No Soil & Water Before 100% Renewable Energy

7 09 2017

Hot on the heels of my last post from someone else who has given up campaigning for renewable energy, comes this amazing article that defines why it’s all a futile effort…. I am beginning to think it is all starting to catch on…..

After all, excessive energy use got us into this mess, more energy will not get us out. As Susan Krumdieck says, the problem is not a lack of renewable energy, it’s too much fossil fuel consumption…….

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Many say we can have 100% renewable energy by 2050. This is factually incorrect.

We can have 100% renewable electricity production by 2050.

But electricity production is only 18% of total world energy demand.

82% of total world energy demand is NOT electricity production.

The other 82% of the world’s energy is used to extract minerals to make roads, cement, bricks, glass, steel and grow food so we can eat and sleep. Solar panels and wind turbines will not be making cement or steel anytime soon. Why? Do you really want to know? Here we go.

TWED = Total World Energy Demand

18% of TWED is electrical grid generation.

82% of TWED is not electrical grid generation.

In 20 years, solar & wind energy is up from 1% to 3% of TWED.

Solar & wind power are projected to provide 6% of TWED by 2030.

When you hear stories about solar & wind generating
50% of all humanity’s electrical power by 2050,
that’s really only 9% of TWED because
100% of electrical production is 18% of TWED.

But, it takes 10X as much solar & wind energy to close 1 fossil fuel power plant simply because they don’t produce energy all the time.

Reference Link: http://www.nature.com/nclimate/journal/v2/n6/full/nclimate1451.html?WT.ec_id=NCLIMATE-201206

Reference Link:
https://citizenactionmonitor.wordpress.com/2015/12/27/renewable-energy-hope-or-hype/

That means it will take 10 X 18% of TWED to close all fossil power plants with intermittent power.

Research says it will take 4 X 82% of TWED for a 100% renewable energy transition. But then again, whoever trusts research?

10 X 18% + 4 X 82% = 100% Renewable TWED.

CONCLUSION:
We require 10X the fossil electrical grid energy we use now just to solve 18% of the emissions problem with solar & wind power. This also means that even if we use 100% efficient Carbon Capture and Storage (CCS) for all the world’s electricity generation, we would still only prevent 18% of our emissions. 100% efficient CCS is very unlikely. Switching to electric vehicles would only double electrical demand while most of our roads are made out of distilled oil sludge.

These figures do not include massive electrical storage and grid infrastructure solar & wind require. Such infrastructure is hundreds of millions of tons of materials taking decades to construct, demanding even more energy and many trillions of dollars. With that kind of money in the offing, you can see why some wax over-enthused.

Solar & wind systems last 30 years meaning we will always have to replace them all over the world again 50% sooner than fossil power plants.

Solar and wind power are an energy trap.

It takes 1 ton of coal to make 6-12 solar panels.

Business As Usual = BAU

In 15 years 40% of humanity will be short of water with BAU.

In 15 years 20% of humanity will be severely short of water.

Right now, 1 billion people walk a mile every day for water.

In 60 years humanity will not have enough soil to grow food says Scientific American. They call it, “The End of Human Agriculture.” Humanity’s soil is eroding and degrading away at 24 million acres per year.  And, when they say 60 years they don’t mean everything is wonderful until the last day of the 59th year. We will feel the heat of those words in much less than 30 years. Soil loss rates will only increase with severe droughts, storms and low-land floods. Here’s what BAU really looks like.

50% of humanity’s soil will be gone in 30 years.

50% of humanity will lack water in 30 years.

50% of humanity will go hungry in 30 years.

100% TWED transition takes 50 years minimum. It is a vastly more difficult and complex goal than you are told.

Reference Link:
http://www.theguardian.com/environment/2016/feb/12/four-billion-people-face-severe-water-scarcity-new-research-finds

Reference Link:
http://www.scientificamerican.com/article/only-60-years-of-farming-left-if-soil-degradation-continues/

We are losing earth’s soil and fresh water faster than we can effect 100% renewable TWED.

In 25 years civilization will end says Lloyds of London and the British Foreign Office.

In my opinion, in 30 years we won’t have enough fossil fuel for a 100% renewable TWED transition.

This is the most important fact I’ve learned:

Renewable Energy is Unsustainable
without massive energy demand destruction

Humanity will destroy its soil and water faster than we can switch to renewable energy with BAU. We cannot sustain economic growth with renewable energy. Without massive political-economic change, civilization will collapse with 100% certainty. But, don’t worry, I like to fix things.

Animal Agriculture = AA

Humans + Livestock = 97% of the weight of all land vertebrate biomass

Humans + Livestock = 80% of the cause of all land-air extinctions

Humans + Livestock = 50% of the use of all land surface area

Humans + Livestock = 40% consumption of all land plant growth *
* Net Primary Production.

50% of the soy grown in South America is shipped over to China to feed their pigs. Rainforests and deep-rooted scrub are cleared to grow animals & feed so that their required fresh water is in reality a sky river exported in boats to China and Europe leaving little moisture in the air to reach São Paulo. Since rainforest roots are so thick they don’t require very much, or even good, soil;  this leaves rainforest soil so poor and thin that it degrades and erodes faster when exposed to the elements.

The Himalayan mountains are heating 2X faster than the planet and many fear that China will run out of water in 15 years by 2030.

50% of China’s rivers have vanished since 1980.

60% of China’s groundwater is too poisoned to touch.

50% of China’s cropland is too poisoned to safely grow food.

Animal Agriculture will destroy our soil and water long before we can effect 100% intermittent TWED transition with BAU.

BAU means 7 billion people will not stop eating meat and wasting food without major $$$ incentive. Meaning a steadily rising carbon tax on meat. Just saying that can get you killed in some places.

Without using James Hansen’s 100% private tax dividends to carbon tax meat consumption out of the market earth will die. 100% private tax dividends means 100% for you, 0% for government.

100% for you, 
    0% for gov.

The funny thing is that meat and fire saved our ancestors from extinction and now meat and fire will cause mass extinction of all the life we love on earth. Survival is not an optional menu item as is eating meat. We have to act now, not 5 years from now, or forever be not remembered as the least greatest generation because there’ll be no one left to remember us.

Michael Mann says we will lock-in a 2 degree temperature rise in 3 years for 2036 with BAU. Ocean fish will be gone in less than 25 years simply because of the BAU of meat consumption. The BAU of fishing kills everything in its path producing lots of waste kill. We are stealing all the Antarctic Ocean’s krill just to sell as a health supplement. You can learn a lot about fishing by watching “Cowspiracy” on Netflix.

We cannot let governments get control of carbon markets like how Sanders, Klein and McKibben want government to get 40% of your carbon tax dividend money. Naomi Klein and Bill McKibben are funded by the Rockefellers. Klein’s latest video about herself was funded by the oil-invested Ford Foundation. This is 100% in direct opposition to James Hansen’s tax dividend plan and immoral. Hansen said that governments should get 0% of that money, not 40%.  I strongly believe your carbon dividends should be in a new open-source world e-currency directly deposited to your phone to be phased in over 10 years. But, I’m kinda simple that way.

Google: Rockefellers fund Bill McKibben. Believe me, the Rockefellers don’t fund 350.org out of the kindness of their hearts. To learn why they would do such a thing, you can watch the educational video at the bottom of this page.

Reference Link:
Rockefellers behind ‘scruffy little outfit’

Reference Link:
http://www.nybooks.com/articles/2014/12/04/can-climate-change-cure-capitalism/

James Hansen repeated at COP21 that his 100% private carbon tax dividends would unite Democrats and Republicans because government would be 100% excluded. Socialists like Sanders, Klein and McKibben want government to control 40% of that money. They are divisive and Republicans will never accept their revolutionary rhetoric. We don’t have time for this endless fighting. Forget the Socialist vs. Capitalistmentality. We barely even have time to unite, and nothing unites like money. Environmentalism in the 21st century is about a revolving door of money and power for elite socialists and capitalists. Let’s give everyone a chance to put some skin in the game.

Reference Link: http://grist.org/climate-energy/sanders-and-boxer-introduce-fee-and-dividend-climate-bill-greens-tickled-pink/

What humans & livestock have done so far:

We are eating up our home.

99% of Rhinos gone since 1914.

97% of Tigers gone since 1914.

90% of Lions gone since 1993.

90% of Sea Turtles gone since 1980.

90% of Monarch Butterflies gone since 1995.

90% of Big Ocean Fish gone since 1950.

80% of Antarctic Krill gone since 1975.

80% of Western Gorillas gone since 1955.

60% of Forest Elephants gone since 1970.

50% of Great Barrier Reef gone since 1985.

40% of Giraffes gone since 2000.

30% of Marine Birds gone since 1995.

70% of Marine Birds gone since 1950.

28% of Land Animals gone since 1970.

28% of All Marine Animals gone since 1970.

97% – Humans & Livestock are 97% of land-air vertebrate biomass.

10,000 years ago we were 0.01% of land-air vertebrate biomass.

Humans and livestock caused 80% of land-air vertebrate species extinctions and occupy half the land on earth. Do you think the new 2-child policy in China favours growth over sustainability? The Zika virus could be a covert 1% population control measure for all I know. Could the 1% be immune? I don’t know, but I know this…

1 million humans, net, added to earth every 4½ days.

http://www.vox.com/2016/1/30/10872878/world-population-map

Advertisements




On Biochar

23 05 2017

Last weekend, as the threat of looming downpours for much of Tasmania was forecast, I went to a biochar workshop organised by the Huon Producers’ Network, and I reckon it was the best thirty five bucks I ever spent……. I’ve read quite a bit on the matter, and have always been fascinated by Terra Preta. Having cut down some fifty trees to make way and building material for our new house, I’m not exactly short of biomass to get rid of…. I had four huge piles of the stuff, and unfortunately, sometimes even the best laid plans have to yield to reality and two of them have been burned to make way for ‘development’ on the Fanny Farm. Each time I burned the piles, I got the guilts knowing all that resource was going to waste and contributing to climate change, but having inadvertently put several tonnes of wood in the wrong place (designing my patch is an evolutionary process) and having no quick means of moving them, I just put a match to it. At least, the ash went on the current market garden patch……Image result for biochar kiln

I had some expectations of what I was going to be shown, but they were all thrown out the window…. I had been expecting to see kilns such as the one at right which are all enclosed for the purpose of starving the fire of Oxygen so as to pyrolise the wood and make charcoal. My friend Bruce in Queensland has been making charcoal this way for thirty years to satisfy his blacksmithing habit (and those of many others I might add), and he has this down to a fine art. But it appears there’s a revolution underway…..

The presenter on the day was Frank Strie, who thirty years ago emigrated from Germany with his whole family to Tasmania. “We started to plant lots of different fruit trees” Frank says on his website, “such as Cherries, Apricots, Peaches, Plums, Prunes and various apple and pear trees. And of course, we wanted to grow our own vegetables. Also, about 20 years ago we established a Hazelnut Orchard, which covers nearly one third of the property.” It’s all organic of course, and he sounds like he’s pretty good mates with Peter Cundall, Tassie’s gardening guru…… See his Terra Preta website.

20170520_104408

“The baby”

The fact that he brought three kilns on a trailer and the back of a ute all the way from Launceston just shows how versatile and portable his gear is.

The new kilns are open topped, and most interestingly, funnel shaped. They make the process faster – like maybe half the time or better – and allow for activation of the charcoal (which is what turns it into biochar) all in one go. Being able to just tip the finished product onto the ground instead of laboriously shoveling it out of the kiln looks good to this old man with a bad back as well.

Andrew, a local also known as Stretch – and so tall he can’t fit in photos – was also there to ably assist Frank; he’d organised20170520_121304 lots of firewood and stacked it in piles of graded sizes along with cardboard and kindling. We actually got three kilns started; from a smallish one designed for hobby gardeners, to something that will make a cubic metre at a time (and double up as a BBQ!) to the farm sized device I could probably use but can’t afford….. though there is now talk of buying one as a community resource which is a darn good idea!

The idea of the funnel shape is that as the air outside is heated, it rises up the sides, and when it reaches the lip, a vortex effect is created causing the air to be sucked into the kiln speeding up the burn. The ‘big one’ even comes with a skirt that acts as a venturi, speeding up the air as it is squeezed between the kiln and skirt at the lip of the kiln. The effect was clearly visible, though nigh impossible to catch in a still photo.

20170520_12091720170520_120927

The ‘smothering’ effect is created by simply adding more and more firewood to the pile. Before combustion is complete, the fire is quenched (with water on this particular day, but normally a liquid fertiliser would be used) from the bottom up. The bottom of the kiln is plumbed to a pipe which can be used for both removing excess liquid, or adding it under pressure from an IBC on, say, the back of a ute. On the day, Frank used a garden hose, because we could not do what he normally does because of where we were….

20170520_135217

20170520_144712

On the day, the kiln was not filled to capacity due to location and time constraints, but you can clearly see the results. The big kiln even comes with a winch to tip the biochar out for easy work, and if it wasn’t for the fact I’m far too busy house building and counting my remaining pennies, I would buy one tomorrow,

To learn more about biochar, here is an interesting link supplied by Frank that anyone keen on this process would find enlightening. I think this is definitely the way of the future, a bright light among all the rubbish we see every day about renewable energy and electric cars. This has the potential to sequester huge amounts of Carbon, and even more importantly, prepare farm soil for the post oil era looming on the horizon.





Is eating no meat actually doing more harm than good?

18 05 2017

I spend more time on the internet arguing wih vegetarians/vegans than any other group of people……  I so wish they would get off their high horses and start supporting farmers who do the right thing…. and that goes for all you meat eaters out there who buy meat from supermarkets….  STOP IT!!

This opinion piece was originally published by Farmdrop on 4th May 2017.


The younger generation are positively redefining the way we see ourselves in relation to food and the environment.

I grew up in the late 1960s and so I consider myself a bit of a hippy. That decade marked a fundamental mind-set shift in the way people saw themselves in relation to the world. At the time, it was difficult to pinpoint where these ideas came from; many of them simply seemed to come through intuition.

I mention this because, for the first time since the late 1960s, I feel like another shift in consciousness is occurring among the younger generation, particularly amongst so called ‘millennials’.

There is a new field of scientific study called epigenetics which shows that all living organisms constantly interact with their external environment and that these influences can prompt changes in gene expression which can be passed down through the generations. Plants, for example, have epigenetic responses to the environment they grow in, as a result of which a plant may have a subtle difference in its genotype from its parents. Even more interestingly, certain epigenetic traits can stay dormant for several generations, only to find full expression at a later time.

So I suspect that the changing shift in consciousness towards food production and sustainability may actually be partly epigenetic. Perhaps the radical energy of the 1960s is now finding expression among millennials, albeit in a slightly different way.

For these reasons, as an organic farmer of almost 45 years, I have never been more optimistic about the future of farming. However, I am growing increasingly concerned about the large number of people turning to diets that may not necessarily be either healthy or sustainable.

If we are to move to a genuinely sustainable food system, then I think we all need to become much better informed about the sustainability or otherwise of different food systems. Only then we will be better placed to challenge the huge amounts of misinformation on so-called sustainable diets which are encouraging people to avoid all meats and animal products, despite the reality that in many (if not most climates and regions) it is difficult to farm in a truly sustainable way without livestock.

What is the problem with food and farming?

It has become a cliché but it’s true: supermarket food is not cheap and comes at a heavy price. The industrial application of nitrogen fertiliser has contaminated our water systems and atmosphere with dangerous nitrates; the subsidised production of fructose corn syrup has driven an increase in obesity and diabetes; and the excessive use of antibiotics in animals has caused a resistance to these drugs amongst humans.

The real problem is that none of the costs of all this damage is charged to the people who use it and, on the other hand, the positive effects of sustainable farming are not supported.

The current policy framework supports a dishonest economic food pricing system, as a result of which, the best business case is for farmers to grow using industrial methods and for retailers to buy the commodity products from industrial farms, process the hell out of them, package them so the consumer knows nothing about their backstory and then make a profit by turning that around.

So we need new incentives and disincentives, which ensure that the polluter pays and those who farm in a truly sustainable way are better rewarded for the benefits they deliver.

But what are the most sustainable farming methods?

There is no doubt that agriculture and farming is one of the most significant contributor towards climate change. Cutting back on the biggest pollutant (man-made fossil fuels) is very important but to actually reverse climate change – take CO2 out of the atmosphere – then we need to change the way we farm, particularly in relation to the way we look after the soil.

This is because organic matter in the soil is a store of carbon, thereby mitigating harmful emissions in the atmosphere. Britain’s soils store around 10 billion tonnes of carbon, which is more than total annual global emissions of carbon dioxide. Moreover, high levels of organic matter are also the basis for soil fertility, releasing nutrients for healthy plant growth and ultimately food. In other words, the amount of organic matter present in the soil is essential, both for combating climate change and ultimately improving our health.

The problem is that industrial farming methods have depleted organic matter in the soils. In the East of England, around 84% of the land’s carbon rich soil has been lost and continues to disappear at a rate of 1 to 2cm per year. That represents an enormous amount of CO2 released into the atmosphere.

Sustainable food systems are therefore about much more than simply avoiding nasty chemicals and antibiotics, they are about building organic matter in the soil through crop rotation and mixed farming practices.

It is possible for farmers to reduce the emissions from agriculture by re-introducing rotations in the way they use their land – introducing a grass and clover phase that builds soil organic matter, which is then grazed by ruminant animals on rotation, who fertilise the soil further, and results in an ability to grow healthy crops.

According to the International Panel on Climate Change, it is estimated that 89% of all agricultural emissions can be mitigated by improving carbon levels in the soil.

How can you have the most healthy and sustainable diet?

Everyone, at least in principle, wants to eat a healthy and sustainable diet, but we are all very confused about how to do it. If you asked 10 people what the most sustainable and healthy way to eat was then you would probably get 10 different answers. A few might say vegetarian or vegan (the numbers eating a vegan diet has increased by 360% in the last decade) but I think that a large scale switch towards vegetarianism may not necessarily be compatible with sustainability.

In my opinion, many people have been led astray by bad science. The tools used by scientific researchers in the past, and whose published papers have prompted changes in people’s diets, were not based on sound science. It was said that red meat and animal fats should be avoided, both because they are unhealthy and because ruminant animals (cows and sheep) are largely responsible for harmful methane emissions.

But it turns out that neither of those positions are necessarily true.

The study that prompted Governments in Britain and the United States to recommend people to reduce their intake of fats was not based on solid evidence. It is this study that encouraged the food industry to replace fats with added sugars, and we are only now understanding the damage these do to our health.

And the studies that recommended a reduction in red meat consumption on grounds of reducing its environmental impact only look at certain factors in isolation rather than the whole food system. Land-use is often considered as bad in all instances, even though raising livestock is sometimes the only productive land use option available. In roughly two thirds of the UK’s agricultural land area is grass and the only way we can turn that into a good soil that stores carbon and grows healthy crops is to have ruminant animals grazing on a rotation system to fertilise the ground.

These flawed assumptions have had significant consequences for the way people eat. Beef production has halved since the 1980s and the consumption of lamb, arguably the most sustainable grass-fed meat for the land, has plummeted. While new evidence is now showing that animals fats are good for our health and cattle grazed in the right way can actually reduce carbon emissions by creating fertile soils.

Where do we go from here?

My message is simple: a healthy diet should work backwards from the most sustainable way to farm, and that ideally means eating the foods produced by mixed farms using crop rotations which include a fertility building phase, usually of grass and clover grazed by cows and sheep, but also pastured pigs and poultry.

Industrial farming has been an extractive industry. We have dined out on the natural capital of the soil that previous generations have laid down for us. We need to fix that because the environment in which a plant or animal is produced goes a long way to determine its nutrient value when consumed by humans.





Healthy soil is the real key to feeding the world

6 04 2017

Image 20170329 8557 1q1xe1z
Planting a diverse blend of crops and cover crops, and not tilling, helps promote soil health.
Catherine Ulitsky, USDA/Flickr, CC BY

David R. Montgomery, University of Washington

One of the biggest modern myths about agriculture is that organic farming is inherently sustainable. It can be, but it isn’t necessarily. After all, soil erosion from chemical-free tilled fields undermined the Roman Empire and other ancient societies around the world. Other agricultural myths hinder recognizing the potential to restore degraded soils to feed the world using fewer agrochemicals.

When I embarked on a six-month trip to visit farms around the world to research my forthcoming book, “Growing a Revolution: Bringing Our Soil Back to Life,” the innovative farmers I met showed me that regenerative farming practices can restore the world’s agricultural soils. In both the developed and developing worlds, these farmers rapidly rebuilt the fertility of their degraded soil, which then allowed them to maintain high yields using far less fertilizer and fewer pesticides.

Their experiences, and the results that I saw on their farms in North and South Dakota, Ohio, Pennsylvania, Ghana and Costa Rica, offer compelling evidence that the key to sustaining highly productive agriculture lies in rebuilding healthy, fertile soil. This journey also led me to question three pillars of conventional wisdom about today’s industrialized agrochemical agriculture: that it feeds the world, is a more efficient way to produce food and will be necessary to feed the future.

Myth 1: Large-scale agriculture feeds the world today

According to a recent U.N. Food and Agriculture Organization (FAO) report, family farms produce over three-quarters of the world’s food. The FAO also estimates that almost three-quarters of all farms worldwide are smaller than one hectare – about 2.5 acres, or the size of a typical city block.

Enter a caption

A Ugandan farmer transports bananas to market. Most food consumed in the developing world is grown on small family farms.
Svetlana Edmeades/IFPRI/Flickr, CC BY-NC-ND

Only about 1 percent of Americans are farmers today. Yet most of the world’s farmers work the land to feed themselves and their families. So while conventional industrialized agriculture feeds the developed world, most of the world’s farmers work small family farms. A 2016 Environmental Working Group report found that almost 90 percent of U.S. agricultural exports went to developed countries with few hungry people.

Of course the world needs commercial agriculture, unless we all want to live on and work our own farms. But are large industrial farms really the best, let alone the only, way forward? This question leads us to a second myth.

Myth 2: Large farms are more efficient

Many high-volume industrial processes exhibit efficiencies at large scale that decrease inputs per unit of production. The more widgets you make, the more efficiently you can make each one. But agriculture is different. A 1989 National Research Council study concluded that “well-managed alternative farming systems nearly always use less synthetic chemical pesticides, fertilizers, and antibiotics per unit of production than conventional farms.”

And while mechanization can provide cost and labor efficiencies on large farms, bigger farms do not necessarily produce more food. According to a 1992 agricultural census report, small, diversified farms produce more than twice as much food per acre than large farms do.

Even the World Bank endorses small farms as the way to increase agricultural output in developing nations where food security remains a pressing issue. While large farms excel at producing a lot of a particular crop – like corn or wheat – small diversified farms produce more food and more kinds of food per hectare overall.

Myth 3: Conventional farming is necessary to feed the world

We’ve all heard proponents of conventional agriculture claim that organic farming is a recipe for global starvation because it produces lower yields. The most extensive yield comparison to date, a 2015 meta-analysis of 115 studies, found that organic production averaged almost 20 percent less than conventionally grown crops, a finding similar to those of prior studies.

But the study went a step further, comparing crop yields on conventional farms to those on organic farms where cover crops were planted and crops were rotated to build soil health. These techniques shrank the yield gap to below 10 percent.

The authors concluded that the actual gap may be much smaller, as they found “evidence of bias in the meta-dataset toward studies reporting higher conventional yields.” In other words, the basis for claims that organic agriculture can’t feed the world depend as much on specific farming methods as on the type of farm.

Cover crops planted on wheat fields in The Dalles, Oregon.
Garrett Duyck, NRCS/Flickr, CC BY-ND

Consider too that about a quarter of all food produced worldwide is never eaten. Each year the United States alone throws out 133 billion pounds of food, more than enough to feed the nearly 50 million Americans who regularly face hunger. So even taken at face value, the oft-cited yield gap between conventional and organic farming is smaller than the amount of food we routinely throw away.

Building healthy soil

Conventional farming practices that degrade soil health undermine humanity’s ability to continue feeding everyone over the long run. Regenerative practices like those used on the farms and ranches I visited show that we can readily improve soil fertility on both large farms in the U.S. and on small subsistence farms in the tropics.

I no longer see debates about the future of agriculture as simply conventional versus organic. In my view, we’ve oversimplified the complexity of the land and underutilized the ingenuity of farmers. I now see adopting farming practices that build soil health as the key to a stable and resilient agriculture. And the farmers I visited had cracked this code, adapting no-till methods, cover cropping and complex rotations to their particular soil, environmental and socioeconomic conditions.

Whether they were organic or still used some fertilizers and pesticides, the farms I visited that adopted this transformational suite of practices all reported harvests that consistently matched or exceeded those from neighboring conventional farms after a short transition period. Another message was as simple as it was clear: Farmers who restored their soil used fewer inputs to produce higher yields, which translated into higher profits.

No matter how one looks at it, we can be certain that agriculture will soon face another revolution. For agriculture today runs on abundant, cheap oil for fuel and to make fertilizer – and our supply of cheap oil will not last forever. There are already enough people on the planet that we have less than a year’s supply of food for the global population on hand at any one time. This simple fact has critical implications for society.

So how do we speed the adoption of a more resilient agriculture? Creating demonstration farms would help, as would carrying out system-scale research to evaluate what works best to adapt specific practices to general principles in different settings.

We also need to reframe our agricultural policies and subsidies. It makes no sense to continue incentivizing conventional practices that degrade soil fertility. We must begin supporting and rewarding farmers who adopt regenerative practices.

Once we see through myths of modern agriculture, practices that build soil health become the lens through which to assess strategies for feeding us all over the long haul. Why am I so confident that regenerative farming practices can prove both productive and economical? The farmers I met showed me they already are.

David R. Montgomery, Professor of Earth and Space Sciences, University of Washington

This article was originally published on The Conversation. Read the original article.





Building soil on the Fanny Farm

18 12 2016

With the new chicken pen finished, and at least half the new market garden finished – the other half is awaiting the moving of a huge pile of soil 30 to 40 metres away to fill in more furrows between existing windrows – the time had come to prepare the first area for production. Everything takes time, not least this project…….

The green manure I planted there soon after the house site excavations were finished was starting to go to seed, and looked promisingly ready for ploughing in… so I slashed it with my trusty Honda brushcutter. This machine is part of the ‘use fossil fuels while you still trimmerheadcan’ strategy…. after literally burning through two plastic auto string feeding heads for it, I replaced them with an alloy fixed string device that is proving way superior. With wet grass now a metre high, and uneven ground left over from the orchard heydays, mowing is very difficult, and this machine has been priceless, working long hours on 98 octane fuel. Because it’s four stroke, it starts first time every time too!

gardengreenmanureOnce slashed, the rotary hoe I bought last year was started again, and the grass clippings and green manure was laboriously ploughed into the soil. The plan is to eventually not disturb the soil ever again, but after years of cattle roaming all over it, me driving utes over that section of grass, and lately the excavator, the ground needed to be de-compacted…

I then added lime for Calcium (most Australian soils are Calcium deficient) and a starting point for rectifying the soil pH. No doubt further pH testing will be required later until I’ve got that right……gardencompost

A tonne of compost bought locally was then unloaded off the back of the ute by my better half, and the whole lot was rotary hoed again to get it all thoroughly mixed in.

The chickens were then allowed in to start scratching around and adding their bit to the soil. I need lots more chickens before this system starts working properly, but like I said, everything takes time…… we have one clucky chook sitting on a dozen eggs at the moment, so there are more on the way, and I am trying to source some meat chicks, because they are very good at tractoring soil.

The main pipe between the pump and the cube atop the power station was then cut, a T piece inserted, and a a one inch riser installed for access to water from our wonderful dam…..

gardenwaterCharlotte and Fanny might be back soon, and they will be able to see the progress since they left. Nothing will be planted there for a while, as it will take some time for all that new soil biomass to settle in. We’re getting there though……. and I will have another couple of French wwoofers here in February for some more action.

gardenchickens





Beyond the Point of No Return

4 12 2016

Imminent Carbon Feedbacks Just Made the Stakes for Global Warming a Hell of a Lot Higher

Republished from Robert Scribbler’s excellent website……..

If EVER there was a need to start soil farming, this proves it beyond doubt.

“It’s fair to say we have passed the point of no return on global warming and we can’t reverse the effects, but certainly we can dampen them,” said biodiversity expert Dr. Thomas Crowther.

“I’m an optimist and still believe that it is not too late, but we urgently need to develop a global economy driven by sustainable energy sources and start using CO2, as a substrate, instead of a waste product.” — Prof Ivan Janssens, recognized as a godfather of the global ecology field.

“…we are at the most dangerous moment in the development of humanity. We now have the technology to destroy the planet on which we live, but have not yet developed the ability to escape it… we only have one planet, and we need to work together to protect it.” — Professor Stephen Hawking yesterday in The Guardian.

*****

The pathway for preventing catastrophic climate change just got a whole hell of a lot narrower.

For according to new, conservative estimates in a scientific study led by Dr. Thomas Crowther, increasing soil respiration alone is about to add between 0.45 and 0.71 parts per million of CO2 to the atmosphere every year between now and 2050.

(Thomas Crowther explains why rapidly reducing human greenhouse gas emissions is so important. Namely, you want to do everything you can to avoid a runaway into a hothouse environment that essentially occurs over just one Century. Video source: Netherlands Institute of Ecology.)

What this means is that even if all of human fossil fuel emissions stop, the Earth environment, from this single source, will generate about the same carbon emission as all of the world’s fossil fuel industry did during the middle of the 20th Century. And that, if human emissions do not stop, then the pace of global warming of the oceans, ice sheets, and atmosphere is set to accelerate in a runaway warming event over the next 85 years.

Global Warming Activates Soil Respiration Which Produces More CO2

This happens because as the world warms, carbon is baked out of previously inactive soils through a process known as respiration. As a basic explanation, micro-organisms called heterotrophs consume carbon in the soil and produce carbon dioxide as a bi-product. Warmth is required to fuel this process. And large sections of the world that were previously too cold to support large scale respiration and CO2 production by heterotrophs and other organisms are now warming up. The result is that places like Siberian Russia, Northern Europe, Canada, and Alaska are about to contribute a whole hell of a lot more CO2 (and methane) to the atmosphere than they did during the 20th Century.

When initial warming caused by fossil fuel burning pumps more carbon out of the global environment, we call this an amplifying feedback. It’s a critical climate tipping point when the global carbon system in the natural environment starts to run away from us.

Sadly, soil respiration is just one potential feedback mechanism that can produce added greenhouse gasses as the Earth warms. Warming oceans take in less carbon and are capable of producing their own carbon sources as they acidify and as methane seeps proliferate. Forests that burn due to heat and drought produce their own carbon sources. But increasing soil respiration, which has also been called the compost bomb, represents what is probably one of the most immediate and likely large sources of carbon feedback.

increase-in-carbon-dioxide-from-soils

(A new study finds that warming of 1 to 2 C by 2050 will increase soil respiration. The result is that between 30 and 55 billion tons of additional CO2 is likely to hit the Earth’s atmosphere over the next 35 years. Image source: Nature.)

And it is also worth noting that the study categorizes its own findings as conservative estimates. That the world could, as an outside risk, see as much as four times the amount of carbon feedback (or as much as 2.7 ppm of CO2 per year) coming from soil if respiration is more efficient and wide-ranging than expected. If a larger portion of the surface soil carbon in newly warmed regions becomes a part of the climate system as microbes activate.

Amplifying Feedbacks Starting to Happen Now

The study notes that it is most likely that about 0.45 parts per million of CO2 per year will be leached from mostly northern soils from the period of 2016 to 2050 under 1 C worth of global warming during the period. To this point, it’s worth noting that the world has already warmed by more than 1 C above preindustrial levels. So this amount of carbon feedback can already be considered locked in. The study finds that if the world continues to warm to 2 C by 2050 — which is likely to happen — then an average of around 0.71 parts per million of CO2 will be leached out of soils by respiration every year through 2050.

rates-of-soil-carbon-loss

(When soils lose carbon, it ends up in the atmosphere. According to a new study, soils around the world are starting to pump carbon dioxide into the atmosphere. This is caused by increased soil respiration as the Earth warms. Over the next 35 years, the amount of carbon dioxide being pumped out by the world’s soils is expected to dramatically increase. How much is determined by how warm the world becomes over the next 35 years. Image source: Nature.)

The upshot of this study is that amplifying carbon feedbacks from the Earth environment are probably starting to happen on a large scale now. And we may be seeing some evidence for this effect during 2016 as rates of atmospheric carbon dioxide accumulation are hitting above 3 parts per million per year for the second year in a row even as global rates of human emissions plateaued.

Beyond the Point of No Return

What this means is that the stakes for cutting human carbon emissions to zero as swiftly as possible just got a whole hell of a lot higher. If we fail to do this, we will easily be on track for 5-7 C or worse warming by the end of this Century. And this level of warming happening so soon and over so short a timeframe is an event that few, if any, current human civilizations are likely to survive. Furthermore, if we are to avoid terribly harmful warming over longer periods, we must not only rapidly transition to renewable energy sources. We must also somehow learn to pull carbon, on net, out of the atmosphere in rather high volumes.

Today, Professor Ivan Janssens of the University of Antwerp noted:

“This study is very important, because the response of soil carbon stocks to the ongoing warming, is one of the largest sources of uncertainty in our climate models. I’m an optimist and still believe that it is not too late, but we urgently need to develop a global economy driven by sustainable energy sources and start using CO2, as a substrate, instead of a waste product. If this happens by 2050, then we can avoid warming above 2C. If not, we will reach a point of no return and will probably exceed 5C.”

In other words, even the optimists at this time think that we are on the cusp of runaway catastrophic global warming. That the time to urgently act is now.

Links:

Quantifying Soil Carbon Losses in Response to Warming

Netherlands Institute of Ecology

Earth Warming to Climate Tipping Point

This is the Most Dangerous Time for Our Planet

Climate Change Escalating So Fast it is Beyond the Point of No Return

NOAA ESRL

Soil Respiration





Another silver bullet bites the dust….

10 10 2016

A recent article in the Guardian explains why scientists now believe that soil’s potential to soak up climate changing carbon dioxide has been overestimated by as much as 40%….

Hopes that large amounts of planet-warming carbon dioxide could be buried in soils appear to be grossly misplaced, with new research finding that the ground will soak up far less carbon over the coming century than previously thought.

Radiocarbon dating of soils, when combined with previous models of carbon uptake, has shown the widely assumed potential for carbon sequestration to combat climate change has been overestimated by as much as 40%.

Scientists from the University of California, Irvine (UCI) found that models used by the UN’s Intergovernmental Panel on Climate Change (IPCC) assume a much faster cycling of carbon through soils than is actually the case. Data taken from 157 soil samples taken from around the world show the average age of soil carbon is more than six times older than previously thought.

markcochrane2

Mark Cochrane

Mark Cochrane, our resident climate scientist, recently picked up on this at Chris Martenson’s Peak prosperity blog and wrote the following……?

The article points again to the problems with global models of climate change. Those who generally complain about ‘models’ usually do so to try to imply that they are wrong and that this therefore means that they are overstating climate change. The fact of the matter is that although they are ‘wrong’, the errors, in principle, are just as likely to understate as overstate the situation. In reality, the science tends to be conservative, as scientists are usually constrained to using what is statistically defensible for many of the parameters within their models, so the likelihood of understating known issues (e.g. ice sheet collapses) is greater than substantially overstating them, which is why the vast majority of new findings point out that climate change is progressing faster than we have been estimating.

The famous quote by George Box “All models are wrong, but some are useful” nicely sums up the state of things. Much of what we do in this world is based on our internal modeling, some of which is of high accuracy, “the sun comes up every morning”, and other ideas somewhat less so,  “I’m a safe driver so driving is not risky”. Weather models are notoriously inaccurate but we find quite a lot of utility in consulting them anyway. They may not be absolutely ‘right’ but they are usually reasonably close to the ultimate conditions. Climate models have multitudinous components but their ultimate function basically boils down to calculating the balance between sources and sinks of carbon in the atmosphere, then estimating what the ramifications are of the net changes in type and amounts of the so-called greenhouse gases.

Sources are emissions from things like burning fossil fuels, and positive feedbacks like melting permafrost that releases a portion of the carbon stock, that has literally been frozen in place for millennia, to the atmosphere as the climate warms. Sinks are things like ocean uptake of carbon as higher atmospheric carbon dioxide concentrations force the gas into the water, like occurs in your soda bottle or beer can. Negative feedbacks are those that ultimately bring the system back into balance after excessive emissions and include things like plants soaking up carbon and ultimately depositing some of it for long term storage in soils, in addition to transformation of silicate rocks to carbonate rocks as mountains erode and deposit sediments into the sea, soaking up atmospheric carbon in the process.

As I have mentioned before, the existence of a positive or negative feedback is only part of the story, we also need to know the rate at which it proceeds and ultimately how long it might continue. If you put a match to a high concentration of an explosive gas (say hydrogen) the positive feedback of energy release from a few molecules transferring energy to the proximate molecules will proceed very rapidly but not for very long before the process runs its course in the explosion. On the other hand, eroding the Himalayan mountains down to sea level will soak up immense amounts of carbon dioxide from the atmosphere but will take millions of years to accomplish.

All of which is providing context for what the He et  al. (2016) paper is saying. Soil carbon is a catch all term for many chemical compounds in soils that have carbon as a component. This makes the ‘organic’ component of soils. If you are modeling the rate at which carbon can get soaked up by soils you need to know the processes involved and calibrate them using parameters that balance the rates at which carbon enters and leaves the soil. What the new research is showing is that the current Earth Systems Models (ESMs – components of Global Climate Models – GCMs) currently underestimate the age of organic materials (carbon) in existing soils which effectively means that they overestimate the rate at which carbon is likely to be sequestered through plant growth/soil formation in the future. The upshot being that the models are currently estimating that soils will soak up potentially twice as much carbon between now and 2100 as seems likely. If the carbon isn’t getting soaked up it means that it could pile up in the atmosphere for longer than presently estimated and act to warm the planet more than currently projected.

As in all scientific matters, these results will be tested by other scientists and either be verified, refuted or refined. So what does it signify if this is correct? The soil component is only one pool among many but the net fluxes are what matters in the climate situation. For example:

With a Net Terrestrial Uptake of 3.0, the findings could indicate that this should be better described as 1.5-2.0. This could conceivably move the net atmospheric increase from 4.0 to 5.0 or so, a 25% increase. Non trivial. That said, what it probably means is that existing errors in other components of the modeling are either partially overstating emissions or global photosynthesis or understating net oceanic uptake. Therefore, instead of a 25% increase in atmospheric carbon there would be a smaller compounding increase between now and 2100, how small is the question. Future studies will be aimed at teasing these interacting components apart.