany. It will be much worse in Aberdeen!

Why is ERoEI important? It is a concept that is alien to most individuals, including many engineers, energy sector employees, academics and policy makers. The related concept of net energy is defined as:

Net Energy = ERoEI – 1 (where 1 is the energy invested)

Net energy is the surplus energy left over from our energy gathering activities that is used to power society – build hospitals, schools, aircraft carriers and to grow food. In the past the ERoEI of our primary energy sources – oil, gas and coal – was so high, probably over 50, that there was bucket loads of cheap energy left over to build all the infrastructure and to feed all the people that now inhabit The Earth. But with the net energy equation for solar PV looking like this:

0.83-1 = -0.17

….. Brussels we have a problem!

So how can it be possible that we are managing to deploy devices that evidently consume rather than produce energy? The simple answer is that our finance system, laws and subsidies are able to bend the laws of physics and thermodynamics for so long as we have enough high ERoEI energy available to maintain the whole system and to subsidise parasitic renewables. Try mining and purifying silicon using an electric mining machine powered by The Sun and the laws of physics will re-establish themselves quite quickly.

In very simple terms, solar PV deployed in northern Europe can be viewed as coal burned in China used to generate electricity over here. All of the CO2 emissions, that underpin the motive for PV, are made in China. Only in the event of high energy gain in the PV device would solar PV reduce CO2 emissions. More on that later.

Energy Return

The calculations are all based on the energy produced by 1 m^2 of PV.

Theoretical calculations of what PV modules should generate made by manufacturers do not take into account operational degradation due to surface dirt. Nor do they take into account poor orientation, unit failure or breakage, all of which are quite common.

The actual energy produced using Swiss statistics works out at 106kWe/m^2 yr

We then also need to know how long the panels last. Manufacturers claim 30 years while empirical evidence suggests a mean scrapage age of only 17 years in Germany. Ferroni and Hopkirk use a generous 25 year unit life.

Combining all these factors leads to a number of 2203kWe/m^2 for the life of a unit.

Energy Invested

The energy invested calculation is also based on 1 m^2 of panel and uses mass of materials as a proxy for energy consumed and GDP energy intensity as a proxy for the labour part of the equation.

Two different methods for measuring energy invested are described:

  • ERoEI(IEA)
  • ERoEI(Ext)

Where IEA = methodology employed by the International Energy Agency and Ext = extended boundary as described by Murphy and Hall, 2010 [2,3]. The difference between the two is that the IEA is tending to focus on the energy used in the factory process while the extended methodology of Murphy and Hall, 2010 includes activities such as mining, purifying and transporting the silicon raw material.

In my opinion, Ferroni and Hopkirk correctly follow the extended ERoEI methodology of Murphy and Hall and include the following in their calculations:

  • Materials to make panels but also to erect and install panels
  • Labour at every stage of the process from mining manufacture and disposal
  • Manufacturing process i.e. the energy used in the various factories
  • Faulty panels that are discarded
  • Capital which is viewed as the utilisation of pre-existing infrastructure and energy investment
  • Integration of intermittent PV onto the grid

And that gives us the result of ERoEI:

2203 / 2664 kW he/m^2 = 0.83

The only point I would question is the inclusion of the energy cost of capital. All energy produced can be divided into energy used to gather energy and energy for society and I would question whether the cost of capital does not fall into the latter category?

But there appears to be one major omission and that is the energy cost of distribution. In Europe, about 50% of the cost of electricity (excluding taxes) falls to the grid construction and maintenance. If that was to be included it would make another serious dent in the ERoEI.

This value for ERoEI is lower than the value of 2 reported by Prieto and Hall [4] and substantially lower that the values of 5 to 6 reported by the IEA [5]. One reason for this is that the current paper [1] is specifically for temperate latitude solar. But Ferroni and Hopkirk also detail omissions by the IEA as summarised below.

IEA energy input omissions and errors

a) The energy flux across the system boundaries and invested for the labour is not included.
b) The energy flux across the system boundaries and invested for the capital is not included.
c) The energy invested for integration of the PV-generated electricity into a complex and flexible electricity supply and distribution system is not included (energy production does not follow the needs of the customer).
d) The IEA guidelines specify the use of “primary energy equivalent” as a basis. However, since the energy returned is measured as secondary electrical energy, the energy carrier itself, and since some 64% to 67% of the energy invested for the production of solar-silicon and PV modules is also in the form of electricity (Weissbach et al., 2013) and since moreover, the rules for the conversion from carrier or secondary energy back to primary energy are not scientifically perfect (Giampietro and Sorman, 2013), it is both easier and more appropriate to express the energy invested as electrical energy. The direct contribution of fossil fuel, for instance in providing energy for process heating, also has to be converted into secondary energy. The conversion from a fossil fuel’s internal chemical energy to electricity is achieved in modern power plants with an efficiency of 38% according to the BP statistic protocol (BP Statistical Review of World Energy, June 2015). In the present paper, in order to avoid conversion errors, we shall continue to use electrical (i.e. secondary) energy in kW he/m2 as our basic energy unit.
e) The recommended plant lifetime of 30 years, based on the experiences to date, must be regarded as unrealistic.
f) The energy returned can and should be based on actual experimental data measured in the field. Use of this procedure will yield values in general much lower than the electricity production expected by investors and politicians.

Of those I’d agree straight off with “a”, “c” and “f”. I’m not sure about “b” and “e” I’m sure this will be subject to debate. “d” is a complex issue and is in fact the same one described in my recent post EU and BP Renewable Electricity Accounting Methodologies. I agree with Ferroni and Hopkirk that units of electricity should be used throughout but if the IEA have grossed up the electricity used to account for thermal losses in power stations then this would increase their energy invested and suppress not inflate their estimates of ERoEI. Hence this is a point that needs to be clarified.

Environmental impacts

The main reason for deploying solar PV in Europe is to lower CO2 emissions. The European Commission and most European governments have been living in cloud cuckoo land allowing CO2 intensive industries to move to China, lowering emissions in Europe while raising emissions in China and making believe that importing steel from China somehow is emissions free.

The example of solar PV brings this into sharp focus. Assuming the main energy input is from coal (and low efficiency dirty coal at that) and with ERoEI <1, making electricity from solar PV will actually create higher emissions than had coal been used directly to make electricity for consumption in the first place. But it’s a lot worse than that. All of the emissions associated with 25 years of electricity production are in the atmosphere now making global warming much worse than it would otherwise have been without the PV.

And it gets even worse than that! The manufacture of PV panels involves lots of nasty chemicals too:

Many potentially hazardous chemicals are used during the production of solar modules. To be mentioned here is, for instance, nitrogen trifluoride (NF3), (Arnold et al., 2013), a gas used for the cleaning of the remaining silicon-containing contaminants in process chambers. According to the IPCC (Intergovernmental Panel on Climate Change) this gas has a global warming potential of approximately 16600 times that of CO2. Two other similarly undesirable “greenhouse” gases appearing are hexafluoroethane (C2F6) and sulphur hexafluoride (SF6).

And

The average weight of a photovoltaic module is 16 kg/m2 and the weight of the support system, inverter and the balance of the system is at least 25 kg/m2 (Myrans, 2009), whereby the weight of concrete is not included. Also, most chemicals used, such as acids/ bases, etchants, elemental gases, dopants, photolithographic chemicals etc. are not included, since quantities are small. But, we must add hydrochloric acid (HCl): the production of the solar- grade silicon for one square meter of panel area requires 3.5 kg of concentrated hydrochloric acid.

Comparison with nuclear

The paper offers some interesting comparisons with nuclear power. Looking first at materials used per unit of electricity produced:

  • PV uses 20.2 g per kW he (mainly steel aluminium and copper)
  • A nuclear power station uses 0.31 g per kW he (mainly steel) for a load factor of 85%

kW he = kilowatt hours electrical

Looking at labour, the authors observe:

The suppliers involved in the renewable energies industry advertise their capability to create many new jobs.

While of course the best forms of energy use as little labour as possible. At the point where ERoEI reaches 1, everyone is engaged in gathering energy and society as we know it collapses!

  • Solar PV creates 94.4 jobs per MW installed, adjusted for capacity factor.
  • Nuclear creates 13 jobs per MW installed covering construction, operation and decommissioning.

This may seem great to the politicians but it’s this inefficiency that makes solar PV expensive and kills the ERoEI. And looking at capital costs:

  • Solar PV needs CHF 6000 per kW installed (CHF = Swiss Franc)
  • Nuclear power CHF 5500 per kW installed

But normalising for capacity factors of 9% for solar and 85% for nuclear we get for effective capacity:

66,667 / 6471 = 10.3

Solar PV is 10 times more capital intensive than nuclear.

Energy transformation

When ERoEI approaches or goes below 1 we enter the realm of energy transformation which is quite common in our energy system. For example, converting coal to electricity we lose approximately 62% of the thermal energy. Converting coal and other raw materials into a PV panel may in certain circumstances make some sense. For example PV and a battery system may provide African villages with some electricity where there is little hope of ever getting a grid connection. Likewise for a mountain cabin. Individuals concerned about blackouts may also consider a PV battery system as a backup contingency.

But as a means of reducing CO2 emissions PV fails the test badly at temperate latitudes. It simply adds cost and noise to the system. In sunnier climates the situation will improve.

Concluding comments

The findings of this single study suggest that deploying solar PV at high latitudes in countries like Germany and the UK is a total waste of time, energy and money. All that is achieved is to raise the price of electricity and destabilise the grid. Defenders of RE and solar will point out that this is a single paper and there are certainly some of the inputs to Ferroni and Hopkirk that are open to debate. But there are reasons to believe that the findings are zeroing in on reality. For example Prieto and Hall found ERoEI for solar PV = 2. Looking only at cloudy, high temperate latitudes will substantially degrade that number.

And you just need to look at the outputs as shown below. Solar PV produces a dribble in winter and absolutely nothing at the 18:00 peak demand. There is a large financial cost and energy cost to compensate for this that RE enthusiasts dismiss with a wave of the arm.

Figure 1 From UK Grid Graphed. The distribution of solar production in the UK has grown 7 fold in 4 years. But 7 times a dribble in winter is still a dribble.  The large amount of embodied energy in these expensive devices does no work for us at all when we need it most.

Energy Matters has a good search facility top right. Insert solar pv and I was surprised to find how many articles Roger and I have written and they all more or less reach the same conclusions. I have added these links at the end of the post.

Figure 2 A typical solar installation in Aberdeen where the panels are on an east facing roof leaving the ideal south facing roof empty. This is a symbol of ignorance and stupidity that also pervades academia. Has anyone seen a University that does not have solar PV deployed? I’ve heard academics argue that orientation does not matter in Scotland, and they could be right. I dare say leaving the panels in their box would make little difference to their output. Academics, of course, are increasingly keen to support government policies. Note that sunny days like this one are extremely rare in Aberdeen. And in winter time, the sun rises about 10:00 and sets around 15:00.

Two years ago I fulminated about the random orientation of solar panels in Aberdeen in a post called Solar Scotland. And this random orientation will undoubtedly lead to serious degradation of the ERoEI. PV enthusiasts will no doubt assume that all solar PV panels are optimally orientated in their net energy analysis while in the real world of Ferroni and Hopkirk, they are not. A good remedy here would be to remove the feed in tariffs of systems not optimally deployed while ending future solar PV feed in tariffs all together.

But how to get this message heard at the political level? David MacKay’s final interview was very revealing:

The only reason solar got on the table was democracy. The MPs wanted to have a solar feed-in-tariff. So in spite of the civil servants advising ministers, ‘no, we shouldn’t subsidise solar’, we ended up having this policy. There was very successful lobbying by the solar lobbyists as well. So now there’s this widespread belief that solar is a wonderful thing, even though … Britain is one of the darkest countries in the world.

If the politicians do not now listen to the advice of one of the World’s most famous and respected energy analysts then I guess they will not listen to anyone. But they will with time become increasingly aware of the consequences of leading their electorate off the net energy cliff.

References

[1] Ferruccio Ferroni and Robert J. Hopkirk 2016: Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation: Energy Policy 94 (2016) 336–344

[2] Murphy, D.J.R., Hall, C.A.S., 2010. Year in review-EROI or energy return on (energy) invested. Ann. N. Y. Acad. Sci. Spec. Issue Ecol. Econ. Rev. 1185, 102–118.

[3] Murphy, D.J.R., Hall, C.A.S., 2011. Energy return on investment, peak oil and the end of economic growth. Ann. N.Y. Acad. Sci. Spec. Issue Ecol. Econ. 1219, 52–72.

[4] Prieto, P.A., Hall, C.A.S., 2013. Spain’s Photovoltaic Revolution – The Energy Return on Investment. By Pedro A. Prieto and Charles A.S. Hall, Springer.

[5] IEA-PVPS T12, Methodology Guidelines on the Life Cycle Assessment of Photovoltaic Electricity – Report IEA-PVPS T12-03:2011.





What a tangled web we weave……

28 03 2016

John Weber, whose excellent articles about the fossil fuels needed to make renewable energy I have published here before, led me to a Jo Nova item on her website titled Renewables industry collapsing in Europe.  Nova is the penultimate climate denier, as you will quickly see if you visit the link to her blog. She based her entire article of the following interesting graph……:

eu-investment-renewables

When I see a chart like that, I don’t see the collapse of renewables……..  I see the collapse of Capitalism!  The difference between Nova and I is that I am utterly convinced climate change will destroy civilisation and most of life on Earth as we know it, no matter how much renewable energy systems we build, whereas she thinks AGW is crap, and we’re wasting precious dollars propping up an unnecessary industry.

Now I don’t care how much money we ‘waste’, it’s all monopoly play money; but all the same that chart is interesting because we are continually told about how great Europe’s renewable energy systems are, how Denmark, or Germany, or [insert your favorite EU country here] generated 50% or 100% or whatever of its energy demand (when of course it’s only electricity demand) on some days, as if that was some great breakthrough…..

Nova makes interesting comments, like this……:

Here’s a detail that tells us how big the malinvestment is here. There are nearly half a million people in Europe working in wind and solar to generate expensive electricity:

Jobs are being lost as a result. According to the International Renewable Energy Agency, employment in solar photovoltaics in Europe fell by more than a third to 165,000 jobs in 2013, the last year for which it has yet collated figures. Jobs in wind energy rose slightly, by more than 5% in 2013, to nearly 320,000 across the bloc, with more than half of these in Germany.

Imagine if those people were doing something useful?

Yes……. imagine if all those people were doing something useful, like ending consumption and running their own permaculture farms……!

Here’s $329 billion very committed dollars worth of vested interests pushing the Climate Scare. Unlike the fossil fuel industry their profits depend almost entirely on government policy.

As Oil Crashed, Renewables Attract Record $329 Billion

renewables-investment-2004-2015

But does she mention the amount of fossil fuels subsidies…?  Of course not!

Here is a chart of fossil fuels subsidies……:

fossilfuel-subsidy-reforem-by-petar-vujanovic-2-638

Hmmmm……  looks like it’s double the renewables subsidies to me. And that chart is now 3 years old, I can’t help wondering if it’s not doing a cliff dive of its own…. oh wait, it IS!

There’s one thing Nova gets right…:

Whatever you do, don’t graph renewables output in actual megawatts. Don’t graph it in CO2 tons saved. Never ever even mention the number of global degrees of cooling.

The rest is pure bias on her part……





It’s the nett energy George…..

7 02 2016

George-Monbiot-L

George Monbiot

George Monbiot has written another piece on the current oil situation, but whilst I agree mostly with what he says, he still doesn’t ‘get it’………

Oil, the industry that threatens us with destruction, is being bailed out with public money

By George Monbiot, published in the Guardian 3rd February 2016

Those of us who predicted, during the first years of this century, an imminent peak in global oil supplies could not have been more wrong. People like the energy consultant Daniel Yergin, with whom I disputed the topic, appear to have been right: growth, he said, would continue for many years, unless governments intervened.

Oil appeared to peak in the United States in 1970, after which production fell for 40 years. That, we assumed, was the end of the story. But through fracking and horizontal drilling, production last year returned to the level it reached in 1969. Twelve years ago, the Texas oil tycoon T. Boone Pickens announced that “never again will we pump more than 82 million barrels”. By the end of 2015, daily world production reached 97 million.

Following one of those links, I have to admit, surprised me…..  I had no idea the US’ oil production had almost reached its 1970 peak….. I may have confused how much they were extracting with what they were consuming. And, that chart is already out of date, the extraction rate is now in freefall…

usoilprod

What everyone who comments on this fails to say is that whilst the numbers of barrels tabled in their spreadsheets might well be there, and they may be following the money, absolutely nobody is following the nett number of Megajoules.  A barrel of oil from the last dot on the above chart may well contain less than a quarter of the nett energy content of one from a dot at the toe of the curve.

George then adds….:

Saudi Arabia has opened its taps, to try to destroy the competition and sustain its market share: a strategy that some peak oil advocates once argued was impossible.

Methinks he should visit Gail Tverberg’s site for proper analysis….

saudiexport

Saudi Arabia has been pumping flat out for years, with no discernible market flooding power.  It may in fact be trying very hard to meet its own fast growing domestic demand which is having an obvious impact on how much it is exporting, which is discernably less than it was way back in 1980……. so how can you blame them for flooding the market?

George continues with…..:

Instead of a collapse in the supply of oil, we confront the opposite crisis: we’re drowning in the stuff. The reasons for the price crash – an astonishing slide from $115 a barrel to $30 over the past 20 months – are complex: among them are weaker demand in China and a strong dollar. But an analysis by the World Bank finds that changes in supply have been a much greater factor than changes in demand.

Whilst Gail Tverberg says…..:

Some people talk about peak energy (or oil) supply. They expect high prices and more demand than supply. Other people talk about energy demand hitting a peak many years from now, perhaps when most of us have electric cars.

Neither of these views is correct. The real situation is that we right now seem to be reaching peak energy demand through low commodity prices. I see evidence of this in the historical energy data recently updated by BP (BP Statistical Review of World Energy 2015).

Growth in world energy consumption is clearly slowing. In fact, growth in energy consumption was only 0.9% in 2014. This is far below the 2.3% growth we would expect, based on recent past patterns. In fact, energy consumption in 2012 and 2013 also grew at lower than the expected 2.3% growth rate (2012 – 1.4%; 2013 – 1.8%).

Figure 1- Resource consumption by part of the world. Canada etc. grouping also includes Norway, Australia, and South Africa. Based on BP Statistical Review of World Energy 2015 data.

Recently, I wrote that economic growth eventually runs into limits. The symptoms we should expect are similar to the patterns we have been seeing recently (Why We Have an Oversupply of Almost Everything (Oil, labor, capital, etc.)). It seems to me that the patterns in BP’s new data are also of the kind that we would expect to be seeing, if we are hitting limits that are causing low commodity prices.

Of course, people like George who want to keep growth going, only using wind and nuclear power, don’t understand we are hitting limits.

When oil hit $147 at the time of the GFC, it literally bankrupted the economy. Having hit peak conventional oil, trillions of dollars had to be invested (read, borrowed…) to capitalise on the much higher hanging and less energetic fruit. Which made us get less with more, when we should be doing the exact opposite, doing more with less…..

George then has a big whinge about fossil subsidies at the expense of renewables.  The way I see it however, is that as all renewables are manufactured with fossil fuels, as they get cheaper, the costs of making the renewables also goes down, so that to some extent, any fossil subsidy is a hidden renewables subsidy…..  Furthermore, without further subsidies, oil and coal companies will go bust to which George says….:

A falling oil price drags down the price of gas, exposing coal mining companies to the risk of bankruptcy: good riddance to them.

Which, George, unfortunately also means good riddance to renewables….  He then ends with…….:

So they lock us into the 20th Century, into industrial decline and air pollution, stranded assets and – through climate change – systemic collapse. Governments of this country cannot resist the future forever. Eventually they will succumb to the inexorable logic, and recognise that most of the vast accretions of fossil plant life in the Earth’s crust must be left where they are. And those massive expenditures of public money will prove to be worthless.

Crises expose corruption: that is one of the basic lessons of politics. The oil price crisis finds politicians with their free-market trousers round their ankles. When your friends are in trouble, the rigours imposed religiously upon the poor and public services suddenly turn out to be negotiable. Throw money at them, trash their competitors, rig the outcome: those who deserve the least receive the most.

At last……  George recognises systemic collapse, for all the wrong reasons unfortunately. It may look like corruption to him, but it sure as hell looks like limits to growth to me.





Home Solar Power Electricity Price Rise Myth

21 06 2012

Whenever I mention the fact we make money from selling power to the grid on certain forums, I get attacked for being partly responsible for the recent (and looming) electricity prices.  It doesn’t really matter how often the anti solar morons perpetuate the myth that panels on my roof, subsidies and rebates are a major reason for electricity price hikes; it still won’t make it true…..

And it’s not just the luddite rednecks out there spreading this disinformation… some career journos still fall into the trap of repeating these myths as fact – as do some politicians; which is a bummer given the Carbon free energy future of our nation is at stake.

Energy Matters recently released a study proving this is all hogwash here.  But to save you navigating away from this interesting website, I’ll repost the data….

Home solar contribution to power prices

Home solar power and electricity prices

The report was prepared by the AEMC for the Ministerial Council on Energy following a request from the Council of Australian Governments (COAG).

Solar is but a bit player in recent, current and future price hikes – that is really all there is to it. The next time you hear or read of someone perpetuating myths of home solar power being the electricity price rise bogeyman, you can help set the record straight by pointing those wayward souls to this page.

* Tables from AEMC, Possible Future Retail Electricity Price Movements: 1 July 2011 to 30 June 2014, Final Report, 25 November 2011, Sydney.