More gnashing of teeth

7 02 2017

The Über-Lie

By Richard Heinberg, Post Carbon Institute

heinbergNevertheless, even as political events spiral toward (perhaps intended) chaos, I wish once again, as I’ve done countless times before, to point to a lie even bigger than the ones being served up by the new administration…It is the lie that human society can continue growing its population and consumption levels indefinitely on our finite planet, and never suffer consequences.

This is an excellent article from Richard Heinberg, the writer who sent me on my current life voyage all those years ago. Hot on the heels of my attempt yesterday of explaining where global politics are heading, Richard (whom I met years ago and even had a meal with…) does a better job than I could ever possibly muster.  Enjoy……


Our new American president is famous for spinning whoppers. Falsehoods, fabrications, distortions, deceptions—they’re all in a day’s work. The result is an increasingly adversarial relationship between the administration and the press, which may in fact be the point of the exercise: as conservative commentators Scott McKay suggests in The American Spectator, “The hacks covering Trump are as lazy as they are partisan, so feeding them . . . manufactured controversies over [the size of] inaugural crowds is a guaranteed way of keeping them occupied while things of real substance are done.”

But are some matters of real substance (such as last week’s ban on entry by residents of seven Muslim-dominated nations) themselves being used to hide even deeper and more significant shifts in power and governance? Steve “I want to bring everything crashing down” Bannon, who has proclaimed himself an enemy of Washington’s political class, is a member of a small cabal (also including Trump, Stephen Miller, Reince Priebus, and Jared Kushner) that appears to be consolidating nearly complete federal governmental power, drafting executive orders, and formulating political strategy—all without paper trail or oversight of any kind. The more outrage and confusion they create, the more effective is their smokescreen for the dismantling of governmental norms and institutions.

There’s no point downplaying the seriousness of what is up. Some commentators are describing it as a coup d’etat in progress; there is definitely the potential for blood in the streets at some point.

Nevertheless, even as political events spiral toward (perhaps intended) chaos, I wish once again, as I’ve done countless times before, to point to a lie even bigger than the ones being served up by the new administration—one that predates the new presidency, but whose deconstruction is essential for understanding the dawning Trumpocene era. I’m referring to a lie that is leading us toward not just political violence but, potentially, much worse. It is an untruth that’s both durable and bipartisan; one that the business community, nearly all professional economists, and politicians around the globe reiterate ceaselessly. It is the lie that human society can continue growing its population and consumption levels indefinitely on our finite planet, and never suffer consequences.

Yes, this lie has been debunked periodically, starting decades ago. A discussion about planetary limits erupted into prominence in the 1970s and faded, yet has never really gone away. But now those limits are becoming less and less theoretical, more and more real. I would argue that the emergence of the Trump administration is a symptom of that shift from forecast to actuality.

Consider population. There were one billion of us on Planet Earth in 1800. Now there are 7.5 billion, all needing jobs, housing, food, and clothing. From time immemorial there were natural population checks—disease and famine. Bad things. But during the last century or so we defeated those population checks. Famines became rare and lots of diseases can now be cured. Modern agriculture grows food in astounding quantities. That’s all good (for people anyway—for ecosystems, not so much). But the result is that human population has grown with unprecedented speed.

Some say this is not a problem, because the rate of population growth is slowing: that rate was two percent per year in the 1960s; now it’s one percent. Yet because one percent of 7.5 billion is more than two percent of 3 billion (which was the world population in 1960), the actual number of people we’re now adding annually is the highest ever: over eighty million—the equivalent of Tokyo, New York, Mexico City, and London added together. Much of that population growth is occurring in countries that are already having a hard time taking care of their people. The result? Failed states, political unrest, and rivers of refugees.

Per capita consumption of just about everything also grew during past decades, and political and economic systems came to depend upon economic growth to provide returns on investments, expanding tax revenues, and positive poll numbers for politicians. Nearly all of that consumption growth depended on fossil fuels to provide energy for raw materials extraction, manufacturing, and transport. But fossil fuels are finite and by now we’ve used the best of them. We are not making the transition to alternative energy sources fast enough to avert crisis (if it is even possible for alternative energy sources to maintain current levels of production and transport). At the same time, we have depleted other essential resources, including topsoil, forests, minerals, and fish. As we extract and use resources, we create pollution—including greenhouse gasses, which cause climate change.

Depletion and pollution eventually act as a brake on further economic growth even in the wealthiest nations. Then, as the engine of the economy slows, workers find their incomes leveling off and declining—a phenomenon also related to the globalization of production, which elites have pursued in order to maximize profits.

Declining wages have resulted in the upwelling of anti-immigrant and anti-globalization sentiments among a large swath of the American populace, and those sentiments have in turn served up Donald Trump. Here we are. It’s perfectly understandable that people are angry and want change. Why not vote for a vain huckster who promises to “Make America Great Again”? However, unless we deal with deeper biophysical problems (population, consumption, depletion, and pollution), as well as the policies that elites have used to forestall the effects of economic contraction for themselves (globalization, financialization, automation, a massive increase in debt, and a resulting spike in economic inequality), America certainly won’t be “great again”; instead, we’ll just proceed through the five stages of collapse helpfully identified by Dmitry Orlov.

Rather than coming to grips with our society’s fundamental biophysical contradictions, we have clung to the convenient lies that markets will always provide, and that there are plenty of resources for as many humans as we can ever possibly want to crowd onto this little planet. And if people are struggling, that must be the fault of [insert preferred boogeyman or group here]. No doubt many people will continue adhering to these lies even as the evidence around us increasingly shows that modern industrial society has already entered a trajectory of decline.

While Trump is a symptom of both the end of economic growth and of the denial of that new reality, events didn’t have to flow in his direction. Liberals could have taken up the issues of declining wages and globalization (as Bernie Sanders did) and even immigration reform. For example, Colin Hines, former head of Greenpeace’s International Economics Unit and author of Localization: A Global Manifesto, has just released a new book, Progressive Protectionism, in which he argues that “We must make the progressive case for controlling our borders, and restricting not just migration but the free movement of goods, services and capital where it threatens environment, wellbeing and social cohesion.”

But instead of well-thought out policies tackling the extremely complex issues of global trade, immigration, and living wages, we have hastily written executive orders that upend the lives of innocents. Two teams (liberal and conservative) are lined up on the national playing field, with positions on all significant issues divvied up between them. As the heat of tempers rises, our options are narrowed to choosing which team to cheer for; there is no time to question our own team’s issues. That’s just one of the downsides of increasing political polarization—which Trump is exacerbating dramatically.

Just as Team Trump covers its actions with a smokescreen of controversial falsehoods, our society hides its biggest lie of all—the lie of guaranteed, unending economic growth—behind a camouflage of political controversies. Even in relatively calm times, the über-lie was watertight: almost no one questioned it. Like all lies, it served to divert attention from an unwanted truth—the truth of our collective vulnerability to depletion, pollution, and the law of diminishing returns. Now that truth is more hidden than ever.

Our new government shows nothing but contempt for environmentalists and it plans to exit Paris climate agreement. Denial reigns! Chaos threatens! So why bother bringing up the obscured reality of limits to growth now, when immediate crises demand instant action? It’s objectively too late to restrain population and consumption growth so as to avert what ecologists of the 1970s called a “hard landing.” Now we’ve fully embarked on the age of consequences, and there are fires to put out. Yes, the times have moved on, but the truth is still the truth, and I would argue that it’s only by understanding the biophysical wellsprings of change that can we successfully adapt, and recognize whatever opportunities come our way as the pace of contraction accelerates to the point that decline can no longer successfully be hidden by the elite’s strategies.

Perhaps Donald Trump succeeded because his promises spoke to what civilizations in decline tend to want to hear. It could be argued that the pluralistic, secular, cosmopolitan, tolerant, constitutional democratic nation state is a political arrangement appropriate for a growing economy buoyed by pervasive optimism. (On a scale much smaller than contemporary America, ancient Greece and Rome during their early expansionary periods provided examples of this kind of political-social arrangement). As societies contract, people turn fearful, angry, and pessimistic—and fear, anger, and pessimism fairly dripped from Trump’s inaugural address. In periods of decline, strongmen tend to arise promising to restore past glories and to defeat domestic and foreign enemies. Repressive kleptocracies are the rule rather than the exception.

If that’s what we see developing around us and we want something different, we will have to propose economic, political, and social forms that are appropriate to the biophysical realities increasingly confronting us—and that embody or promote cultural values that we wish to promote or preserve. Look for good historic examples. Imagine new strategies. What program will speak to people’s actual needs and concerns at this moment in history? Promising a return to an economy and way of life that characterized a past moment is pointless, and it may propel demagogues to power. But there is always a range of possible responses to the reality of the present. What’s needed is a new hard-nosed sort of optimism (based on an honest acknowledgment of previously denied truths) as an alternative to the lies of divisive bullies who take advantage of the elites’ failures in order to promote their own patently greedy interests. What that actually means in concrete terms I hope to propose in more detail in future essays.

Another sublime article on ERoEI

26 05 2016

ERoEI for Beginners

Not sure if I can come to terms with the concept of kite flying with wind turbines, but there you go……  doesn’t make renewables look good, that’s for sure.  Reblogged from Euan’s excellent website…..

The Energy Return on Energy Invested (ERoEI or EROI) of any energy gathering system is a measure of that system’s efficiency. The concept was originally derived in ecology and has been transferred to analyse human industrial society. In today’s energy mix, hydroelectric power ± nuclear power have values > 50. At the other end of the scale, solar PV and biofuels have values <5.

It is assumed that ERoEI >5 to 7 is required for modern society to function. This marks the edge of The Net Energy Cliff and it is clear that new Green technologies designed to save humanity from CO2 may kill humanity through energy starvation instead. Fossil fuels remain comfortably away from the cliff edge but march closer to it for every year that passes. The Cheetah symbolises an energy system living on the edge.

I first came across the concept of Energy Return on Energy Invested (ERoEI) several years ago in Richard Heinberg’s book The Party’s Over [1]. I had never contemplated the concept before and I was immediately struck by its importance. If we used more energy to get the energy we need to survive then we will surely perish.

Shortly thereafter I joined The Oil Drum crew and had the great pleasure of meeting Professor Charles Hall,  the Godfather of ERoEI analysis who developed the concept during his PhD studies and first published the term in 1977. ERoEI would become a point of focus for Oil Drum posts. Nate Hagens and David Murphy, both Oil Drum crew, have now completed PhDs on ERoEI analysis aided and abetted by the conversation that the Oil Drum enabled.

But recently I have received this via email from Nate:

10 years on the same questions and issues are being addressed – (and maybe 40 years on for Charlie). A new tier of people are aware of EROI but it is still very fringe idea?

Are we wrong to believe that ERoEI is a fundamentally important metric of energy acquisition or is it simply that the work done to date is not sufficiently rigorous or presented in a way that economists and policy makers can understand. At this point I will cast out a bold idea that money was invented as a proxy for energy because ERoEI was too complex to fathom.

And I have this via email from my friend Luis de Sousa who did not like the Ferroni and Hopkirk paper [3] nor my post reviewing it:

On the grand scheme of things: PV ERoEI estimates range from 30 down to 0.8. Before asking the IEA (or whomever) to start using ERoEI, the community producing these estimates must come down to a common, accepted methodology for its assessment. As it stands now, EROEI is not far from useless to energy policy.

And while I disagree with Luis on a number of issues, on this statement I totally concur. So what has gone wrong? Professor Hall points out that it is not the concept that is at fault but non-rigorous application of certain rules that must be followed in the analysis. In this post I will endeavour to review the main issues and uncertainties, and while it is labelled “for Beginners”, I will flirt with an intermediate level of complexity.

What is ERoEI?

ERoEI is simply the ratio of energy gathered to the amount of energy used to gather the energy (the energy invested):

ERoEI = energy gathered / energy invested

Note that in common vernacular the term energy production is used. But in fact humans produce very little energy, but what distinguishes us from other species is that we have become very efficient at gathering energy that already exists and building machines that can convert the energy to goods (motor cars, televisions and computers) and services (heat and light and mobility) that collectively define our wealth.

This began by gathering fire wood and food and progressed to gathering coal, oil and natural gas. This led to gathering U and Th and learning how to convert this to enormous amounts of thermal and electrical energy. And now we attempt to gather solar energy through photovoltaics, wind turbines and liquid biofuels.

The prosperity of humanity depends upon the efficiency with which we gather energy. 100 years ago and 50 years ago we hit several jackpots in the form of vast coal, oil and gas deposits. These were so rich and large that energy virtually spewed out of them for next to no energy or financial investment. Examples include the Black Thunder coal field (USA), the Ghawar oil field (Saudi Arabia) and the Urengoy gas field (Russia) to name but a few. But these supergiant deposits are now to varying degrees used up. And as global population has grown together with expectations of prosperity that are founded on energy gathering activities, humanity has had to expand its energy gathering horizons to nuclear power, solar power and energy from waste. And it is known that some of the strategies deployed have very low ERoEI, for example corn ethanol is around 1 to 2 [2] and solar PV between 1 and 5 [2,3] depending upon where it is sited and the boundaries used to estimate energy costs. Consider that an ERoEI greater than 5 to 7 is deemed necessary to sustain the society we know (see below) then it is apparent that we may be committing energy and economic suicide by deliberately moving away from fossil fuels.

Low ERoEI is expected to correlate with high cost and in the normal run of events investors should steer clear of such poor investment returns. But the global energy system is now dictated by climate concern, and any scheme that portends to produce energy with no CO2 is embraced by policymakers everywhere and financial arrangements are put in place to enable deployment, regardless of the ERoEI.

Net Energy

Net energy is the close cousin of ERoEI being the surplus energy made available to society from our energy gathering activities. It is defined simply as:

net energy = ERoEI-1

If we have ERoEI = 1, then the net energy is zero. We use as much energy to gather energy as energy gathered. The “1” always represents the energy invested. If ERoEI falls below 1 we end up with an energy sink. Low ERoEI systems are effectively energy conversions where it may be convenient or politically expedient for us to convert one energy carrier into another with little or no energy gain. Corn ethanol is a good example where fertiliser, natural gas, diesel, electricity, land, water and labour gets converted into ethanol, a liquid fuel that can go in our cars. But it does leave the question why we don’t just use liquefied natural gas as a transport fuel in the first place and save on all the bother that creating corn ethanol involves?

The Net Energy Cliff

Many years ago during a late night blogging session on The Oil Drum, and following a post by Nate Hagens, I came up with a way of plotting ERoEI that for many provided an instantaneous understanding of its importance. The graph has become known as the net energy cliff, following nomenclature of Nate and others.

Figure 1 The Net Energy Cliff shows how with declining ERoEI society must commit ever larger amounts of available energy to energy gathering activities. Below ERoEI = 5 to 7 such large numbers of people would be working for the energy industries that there would not be enough people left to fill all the other positions our current altruistic society offers.

The graph plots net energy as a % of ERoEI and shows how energy for society (in blue) varies with ERoEI. In red is the balance being the energy used to gather energy.

It is the shape of the boundary between blue and red that is of interest. If we start at 50 and work our way down the ERoEI scale moving to the right, we see that energy invested (red) increases very slowly from 2% at ERoEI=50 to 10% at ERoEI=10. But beyond 10, the energy invested increases exponentially to 20% at ERoEI=5 and to 50% at ERoEI=2. At ERoEI = 1, 100% of the energy used is spent gathering energy and we are left with zero gain.

This is important because it is the blue segment that is available for society to use. This pays for infrastructure, capital projects, mining and manufacturing, agriculture, food processing and retailing, education, healthcare and welfare, defence and government. In fact it is the amount of net energy that powers everything in society as we know it today. The net energy from past energy gathering has accumulated to create what we identify as capital and wealth. Nothing could be more important, and yet the concept remains on the fringe of energy policy and public awareness. One of the problems is that measuring ERoEI consistently is difficult to do. One problem is retaining objectivity. If you manufacture PV modules you are unlikely to claim that the ERoEI is less than 5, and there are a multitude of variables that can be adjusted to provide whatever answer is deemed to be good.

This depiction of Net Energy is also useful in defining that all energy and labour can be divided into energy and labour used in the energy industries and the industries that support them and energy and labour used by society that consumes the surpluses produced by the energy industries. More on this later.

It has been assumed by many that ERoEI > 7 was required for the industrial society we live in to function although the source of this assertion remains elusive. But the blue-red boundary provides a clear visual picture of why this may be so. Below 7 and humanity falls off the net energy cliff where a too large portion of our human resources and capital need to be invested in simply staying alive to the detriment of the services provided by net energy such as health care, education and pensions.

System boundaries

Energy Inputs

One of the main uncertainties in ERoEI analysis is where to set the system boundaries. I have not found a simple text or graphic that adequately explains this vital concept.

Figure 2 A simplified scheme for an energy system divided into construction, operation and decommissioning with accumulated inputs and outputs. Graphic from this excellent presentation by Prieto and Hall

Figure 2 provides an illustration of the life cycle of an energy system divided into three stages 1) construction, 2) operation and 3) decommissioning. Energy inputs occur at each stage but energy outputs will normally only occur during the operational phase. It should be straight forward to account for all the energy inputs and outputs to calculate ERoEI but it isn’t. For example many / most of our energy systems today are still operational. We do not yet have final numbers for oil produced from single fields. And the decommissioning energy costs are not yet known. Most wind turbines ever built are still operational, producing energy and the ultimate energy produced will depend upon how long they last. And then perhaps some turbines are offered a new lease of life via refurbishment etc.

Energy inputs can normally be divided as follows [2]:

  1. On site energy consumption
  2. Energy embedded in materials used
  3. Energy consumed by labour
  4. Auxiliary services

Moving from 1 to 4 may be considered expansion of the ERoEI boundary where energy embedded in materials and energy consumed by labour are added to on-site energy consumption. There follows some examples of ambiguity that remains in deciding what to include and what to leave out. These examples are given for purely illustrative purposes.

No one should question that the electricity used by a PV factory should be included. But do you include electricity / energy used to heat or cool the factory? Or just the electricity used to run the machines? Including heating or cooling  introduces a site specific variable which will mean that the energy inputs to a PV panel may vary according to where it was manufactured. There are many such site specific variables like transport, energy costs, labour energy costs, health and safety energy costs etc, which when combined in our globalised market has made China the lowest energy cost centre for PV manufacturing today.

It is clear to me that the energy cost of all materials used in the energy production process must be included. And this should include materials consumed at the construction, operational and decommissioning stages. In the oil industry this will include the materials in the oil platform, the helicopter and the onshore office. In the solar PV industry this will include all the materials in the panels, in the factory, and in the support gantries and inverter. As a general rule of thumb, massive energy gathering systems that contain a huge amount of materials will have reduced ERoEI because of the energy embedded in those materials.

It is also clear to me that the energy cost of all labour should be included in the ERoEI analysis for construction, operation and decommissioning. But it is far less clear how it should be calculated. The energy consumed by labourers varies greatly from country to country and with time. Should we just include the energy consumed by a labourer on his/her 8 hour shift? Or should we include the full 24/7? Should the energy consumed by labourers getting to and from work be included? – of course it should. Should the energy consumed on vacations be included? – not so clear. And how can any of this be calculated in the first place?

The standard way to calculate the energy cost of labour is to examine the energy intensity of GDP. For most countries, the total amount of primary energy consumed  is roughly known and the total GDP is known. This provides a means of converting MJ to $ and we can then look at the $ earnings of a labourer to get a rough handle on the notional energy use that may be attributed to his salary scale. This is far from perfect but is currently the only practical method available.

Auxiliary services become even more difficult to differentiate. Some argue that the energy cost of the highway network, power distribution network and services like schools and hospitals should be pro-rated into new energy production systems. My own preference is to generally exclude these items from an ERoEI analysis unless there are good reasons for not doing so. I think it is useful to go back to the question are we expending energy on energy gathering or are we expending energy on society and most of the infrastructure upon which new energy systems depend was built using prior surpluses allocated to society. In my view it becomes too complex to pro-rate these into an ERoEI calculation. The power grid delivering power to the PV factory already existed. But if a new power line needs to be built to export renewable electricity then that should be accounted for.

Energy Outputs

One might imagine that measuring the energy output would be more straightforward, but it is not so. Many earlier studies on the ERoEI of oil set a boundary at the well head or on site tank farm. And it is relatively straightforward to measure the oil production from a field like Forties in the North Sea. But crude oil itself is rarely used directly as a fuel. It is the refined products that are used. To actually use the oil we need to ship or pipe it to shore and then on to a refinery. The energy cost of transport may add 10% to energy inputs and refining may add yet another 10%. It has been suggested that one approach is to calculate ERoEI at Point of Use. Crude oil on an offshore platform is of no use to anyone. Gasoline in a filling station is what we want and all the energy inputs involved in getting the gasoline to the forecourt need to be counted.

But here we meet another dilemma. The refinery may produce paraffin and gasoline. The ERoEI of both are likely to be similar at the refinery gate. But the gasoline is burned in an engine to produce kinetic energy used for transport and in so doing about 70% of the energy is lost as waste heat. The paraffin may be burned in a stove with near 100% conversion efficiency to space heating. Do we reduce the ERoEI of gasoline by 70% to reflect energy losses during use?

This introduces the concept of energy quality where we know that final energy conversions are in three main forms 1) heat 2) motion and 3) electricity that has a myriad of different uses. Is it really possible to compare these very different energy outputs using the single umbrella of ERoEI? The routine followed by ERoEI analysts to date is to adjust ERoEI for energy quality though I’m unsure how that is done [2]. Another option that I like is to hypothetically normalise all outputs to a single datum, for example MWh of electricity (see below). But this again gets to a level of complexity that is beyond this blog post.

There are some other important energy quality factors. Dispatch for electricity is one. Producing a vast amount of electricity from wind on a stormy Sunday night has little to no value. While the ability to produce electricity on demand at 6 pm on a freezing Wednesday evening in January (NH) is of great value. Curtailed wind should clearly be deducted from wind energy produced in the ERoEI calculation. Just like the oil spilled from the Deep Water Horizon in the Gulf of Mexico should not be counted as oil produced from the Macondo field.

External environmental factors may also have to be considered as part of the energy quality assessment. It is clear that the oil spilled from the Deep Water Horizon had to be cleared up immediately and the energy cost of doing so almost bankrupted BP. But it is less clear that the energy cost of eliminating CO2 emissions needs to be borne by the energy production industries. For example, the cost of carbon capture and storage would fall on the consumer and not the energy producer.

Using energy proxies

In ERoEI analysis direct energy use can normally be measured, for example gas and diesel used on an oil platform or the electricity used in a factory. But the indirect energy consumed by, for example materials and labour, are less easy to measure and are often based on proxies.  It is nearly impossible to measure the energy embedded in an offshore oil platform. Instead the mass of steel and the number of man days of labour used in construction can be estimated and from these the energy expended and now embedded in the platform can be estimated.

As already discussed, the standard way of estimating the energy cost of labour is to use the energy intensity of GDP data from the countries in question combined with workers salaries.

For materials Murphy et al [2] provide this useful summary (Figure 3)

Figure 3 The estimated energy content of common materials [2]

From this the most striking feature is the vast range within certain materials and between materials. For example aluminium ranges from 100 to 272 GJ/tonne. Steel 9 to 32 GJ/tonne. Part of this will be down to methodological differences in the way the numbers are derived. But part of it may be down to real differences reflecting different energy efficiencies of smelting plants.

ERoEI of Global Fuels and Energy Flows

So what is the current status of ERoEI in the global energy mix? Hall et al 2014 [4] provide the following summary table which is the foundation of the summary graph below.

Figure 4 Summary of the ERoEI for a range of fuels and renewable energies.

Figure 5 Placing main energy sources on The Net Energy Cliff framework shows that hydro-electric power, high altitude kites and perhaps nuclear power have very high ERoEI and embracing these technologies may prevent humanity from falling off the Net Energy Cliff. The new bright Green energies of bio-fuels, solar PV and buffered wind (see below) are already over the cliff edge and if we continue to embrace these technologies human society may perish as we expend too large a portion of our energy endowment simply getting energy. Fossil fuels remain comfortably to the left of the cliff edge but are marching ever closer towards it with every year that passes. Eeq = electricity equivalent (see below).

In order to compare fossil fuels with electricity flows on a single diagram it is essential to reduce all of the energy types to a common datum. Its quite simply not valid to compare the ERoEI of coal at the mine mouth with nuclear power since in converting the coal to electricity, much of the energy is lost. The easiest route is to rebase everything to electricity equivalent (Eeq) where I follow the BP convention and adjust the ERoEI of  fossil fuels by a factor of 0.38 to account for energy conversion losses in a modern power station.

In an earlier thread, Owen posted a link to a pre-print by Weisbach et al [5] who follow similar methodology reporting all data as electricity. To a large extent their numbers are similar to those reported here with the exception of nuclear that is quoted to be  75. Weisbach report values for solar PV and wind that are “buffered” to include the energy cost of intermittency. This reduces the ERoEI for solar PV by about half and wind by a factor of 4. “Buffered” ERoEIs are therefore also included in Figure 6.

The inclusion of high altitude kite is based on a calculation provided by site sponsor KiteGen. I have checked the calculation and am satisfied that the ERoEI is potentially >>50. This will be the subject of another post. But suffice to say here that wind speed at altitude may be double that on the ground and power increases by the cube of wind speed. And the mass of the KiteGen structure is a small fraction of a large wind turbine. Hence it is theoretically straightforward to reach an ERoEI at altitude that is many multiples of the ERoEI of a wind turbine.

Figure 6 At altitude the wind speed may be double that on the ground. Accessing that kinetic energy resource provides potential for a 2 to 4 fold uplift in the power available for wind generation. This calculation does not include further uplift from higher capacity factor and reduced intermittency at altitude.

The key and fundamental observation from Figure 6 is that three energy sources potentially have ERoEI >> 50 making them vastly superior to all others using this metric. These are hydroelectric power, possibly nuclear power (depending upon whose numbers are believed) and possibly high altitude wind power once the technology matures.

These primary high ERoEI sources are followed by coal and natural gas which are the most viable and easily accessible energy sources for electricity today. And yet energy policies are dictating that coal be phased out. This will not matter for so long as natural gas remains plentiful at high ERoEI. The high ERoEI group may also include nuclear power depending upon whose ERoEI numbers one believes.

Biofuels are already over the net energy cliff and should never have been pursued in the first place. Solar PV is at best marginal, at worst an energy sink.

There is a vast range in estimates for nuclear power from 5 to 75 [4, 5]and it is difficult to make sense of these numbers. Nuclear power either sits close to the cliff edge or is a high ERoEI low carbon saviour of humanity. Oil will not be used for electricity production and the fact it sits close to the cliff edge today in Eeq form does not matter too much since the energy quality of oil has a special status as an essential transport fuel and this will unlikely change much in the decades ahead.

Concluding thoughts

The concept of ERoEI is vital to understanding the human energy system. 50 years ago, our principal sources of energy – oil, gas and coal – had such high net energy return that no one need bother or worry about ERoEI. Vast amounts of net energy were simply available for all who had the level of technological development to build a power station and a transmission grid. It is part of human nature to “high grade” mineral deposits targeting the richest seams first. In economic terms these return the biggest profit and in energy terms when it comes to oil, gas and coal, they return the highest levels of net energy. An inevitable consequence of this aspect of human nature commonly known as greed is that we have already used up the highest ERoEI fossil fuel resources and as time passes the ERoEI of new resources is steadily falling. This translates to a higher price required to bring on that marginal barrel of oil.

At the present time, our energy web comprises a myriad of different resources. The legacy supergiants – Ghawar, Black Thunder and Urengoy et al – are still there in the mix supplemented by a vast range of lower ERoEI (more expensive) resources. The greatest risk to human society today is the notion that we can somehow replace high ERoEI fossil fuels with new renewable energies like solar PV and biofuels. These exist within the energy web because they are subsidised by the co-existing high ERoEI fossil fuels. The subsidy occurs at multiple levels from fossil fuels used to create the renewable devices and biofuels to fossil fuels providing the load balancing services. Fossil fuels provide the monetary wealth to pay the subsidies. Society is at great risk from Greens promoting the new renewable agenda to politicians and school children whilst ignoring the thermodynamic impossibility of current solar PV technology and biofuels ever being able to power human society unaided. The mass closure of coal fired power stations may prove to be fatal for many should blackouts occur.

Wind power, and in particular high altitude wind power, may be different although in the case of ground-based wind turbines care must be taken in moving offshore to ever larger devices that consume ever larger quantities of energy in their creation. And to be viable, ground based turbines must be able to prove they can deliver dispatchable power without subsidies.

It is proposed that money was invented as a means of exchange for the work energy does on our behalf. If we lived in a society with a single global currency (the EJ) and without taxes or subsidies, then money may represent a fair proxy for ERoEI although distortions would remain from the different efficiencies with which that money (EJ) was spent. However, in the real world, different currencies, interest rates, debts, taxes and subsidies exist that allow the thermodynamic rules of the energy world to be bent, albeit temporarily. We are at risk of exchanging gold for dirt.


The post was much improved by comments provided by Prof Charles Hall.


[1] Richard Heinberg: The Party’s Over – oil, war and the fate of industrial societies. Pub by Clairview 2003

[2] David J. Murphy 1,*, Charles A.S. Hall 2, Michael Dale 3 and Cutler Cleveland 4: Order from Chaos: A Preliminary Protocol for Determining the EROI of Fuels (2011): Sustainability 2011, 3, 1888-1907; doi:10.3390/su3101888

[3] Ferruccio Ferroni and Robert J. Hopkirk 2016: Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation: Energy Policy 94 (2016) 336–344

[4] Charles A.S. Hall n, Jessica G. Lambert, Stephen B. Balogh: EROI of different fuels and the implications for society: Energy Policy 64 (2014) 141–152

[5] D. Weißbacha,b, G. Ruprechta, A. Hukea,c, K. Czerskia,b, S. Gottlieba, A. Husseina,d (Preprint): Energy intensities, EROIs, and energy payback times of electricity generating power plants

A Degrowth Response to an Ecomodernist Manifesto

29 05 2015

Originally published on the Resillience website, I thought my followers would find this interesting….  having said that, the more work like this I read the more pessimistic I feel anything will be done!  Such is the momentum of the ‘Ecomodernists’

Critique Summary

Authors and Endorsers: Jeremy Caradonna, Iris Borowy, Tom Green, Peter A. Victor, Maurie Cohen, Andrew Gow, Anna Ignatyeva, Matthias Schmelzer, Philip Vergragt, Josefin Wangel, Jessica Dempsey, Robert Orzanna, Sylvia Lorek, Julian Axmann, Rob Duncan, Richard B. Norgaard, Halina S. Brown, Richard Heinberg

A group known as the “ecomodernists,” which includes prominent environmental thinkers and development specialists such as Ted Nordhaus, Michael Shellenberger, Stewart Brand, David Keith, and Joyashree Roy has recently published a statement of principles called An Ecomodernist Manifesto (2015). Many of the authors of the Manifesto are connected to an influential think tank called The Breakthrough Institute.
The Manifesto is an attempt to lay out the basic message of ecomodernism, which is an approach to development that emphasizes the roles of technology and economic growth in meeting the world’s social, economic, and ecological challenges. The ecomodernists “reject” the idea “that human societies must harmonize with nature to avoid economic and ecological collapse,” and instead argue that what is needed is a reliance on technologies, from nuclear power to carbon capture and storage, that allow for a “decoupling [of] human development from environmental impacts.”
The Manifesto has already received strong criticism from an array of commentators, but none of these assessments has yet critiqued it from the perspective of “degrowth,” which is an approach that sees the transition to sustainability occurring through less environmentally impactful economic activities and a voluntary contraction of material throughput of the economy, to reduce humanity’s aggregate resource demands on the biosphere. From a degrowth perspective, technology is not viewed as a magical saviour since many technologies actually accelerate environmental decline.
With these disagreements in mind, a group of over fifteen researchers from the degrowth scholarship community has written a detailed refutation of the Ecomodernist Manifesto, which can be read here. The following is a summary of the seven main points made by the authors of this critique:
1. The Manifesto assumes that growth is a given. The ecological economists associated with degrowth assume that growth is not a given, and that population growth, inequalities, and the decline of cheap and abundant fossil fuels, which spurred the unprecedented growth of the global economy over the past century, means that the limits to growth are either being reached or will be reached in the very near future. The ecomodernists, by contrast, scoff at the idea of limits to growth, arguing that technology will always find a way to overcome those limits. Graham Turner, Ugo Bardi, and numerous others have shown through empirical research that many of the modelled scenarios, and the fundamental thesis, of the Club of Rome remain as relevant as ever—that is, that the human endeavour is bumping up against natural limits. Richard Heinberg has shown that the production of conventional oil, natural gas, and heavy oil all peaked around 2010, despite, but also due to, continued global reliance on fossil fuels, which still make up over 80% of the world’s primary source of energy. The history of industrialism to date suggests that more growth will be coupled with increasing environmental costs. Thus the Manifesto does nothing to question and rethink the growth fetish that has preoccupied (and negatively impacted) the world since at least the 1940s.
2. Ecomodernists believe in the myth of decoupling growth from impacts. Long the fantasy of neoclassical economists, industrialists, and many futurists decoupling is the idea that one can have more of the “good stuff” (economic growth, increased population, more consumption) without any of the “bad stuff” (declines in energy stocks, environmental degradation, pollution, and so forth). Yet to date, there has been no known society that has simultaneously expanded economic activity while reducing absolute energy consumption and environmental impacts. In terms of carbon-dioxide emissions, the only periods over the past century in which global or regional emissions have actually declined absolutely have occurred during periods of decreased economic activity (usually a political crisis, war, or a recession). While it is true that many countries have reduced their carbon intensity in recent decades, meaning that they get more bang for their energy buck, efforts to decouple GDP-growth from environmental degradation through technological innovations and renewable energies have failed to achieve the absolute emissions reductions and reductions in aggregate environmental impacts necessary for a livable planet. In short, absolute decoupling has not occurred and has not solved our problems.
3.  Is technology the problem or the solution? The ecomodernists cannot decide. The Manifesto is open and honest about the impact that modern technologies have had on the natural world, and especially emissions from fossil-fueled machines. However, as an act of desperation, the ecomodernists retreat to the belief that risky, costly, and underachieving technologies, such as nuclear power and carbon capture and storage, will solve the climate crisis and energize the sustainable society of the future. The reality, however, is that nuclear power provides less than 6 percent of the world’s energy needs while creating long-term storage nightmares and present-day environmental hazards. We cite Chernobyl and Fukushima as obvious examples. From the point of view of degrowth, more technology is not (necessarily) the solution. The energy crisis can be addressed only by reductions in throughput, economic activity, and consumption, which could then (and only then) create the possibility of powering global society via renewables.
4. Ecomodernism is not very “eco.” Ecomodernism violates everything we know about ecosystems, energy, population, and natural resources. Fatally, it ignores the lessons of ecology and thermodynamics, which teach us that species (and societies) have natural limits to growth. The ecomodernists, by contrast, brazenly claim that the limits to growth is a myth, and that human population and the economy could continue to grow almost indefinitely. Moreover, the ecomodernists ignore or downplay many of the ecological ramifications of growth. The Manifesto has nothing to say about the impacts of conventional farming, monoculture, pesticide-resistant insects, GMOs, and the increasing privatization of seeds and genetic material. It is silent on the decline of global fisheries or the accumulation of microplastic pollution in the oceans, reductions in biodiversity, threats to ecosystem services, and the extinction of species. Nor does it really question our reliance on fossil fuels. It does argue that societies need to “decarbonize,” but the Manifesto also tacitly supports coal, oil and natural gas by advocating for carbon capture and storage. Far from being an ecological statement of principles, the Manifesto merely rehashes the naïve belief that technology will save us and that human ingenuity can never fail. One fears, too, that the ecomodernists support geoengineering.
5. The Manifesto has a narrow, inaccurate, and whitewashed view of both “modernity” and “development.” The Manifesto’s assertions rest on the belief that industrialized modernity has been an undivided blessing. Those who support degrowth have a more complex view of history since the 18th century. The “progress” of modernity has come at a heavy cost, and is more of a mixed blessing. The ecomodernists do not acknowledge that growth in greenhouse gas emissions parallels the development of industry. The core assumption is that “development” has only one true definition, and that is to “modernize” along the lines of the already industrialized countries. The hugely destructive development path of European and Neo-European societies is the measuring stick of Progress.
6. Ecomodernism is condescending toward pre-industrial, agrarian, non-industrialized societies, and the Global South. The issue of condescension is particularly stark in the Manifesto. There is not a word about religion, spirituality, or indigenous ecological practices, even though the authors throw a bone to the “cultural preferences” for development. Pre-industrial and indigenous peoples are seen as backwards and undeveloped. The authors go so far as to say that humans need to be “liberated” from agricultural labour, as though the production of food, and small-scale farming, were not inherent goods. There is no adoration for simple living, the small scale, or bottom up approaches to development.
7. The Manifesto suffers from factual errors and misleading statements. The Manifesto is particularly greenwashed when it comes to global deforestation rates. It suggests that there is currently a “net reforestation” occurring at the international scale, which contradicts the 2014 Millennium Development Report that shows that afforestation and reforestation have, in fact, slowed deforestation rates, but that the world still suffered a net loss of forested land between 2000 and 2010 by many millions of hectares. Research by the United Nations Food and Agriculture Organization and the World Wide Fund for Nature confirms the reality of net forest losses. Further, the Manifesto makes dubious claims about net reductions in “servitude” over the past few centuries, and the role played by pre-historical native peoples in driving the megafauna to extinction.
In sum, the ecomodernists provide neither a very inspiring blueprint for future development strategies nor much in the way of solutions to our environmental and energy woes.

Powerdown: has it started?

9 11 2014

When I first discovered Peak Oil all those years ago (is it 14 already?) I got most of my information from Richard Heinberg’s groundbreaking books (at the time), “The Party’s Over”, and “Powerdown”.

Published a whole ten years ago, Richard wrote on his website “If the US continues with its current policies, the next decades will be marked by war, economic collapse, and environmental catastrophe. Resource depletion and population pressures are about to catch up with us, and no one is prepared. The political elites, especially in the US, are incapable of dealing with the situation and have in mind a punishing game of “Last One Standing.”The alternative is “Powerdown,” a strategy that will require tremendous effort and economic sacrifice in order to reduce per-capita resource usage in wealthy countries, develop alternative energy sources, distribute resources more equitably, and reduce the human population humanely but systematically over time. While civil society organizations push for a mild version of this, the vast majority of the world’s people are in the dark, not understanding the challenges ahead, nor the options realistically available.”

Today, the price of oil has fallen to around $78 a barrel, something that seemed unimaginable even three months ago… What on Earth is going on?  All my usual sources for information on these matters have been abuzz with theories, theories like the Americans and the Saudis have linked up arms to sink the Russians who need oil (like almost everybody else!) above $100 a barrel to stay afloat, and punish them over the Ukrainian crisis.  Then, another theory came up that the Saudis were feeling threatened by the rising amounts of shale oil coming out of the US, no matter that it is both financially and energetically unviable.  Demand for oil has fallen, so why are the Saudis flooding the market with cheap oil?  Are they trying to sink both the Russians and the Americans?  Rumours also abound that if the Saudis are not careful, and the resulting drop in revenue from selling oil at cost or maybe even below results in economic problems for their country, a revolution could even occur in Arabia.  Such are the religious tensions in the Middle East, that I have frankly given up trying to predict what will happen next.

If the Saudis are attempting to sink the US shale oil industry, it is starting to work as the shale-oil drilling boom is showing early signs of cracking.  Rigs targeting oil, according to Bloomberg, sank by 14 to 1,568 this week, the lowest since Aug. 22, Baker Hughes Inc. (BHI) said yesterday. The Eagle Ford shale formation in south Texas lost the most, dropping nine to 197. The nation’s oil rig count is down from a peak of 1,609 on Oct. 10.

Drillers are slowing down as crude prices tumbled 24 percent in the past four months. Transocean Ltd. (RIG) said yesterday that its earnings would take a hit by a drop in fees and demand for its rigs. The slide threatens to curb a production boom in U.S. shale formations that has helped bring prices at the pump below $3 a gallon for the first time since 2010 and shrink the nation’s dependence on foreign oil imports.

“We are officially seeing the slowdown in oil drilling,” James Williams, president of energy consulting company WTRG Economics, said by telephone from London, Arkansas, yesterday. “There’s no doubt about it now. We’re already down 49 rigs since the peak in October. It’ll have fallen by more than 100 rigs by the end of year.”

Then, we have coal fired power stations closing down in Australia…..  Business Spectator reported that “Receivers KordaMentha have announced that the 151 megawatt Redbank Coal Power station, in NSW, will be shut down, prompting the question as to whether Anglesea coal power station in Victoria, which Alcoa is looking to offload, will be next.”  This, at a time coal is as cheap as chips, and electricity the dearest it has ever been……  what is going on?

To top it off, ABC TV’s 7.30 program recently aired a fairly extensive item regarding Australia’s oil security that had me almost falling off my chair.  “After steadily cutting domestic oil production and refining, Australia is now more than 90 per cent dependent on oil imports mainly from the Middle East.”  Yeah right…..  we’ve been cutting domestic oil production.  Why would we do that?  Why can’t anyone in mainstream media utter the words “Peak Oil”?

The fact more than 50% of our oil comes through the Strait of Hormuz is news to me also.  It wasn’t that long ago, Vietnam was our biggest supplier, then it was New Zealand (no, you are reading this right!) and obviously something momentous occurred in those countries, and I suspect it’s called the Export Land Model

We used to import a lot of oil from Indonesia.  It was even a member of OPEC.  But once it could no longer export oil, it could no longer be a member of an export cartel, and we had to look elsewhere (check out the red bit at the bottom RH of the Indonesian graph…. that is IMPORT!).  So we in Australia started importing oil from Vietnam, but it too hit the ELM wall, so we started importing from NZ (which frankly amazed me at the time) but it seems NZ must have also hit the wall.  Egypt, one of my favourite ELM examples is now in chaos as it starts to collapse.  The more oil producing nations hit this wall, the more precarious everyone’s oil supplies become, and Australia is no different.  We are running out of countries to import from..

Richard Heinberg’s Powerdown was offered up as a planned descent mechanism.  Nothing about what we are currently seeing is planned.  There can be no other outcome to lack of vision and planning, and that’s chaos, and we could see it happening very soon, maybe even within two short years….

IEA Says the Party’s Over

7 06 2014

Posted Jun 5, 2014 by Richard Heinbergheinberg

Originally published at Post Carbon Institute

The International Energy Agency has just released a new special report called “World Energy Investment Outlook” that should send policy makers screaming and running for the exits—if they are willing to read between the lines and view the report in the context of current financial and geopolitical trends. This is how the press agency UPI begins its summary:

It will require $48 trillion in investments through 2035 to meet the world’s growing energy needs, the International Energy Agency said Tuesday from Paris. IEA Executive Director Maria van der Hoeven said in a statement the reliability and sustainability of future energy supplies depends on a high level of investment. “But this won’t materialize unless there are credible policy frameworks in place as well as stable access to long-term sources of finance,” she said. “Neither of these conditions should be taken for granted.”

Here’s a bit of context missing from the IEA report: the oil industry is actually cutting back on upstream investment. Why? Global oil prices—which, at the current $90 to $110 per barrel range, are at historically high levels—are nevertheless too low to justify tackling ever-more challenging geology. The industry needs an oil price of at least $120 per barrel to fund exploration in the Arctic and in some ultra-deepwater plays. And let us not forget: current interest rates are ultra-low (thanks to the Federal Reserve’s quantitative easing), so marshalling investment capital should be about as easy now as it is ever likely to get. If QE ends and if interest rates rise, the ability of industry and governments to dramatically increase investment in future energy production capacity will wane.
Other items from the report should be equally capable of inducing policy maker freak-out:
The shale bubble’s-a-poppin’. In 2012, the IEA forecast that oil extraction rates from US shale formations (primarily the Bakken in North Dakota and the Eagle Ford in Texas) would continue growing for many years, with America overtaking Saudia Arabia in rate of oil production by 2020 and becoming a net oil exporter by 2030. In its new report, the IEA says US tight oil production will start to decline around 2020. One might almost think the IEA folks have been reading Post Carbon Institute’s analysis of tight oil and shale gas prospects! This is a welcome dose of realism, though the IEA is probably still erring on the side of optimism: our own reading of the data suggests the decline will start sooner and will probably be steep.
Help us, OPEC—you’re our only hope! Here’s how the Wall Street Journal frames its story about the report: “A top energy watchdog said the world will need more Middle Eastern oil in the next decade, as the current U.S. boom wanes. But the International Energy Agency warned that Persian Gulf producers may still fail to fill the gap, risking higher oil prices.” Let’s see, how is OPEC doing these days? Iraq, Syria, and Libya are in turmoil. Iran is languishing under US trade sanctions. OPEC’s petroleum reserves are still ludicrously over-stated. And while the Saudis have made up for declines in old oilfields by bringing new ones on line, they’ve run out of new fields to develop. So it looks as if that risk of higher oil prices is quite a strong one.
A “what-me-worry?” price forecast. Despite all these dire developments, the IEA offers no change from its 2013 oil price forecast (that is, a gradual increase in world petroleum prices to $128 per barrel by 2035). The new report says the oil industry will need to increase its upstream investment over the forecast period by $2 trillion above the IEA’s previous investment forecast. From where is the oil industry supposed to derive that $2 trillion if not from significantly higher prices—higher over the short run, perhaps, than the IEA’s long-range 2035 forecast price of $128 per barrel, and ascending higher still? This price forecast is obviously unreliable, but that’s nothing new. The IEA has been issuing wildly inaccurate price forecasts for the past decade. In fact, if the massive increase in energy investment advised by the IEA is to occur, both electricity and oil are about to become significantly less affordable. For a global economy tightly tied to consumer behavior and markets, and one that is already stagnant or contracting, energy constraints mean one thing and one thing only: hard times.
What about renewables? The IEA forecasts that only 15 percent of the needed $48 trillion will go to renewable energy. All the rest is required just to patch up our current oil-coal-gas energy system so that it doesn’t run into the ditch for lack of fuel. But how much investment would be required if climate change were to be seriously addressed? Most estimates look only at electricity (that is, they gloss over the pivotal and problematic transportation sector) and ignore the question of energy returned on energy invested. Even when we artificially simplify the problem this way, $7.2 trillion spread out over twenty years simply doesn’t cut it. One researcher estimates that investments will have to ramp up to $1.5 to $2.5 trillion per year. In effect, the IEA is telling us that we don’t have what it takes to sustain our current energy regime, and we’re not likely to invest enough to switch to a different one.
If you look at the trends cited and ignore misleading explicit price forecasts, the IEA’s implicit message is clear: continued oil price stability looks problematic. And with fossil fuel prices high and volatile, governments will likely find it even more difficult to devote increasingly scarce investment capital toward the development of renewable energy capacity.

As you read this report, imagine yourself in the shoes of a high-level policy maker. Wouldn’t you want to start thinking about early retirement?

The Anthropocene: It’s Not All About Us

15 05 2014

heinbergA guest post from my friend Richard Heinberg, originally published as MuseLetter #264 in May 2014.  This is a long but important essay. I recommend a large cup of your favourite poison, and a biscuit or two….  Enjoy!

Download printable PDF version here (PDF, 126 KB)


Time to celebrate! Woo-hoo! It’s official: we humans have started a new geological epoch—the Anthropocene. Who’d have thought that just one species among millions might be capable of such an amazing accomplishment?

Let’s wait to stock up on party favours, though. After all, the Anthropocene could be rather bleak. The reason our epoch has acquired a new name is that future geologists will be able to spot a fundamental discontinuity in the rock strata that document our little slice of time in Earth’s multi-billion year pageant. This discontinuity will be traceable to the results of human presence. Think climate change, ocean acidification, and mass extinction.

Welcome to the Anthropocene: a world that may feature little in the way of multi-cellular ocean life other than jellyfish, and one whose continents might be dominated by a few generalist species able to quickly occupy new and temporary niches as habitats degrade (rats, crows, and cockroaches come to mind). We humans have started the Anthropocene, and we’ve proudly named it for ourselves, yet ironically we may not be around to enjoy much of it. The chain of impacts we have initiated could potentially last millions of years, but it’s a tossup whether there will be surviving human geologists to track and comment on it.

To be sure, there are celebrants of the Anthropocene who believe we’re just getting started, and that humans can and will shape this new epoch deliberately, intelligently, and durably. Mark Lynas, author of The God Species, contends the Anthropocene will require us to think and act differently, but that population, consumption, and the economy can continue to grow despite changes to the Earth system. Stewart Brand says we may no longer have a choice as to whether to utterly re-make the natural world; in his words, “We only have a choice of terraforming well. That’s the green project for this century.” In their book Love Your Monsters: Postenvironmentalism and the Anthropocene, Michael Schellenberger and Ted Nordhaus of the Breakthrough Institute say we can create a world where 10 billion humans achieve a standard of living allowing them to pursue their dreams, though this will only be possible if we embrace growth, modernization, and technological innovation. Similarly, Emma Marris (who admits to having spent almost no time in wilderness), argues in Rambunctious Garden: Saving Nature in a Post-Wild World that wilderness is gone forever, that we should all get used to the idea of the environment as human-constructed, and that this is potentially a good thing.

Is the Anthropocene the culmination of human folly or the commencement of human godhood? Will the emerging epoch be depleted and post-apocalyptic, or tastefully appointed by generations of tech-savvy ecosystem engineers? Environmental philosophers are currently engaged in what amounts to a heated debate about the limits of human agency. That discussion is especially engrossing because . . . it’s all about us!

*          *          *

The viability of the “we’re-in-charge-and-loving-it” version of the Anthropocene—let’s call it the Techno-Anthropocene—probably hinges on prospects for nuclear power. A concentrated, reliable energy source will be required for the maintenance and growth of industrial civilization, and just about everybody agrees that—whether or not we’re at the point of “peak oil”—fossil fuels won’t continue energizing civilization for centuries and millennia to come. Solar and wind are more environmentally benign sources, but they are diffuse and intermittent. Of society’s current non-fossil energy sources, only nuclear is concentrated, available on demand, and (arguably) capable of significant expansion. Thus it’s no accident that Techno-Anthropocene boosters such as Mark Lynas, Stewart Brand, Ted Nordhaus, and Michael Schellenberger are also big nuclear proponents.

But the prospects for current nuclear technology are not rosy. The devastating Fukushima meltdowns of 2011 scared off citizens and governments around the globe. Japan will be dealing with the radiation and health impacts for decades if not centuries, and the West Coast of the US is gearing up for an influx of radioactive ocean water and debris. There is still no good solution for storing the radioactive waste produced even when reactors are operating as planned. Nuclear power plants are expensive to build and typically suffer from hefty cost over-runs. The world supply of uranium is limited, and shortages are likely by mid-century even with no major expansion of power plants. And, atomic power plants are tied to nuclear weapons proliferation.

In 2012, The Economist magazine devoted a special issue to a report on nuclear energy; tellingly, the report was titled, “Nuclear Power: The Dream that Failed.” Its conclusion: the nuclear industry may be on the verge of expansion in just a few nations, principally China; elsewhere, it’s on life support.

None of this daunts Techno-Anthropocene proponents, who say new nuclear technology has the potential to fulfill the promises originally made for the current fleet of atomic power plants. The centerpiece of this new technology is the Integral Fast Reactor (IFR).

Unlike light water reactors (which comprise the vast majority of nuclear power plants in service today), IFRs would use sodium as a coolant. The IFR nuclear reaction features fast neutrons, and it more thoroughly consumes radioactive fuel, leaving less waste. Indeed, IFRs could use current radioactive waste as fuel. Also, they are alleged to offer greater operational safety and less risk of weapons proliferation.

These arguments are forcefully made in the 2013 documentary, “Pandora’s Promise,” produced and directed by Robert Stone. The film asserts that IFRs are our best tool to mitigate anthropogenic global warming, and it goes on to claim there has been a deliberate attempt by misguided bureaucrats to sabotage the development of IFR reactors.

However, critics of the film say these claims are overblown and that fast-reactor technology is highly problematic. Earlier versions of the fast breeder reactor (of which IFR is a version) were commercial failures and safety disasters. Proponents of the Integral Fast Reactor, say the critics, overlook its exorbitant development and deployment costs and continued proliferation risks. IFR theoretically “transmutes,” rather than eliminates, radioactive waste. Yet the technology is decades away from widespread implementation, and its use of liquid sodium as a coolant can lead to fires and explosions.

David Biello, writing in Scientific American, concludes that, “To date, fast neutron reactors have consumed six decades and $100 billion of global effort but remain ‘wishful thinking.’”

Even if advocates of IFR reactors are correct, there is one giant practical reason they may not power the Anthropocene: we likely won’t see the benefit from them soon enough to make much of a difference. The challenges of climate change and fossil fuel depletion require action now, not decades hence.

Assuming enough investment capital, and assuming a future in which we have decades in which to improve existing technologies, IFR reactors might indeed show significant advantages over current light water reactors (only many years of experience can tell for sure). But we don’t have the luxury of limitless investment capital, and we don’t have decades in which to work out the bugs and build out this complex, unproven technology.

The Economist’s verdict stands: “[N]uclear power will continue to be a creature of politics not economics, with any growth a function of political will or a side-effect of protecting electrical utilities from open competition. . . . Nuclear power will not go away, but its role may never be more than marginal.”

*          *          *

Defying risk of redundancy, I will hammer home the point: cheap, abundant energy is the prerequisite for the Techno-Anthropocene. We can only deal with the challenges of resource depletion and overpopulation by employing more energy. Running out of fresh water? Just build desalination plants (that use lots of energy). Degrading topsoil in order to produce enough grain to feed ten billion people? Just build millions of hydroponic greenhouses (that need lots of energy for their construction and operation). As we mine deeper deposits of metals and minerals and refine lower-grade ores, we’ll require more energy. Energy efficiency gains may help us do more with each increment of power, but a growing population and rising per-capita consumption rates will more than overcome those gains (as they have consistently done in recent decades). Any way you look at it, if we are to maintain industrial society’s current growth trajectory we will need more energy, we will need it soon, and our energy sources will have to meet certain criteria—for example, they will need to emit no carbon while at the same time being economically viable.

These essential criteria can be boiled down to four words: quantity, quality, price, and timing. Nuclear fusion could theoretically provide energy in large amounts, but not soon. The same is true of cold fusion (even if—and it’s a big if—the process can be confirmed to actually work and can be scaled up). Biofuels offer a very low energy return on the energy invested in producing them (a deal-breaking quality issue). Ocean thermal and wave power may serve coastal cities, but again the technology needs to be proven and scaled up. Coal with carbon capture and storage is economically uncompetitive with other sources of electricity. Solar and wind are getting cheaper, but they’re intermittent and tend to undermine commercial utility companies’ business models. While our list of potential energy sources is long, none of these sources is ready to be plugged quickly into our existing system to provide energy in the quantity, and at the price, that the economy needs in order to continue growing.

This means that humanity’s near future will almost certainly be energy-constrained. And that, in turn, will ensure—rather than engineering nature on an ever-greater scale—we will still be depending on ecosystems that are largely beyond our control.

As a species, we’ve gained an impressive degree of influence over our environment by deliberately simplifying ecosystems so they will support more humans, but fewer other species. Our principal strategy in this project has been agriculture—primarily a form of agriculture that focuses on a few annual grain crops. We’ve commandeered up to 50 percent of the primary biological productivity of our planet, mostly through farming and forestry. Doing this has had overwhelmingly negative impacts on non-domesticated plants and animals. The subsequent loss of biodiversity is increasingly compromising humanity’s prospects, because we depend upon countless ecosystem services (such as pollination and oxygen regeneration)—services we do not organize or control, and for which we do not pay.

The essence of our problem is this: the side effects of our growth binge are compounding rapidly and threaten a crisis in which the artificial support systems we’ve built over past decades (food, transport, and financial systems, among others)—as well as nature’s wild systems, on which we still also depend—could all crash more or less simultaneously.

If we’ve reached a point of diminishing returns and potential crisis with regard to our current strategy of constant population/consumption growth and ecosystem takeover, then it would seem that a change of direction is necessary and inevitable. If we were smart, rather than attempting to dream up ways of further re-engineering natural systems in untested (and probably unaffordable) ways, we would be limiting and ameliorating the environmental impacts of our global industrial system while reducing our population and overall consumption levels.

If we don’t proactively limit population and consumption, nature will eventually do it for us, and likely by very unpleasant means (famine, plague, and perhaps war). Similarly, we can rein in consumption simply by continuing to deplete resources until they become unaffordable.

Governments are probably incapable of leading a strategic retreat in our war on nature, as they are systemically hooked on economic growth. But there may be another path forward. Perhaps citizens and communities can initiate a change of direction. Back in the 1970s, as the first energy shocks hit home and the environmental movement flourished, ecological thinkers began tackling the question: what are the most biologically regenerative, least harmful ways of meeting basic human needs? Two of these thinkers, Australians David Holmgren and Bill Mollison, came up with a system they called Permaculture. According to Mollison, “Permaculture is a philosophy of working with, rather than against nature; of protracted and thoughtful observation rather than protracted and thoughtless labour; and of looking at plants and animals in all their functions, rather than treating any area as a single-product system.”  Today there are thousands of Permaculture practitioners throughout the world, and Permaculture Design courses are frequently on offer in almost every country.

Permaculture principles

Other ecologists didn’t aim to create an overarching system, but merely engaged in piecemeal research on practices that might lead to a more sustainable mode of food production—practices that include intercropping, mulching, and composting. One ambitious agricultural scientist, Wes Jackson of the Land Institute in Salina Kansas, has spent the past four decades breeding perennial grain crops (he points out that our current annual grains are responsible for the vast bulk of soil erosion, to the tune of 25 billion tons per year).

Meanwhile, community resilience efforts have sprung up in thousands of towns and cities around the world—including the Transition Initiatives, which are propelled by a compelling, flexible, grassroots organizing model and a vision of a future in which life is better without fossil fuels.

Population Media Center is working to ensure we don’t get to ten billion humans by enlisting creative artists in countries with high population growth rates (which are usually also among the world’s poorest nations) to produce radio and television soap operas featuring strong female characters who successfully confront issues related to family planning. This strategy has been shown to be the most cost-effective and humane means of reducing high birth rates in these nations.

What else can be done? Substitute labour for fuel. Localize food systems. Capture atmospheric carbon in soil and biomass. Replant forests and restore ecosytems. Recycle and re-use. Manufacture more durable goods. Rethink economics to deliver human satisfaction without endless growth. There are organizations throughout the world working to further each of these goals, usually with little or no government support. Taken together, they could lead us to an entirely different Anthropocene.

Call it the Lean-Green Anthropocene.

*          *          *

The Techno-Anthropocene has an Achilles heel: energy (more specifically, the failings of nuclear power). The Lean-Green Anthropocene has one as well: human nature.

It’s hard to convince people to voluntarily reduce consumption and curb reproduction. That’s not because humans are unusually pushy, greedy creatures; all living organisms tend to maximize their population size and rate of collective energy use. Inject a colony of bacteria into a suitable growth medium in a petri dish and watch what happens. Hummingbirds, mice, leopards, oarfish, redwood trees, or giraffes: in each instance the principle remains inviolate—every species maximizes population and energy consumption within nature’s limits. Systems ecologist Howard T. Odum called this rule the Maximum Power Principle: throughout nature, “system designs develop and prevail that maximize power intake, energy transformation, and those uses that reinforce production and efficiency.”

In addition to our innate propensity to maximize population and consumption, we humans also have difficulty making sacrifices in the present in order to reduce future costs. We’re genetically hardwired to respond to immediate threats with fight-or-flight responses, while distant hazards matter much less to us. It’s not that we don’t think about the future at all; rather, we unconsciously apply a discount rate based on the amount of time likely to elapse before a menace has to be faced.

True, there is some variation in future-anticipating behavior among individual humans. A small percentage of the population may change behavior now to reduce risks to forthcoming generations, while the great majority is less likely to do so. If that small percentage could oversee our collective future planning, we might have much less to worry about. But that’s tough to arrange in democracies, where people, politicians, corporations, and even nonprofit organizations get ahead by promising immediate rewards, usually in the form of more economic growth. If none of these can organize a proactive response to long-range threats like climate change, the actions of a few individuals and communities may not be so effective at mitigating the hazard.

This pessimistic expectation is borne out by experience. The general outlines of the 21st century ecological crisis have been apparent since the 1970s. Yet not much has actually been accomplished through efforts to avert that crisis. It is possible to point to hundreds, thousands, perhaps even millions of imaginative, courageous programs to reduce, recycle, and reuse—yet the overall trajectory of industrial civilization remains relatively unchanged.

*          *          *

Human nature may not permit the Lean-Greens’ message to altogether avert ecological crisis, but that doesn’t mean the message is pointless. To understand how it could have longer-term usefulness despite our tendency toward short-term thinking, it’s helpful to step back and look at how societies’ relationship with the environment tends to evolve.

The emblematic ecological crises of the Anthropocene (runaway climate change and ocean acidification, among others) are recent, but humans have been altering our environment one way or another for a long time. Indeed, there is controversy among geologists over when the Anthropocene began: some say it started with the industrial revolution, others tag it at the beginning of agriculture some 10,000 years ago, while still others tie it to the emergence of modern humans thousands of years earlier.

Humans have become world-changers as a result of two primary advantages: we have dexterous hands that enable us to make and use tools, and we have language, which helps us coordinate our actions over time and space. As soon as both were in place, we started using them to take over ecosystems. Paleoanthropologists can date the arrival of humans to Europe, Asia, Australia, the Pacific Islands, and the Americas by noting the timing of extinctions of large prey species. The list of animals probably eradicated by early humans is long, and includes (in Europe) several species of elephants and rhinos; (in Australia) giant wombats, kangaroos, and lizards; and (in the Americas) horses, mammoths, and giant deer.

People have also been deliberately re-engineering ecosystems for tens of thousands of years, principally by using fire to alter landscapes so they will produce more food for humans. Agriculture was a huge boost to our ability to produce more food on less land, and therefore to grow our population. Farming yielded storable food surpluses, which led to cities—the basis of civilization. It was in these urban social cauldrons that writing, money, and mathematics emerged.

If agriculture nudged the human project forward, fossil-fueled industrialism turbocharged it. In just the past two centuries, population and energy consumption have increased by over 800 percent. Our impact on the biosphere has more than kept pace.

The industrialization of agriculture reduced the need for farm labour. This enabled—or forced—billions to move to cities. As more people came to live in urban centres, they found themselves increasingly cut off from wild nature and ever more completely engaged with words, images, symbols, and tools.

There’s a term for the human tendency to look at the biosphere, maybe even the universe, as though it’s all about us: anthropocentrism. Up to a point, this is an understandable and even inevitable propensity. Every person, after all, is the centre of her own universe, the star of his own movie; why should our species as a whole be less egocentric? Other animals are similarly obsessed with their own kind: regardless of who furnishes the kibbles, dogs are obsessively interested in other dogs. But there are healthy and unhealthy degrees of individual and species self-centeredness. When individual human self-absorption becomes blatantly destructive we call it narcissism. Can a whole species be overly self-absorbed? Hunter-gatherers were certainly interested in their own survival, but many indigenous forager peoples thought of themselves as part of a larger community of life, with a responsibility to maintain the web of existence. Today we think more “pragmatically” (as an economist might put it), as we bulldoze, deforest, overfish, and deplete our way to world domination.

However, history does not portray a steady ramp-up of human hubris and alienation from nature. Periodically humans were slapped down. Famine, resource conflicts, and disease decimated populations that were previously growing. Civilizations rose, then fell. Financial manias led to crashes. Boomtowns became ghost towns.

Ecological slap-downs probably occurred with relatively great frequency in pre-agricultural times, when humans depended more directly on nature’s variable productivity of wild foods. The Aboriginals of Australia and the Native Americans—who are often regarded as exemplar intuitive ecologists due to their traditions and rituals restraining population growth, protecting prey species, and affirming humanity’s place within the larger ecosystem—were probably just applying lessons from bitter experience. It’s only when we humans get slapped down hard a few times that we start to appreciate other species’ importance, restrain our greed, and learn to live in relative harmony with our surroundings.

Which prompts the question: Are the Lean-Green Anthropocene prophets our species’ early warning system whose function is to avert catastrophe—or are they merely ahead of their time, pre-adapting to an ecological slap-down that is foreseeable but not yet fully upon us?

*          *          *

Throughout history, humans appear to have lived under two distinct regimes: boom times and dark ages. Boom times occurred in prehistory whenever people arrived in a new habitat to discover an abundance of large prey animals. Booms were also associated with the exploitation of new energy resources (especially coal and oil) and the expansions of great cities—from Uruk, Mohenjo-daro, Rome, Chang’an, Angkor Wat, Tenochtitlan, Venice, and London, all the way to Miami and Dubai. Boom-time behaviour is risk-seeking, confident to the point of arrogance, expansive, and experimental.

Historians use the term dark ages to refer to times when urban centres lose most of their population. Think Europe in the fifth through the fifteenth centuries, the Near East after the Bronze Age collapse around 1200 BCE, Cambodia between 1450 and 1863 CE, or Central America after the Mayan collapse of 900 CE. Dark-age behaviour is conservative and risk-averse. It has echoes in the attitudes of indigenous peoples who have lived in one place long enough to have confronted environmental limits again and again. Dark-age people haven’t skirted the Maximum Power Principle; they’ve just learned (from necessity) to pursue it with more modest strategies.

Needless to say, dark ages have their (ahem) dark side. In the early phases of such periods large numbers of people typically die from famine, also from war or other forms of violence. Dark ages are times of forgetting, when technologies and cultural achievements are often lost. Writing, money, mathematics, and astronomy can all disappear.

Still, these times are not uniformly gloomy. During the European Dark Ages, slavery nearly disappeared as new farming methods and better breeds of horses and oxen made forced human labour less economic. People who previously would have been bound in slavery became either free workers or, at worst, serfs. The latter couldn’t pick up and move without their lord’s permission, but generally enjoyed far more latitude than slaves. At the same time, the rise of Christianity brought new organized charitable activities and institutions, including hospices, hospitals, and shelters for the poor.

Today nearly everyone in the industrialized world has adopted boom-time behaviour. We are encouraged to do so by ceaseless advertising messages and by governmental cheerleaders of the growth economy. After all, we have just lived through the biggest boom in all human history—why not expect more of the same? The only significant slap-downs in recent cultural memory were the Great Depression and a couple of World Wars; in comparison with ecological bottlenecks in ancient eras these were minor affairs; further, they were relatively brief and played out three or more generations ago. For most of us now, dark-age behaviour seems quaint, pointless, and pessimistic.

It would be perverse to wish for a Great Slap-Down. Only a sociopath would welcome massive, widespread human suffering. At the same time, it is impossible to ignore these twin facts: our species’ population-consumption fiesta is killing the planet, and we’re not likely to end the party voluntarily.

Will we avert or face a Great Slap-Down? We’re already seeing initial signs of trouble ahead in extreme weather events, high oil and food prices, and increasing geopolitical tensions. Sadly, it seems that every effort will be made to keep the party going as long as possible. Even amid unmistakable signs of economic contraction, most people will still require time to adapt behaviourally. Moreover, a slap-down likely won’t be sudden and complete, but may unfold in stages. After each mini-slap we’ll hear claims from boom-time diehards that a techno-utopian takeoff has merely been delayed, and that economic expansion will resume if only we will follow this or that leader or political program.

But if urban centres feel the crunch, and if widespread Techno-utopian expectations are dashed, we can expect to see evidence of profound psychological disruption. Gradually, more and more people will conclude—again, as a result of hard experience—that nature isn’t here just for us. Whether this realization emerges from extreme weather, plagues, or resource scarcity, it will lead an ever-expanding share of the populace grudgingly to pay more attention to forces beyond human control.

Just as humans are now shaping the future of Earth, Earth will shape the future of humanity. Amid rapid environmental and social change, the message of the Lean-Greens will gain more obvious relevance. That message may not save the polar bears (though ecosystem protection programs deserve every kind of support), but it might make the inevitable transition to a new species-wide behavioral mode a lot easier. It may lead to a dark age that’s less dark than it would otherwise be, one in which more of our cultural and scientific achievements are preserved. A great deal may depend on the intensity and success of the efforts of the small proportion of the population who are currently open to Lean-Green thinking—success in acquiring skills, in developing institutions, and in communicating a compelling vision of a desirable and sustainable post-boom society.

In the end, the deepest insight of the Anthropocene will probably be a very simple one: we live in a world of millions of interdependent species with which we have co-evolved. We sunder this web of life at our peril. The Earth’s story is fascinating, rich in detail, and continually self-revealing. And it’s not all about us.

Climate – What do we know?

5 05 2014

Another guest post from our friend Mark Cochrane……

If you have not yet watched the Ted Talk by Gavin Schmidt below, I highly recommend that you do so.

It is often authoritatively stated that:

adaptation costs are likely to be both less than mitigation costs and manageable.

which is a wholly unsubstantiated opinion that is refuted by hundreds, if not thousands, of scientific studies as recently reported in the Working Group II – adaptation (link), and Working Group III – mitigation (link) IPCC reports that have come out this year.

However, you do not need reams of technical materials to have basic sense. The logic and wisdom of the matter was succinctly provided by Benjamin Franklin and climate change is no exception.

An ounce of prevention is worth a pound of cure.

We know that we should substantially reduce our reliance on fossil fuels, actively seek alternative energy sources, and dramatically improve the efficiency with which we utilize energy. This statement would be true even if climate change issues were not at stake. Unless you fail to believe M. King Hubbert (1956 – Peak Oil), Meadows et al (1972-present Limits to Growth), and some guy named Chris Martenson (Crash Course – review here), you cannot help but know in your gut if not your head that our economic and societal over-reliance on rapidly depleting fossil fuel resources is a recipe for disaster, regardless of the climate consequences.

But since this topic is a climate one, what about the climate issues?  Christopher Monckton’s long debunked point about earlier periods of rapid warming is worth mentioning here. The 1920-1950 period actually would be relatively low warming, the correct period at issue is 1910-1940 when there was substantial warming that was only minimally related to human activities. Even so, that period did not warm as fast as we are currently experiencing.

However, this does provide a powerful indication of why we know that human-related emissions of greenhouse gases are of critical importance in ongoing climate changes. As Gavin Schmidt shows, the models are quite skillful in simulating many of the various climate processes at work throughout the world. The contrast between the the 1910-1940 and the 1970-present periods is very illustrative because we can compare modelled results to the actual observations of what has occurred in the global climate. When we look at how the models correspond to the climate record when forced only with ‘natural forcings’ (i.e. no additional greenhouse gases), we can see that the 1910-1940 period of warming is fairly well explained, while the rapid warming that we are currently experiencing is almost completely unexplained. (See Skeptical Science for a more detailed description of pre-1940 Warming Causes and Logic).

Conversely, if we remove the ‘natural forcings’ and only include greenhouse gas increases caused by human activities (primarily fossil fuel use), we see that although humans did not have much of a hand in the 1910-1940 warming, we are certainly in the driver’s seat of change now.

Actual climate change is from the combination of natural forcing and our accumulated greenhouse gas emissions. We know that we have to kick the fossil fuel habit. While Limits to Growth, the Crash Course and other sources clearly indicate that there is going to be a serious hangover for humanity coming when, as Heinberg says, the Party’s Over, as fossil fuels become less and less available, the climate change effects are going to be handed to future generations as the unpaid bar tab of our ongoing fossil fuel binge.


“What’s the use of having developed a science well enough to make predictions if, in the end, all we’re willing to do is stand around and wait for them to come true?”
F. Sherwood Rowland