Peak Copper is coming….

26 08 2019

Elon Musk told a closed-door Washington conference of miners, regulators and lawmakers that he sees a shortage of EV minerals coming, including copper and nickel (Scheyder 2019).   Other rare metals used in cars include neodymium, lanthanum, terbium, and dysprosium (Gorman 2009).

Alice Friedemann   www.energyskeptic.com  author of “When Trucks Stop Running: Energy and the Future of Transportation”, 2015, Springer and “Crunch! Whole Grain Artisan Chips and Crackers”. Podcasts: Derrick JensenPractical PreppingKunstlerCast 253KunstlerCast278Peak Prosperity , XX2 report

***

Richard A. Kerr. February 14, 2014. The Coming Copper Peak.  Science 343:722-724.

Production of the vital metal will top out and decline within decades, according to a new model that may hold lessons for other resources.

If you take social unrest and environmental factors into account, the peak could be as early as the 2020s

As a crude way of taking account of social and environmental constraints on production, Northey and colleagues reduced the amount of copper available for extraction in their model by 50%. Then the peak that came in the late 2030s falls to the early 2020s, just a decade away.

After peak Copper

Whenever it comes, the copper peak will bring change.  Graedel and his Yale colleagues reported in a paper published on 2 December 2013 in the Proceedings of the National Academy of Sciences that copper is one of four metals—chromium, manganese, and lead being the others—for which “no good substitutes are presently available for their major uses.”

If electrons are the lifeblood of a modern economy, copper makes up its blood vessels. In cables, wires, and contacts, copper is at the core of the electrical distribution system, from power stations to the internet. A small car has 20 kilograms (44 lbs) of copper in everything from its starter motor to the radiator; hybrid cars have twice that. But even in the face of exponentially rising consumption—reaching 17 million metric tons in 2012—miners have for 10,000 years met the world’s demand for copper.

But perhaps not for much longer. A group of resource specialists has taken the first shot at projecting how much more copper miners will wring from the planet. In their model runs, described this month in the journal Resources, Conservation and Recyclingproduction peaks by about mid-century even if copper is more abundant than most geologists believe.

Predicting when production of any natural resource will peak is fraught with uncertainty. Witness the running debate over when world oil production will peak (Science, 3 February 2012, p. 522).

The team is applying its depletion model to other mineral resources, from oil to lithium, that also face exponentially escalating demands on a depleting resource.

The world’s copper future is not as rosy as a minimum “125-year supply” might suggest, however. For one thing, any future world will have more people in it, perhaps a third more by 2050. And the hope, at least, is that a larger proportion of those people will enjoy a higher standard of living, which today means a higher consumption of copper per person. Sooner or later, world copper production will increase until demand cannot be met from much-depleted deposits. At that point, production will peak and eventually go into decline—a pattern seen in the early 1970s with U.S. oil production.

For any resource, the timing of the peak depends on a dynamic interplay of geology, economics, and technology. But resource modeler Steve Mohr of the University of Technology, Sydney (UTS), in Australia, waded in anyway. For his 2010 dissertation, he developed a mathematical model for projecting production of mineral resources, taking account of expected demand and the amount thought to be still in the ground. In concept, it is much like the Hubbert curves drawn for peak oil production, but Mohr’s model is the first to be applied to other mineral resources without the assumption that supplies are unlimited.

Exponential growth

Increasing the amount of accessible copper by 50% to account for what might yet be discovered moves the production peak back only a few years, to about 2045 — even doubling the copper pushes peak production back only to about 2050.  Quadrupling only delays peak until 2075.

Copper trouble spots

The world has been so thoroughly explored for copper that most of the big deposits have probably already been found. Although there will be plenty of discoveries, they will likely be on the small side.

“The critical issues constraining the copper industry are social, environmental, and economic,” Mudd writes in an e-mail. Any process intended to extract a kilogram of metal locked in a ton of rock buried hundreds of meters down inevitably raises issues of energy and water consumption, pollution, and local community concerns.

Civil war and instability make many large copper deposits unavailable

Mudd has a long list of copper mining trouble spots. The Reko Diq deposit in northwestern Pakistan close to both Iran and Afghanistan holds $232 billion of copper, but it is tantalizingly out of reach, with security problems and conflicts between local government and mining companies continuing to prevent developmentThe big Panguna mine in Bougainville, Papua New Guinea, has been closed for 25 years, ever since its social and environmental effects sparked a 10-year civil war that left about 20,000 dead.

Are we about to destroy the largest salmon fishery in the world for copper?

On 15 January the U.S. Environmental Protection Agency issued a study of the potential effects of the yet-to-be-proposed Pebble Mine on Bristol Bay in southwestern Alaska. Environmental groups had already targeted the project, and the study gives them plenty of new ammunition, finding that it would destroy as much as 150 kilometers of salmon-supporting streams and wipe out more than 2000 hectares of wetlands, ponds, and lakes.

Gold and Oil have already peaked

Copper is far from the only mineral resource in a race between depletion—which pushes up costs—and new technology, which can increase supply and push costs down. Gold production has been flat for the past decade despite a soaring price (Science, 2 March 2012, p. 1038). Much crystal ball–gazing has considered the fate of world oil production. “Peakists” think the world may be at or near the peak now, pointing to the long run of $100-a-barrel oil as evidence that the squeeze is already on.

Coal likely to peak in 2034, all fossil fuels by 2030, according to Mohr’s model

Fridley, Heinberg, Patzek, and other scientists believe Peak Coal is already here or likely by 2020.

Coal will begin to falter soon after, his model suggests, with production most likely peaking in 2034. The production of all fossil fuels, the bottom line of his dissertation, will peak by 2030, according to Mohr’s best estimate. Only lithium, the essential element of electric and hybrid vehicle batteries, looks to offer a sufficient supply through this century. So keep an eye on oil and gold the next few years; copper may peak close behind.

References

Gorman, S. August 30, 2009. As hybrid cars gobble rare metals, shortage looms. Reuters.

Scheyder, E. 2019. Exclusive: Tesla expects global shortage of electric vehicle battery minerals. Reuters.





Changing course

3 08 2019

I’m a great fan of Jack Alpert’s, having published his videos here before……

However, I’m less than optimistic about this scheme of his, because it’s been shown people are not swayed by facts.… After all, I’ve been trying unsuccessfully for years..!





No, I don’t hate “renewables”

20 07 2019

Another masterpiece from Tim who keeps churning out great stuff on his website……

During a conversation with a friend yesterday I was asked why I was so hostile toward “renewables” – or as I prefer to call them, non-renewablerenewable energy-harvesting technologies.  My answer was that I am not opposed to these technologies, but rather to the role afforded to them by the Bright Green techno-utopian crowd, who continue to churn out propaganda to the effect that humankind can continue to metastasise across the universe without stopping for breath simply by replacing the energy we derive from fossil fuels with energy we harvest with wind and tide turbines, solar panels and geothermal pumps.  These, I explained to my friend, will unquestionably play a role in our future; but to nowhere near the extent claimed by the proponents of green capitalism, ecosocialism or the green new deal.

It would seem that I was not alone in being asked why I was so disapproving of “renewables.”  On the same day, American essayist John Michael Greer addressed the same question on his Ecosophia blog:

“Don’t get me wrong, I’m wholly in favor of renewables; they’re what we’ll have left when fossil fuels are gone; but anyone who thinks that the absurdly extravagant energy use that props up a modern lifestyle can be powered by PV cells simply hasn’t done the math. Yet you’ll hear plenty of well-intentioned people these days insisting that if we only invest in solar PV we can stop using fossil fuels and still keep our current lifestyles.”

Greer also explains why so many techno-utopians have such a starry-eyed view of “renewables” like solar panels:

“The result of [decades of development] can be summed up quite readily: the only people who think that an energy-intensive modern lifestyle can be supported entirely on solar PV are those who’ve never tried it. You can get a modest amount of electrical power intermittently from PV cells; if you cover your roof with PV cells and have a grid tie-in that credits you at a subsidized rate, you can have all the benefits of fossil fuel-generated electricity and still convince yourself that you’re not dependent on fossil fuels; but if you go off-grid, you’ll quickly learn the hard limits of solar PV.”

Greer is not alone in having to spell this out.  The first article I read yesterday morning was a new post from Tim Morgan on his Surplus Energy Economics blog, where he makes the case that even if we were not facing a climate emergency, our dependence upon fossil fuels still dooms our civilisation to an imminent collapse:

“Far from ensuring ‘business as usual’, continued reliance on fossil fuel energy would have devastating economic consequences. As is explained here, the world economy is already suffering from these effects, and these have prompted the adoption of successively riskier forms of financial manipulation in a failed effort to sustain economic ‘normality’.”

The reason is what Morgan refers to as the rapidly-rising “energy cost of energy” (ECoE) – a calculation related to Net Energy and Energy Return on Energy Invested (EROI).  Put simply, industrial civilisation has devoured each fossil fuel beginning with the cheapest and easiest deposits and then falling back on ever harder and more expensive deposits as these run out.  The result is that the amount of surplus energy left over to grow the economy after we have invested in energy for the future and in the maintenance and repair of the infrastructure we have already developed gets smaller and harder to obtain with each passing month.

Morgan sets out four factors which determine the Energy Cost of Energy:

  • Geographical reach – as local deposits are exhausted, we are obliged to go further afield for replacements.
  • Economies of scale – as our infrastructure develops, we rationalise it in order to keep costs to a minimum; for example, having a handful of giant oil refineries rather than a large number of small ones. Unfortunately, this is a one-off gain, after which the cost of maintenance and repair results in diminishing returns.
  • Depletion – most of the world’s oil and coal deposits are now in decline, after providing the basis for the development of industrial civilisation. Without replacement, depletion dooms us to some form of degrowth.
  • Technology – the development of technologies that provide a greater return for the energy invested can offset some of the rising ECoE, but like economies of scale, they come with diminishing returns and are ultimately limited by the laws of thermodynamics:

“To be sure, advances in technology can mitigate the rise in ECoEs, but technology is limited by the physical properties of the resource. Advances in techniques have reduced the cost of shale liquids extraction to levels well below the past cost of extracting those same resources, but have not turned America’s tight sands into the economic equivalent of Saudi Arabia’s al Ghawar, or other giant discoveries of the past.

“Physics does tend to have the last word.”

Morgan argues that by focusing solely on financial matters, mainstream economics misses the central role of surplus energy in the economy:

“According to SEEDS – the Surplus Energy Economics Data System – world trend ECoE rose from 2.9% in 1990 to 4.1% in 2000. This increase was more than enough to stop Western prosperity growth in its tracks.

“Unfortunately, a policy establishment accustomed to seeing all economic developments in purely financial terms was at a loss to explain this phenomenon, though it did give it a name – “secular stagnation”.

“Predictably, in the absence of an understanding of the energy basis of the economy, recourse was made to financial policies in order to ‘fix’ this slowdown in growth.

“The first such initiative was credit adventurism. It involved making debt easier to obtain than ever before. This approach was congenial to a contemporary mind-set which saw ‘deregulation’ as a cure for all ills.”

The inevitable result was the financial crash in 2008, when unrepayable debt threatened to unwind the entire global financial system.  And while the financial crisis has been temporarily offset by more of the same medicine – quantitative easing and interest rate cuts – it has been the continued expansion of emerging markets that has actually kept the system limping along:

“World average prosperity per capita has declined only marginally since 2007, essentially because deterioration in the West has been offset by continued progress in the emerging market (EM) economies. This, though, is nearing its point of inflexion, with clear evidence now showing that the Chinese economy, in particular, is in very big trouble.

“As you’d expect, these trends in underlying prosperity have started showing up in ‘real world’ indicators, with trade in goods, and sales of everything from cars and smartphones to computer chips and industrial components, now turning down. As the economy of ‘stuff’ weakens, a logical consequence is likely to be a deterioration in demand for the energy and other commodities used in the supply of “stuff”.

“Simply stated, the economy has now started to shrink, and there are limits to how long we can hide this from ourselves by spending ever larger amounts of borrowed money.”

The question this raises is not simply, can we replace fossil fuels with non-renewable renewable energy-harvesting technologies (Morgan refers to them as “secondary applications of primary energy from fossil fuels”) but can we deploy them at an ECoE that allows us to avoid the collapse of industrial civilisation?  Morgan argues not.  The techno-utopian bad habit of applying Moore’s Law to every technology has allowed economists and politicians to assume that the cost of non-renewable renewable energy-harvesting technologies will keep halving even as the energy they generate continues to double.  However:

“[W]e need to guard against the extrapolatory fallacy which says that, because the ECoE of renewables has declined by x% over y number of years, it will fall by a further x% over the next y. The problem with this is that it ignores the limits imposed by the laws of physics.”

More alarming, however, is the high ECoE of non-renewable renewable energy-harvesting technologies; despite their becoming cheaper than some fossil fuel deposits:

“…there can be no assurance that the ECoE of a renewables-based energy system can ever be low enough to sustain prosperity. Back in the ‘golden age’ of prosperity growth (in the decades immediately following 1945), global ECoE was between 1% and 2%. With renewables, the best that we can hope for might be an ECoE stable at perhaps 8%, far above the levels at which prosperity deteriorates in the West, and ceases growing in the emerging economies.”

At this point, no doubt, some readers at least will be asking Morgan why he dislikes “renewables” so much.  And his answer is the same as Greer’s and my own:

“These cautions do not, it must be stressed, undermine the case for transitioning from fossil fuels to renewables. After all, once we understand the energy processes which drive the economy, we know where continued dependency on ever-costlier fossil fuels would lead.

“There can, of course, be no guarantees around a successful transition to renewable forms of energy. The slogan “sustainable development” has been adopted by the policy establishment because it seems to promise the public that we can tackle environmental risk without inflicting economic hardship, or even significant inconvenience.”

Morgan’s broad point here is that there is a false dichotomy between addressing environmental concerns and maintaining economic growth.  The economy is toast irrespective of whether we address environment crises or not.  There is not enough fossil fuel energy to prevent he system from imploding – the only real question to be answered is whether we continue with business as usual until we crash and burn or whether we take at least some mitigating actions to preserve a few of the beneficial aspects of the last 250 years of economic development.  After all, having clean drinking water, enough food to ward off starvation and some basic health care would make the coming collapse easier than it otherwise might be.

The problem, however, is that even with the Herculean efforts to deploy non-renewable renewable energy-harvesting technologies in the decades since the oil crisis in 1973, they still only account for four percent of our primary energy.  As Morgan cautions, it is too easy for westerners to assume that our total energy consumption is entirely in the gas and electricity we use at home and in the fuel we put in the tanks of our vehicles.  In reality this is but a tiny fraction of our energy use (and carbon footprint) with most of our energy embodied within all of the goods and services we consume.  Not only does fossil fuel account for more than 85 percent of the world’s primary energy, but both BP and the International Energy Agency reports for 2018 show that fossil fuel consumption is growing at a faster rate than non-renewable renewable energy-harvesting technologies are being installed.

Nor is there a green new deal route out of this problem.  As a recent letter to the UK’s Committee on Climate Change, authored by Natural History Museum Head of Earth Sciences Prof Richard Herrington et al., warns:

“To replace all UK-based vehicles today with electric vehicles (not including the LGV and HGV fleets), assuming they use the most resource-frugal next-generation NMC 811 batteries, would take 207,900 tonnes cobalt, 264,600 tonnes of lithium carbonate (LCE), at least 7,200 tonnes of neodymium and dysprosium, in addition to 2,362,500 tonnes copper. This represents, just under two times the total annual world cobalt production, nearly the entire world production of neodymium, three quarters the world’s lithium production and at least half of the world’s copper production during 2018. Even ensuring the annual supply of electric vehicles only, from 2035 as pledged, will require the UK to annually import the equivalent of the entire annual cobalt needs of European industry…

“There are serious implications for the electrical power generation in the UK needed to recharge these vehicles. Using figures published for current EVs (Nissan Leaf, Renault Zoe), driving 252.5 billion miles uses at least 63 TWh of power. This will demand a 20% increase in UK generated electricity.

“Challenges of using ‘green energy’ to power electric cars: If wind farms are chosen to generate the power for the projected two billion cars at UK average usage, this requires the equivalent of a further years’ worth of total global copper supply and 10 years’ worth of global neodymium and dysprosium production to build the windfarms.

“Solar power is also problematic – it is also resource hungry; all the photovoltaic systems currently on the market are reliant on one or more raw materials classed as “critical” or “near critical” by the EU and/ or US Department of Energy (high purity silicon, indium, tellurium, gallium) because of their natural scarcity or their recovery as minor-by-products of other commodities. With a capacity factor of only ~10%, the UK would require ~72GW of photovoltaic input to fuel the EV fleet; over five times the current installed capacity. If CdTe-type photovoltaic power is used, that would consume over thirty years of current annual tellurium supply.

“Both these wind turbine and solar generation options for the added electrical power generation capacity have substantial demands for steel, aluminium, cement and glass.”

Put simply, there is not enough Planet Earth left for us to grow our way to sustainability.  The only option open to us is to rapidly shrink our activities and our population back to something that can be sustained without further depleting the planet we depend upon.  Continue with business as usual and Mother Nature is going to do to us what we did to the dodo and the passenger pigeon.  Begin taking some radical action – which still allows the use of some resources and fossil fuels – to switch from an economy of desires to one of needs and at least a fewhumans might survive what is coming.

The final problem, though, is that very few people – including many of those who protest government inaction on the environment – are prepared to make the sacrifices required.  Nor are our corporations and institutions prepared to forego their power and profits for the greater good.  And that leaves us with political structures that will inevitably favour business as usual.

So no, I don’t hate “renewables” – I just regard those who blithely claim that we can deploy and use them to replace fossil fuels without breaking a sweat to be as morally bankrupt as any climate change denying politician you care to mention.  There is a crash on the horizon, the likes of which we haven’t seen since the fourteenth century.  When the energy cost of securing energy – whether fossil fuel, nuclear or renewable – exceeds the energy cost of sustaining the system; our ability to take mitigating action will be over.  Exactly when this is going to happen is a matter of speculation (we should avoid mistaking inevitability for imminence).  Nevertheless, the window for taking action is closing fast; and promising Bright Green utopias as we slide over the cliff edge is not helping anybody.





Why stimulus can’t fix our energy problems

11 07 2019

If EVER you needed proof there is no energy transition happening, and that growth in fossil fuels consumption is increasing, or that without de-industrialization there is no way known we’ll avoid catastrophic climate change, then this article by Gail Tverberg is it……..

The years during which the quantities of material resources cease to grow correspond almost precisely to recessionary years.

Furthermore, Gail’s “2% lag” mentioned below proves the global economy is in serious trouble. Here in Australia for instance, car sales have been dropping for fourteen months straight……

Posted on July 10, 2019 by Gail Tverberg

Economists tell us that within the economy there is a lot of substitutability, and they are correct. However, there are a couple of not-so-minor details that they overlook:

  • There is no substitute for energy. It is possible to harness energy from another source, or to make a particular object run more efficiently, but the laws of physics prevent us from substituting something else for energy. Energy is required whenever physical changes are made, such as when an object is moved, or a material is heated, or electricity is produced.
  • Supplemental energy leverages human energy. The reason why the human population is as high as it is today is because pre-humans long ago started learning how to leverage their human energy (available from digesting food) with energy from other sources. Energy from burning biomass was first used over one million years ago. Other types of energy, such as harnessing the energy of animals and capturing wind energy with sails of boats, began to be used later. If we cut back on our total energy consumption in any material way, humans will lose their advantage over other species. Population will likely plummet because of epidemics and fighting over scarce resources.

Many people appear to believe that stimulus programs by governments and central banks can substitute for growth in energy consumption. Others are convinced that efficiency gains can substitute for growing energy consumption. My analysis indicates that workarounds, in the aggregate, don’t keep energy prices high enough for energy producers. Oil prices are at risk, but so are coal and natural gas prices. We end up with a different energy problem than most have expected: energy prices that remain too low for producers. Such a problem can have severe consequences.

Let’s look at a few of the issues involved:

[1] Despite all of the progress being made in reducing birth rates around the globe, the world’s population continues to grow, year after year.

Figure 1. 2019 World Population Estimates of the United Nations. Source: https://population.un.org/wpp/Download/Standard/Population/

Advanced economies in particular have been reducing birth rates for many years. But despite these lower birthrates, world population continues to rise because of the offsetting impact of increasing life expectancy. The UN estimates that in 2018, world population grew by 1.1%.

[2] This growing world population leads to a growing use of natural resources of every kind.

There are three reasons we might expect growing use of material resources:

(a) The growing world population in Figure 1 needs food, clothing, homes, schools, roads and other goods and services. All of these needs lead to the use of more resources of many different types.

(b) The world economy needs to work around the problems of an increasingly resource-constrained world. Deeper wells and more desalination are required to handle the water needs of a rising population. More intensive agriculture (with more irrigation, fertilization, and pest control) is needed to harvest more food from essentially the same number of arable acres. Metal ores are increasingly depleted, requiring more soil to be moved to extract the ore needed to maintain the use of metals and other minerals. All of these workarounds to accommodate a higher population relative to base resources are likely to add to the economy’s material resource requirements.

(c) Energy products themselves are also subject to limits. Greater energy use is required to extract, process, and transport energy products, leading to higher costs and lower net available quantities.

Somewhat offsetting these rising resource requirements is the inventiveness of humans and the resulting gradual improvements in technology over time.

What does actual resource use look like? UN data summarized by MaterialFlows.net shows that extraction of world material resources does indeed increase most years.

Figure 2. World total extraction of physical materials used by the world economy, calculated using  weight in metric tons. Chart is by MaterialFlows.net. Amounts shown are based on the Global Material Flows Database of the UN International Resource Panel. Non-metallic minerals include many types of materials including sand, gravel and stone, as well as minerals such as salt, gypsum and lithium.

[3] The years during which the quantities of material resources cease to grow correspond almost precisely to recessionary years.  

If we examine Figure 2, we see flat periods or periods of actual decline at the following points: 1974-75, 1980-1982, 1991, and 2008-2009. These points match up almost exactly with US recessionary periods since 1970:

Figure 3. Dates of US recessions since 1970, as graphed by the Federal Reserve of St. Louis.

The one recessionary period that is missed by the Figure 2 flat periods is the brief recession that occurred about 2001.

[4] World energy consumption (Figure 4) follows a very similar pattern to world resource extraction (Figure 2).

Figure 4. World Energy Consumption by fuel through 2018, based on 2019 BP Statistical Review of World Energy. Quantities are measured in energy equivalence. “Other Renew” includes a number of kinds of renewables, including wind, solar, geothermal, and sawdust burned to provide electricity. Biofuels such as ethanol are included in “Oil.”

Note that the flat periods are almost identical to the flat periods in the extraction of material resources in Figure 2. This is what we would expect, if it takes material resources to make goods and services, and the laws of physics require that energy consumption be used to enable the physical transformations required for these goods and services.

[5] The world economy seems to need an annual growth in world energy consumption of at least 2% per year, to stay away from recession.

There are really two parts to projecting how much energy consumption is needed:

  1. How much growth in energy consumption is required to keep up with growing population?
  2. How much growth in energy consumption is required to keep up with the other needs of a growing economy?

Regarding the first item, if the population growth rate continues at a rate similar to the recent past (or slightly lower), about 1% growth in energy consumption is needed to match population growth.

To estimate how much growth in energy supply is needed to keep up with the other needs of a growing economy, we can look at per capita historical relationships:

Figure 5. Three-year average growth rates of energy consumption and GDP. Energy consumption growth per capita uses amounts provided in BP 2019 Statistical Review of World Energy. World per capita GDP amounts are from the World Bank, using GDP on a 2010 US$ basis.

The average world per capita energy consumption growth rate in non-recessionary periods varies as follows:

  • All years: 1.5% per year
  • 1970 to present: 1.3% per year
  • 1983 to present: 1.0% per year

Let’s take 1.0% per year as the minimum growth in energy consumption per capita required to keep the economy functioning normally.

If we add this 1% to the 1% per year expected to support continued population growth, the total growth in energy consumption required to keep the economy growing normally is about 2% per year.

Actual reported GDP growth would be expected to be higher than 2%. This occurs because the red line (GDP) is higher than the blue line (energy consumption) on Figure 5. We might estimate the difference to be about 1%. Adding this 1% to the 2% above, total reported world GDP would be expected to be about 3% in a non-recessionary environment.

There are several reasons why reported GDP might be higher than energy consumption growth in Figure 5:

  • A shift to more of a service economy, using less energy in proportion to GDP growth
  • Efficiency gains, based on technological changes
  • Possible intentional overstatement of reported GDP amounts by some countries to help their countries qualify for loans or to otherwise enhance their status
  • Intentional or unintentional understatement of inflation rates by reporting countries

[6] In the years subsequent to 2011, growth in world energy consumption has fallen behind the 2% per year growth rate required to avoid recession.

Figure 7 shows the extent to which energy consumption growth has fallen behind a target growth rate of 2% since 2011.

Figure 6. Indicated amounts to provide 2% annual growth in energy consumption, as well as actual increases in world energy consumption since 2011. Deficit is calculated as Actual minus Required at 2%. Historical amounts from BP 2019 Statistical Review of World Energy.

[7] The growth rates of oil, coal and nuclear have all slowed to below 2% per year since 2011. While the consumption of natural gas, hydroelectric and other renewables is still growing faster than 2% per year, their surplus growth is less than the deficit of oil, coal and nuclear.  

Oil, coal, and nuclear are the types of energy whose growth has lagged below 2% since 2011.

Figure 7. Oil, coal, and nuclear growth rates have lagged behind the target 2% growth rate. Amounts based on data from BP’s 2019 Statistical Review of World Energy.

The situations behind these lagging growth rates vary:

  • Oil. The slowdown in world oil consumption began in 2005, when the price of oil spiked to the equivalent of $70 per barrel (in 2018$). The relatively higher cost of oil compared with other fuels since 2005 has encouraged conservation and the switching to other fuels.
  • Coal. China, especially, has experienced lagging coal production since 2012. Production costs have risen because of depleted mines and more distant sources, but coal prices have not risen to match these higher costs. Worldwide, coal has pollution issues, encouraging a switch to other fuels.
  • Nuclear. Growth has been low or negative since the Fukushima accident in 2011.

Figure 8 shows the types of world energy consumption that have been growing more rapidly than 2% per year since 2011.

Figure 8. Natural gas, hydroelectric, and other renewables (including wind and solar) have been growing more rapidly than 2% since 2011. Amounts based on data from BP’s 2019 Statistical Review of World Energy.

While these types of energy produce some surplus relative to an overall 2% growth rate, their total quantity is not high enough to offset the significant deficit generated by oil, coal, and nuclear.

Also, it is not certain how long the high growth rates for natural gas, hydroelectric, and other renewables can persist. The growth in natural gas may slow because transport costs are high, and consumers are not willing/able to pay for the high delivered cost of natural gas, when distant sources are used. Hydroelectric encounters limits because most of the good sites for dams are already taken. Other renewables also encounter limits, partly because many of the best sites are already taken, and partly because batteries are needed for wind and solar, and there is a limit to how fast battery makers can expand production.

Putting the two groupings together, we obtain the same deficit found in Figure 6.

Figure 9. Comparison of extra energy over targeted 2% growth from natural gas, hydroelectric and other renewables with energy growth deficit from oil, coal and nuclear combined. Amounts based on data from BP’s 2019 Statistical Review of World Energy.

Based on the above discussion, it seems likely that energy consumption growth will tend to lag behind 2% per year for the foreseeable future.

[8] The economy needs to produce its own “demand” for energy products, in order to keep prices high enough for producers. When energy consumption growth is below 2% per year, the danger is that energy prices will fall below the level needed by energy producers.

Workers play a double role in the economy:

  • They earn wages, based on their jobs, and
  • They are the purchasers of goods and services.

In fact, low-wage workers (the workers that I sometimes call “non-elite workers”) are especially important, because of their large numbers and their role in buying many items that use significant amounts of energy. If these workers aren’t earning enough, they tend to cut back on their discretionary buying of homes, cars, air conditioners, and even meat. All of these require considerable energy in their production and in their use.

High-wage workers tend to spend their money differently. Most of them have already purchased as many homes and vehicles as they can use. They tend to spend their extra money differently–on services such as private education for their children, or on investments such as shares of stock.

An economy can be configured with “increased complexity” in order to save energy consumption and costs. Such increased complexity can be expected to include larger companies, more specialization and more globalization. Such increased complexity is especially likely if energy prices rise, increasing the benefit of substitution away from the energy products. Increased complexity is also likely if stimulus programs provide inexpensive funds that can be used to buy out other firms and for the purchase of new equipment to replace workers.

The catch is that increased complexity tends to reduce demand for energy products because the new way the economy is configured tends to increase wage disparity. An increasing share of workers are replaced by machines or find themselves needing to compete with workers in low-wage countries, lowering their wages. These lower wages tend to lower the demand of non-elite workers.

If there is no increase in complexity, then the wages of non-elite workers can stay high. The use of growing energy supplies can lead to the use of more and better machines to help non-elite workers, and the benefit of those machines can flow back to non-elite workers in the form of higher wages, reflecting “higher worker productivity.” With the benefit of higher wages, non-elite workers can buy the energy-consuming items that they prefer. Demand stays high for finished goods and services. Indirectly, it also stays high for commodities used in the process of making these finished goods and services. Thus, prices of energy products can be as high as needed, so as to encourage production.

In fact, if we look at average annual inflation-adjusted oil prices, we find that 2011 (the base year in Sections [6] and [7]) had the single highest average price for oil.1 This is what we would expect, if energy consumption growth had been adequate immediately preceding 2011.

Figure 10. Historical inflation-adjusted Brent-equivalent oil prices based on data from 2019 BP Statistical Review of World Energy.

If we think about the situation, it not surprising that the peak in average annual oil prices took place in 2011, and the decline in oil prices has coincided with the growing net deficit shown in Figures 6 and 9. There was really a double loss of demand, as growth in energy use slowed (reducing direct demand for energy products) and as complexity increased (shifting more of the demand to high-wage earners and away from the non-elite workers).

What is even more surprising is that fact that the prices of fuels in general tend to follow a similar pattern (Figure 11). This strongly suggests that demand is an important part of price setting for energy products of all kinds. People cannot buy more goods and services (made and transported with energy products) than they can afford over the long term.

Figure 11. Comparison of changes in oil prices with changes in other energy prices, based on time series of historical energy prices shown in BP’s 2019 Statistical Review of World Energy. The prices in this chart are not inflation-adjusted.

If a person looks at all of these charts (deficits in Figures 6 and 9 and oil and energy prices in general from Figures 10 and 11) for the period 2011 onward, there is a very distinct pattern. There is at first a slow slide down, then a fast slide down, followed (at the end) by an uptick. This is what we should expect, if low energy growth is leading to low prices for energy products in general.

[9] There are two different ways that oil and other energy prices can damage the economy: (a) by rising too high for consumers or (b) by falling too low for producers to have funds for reinvestment, taxes and other needs. The danger at this point is from (b), energy prices falling too low for producers.  

Many people believe that the only energy problem that an economy can have is prices that are too high for consumers. In fact, energy prices seemed to be very high in the lead-ups to the 1974-1975 recession, the 1980-1982 recession, and the 2008-2009 recession. Figure 5 shows that the worldwide growth in energy consumption was very high in the lead-up to all three of these recessions. In the two earlier time periods, the US, Europe, and the Soviet Union were all growing their economies, leading to high demand. Preceding the 2008-2009 Great Recession, China was growing its economy very rapidly at the same time the US was providing low-interest rate rates for home purchases, some of them to subprime borrowers. Thus, demand was very high at that time.

The 1974-75 recession and the 1980-1982 recession were fixed by raising interest rates. The world economy was overheating with all of the increased leveraging of human energy with energy products. Higher short-term interest rates helped bring growth in energy prices (as well as food prices, which are very dependent on energy consumption) down to a more manageable level.

Figure 12. Three-month and ten-year interest rates through May 2019, in chart by Federal Reserve of St. Louis.

There was really a two-way interest rate fix related to the Great Recession of 2008-2009. First, when oil and other energy prices started to spike, the US Federal Reserve raised short term interest rates in the mid 2000s. This, by itself, was almost enough to cause recession. When recession started to set in, short-term interest rates were brought back down. Also, in late 2008, when oil prices were very low, the US began using Quantitative Easing to bring longer-term interest rates down, and the price of oil back up.

Figure 13. Monthly Brent oil prices with dates of US beginning and ending Quantitative Easing.

There is one recession that seems to have been the result of low oil prices, perhaps combined with other factors. That is the recession that was associated with the collapse of the central government of the Soviet Union in 1991.

[10] The recession that comes closest to the situation we seem to be heading into is the one that affected the world economy in 1991 and shortly thereafter.

If we look at Figures 2 and 5, we can see that the recession that occurred in 1991 had a moderately severe effect on the world economy. Looking back at what happened, this situation occurred when the central government of the Soviet Union collapsed after 10 years of low oil prices (1982-1991). With these low prices, the Soviet Union had not been earning enough to reinvest in new oil fields. Also, communism had proven to be a fairly inefficient method of operating the economy. The world’s self-organizing economy produced a situation in which the central government of the Soviet Union collapsed. The effect on resource consumption was very severe for the countries most involved with this collapse.

Figure 14. Total extraction of physical materials Eastern Europe, Caucasus and Central Asia, in chart by MaterialFlows.net. Amounts shown are based on the Global Material Flows Database of the UN International Resource Panel.

World oil prices have been falling too low, at least since 2012. The biggest decreases in prices have come since 2014. With energy prices already very low compared to what producers need, there is a need right now for some type of stimulus. With interest rates as low as they are today, it will be very difficult to lower interest rates much further.

Also, as we have seen, debt-related stimulus is not very effective at raising energy prices unless it actually raises energy consumption. What works much better is energy supply that is cheap and abundant enough that supply can be ramped up at a rate well in excess of 2% per year, to help support the growth of the economy. Suitable energy supply should be inexpensive enough to produce that it can be taxed heavily, in order to help support the rest of the economy.

Unfortunately, we cannot just walk away from economic growth because we have an economy that needs to continue to expand. One part of this need is related to the world’s population, which continues to grow. Another part of this need relates to the large amount of debt that needs to be repaid with interest. We know from recent history (as well as common sense) that when economic growth slows too much, repayment of debt with interest becomes a problem, especially for the most vulnerable borrowers. Economic growth is also needed if businesses are to receive the benefit of economies of scale. Ultimately, an expanding economy can be expected to benefit the price of a company’s stock.

Observations and Conclusions

Perhaps the best way of summing up how my model of the world economy differs from other ones is to compare it to popular other models.

The Peak Oil model says that our energy problem will be an oil supply problem. Some people believe that oil demand will rise endlessly, allowing prices to rise in a pattern following the ever-rising cost of extraction. In the view of Peak Oilers, a particular point of interest is the date when the supply of oil “peaks” and starts to decline. In the view of many, the price of oil will start to skyrocket at that point because of inadequate supply.

To their credit, Peak Oilers did understand that there was an energy bottleneck ahead, but they didn’t understand how it would work. While oil supply is an important issue, and in fact, the first issue that starts affecting the economy, total energy supply is an even more important issue. The turning point that is important is when energy consumption stops growing rapidly enough–that is, greater than the 2% per year needed to support adequate economic growth.

The growth in oil consumption first fell below the 2% level in 2005, which is the year some that some observers have claimed that “conventional” (that is, free flowing, low-cost) oil production peaked. If we look at all types of energy consumption combined, growth fell below the critical 2% level in 2012. Both of these issues have made the world economy more vulnerable to recession. We experienced a recession based on prices that were too high for consumers in 2008-2009. It appears that the next bottleneck may be caused by energy prices that are too low for producers.

Recessions that are based on prices that are too low for the producer are the more severe type. For one thing, such recessions cannot be fixed by a simple interest rate fix. For another, the timing is unpredictable because a problem with low prices for the producer can linger for quite a few years before it actually leads to a major collapse. In fact, individual countries affected by low energy prices, such as Venezuela, can collapse before the overall system collapses.

While the Peak Oil model got some things right and some things wrong, the models used by most conventional economists, including those included in the various IPCC reports, are far more deficient. They assume that energy resources that seem to be in the ground can actually be extracted. They see no limitations caused by prices that are too high for consumers or too low for producers. They do not realize that affordable energy prices can actually fall over time, as the economy weakens.

Conventional economists assume that it is possible for politicians to direct the economy along lines that they prefer, even if doing so contradicts the laws of physics. In particular, they assume that the economy can be made to operate with much less energy consumption than is used today. They assume that we collectively can decide to move away from coal consumption, without having another fuel available that can adequately replace coal in quantity and uses.

History shows that the collapse of economies is very common. Collectively, we have closed our eyes to this possibility ever happening to the world economy in the modern era. If the issue with collapsing demand causing ever-lower energy prices is as severe as my analysis indicates, perhaps we should be examining this scenario more closely.

Note:

[1] There was a higher spike in oil prices in 2008, but averaged over the whole year, the 2008 price was lower than the continued high prices of 2011.





“Renewables” – reality or illusion?

27 03 2019

ERIK MICHAELS·WEDNESDAY, MARCH 27, 2019

Originally posted in the Methane News Group (a considerable additional amount of information and discussion can only be seen by joining): https://www.facebook.com/groups/methanehydratesnews/

Lately I have fielded some rather interesting perspectives on “solutions” to climate change; not just here but in many other groups as well. I have pointed out that the ideas proposed as solutions are in fact just ideas; most of which require substantial amounts of energy not only to build, transport, erect, maintain, and replace at the end of their service life, but most of which serve no useful purpose to any other life form on this planet but us. Not only are these ideas unsustainable; if they don’t benefit other species, then they are ecologically extinct. Building a sustainable future means that we must incorporate ideas and things that interact with our biosphere in a manner that provides some sort of ecosystem service.

“Renewables” do not fit that description, so they are patently unsustainable.Ladies and Gentlemen, “optimism must be based in reality. If hope becomes something that you express through illusion, then it isn’t hope; it’s fantasy.” — Chris Hedges

I have spent a great deal of time lately discussing the issue of “renewables” and since this has been so pervasive as of late, I decided to draft a new file specifically for this purpose of outlining the facts.Before proceeding, please view this short video featuring Chris Hedges: https://vimeo.com/293802639

Recently, I discussed the fact that “renewables” are not a solution, and in fact, are actually making our existing predicaments worse. A considerable number of individuals are questioning these facts using all types of logical fallacies. I understand these questions; as I once thought that “renewable” energy and “green” energy and other ideas would save us as well – as little as 5 years ago. As I joined more climate change groups, I recognized the constantly repeating attack on these devices as non-solutions; so I decided to find out for myself once and for all, precisely whether they would work or not.Before going into further detail, I need to explain that IF these devices had been developed and installed back in the 1970s and 80s, along with serious efforts to quell population growth and tackling other unsustainable practices, they may have been beneficial.

However, the popular conclusion is not simply that they do not work (to serve their original intended purpose); but that they are actually causing more trouble than if they hadn’t been built at all. Many claim that these “solutions” are better than utilizing fossil energy; but this too, is an illusion. Having said that, please note that this article is in NO WAY promoting fossil energy; fossil energy use is every bit as bad, if not worse, than these devices; AND its use created the desire to build these devices in the first place.

Many people are utilizing a false dichotomy to justify continuing to build and use these devices. Using them creates no real desire to learn how to live without externally-produced energy, a loss we ALL face as time moves forward. Once the fossil fuel platform that these devices currently depend on disappears, so will the devices. Some individuals claim that we can continue to extract resources, manufacture, transport, and erect these devices after fossil energy is no longer available. This is true only on a MUCH smaller scale than the energy systems we have today, and only in small localities. On top of that, the systems of the future will continue to degrade over time and eventually, electricity will disappear altogether. Given this imminent fact, it makes little sense to continue building these devices, recognizing the environmental damage they are causing which only promotes the continued use of fossil energy as well.In order to comprehend why these devices are such a delusion, one must understand many different predicaments at once.

First, an understanding of energy and resource decline is critical. Secondly, a thorough understanding of pollution loading is essential, especially of the electronics, rare earths, mining, metals, plastics, and transportation industries. Understanding climate change and how our energy “addiction” has propelled it and continues to fuel it is absolutely necessary. Comprehension of biology along with the ecological and environmental degradation of habitat destruction and fragmentation is also necessary.

New information is constantly being made available as well, highlighting yet more reasons to stop building these devices. They are little more than energy “traps” that chain us to the same paradigm that is already killing life on this planet. The secret to resolving these issues isn’t a “new or different” energy source. It is eliminating the energy addiction altogether.The reason that eliminating energy addiction altogether is the only real strategy towards living a sustainable lifestyle is because of one seriously inconvenient fact: the diminishing returns on increasing complexity along with the fact that continuing to build these devices requires the continuation of mining, energy use, and industrial civilization – the very things killing all life on this planet.

As a system increases its complexity, the returns on that increasing complexity decrease. As we find more new ways to reduce the harm caused by energy use, misuse, and abuse, we continue to increase the complexity of producing said energy. Resistance and friction cause losses in motors, and inefficiency and sheer transmission losses produce yet further losses in all electrical systems. All these losses produce waste heat, no differently than traditional mechanical systems.

There is NO system that can be made 100% efficient, so there will ALWAYS be losses. This waste heat does nothing but add to the existing predicaments we already face; considering that in order to produce the energy to begin with, one must also pollute our atmosphere, water, and soil with toxins and byproducts of the processes themselves. Watch these three videos to understand why building each of these devices is a disaster in and of itself to wildlife around it. Focus on the devastation of the land that each unit sits on, as well as the habitat fragmentation caused by each road:

https://www.youtube.com/watch?v=mwwlxlMoVVQ

https://www.youtube.com/watch?v=84BeVq2Jm88

https://www.youtube.com/watch?v=1AAHJs-j3uw

Here is a handy reference guide about “renewables” with frequently asked questions:

https://deepgreenresistance.org/en/who-we-are/faqs/green-technology-renewable-energy Here are some links to more information that will help you understand WHY “renewable” energy is NOT a solution to climate change in any way, shape, or form:

  1. http://www.sixthtone.com/news/1002631/the-dark-side-of-chinas-solar-boom-
  2. https://www.wired.co.uk/article/lithium-batteries-environment-impact
  3. https://phys.org/news/2018-05-e-waste-wrong.html
  4. http://www.bbc.com/future/story/20150402-the-worst-place-on-earth
  5. https://www.scmp.com/news/china/society/article/2104162/chinas-ageing-solar-panels-are-going-be-big-environmental-problem
  6. https://www.nationalreview.com/2017/06/solar-panel-waste-environmental-threat-clean-energy/
  7. https://www.city-journal.org/wind-power-is-not-the-answer
  8. https://www.resilience.org/stories/2018-08-01/an-engineer-an-economist-and-an-ecomodernist-walk-into-a-bar-and-order-a-free-lunch/
  9. https://news.harvard.edu/gazette/story/2018/10/large-scale-wind-power-has-its-down-side/
  10. https://iopscience.iop.org/article/10.1088/1748-9326/aae102
  11. https://phys.org/news/2018-11-farm-predator-effect-ecosystems.html
  12. https://www.theatlantic.com/science/archive/2018/05/how-do-aliens-solve-climate-change/561479/
  13. https://patzek-lifeitself.blogspot.com/2018/10/all-is-well-on-our-planet-earth-isnt-it.html
  14. https://www.versobooks.com/blogs/3797-end-the-green-delusions-industrial-scale-renewable-energy-is-fossil-fuel

On a particular thread which featured the story link above, I wrote this detailed observation: “Ecocide is continuing BAU, which is precisely what “renewables” will allow for. They are nothing but a distraction for three reasons:

1. Building “renewables” does nothing to solve the predicament of energy use and energy growth. Replacing one type of energy with another is doing nothing but choosing a slightly less evil bad choice.

2. “Renewable” energy will never be able to replace the concentrated energy available in fossil fuels, and this fact is missed by both the MSM and most people in society. This is a recipe for disaster as the amount of fossil energy available inevitably dwindles and countries begin to fight for survival.

3. “Renewables” can not replace fossil energy in another way besides concentration of energy – each popular device such as solar panels and wind turbines only last around 20 years. This is if they survive that long – many have met an early demise due to extreme weather events. So not only do they represent a never-ending merry-go-round of maintain and replace, rinse and repeat; but due to continued energy growth, more are constantly needed as well. That is precisely what makes them every bit as unsustainable as fossil fuels.

4. Now, for a fourth issue that hasn’t been mentioned in the first three – building “renewables” doesn’t serve any truly needed service. Human beings and all other life forms on this planet don’t actually require external electricity in order to survive. So the ONLY species that benefits from building these devices is us. Sadly, building these devices kills off species through habitat destruction and habitat fragmentation along with pollution loading and other causes.

So in effect, these not only don’t solve the issue they were designed for, they continue the same ecological destruction that we are accomplishing through utilizing fossil energy. As we continue pulling the Jenga blocks out of the tree of life, how long will it be before we unwittingly become functionally extinct through using these to continue BAU? As one can clearly see, if humans want to continue living, they have no choice but to reduce fossil and all other energy use and bring it down to zero very quickly.

Sadly, I have little doubt that this will not be accomplished in any kind of reasonable time frame, IF AT ALL (we are currently going the wrong direction and have been for the last two decades DESPITE these devices having been built and installed), given what has transpired over the previous five decades even though we’ve known about these predicaments since then.” Here are several links to files that contain yet more links to more info:





Is peak everything just around the corner?

15 01 2019

What Happened in 2015 that Changed the World? Peak Civilization, Maybe?

“Peak Cement” may have taken place in 2015, stopping the exponentially growing curve that would have led us to turn the Earth into a bowling ball, similar to the fictional planet Trantor, Galactic capital in Isaac Asimov’s series “Foundation” (image source).

Signs of economic slowdowns are everywhere now….. last night in the news, Alan Kohler showed a chart describing how Chinese car sales flipped from growing at 10% to shrinking at 10%, in just three months, and evidence od Chinese economic collapse are even on mainstream news now…. Retail sales in Australia are taking a hit too.  And now this from Ugo Bardi’s Cassandra’s Legacy…

When giving an example of an exponentially growing production curve, I used to cite cement production. Look at the data up to 2013: a beautiful growing curve with a doubling time of — very roughly — 10 years. Then, if we assume that the current concrete covered area in the world is about 2%  (an average of the data by Schneider et al., 2009and the Global Rural-Urban Mapping Project, 2004) then we would get to Trantor — bowling ball planet — in some 50 years. Of course that wasn’t possible, but it was still a surprise to discover how abrupt the change has been: here are the most recent data (the value for 2018 is still an estimate from cemnet.com)

Impressive, right? Steve Rocco, smart as usual, had already noticed this trend in 2017, but now it is clearer. It looks like a peak, it has the shape of a peak, it gives the impression of a peak. Most likely it is a peak — actually, it could be the start of an irreversible decline in the global cement production. 

Now, what caused the decline? If you look at the disaggregated data, it is clear that the slowdown was mainly created by China, but not just by China. Several countries in the world are going down in terms of cement production — in Italy, the decline started in 2010.

My impression — that I share with the one proposed by Rocco — is that this is not a blip in the curve, nor a special case among the various mineral commodities produced nowadays. It is a symptom of a general problem: it may be the clearest manifestation of the concept of “peak civilization” that the 1972 “Limits to Growth” study had placed for some moment during the 1st or 2nd decades of the 21st century.

Peak Cement is not alone another major peak was detected by Antonio Turiel for diesel fuel in 2015.

And, of course, we know that another major commodity went through a global peak in 2014: coal. (data from bp.com)

So, are we really facing “peak civilization”? It is hard to say. On a time scale of a few years, many things could change and, in any case, you don’t expect peaking to take place at the same time for all mineral commodities, everywhere. A strong indication that the whole world system is peaking would come from the behavior of the global GDP. Rocco had proposed that also the GDP had peaked in 2015, but the data available at present are insufficient to prove that. 

In any case, it has been said that we would see the great peak “in the rear mirror”and this may well be what we are seeing. Whatever is happening it will be clearer in the future but, if it is really “the peak“, expect the Seneca cliff to open up in front of us in the coming years. And maybe it won’t be such a bad thing(*): did we really want to turn the Earth into a bowling ball?





2019: World Economy Is Reaching Growth Limits; Expect Low Oil Prices, Financial Turbulence

10 01 2019

Posted on January 9, 2019 by Gail Tverberg

Another incisive self explanatory article by Gail Tverberg explaining the recent volatility and what outcomes we can expect from that this coming year (and next) MUST READ.

Financial markets have been behaving in a very turbulent manner in the last couple of months. The issue, as I see it, is that the world economy is gradually changing from a growth mode to a mode of shrinkage. This is something like a ship changing course, from going in one direction to going in reverse. The system acts as if the brakes are being very forcefully applied, and reaction of the economy is to almost shake.

What seems to be happening is that the world economy is reaching Limits to Growth, as predicted in the computer simulations modeled in the 1972 book, The Limits to Growth. In fact, the base model of that set of simulations indicated that peak industrial output per capita might be reached right about now. Peak food per capita might be reached about the same time. I have added a dotted line to the forecast from this model, indicating where the economy seems to be in 2019, relative to the base model.

Figure 1. Base scenario from The Limits to Growth, printed using today’s graphics by Charles Hall and John Day in Revisiting Limits to Growth After Peak Oil with dotted line at 2019 added by author. The 2019 line is drawn based on where the world economy seems to be now, rather than on precisely where the base model would put the year 2019.

The economy is a self-organizing structure that operates under the laws of physics. Many people have thought that when the world economy reaches limits, the limits would be of the form of high prices and “running out” of oil. This represents an overly simple understanding of how the system works. What we should really expect, and in fact, what we are now beginning to see, is production cuts in finished goods made by the industrial system, such as cell phones and automobiles, because of affordability issues. Indirectly, these affordability issues lead to low commodity prices and low profitability for commodity producers. For example:

  • The sale of Chinese private passenger vehicles for the year of 2018 through November is down by 2.8%, with November sales off by 16.1%. Most analysts are forecasting this trend of contracting sales to continue into 2019. Lower sales seem to reflect affordability issues.
  • Saudi Arabia plans to cut oil production by 800,000 barrels per day from the November 2018 level, to try to raise oil prices. Profits are too low at current prices.
  • Coal is reported not to have an economic future in Australia, partly because of competition from subsidized renewables and partly because China and India want to prop up the prices of coal from their own coal mines.

The Significance of Trump’s Tariffs

If a person looks at history, it becomes clear that tariffs are a standard response to a problem of shrinking food or industrial output per capita. Tariffs were put in place in the 1920s in the time leading up to the Great Depression, and were investigated after the Panic of 1857, which seems to have indirectly led to the US Civil War.

Whenever an economy produces less industrial or food output per capita there is an allocation problem: who gets cut off from buying output similar to the amount that they previously purchased? Tariffs are a standard way that a relatively strong economy tries to gain an advantage over weaker economies. Tariffs are intended to help the citizens of the strong economy maintain their previous quantity of goods and services, even as other economies are forced to get along with less.

I see Trump’s trade policies primarily as evidence of an underlying problem, namely, the falling affordability of goods and services for a major segment of the population. Thus, Trump’s tariffs are one of the pieces of evidence that lead me to believe that the world economy is reaching Limits to Growth.

The Nature of World Economic Growth

Economic growth seems to require growth in three dimensions (a) Complexity, (b) Debt Bubble, and (c) Use of Resources. Today, the world economy seems to be reaching limits in all three of these dimensions (Figure 2).

Figure 2.

Complexity involves adding more technology, more international trade and more specialization. Its downside is that it indirectly tends to reduce affordability of finished end products because of growing wage disparity; many non-elite workers have wages that are too low to afford very much of the output of the economy. As more complexity is added, wage disparity tends to increase. International wage competition makes the situation worse.

growing debt bubble can help keep commodity prices up because a rising amount of debt can indirectly provide more demand for goods and services. For example, if there is growing debt, it can be used to buy homes, cars, and vacation travel, all of which require oil and other energy consumption.

If debt levels become too high, or if regulators decide to raise short-term interest rates as a method of slowing the economy, the debt bubble is in danger of collapsing. A collapsing debt bubble tends to lead to recession and falling commodity prices. Commodity prices fell dramatically in the second half of 2008. Prices now seem to be headed downward again, starting in October 2018.

Figure 3. Brent oil prices with what appear to be debt bubble collapses marked.

Figure 4. Three-month treasury secondary market rates compared to 10-year treasuries from FRED, with points where short term interest rates exceed long term rates marked by author with arrows.

Even the relatively slow recent rise in short-term interest rates (Figure 4) seems to be producing a decrease in oil prices (Figure 3) in a way that a person might expect from a debt bubble collapse. The sale of US Quantitative Easing assets at the same time that interest rates have been rising no doubt adds to the problem of falling oil prices and volatile stock markets. The gray bars in Figure 4 indicate recessions.

Growing use of resources becomes increasingly problematic for two reasons. One is population growth. As population rises, the economy needs more food to feed the growing population. This leads to the need for more complexity (irrigation, better seed, fertilizer, world trade) to feed the growing world population.

The other problem with growing use of resources is diminishing returns, leading to the rising cost of extracting commodities over time. Diminishing returns occur because producers tend to extract the cheapest to extract commodities first, leaving in place the commodities requiring deeper wells or more processing. Even water has this difficulty. At times, desalination, at very high cost, is needed to obtain sufficient fresh water for a growing population.

Why Inadequate Energy Supplies Lead to Low Oil Prices Rather than High

In the last section, I discussed the cost of producing commodities of many kinds rising because of diminishing returns. Higher costs should lead to higher prices, shouldn’t they?

Strangely enough, higher costs translate to higher prices only sometimes. When energy consumption per capita is rising rapidly (peaks of red areas on Figure 5), rising costs do seem to translate to rising prices. Spiking oil prices were experienced several times: 1917 to 1920; 1974 to 1982; 2004 to mid 2008; and 2011 to 2014. All of these high oil prices occurred toward the end of the red peaks on Figure 5. In fact, these high oil prices (as well as other high commodity prices that tend to rise at the same time as oil prices) are likely what brought growth in energy consumption down. The prices of goods and services made with these commodities became unaffordable for lower-wage workers, indirectly decreasing the growth rate in energy products consumed.

Figure 5.

The red peaks represented periods of very rapid growth, fed by growing supplies of very cheap energy: coal and hydroelectricity in the Electrification and Early Mechanization period, oil in the Postwar Boom, and coal in the China period. With low energy prices,  many countries were able to expand their economies simultaneously, keeping demand high. The Postwar Boom also reflected the addition of many women to the labor force, increasing the ability of families to afford second cars and nicer homes.

Rapidly growing energy consumption allowed per capita output of both food (with meat protein given a higher count than carbohydrates) and industrial products to grow rapidly during these peaks. The reason that output of these products could grow is because the laws of physics require energy consumption for heat, transportation, refrigeration and other processes required by industrialization and farming. In these boom periods, higher energy costs were easy to pass on. Eventually the higher energy costs “caught up with” the economy, and pushed growth in energy consumption per capita down, putting an end to the peaks.

Figure 6 shows Figure 5 with the valleys labeled, instead of the peaks.

Figure 6.

When I say that the world economy is reaching “peak industrial output per capita” and “peak food per capita,” this represents the opposite of a rapidly growing economy. In fact, if the world is reaching Limits to Growth, the situation is even worse than all of the labeled valleys on Figure 6. In such a case, energy consumption growth is likely to shrink so low that even the blue area (population growth) turns negative.

In such a situation, the big problem is “not enough to go around.” While cost increases due to diminishing returns could easily be passed along when growth in industrial and food output per capita were rapidly rising (the Figure 5 situation), this ability seems to disappear when the economy is near limits. Part of the problem is that the lower growth in per capita energy affects the kinds of jobs that are available. With low energy consumption growth, many of the jobs that are available are service jobs that do not pay well. Wage disparity becomes an increasing problem.

When wage disparity grows, the share of low wage workers rises. If businesses try to pass along their higher costs of production, they encounter market resistance because lower wage workers cannot afford the finished goods made with high cost energy products. For example, auto and iPhone sales in China decline. The lack of Chinese demand tends to lead to a drop in demand for the many commodities used in manufacturing these goods, including both energy products and metals. Because there is very little storage capacity for commodities, a small decline in demand tends to lead to quite a large decline in prices. Even a small decline in China’s demand for energy products can lead to a big decline in oil prices.

Strange as it may seem, the economy ends up with low oil prices, rather than high oil prices, being the problem. Other commodity prices tend to be low as well.

What Is Ahead, If We Are Reaching Economic Growth Limits?

1. Figure 1 at the top of this post seems to give an indication of what is ahead after 2019, but this forecast cannot be relied on. A major issue is that the limited model used at that time did not include the financial system or debt. Even if the model seems to provide a reasonably accurate estimate of when limits will hit, it won’t necessarily give a correct view of what the impact of limits will be on the rest of the economy, after limits hit. The authors, in fact, have said that the model should not be expected to provide reliable indications regarding how the economy will behave after limits have started to have an impact on economic output.

2. As indicated in the title of this post, considerable financial volatility can be expected in 2019if the economy is trying to slow itself. Stock prices will be erratic; interest rates will be erratic; currency relativities will tend to bounce around. The likelihood that derivatives will cause major problems for banks will rise because derivatives tend to assume more stability in values than now seems to be the case. Increasing problems with derivatives raises the risk of bank failure.

3. The world economy doesn’t necessarily fail all at once. Instead, pieces that are, in some sense, “less efficient” users of energy may shrink back. During the Great Recession of 2008-2009, the countries that seemed to be most affected were countries such as Greece, Spain, and Italy that depend on oil for a disproportionately large share of their total energy consumption. China and India, with energy mixes dominated by coal, were much less affected.

Figure 7. Oil consumption as a percentage of total energy consumption, based on 2018 BP Statistical Review of World Energy data.

Figure 8. Energy consumption per capita for selected areas, based on energy consumption data from 2018 BP Statistical Review of World Energy and United Nations 2017 Population Estimates by Country.

In the 2002-2008 period, oil prices were rising faster than prices of other fossil fuels. This tended to make countries using a high share of oil in their energy mix less competitive in the world market. The low labor costs of China and India gave these countries another advantage. By the end of 2007, China’s energy consumption per capita had risen to a point where it almost matched the (now lower) energy consumption of the European countries shown. China, with its low energy costs, seems to have “eaten the lunch” of some of its European competitors.

In 2019 and the years that follow, some countries may fare at least somewhat better than others. The United States, for now, seems to be faring better than many other parts of the world.

4. While we have been depending upon China to be a leader in economic growth, China’s growth is already faltering and may turn to contraction in the near future. One reason is an energy problem: China’s coal production has fallen because many of its coal mines have been closed due to lack of profitability. As a result, China’s need for imported energy (difference between black line and top of energy production stack) has been growing rapidly. China is now the largest importer of oil, coal, and natural gas in the world. It is very vulnerable to tariffs and to lack of available supplies for import.

Figure 9. China energy production by fuel plus its total energy consumption, based on BP Statistical Review of World Energy 2018 data.

A second issue is that demographics are working against China; its working-age population already seems to be shrinking. A third reason why China is vulnerable to economic difficulties is because of its growing debt level. Debt becomes difficult to repay with interest if the economy slows.

5. Oil exporters such as Venezuela, Saudi Arabia, and Nigeria have become vulnerable to government overthrow or collapse because of low world oil prices since 2014. If the central government of one or more of these exporters disappears, it is possible that the pieces of the country will struggle along, producing a lower amount of oil, as Libya has done in recent years. It is also possible that another larger country will attempt to take over the failing production of the country and secure the output for itself.

6. Epidemics become increasingly likely, especially in countries with serious financial problems, such as Yemen, Syria, and Venezuela. Historically, much of the decrease in population in countries with collapsing economies has come from epidemics. Of course, epidemics can spread across national boundaries, exporting the problems elsewhere.

7. Resource wars become increasingly likely. These can be local wars, perhaps over the availability of water. They can also be large, international wars. The timing of World War I and World War II make it seem likely that these wars were both resource wars.

Figure 10.

8. Collapsing intergovernmental agencies, such as the European Union, the World Trade Organization, and the International Monetary Fund, seem likely. The United Kingdom’s planned exit from the European Union in 2019 is a step toward dissolving the European Union.

9. Privately funded pension funds will increasingly be subject to default because of continued low interest rates. Some governments may choose to cut back the amounts they provide to pensioners because governments cannot collect adequate tax revenue for this purpose. Some countries may purposely shut down parts of their governments, in an attempt to hold down government spending.

10. A far worse and more permanent recession than that of the Great Recession seems likely because of the difficulty in repaying debt with interest in a shrinking economy. It is not clear when such a recession will start. It could start later in 2019, or perhaps it may wait until 2020. As with the Great Recession, some countries will be affected more than others. Eventually, because of the interconnected nature of financial systems, all countries are likely to be drawn in.

Summary

It is not entirely clear exactly what is ahead if we are reaching Limits to Growth. Perhaps that is for the best. If we cannot do anything about it, worrying about the many details of what is ahead is not the best for anyone’s mental health. While it is possible that this is an end point for the human race, this is not certain, by any means. There have been many amazing coincidences over the past 4 billion years that have allowed life to continue to evolve on this planet. More of these coincidences may be ahead. We also know that humans lived through past ice ages. They likely can live through other kinds of adversity, including worldwide economic collapse.