Not so good news

16 04 2019

This is Tim Watkins at his best I think….. I wish I had time to write well researched articles like this, but I have a flailing mower arriving today, the double glazed windows at the end of the month, and the front wall to build in preparation of this event. Never a dull moment around here.

Put simply, if you cannot turn on your lights, operate your business or recharge your electric car, because there is no electricity, it is little comfort to learn that on a good day the grid is capable of supplying more electricity than you might need.

From the truly amazing Consciousness of Sheep website…

Protesters today intend bringing central London to a standstill by blockading several major arterial roads into the capital.  For once, this has nothing to do with Brexit.  Instead, it concerns the increasingly urgent call for government to “do something” about climate change.  Exactly what that “something” is that must be done is a little less clear, since current environmental concerns are almost always pared down to concern about the carbon dioxide emitted by cars and power stations.  Although how exactly this relates to the mass die-off of species resulting from industrial agriculture and deforestation, or growing oceanic dead zones and plastic islands, is far from clear.

Protesting environmental concerns involves a high degree of denial and self-deception; as it is based on two gross errors.  The first is the irrational belief that governments have the means to respond to the predicament we find ourselves in.  As a corrective to this, just look at the dog’s breakfast that the current British government has managed to make out of what is a simple (by comparison) trade negotiation.  Anyone who seriously thinks these clowns are going to do anything positive (save for by accident) for the environment is displaying almost clinical levels of delusion.   The second error is in believing the often unspoken conspiracy theory that insists that the only thing standing between us and the promised zero-carbon future is corrupt politicians and their corporate backers, who insist on putting the needs of the fossil fuel industry ahead of life on planet earth.

To maintain these deceits, a large volume of propaganda must be put out in order to prove that the zero-carbon future is possible if only the politicians would act in the way the people want.  So it is that we are treated to a barrage of media stories claiming that this town, city, country or industry runs entirely on “green” energy (don’t mention carbon offsetting).  Indeed, left to their own devices, we are told, the green energy industry is already well on the way to building the zero-carbon future we asked for; we just need the politicians to pull their fingers out and we could easily get there in just a few years’ time.  For example, Joshua S Hill at Green Technica tells us that:

“Renewable energy sources now account for around a third of all global power capacity, according to new figures published this week by the International Renewable Energy Agency, which revealed 171 gigawatts (GW) of new renewable capacity was installed in 2018…

“This brings total renewable energy generation capacity up to a whopping 2,351 GW as of the end of 2018, accounting for around a third of the globe’s total installed electricity capacity. Hydropower remains the largest renewable energy source based on installed capacity, with 1,172 GW, followed by wind energy with 564 GW and solar power with 480 GW.”

Stories like these play into the fantasy that we are well on our way to reversing climate change, and that all we need now is some “green new deal” mobilisation to replace the final two-thirds of our energy capacity with non-renewable renewable energy-harvesting technologies to finish the job.  If only it was that simple.

Notice the apparently innocuous word “capacity.”  This is perhaps the least important information about electricity.  Far more important is the amount that is actually generated.  The US Energy Information Administration explains the difference:

Electricity generation capacity is the maximum electric output an electricity generator can produce under specific conditions. Nameplate generator capacity is determined by the generator’s manufacturer and indicates the maximum output of electricity a generator can produce without exceeding design thermal limits….

Electricity generation is the amount of electricity a generator produces over a specific period of time. For example, a generator with 1 megawatt (MW) capacity that operates at that capacity consistently for one hour will produce 1 megawatthour (MWh) of electricity. If the generator operates at only half that capacity for one hour, it will produce 0.5 MWh of electricity…

Capacity factor of electricity generation is a measure (expressed as a percent) of how often an electricity generator operates during a specific period of time using a ratio of the actual output to the maximum possible output during that time period.”

In terms of understanding where we are and where we are heading, “electricity generation” is far more important than “capacity”; which only tells us how wind, wave, tide and solar technologies would perform if it were possible (it isn’t) for them to generate electricity all day (and night) every day.  Put simply, if you cannot turn on your lights, operate your business or recharge your electric car, because there is no electricity, it is little comfort to learn that on a good day the grid is capable of supplying more electricity than you might need.  From a planning point of view, knowing the capacity factor for various generating technologies matters because it gives an insight into how efficient they are.  A nuclear or fossil fuel power plant that runs more or less continuously for more than 60 years is likely to require far fewer inputs and far less land area than, say, vast solar farms (which have to be replaced every 10-20 years) that can only generate electricity when the sun is shining.

So where do non-renewable renewable energy-harvesting technologies stand when it comes to electricity generation?  According to the latest BP Statistical Review of World Energy, in 2017 human civilisation generated 25551.3 Terawatt hours (TW/h) of electricity.  Of this:

  • Non-renewable renewable energy-harvesting technologies provided 2151.5 TW/h (8.4%)
  • Nuclear provided 2635.6 TW/h (10.3%)
  • Hydroelectric dams provided 4059.9 TW/h (15.9%)
  • Fossil fuels provided 16521.7 TW/h (64.7%).

What this tells us is that far more non-renewable renewable energy-harvesting capacity has to be installed than the electricity that it can actually generate – it has a low capacity factor.  Indeed, Hill’s “around a third” figure includes the much larger capacity of hydroelectric dams (which have environmental issues of their own) for which there is little scope for further installation.  Only by adding in nuclear power can we get to a third of electricity generation from low-carbon sources.

Even this, however, misleads us when it comes to environmental impacts.  The implicit assumption is that non-renewable renewable energy-harvesting technologies are still valuable despite their inefficiency because they are replacing fossil fuels.  But this is not why countries like the UK, Saudi Arabia and (for insane reasons) Germany have been deploying them.  In the first two cases, the deployment of non-renewable renewable energy-harvesting technologies is primarily to maximise the amount of fossil fuels available for export.  In Germany’s case, renewables that might otherwise have weaned the economy off coal were deployed instead as a replacement for nuclear; leaving the economy overly-dependent upon often dirty (lignite) brown coal; and forcing them to turn to Russian gas as a future substitute for coal.  These states are not, however, where most of the world’s largely fossil fuelled industrial processes take place.  Asia accounts for the majority of global industry, and Asian economies use non-renewable renewable energy-harvesting technologies to supplement fossil fuels rather than to replace them; although Hill does not clarify this when he tells us that:

“Specifically, solar energy dominated in 2018, installing an impressive 94 GW… Asia continued to lead the way with 64 GW — accounting for around 70% of the global expansion last year — thanks to dominant performances from China, India, Japan, and South Korea.”

While, of course, electricity generated from wind, wave, sunlight and tide is energy that might otherwise have come from fossil fuels, the impact should not be exaggerated.  According to the 2019 edition of the BP Energy Outlook, in 2017:

  • Non-renewable renewable energy-harvesting technologies provided 4 percent of global primary energy
  • Nuclear provided 4 percent
  • Hydroelectric 7 percent
  • Gas 23 percent
  • Coal 28 percent
  • Oil 34 percent.

Just our additional energy demand since 2015 has been sufficient to account for all of the non-renewable renewable energy-harvesting technologies deployed to date.  That is, if we had simply accepted 2015 levels of consumption, we need not have deployed these technologies at all.  And, of course, if we had stabilized our energy consumption a couple of decades ago we could have left the bulk of the fossil fuels we now consume in the ground:

World Energy Consumption 2017
Source: Global carbon emissions 2007-17

What is really at issue here is that – to quote the late George H.W. Bush – “The American way of life is not up for negotiation.”  That is, we can have any energy transformation we like, so long as it does not involve any limitation on our continued exploitation and consumption of the planet we live on.  The too-big-too-fail banks must havepermanent economic growth and that, in turn, means that we have no choice other than to keep growing our energy consumption.

The trouble is that infinite growth on a finite planet is impossible.  Worse still, as the energy return on investment (aka Net Energy) declines, the increased energy and monetary cost of energy production causes the energy and monetary value available to the wider (non-energy) economy to decline.  In the first two decades of the century, this has caused an intractable financial crisis coupled to a massive decline in prosperity across the developed economy (resulting in the collapse in consumption of the “retail apocalypse”) which is beginning to generate political instability.  In the 2020s the crisis is set to worsen as the energy cost of producing a whole range of mineral resources raises their market price above that which can be sustained in the developed states (where most of the consumption occurs).  The result – whether we like it or not – is that we face a more or less sharp drop in consumption in the next couple of decades.

This raises questions about the purpose to which we deploy non-renewable renewable-energy harvesting technologies.  For several decades, people in the green movement have engaged in private arguments about whether they should spell out the likely localised and de-materialised economies that giving up or running out of accessible fossil fuels necessarily entails.  Since this would be politically toxic, most have chosen to promote the lie that humanity can simply replace coal, gas and oil with some combination of wind, wave, tide and sunlight without economic growth even needing to pause for breath.  This, in turn, has allowed our young people to believe that intransigence is the only thing preventing our political leaders from de-carbonising our economies.

Exactly what our politicians are told about our predicament is a matter of conjecture.  Most, I suspect, are as clueless as the population at large.  Nevertheless the permanent civil services across the planet have produced a raft of reports into the full spectrum of the catastrophe facing us, from the damage we are doing to the environment to the rapidly depleting stocks of key mineral resources and productive agricultural land, and the more imminent collapse in the global financial system.  And the more they become aware of this predicament, the more they realise just exactly what the word “unsustainable” actually means.  One way or another, six out of every seven humans alive today is going to have to go – either by a planned de-growth or via a more or less rapid collapse of our (largely fossil-fuelled) interconnected global life support systems.

With this in mind, there is something truly immoral about perpetuating the myth that we can maintain business as usual simply by swapping non-renewable renewable-energy harvesting technologies for fossil fuels.  This is because maintaining the myth results in precisely the kind of misallocation that we already witnessed in those states that are using renewable electricity to bolster fossil fuel production and consumption.  The more we keep doing this, the harder the crash is going to be when one or other critical component (finance, energy or resources) is no longer widely available.

There is a place for renewable energy in our future; just not the one we were promised.  As we are forced to re-localise and de-grow both our economies and our total population, the use of non-renewable renewable-energy harvesting technologies to maintain critical infrastructure such as health systems, water treatment and sewage disposal, and some key agricultural and industrial processes would make the transition less deadly.  More likely, however, is that we will find the technologies we need to prevent the combination of war, famine and pestilence that otherwise awaits us will have been squandered on powering oil wells, coal mines, electric car chargers, computer datacentres and cryptocurrencies (none of which are edible by the way).

At this stage, all one can say to the climate protestors and to the “green” media that encourage them is, “be careful what you wish for… it might just come true!”





The need for a new Matrix…

9 04 2019

How many years have I been saying jobs are unsustainable? Here’s Tim Watkins explaining it better than me…

The (other) economic madness of the green new deal

Remind me again why you go to work in the morning?  Is it because you are so committed to the mission of your corporate employer that you would willingly work for nothing if they asked you to?  Does your job provide you with so high a degree of life-meaning and personal satisfaction that you would gladly do it in exchange for the minimum income required to feed and clothe yourself? 

No, I thought not.

For almost all of us, work is a means of obtaining money; and money is merely the means by which we are able to consume the goods and services we desire.

Now let me ask you a multiple choice question: why do you think that the oceans are currently so full of plastic that it has polluted the entire marine food chain?  Is it (a) because evil petrochemical companies simply dump plastic into the sea; or is it (b) because it is the inevitable product of mass consumption by 7.5 billion humans (especially those of us in developed states)?

Plastic pollution, along with all of the other fallouts from the globalised industrial economy, is the end consequence of our collective consumption of the goods and services that we desire.

The various versions of green new dealism that have hit the headlines recently have no alternative but to avoid both of these questions.  Instead, they reduce a human impact crisis – aka “the Anthropocene” or “the overshoot” crisis – to the single dimension of greenhouse gas emissions.  They then reduce the greenhouse gas emission crisis to a carbon dioxide crisis; which is further reduced to only the carbon dioxide emitted in the course of electricity generation.

The proposed solution – the mass deployment of non-renewable renewable energy-harvesting technologies like wind turbines and solar panels (and, tacitly, the grid infrastructure to support them) – has the primary aim of pulling the global economy out of the post-2008 doldrums by creating millions of new jobs.  Exactly how many new jobs has yet to be determined, although at least some proponents argue for a mobilisation on a par with the Second World War or landing humans on the Moon.  As Brian Murray at Forbes notes:

“Commentators have frequently compared the GND’s potential deployment to two examples from twentieth-century U.S. history that involved dramatic, rapid shifts: 1) the decision to send astronauts to the moon and 2) World War II.”

“The speed of progress toward the moonshot was staggering—and the effort was highly targeted, focusing on the specific technologies necessary to transport a single vehicle to and from the lunar landscape 240,000 miles away while keeping the occupants alive. At the height of the moon effort in 1966, relevant spending amounted to 0.7% of GDP.  In today’s dollars, that would be $150 billion.”

“By contrast, World War II consumed 35.8% of GDP at its peak (1945), an amount equal to $7.4 trillion today. The massive undertaking involved virtually every aspect of the economy. Over 17 percent of the work force was deployed in the armed forces and nearly five million women entered the work force (a 40 percent increase), many in place of men deployed overseas, to bolster domestic production to support war efforts.”

Murray argues that any attempt to implement the green new deal is likely to be closer to the Moon shot than the war.  Nevertheless, we are still talking about billions of dollars and millions of new construction jobs.  For Murray, the key economic problem here is that wind turbines and solar panels require very little labour to operate and maintain.  As a result, any jobs created would necessarily be temporary.  This, however is a secondary concern and is easily counter-critiqued by the proponents of green new dealism – the additional demand created in the wider economy by the new deal workers spending their wages will create a wider economic boom that will generate new jobs to employ these workers as the construction phase comes to an end.

Let us now revisit those awkward questions I posed at the beginning of this post.  What proportion of several millions of green new deal workers will be offering their labour for free?  What proportion will work in exchange for meals, clothing and a bed for the night?  Most will expect to be paid at least the minimum wage.  And if the promises of the green new dealers are to be realised, a large proportion of the jobs created will need to be high-skilled and high-paid.

Most workers do not simply save their wages every month.  Indeed, one of economist John Maynard Keynes’ observations which informed the original new dealism in the 1930s was that ordinary workers had a far greater propensity to spend than wealthier people.  That is, if someone who is currently only able to eat because of food stamps or a package from a foodbank is given a job at the current average wage – $56,500 (US) £28,600 (UK) – they are likely to spend almost all of it; whereas if the same average wage were given to the CEO of an international bank, they would be far more likely to save it.  So, from a demand point of view, creating lots of relatively well-paid jobs for people who are currently unemployed, underemployed or eking out a living on the minimum wage makes absolute economic sense.

Environmentally, not so much.  The technologies that the new jobs are created to deploy are intended to be greener than the technologies they replace – although they still necessarily involve fossil fuels in their manufacture, transportation, deployment and maintenance.  Nor – at least for now – are these technologies recyclable; indeed, solar panels contain toxic chemicals that prevent either recycling or landfill disposal.  And, of course, in the absence of seasonal grid-scale storage technologies nuclear baseload and gas stand-by capacity will continue to be needed to smooth out intermittency.  These, though, are again secondary problems.

The main issue that any green new deal has to overcome if it is to have any credibility is how we go about preventing millions of new workers from actually spending their additional income.  For all of its many flaws, one of the environmental benefits of quantitative easing since 2008 is that very little of the newly printed currency has seeped out into the real economy.  Most has been used for corporate share buy-backs or investment in various derivatives that do little to increase demand for goods and services across the real economy.  Indeed, this is one of the central criticisms of the current policies levelled by green new dealers.  Any green new deal, in contrast would be increasing global consumption of goods and services by billions – if not trillions – of dollars worldwide.  But mass consumption is precisely the cause of our environmental crisis in the first place.  Millions of new wage labourers are no less likely to purchase such things as single-use plastic containers, corn-fed beef, petrol cars and international travel than any of the current workforce.  The result is that as fast as the electricity generating industry is curbing carbon dioxide emissions, the manufacturing, transportation and industrialised agriculture sectors will be ramping up their emissions – and using up the planet’s remaining resources – to satisfy the new demand.

Far from being a means of sustaining a global economy built upon fossil fuels, a green new deal that creates new jobs and stimulates economic growth amounts to little more than a final blow-out binge before our once-and-done global economy comes crashing down around our ears.  The only means – assuming any is possible at this late stage – of mitigating the environmental catastrophe that is gathering pace around us is to engage in a managed process of de-growth (which may include some deployment of non-renewable renewable energy-harvesting technologies) to create far smaller, localised and less consumptive economies than we have had for many decades.  By necessity, the process would also require a shrinking of the human population to a level in accordance both with what is sustainable and with the standard of living we consider acceptable – i.e., the more consumptive our lifestyles, the lower our life expectancy/birth rate will have to be.

This is not, of course, anything that is going to win votes at an election.  But any detailed examination of the environmental impact of millions of new workers spending their new wages on even more of the same patterns of consumption that have already brought our planet to the edge of extinction should – in any sane world – be no less acceptable.  It is a tribute to our propensity for denial that so many people regard green new dealism as an environmental good rather than the catastrophe it is likely to become.





“Renewables” – reality or illusion?

27 03 2019

ERIK MICHAELS·WEDNESDAY, MARCH 27, 2019

Originally posted in the Methane News Group (a considerable additional amount of information and discussion can only be seen by joining): https://www.facebook.com/groups/methanehydratesnews/

Lately I have fielded some rather interesting perspectives on “solutions” to climate change; not just here but in many other groups as well. I have pointed out that the ideas proposed as solutions are in fact just ideas; most of which require substantial amounts of energy not only to build, transport, erect, maintain, and replace at the end of their service life, but most of which serve no useful purpose to any other life form on this planet but us. Not only are these ideas unsustainable; if they don’t benefit other species, then they are ecologically extinct. Building a sustainable future means that we must incorporate ideas and things that interact with our biosphere in a manner that provides some sort of ecosystem service.

“Renewables” do not fit that description, so they are patently unsustainable.Ladies and Gentlemen, “optimism must be based in reality. If hope becomes something that you express through illusion, then it isn’t hope; it’s fantasy.” — Chris Hedges

I have spent a great deal of time lately discussing the issue of “renewables” and since this has been so pervasive as of late, I decided to draft a new file specifically for this purpose of outlining the facts.Before proceeding, please view this short video featuring Chris Hedges: https://vimeo.com/293802639

Recently, I discussed the fact that “renewables” are not a solution, and in fact, are actually making our existing predicaments worse. A considerable number of individuals are questioning these facts using all types of logical fallacies. I understand these questions; as I once thought that “renewable” energy and “green” energy and other ideas would save us as well – as little as 5 years ago. As I joined more climate change groups, I recognized the constantly repeating attack on these devices as non-solutions; so I decided to find out for myself once and for all, precisely whether they would work or not.Before going into further detail, I need to explain that IF these devices had been developed and installed back in the 1970s and 80s, along with serious efforts to quell population growth and tackling other unsustainable practices, they may have been beneficial.

However, the popular conclusion is not simply that they do not work (to serve their original intended purpose); but that they are actually causing more trouble than if they hadn’t been built at all. Many claim that these “solutions” are better than utilizing fossil energy; but this too, is an illusion. Having said that, please note that this article is in NO WAY promoting fossil energy; fossil energy use is every bit as bad, if not worse, than these devices; AND its use created the desire to build these devices in the first place.

Many people are utilizing a false dichotomy to justify continuing to build and use these devices. Using them creates no real desire to learn how to live without externally-produced energy, a loss we ALL face as time moves forward. Once the fossil fuel platform that these devices currently depend on disappears, so will the devices. Some individuals claim that we can continue to extract resources, manufacture, transport, and erect these devices after fossil energy is no longer available. This is true only on a MUCH smaller scale than the energy systems we have today, and only in small localities. On top of that, the systems of the future will continue to degrade over time and eventually, electricity will disappear altogether. Given this imminent fact, it makes little sense to continue building these devices, recognizing the environmental damage they are causing which only promotes the continued use of fossil energy as well.In order to comprehend why these devices are such a delusion, one must understand many different predicaments at once.

First, an understanding of energy and resource decline is critical. Secondly, a thorough understanding of pollution loading is essential, especially of the electronics, rare earths, mining, metals, plastics, and transportation industries. Understanding climate change and how our energy “addiction” has propelled it and continues to fuel it is absolutely necessary. Comprehension of biology along with the ecological and environmental degradation of habitat destruction and fragmentation is also necessary.

New information is constantly being made available as well, highlighting yet more reasons to stop building these devices. They are little more than energy “traps” that chain us to the same paradigm that is already killing life on this planet. The secret to resolving these issues isn’t a “new or different” energy source. It is eliminating the energy addiction altogether.The reason that eliminating energy addiction altogether is the only real strategy towards living a sustainable lifestyle is because of one seriously inconvenient fact: the diminishing returns on increasing complexity along with the fact that continuing to build these devices requires the continuation of mining, energy use, and industrial civilization – the very things killing all life on this planet.

As a system increases its complexity, the returns on that increasing complexity decrease. As we find more new ways to reduce the harm caused by energy use, misuse, and abuse, we continue to increase the complexity of producing said energy. Resistance and friction cause losses in motors, and inefficiency and sheer transmission losses produce yet further losses in all electrical systems. All these losses produce waste heat, no differently than traditional mechanical systems.

There is NO system that can be made 100% efficient, so there will ALWAYS be losses. This waste heat does nothing but add to the existing predicaments we already face; considering that in order to produce the energy to begin with, one must also pollute our atmosphere, water, and soil with toxins and byproducts of the processes themselves. Watch these three videos to understand why building each of these devices is a disaster in and of itself to wildlife around it. Focus on the devastation of the land that each unit sits on, as well as the habitat fragmentation caused by each road:

https://www.youtube.com/watch?v=mwwlxlMoVVQ

https://www.youtube.com/watch?v=84BeVq2Jm88

https://www.youtube.com/watch?v=1AAHJs-j3uw

Here is a handy reference guide about “renewables” with frequently asked questions:

https://deepgreenresistance.org/en/who-we-are/faqs/green-technology-renewable-energy Here are some links to more information that will help you understand WHY “renewable” energy is NOT a solution to climate change in any way, shape, or form:

  1. http://www.sixthtone.com/news/1002631/the-dark-side-of-chinas-solar-boom-
  2. https://www.wired.co.uk/article/lithium-batteries-environment-impact
  3. https://phys.org/news/2018-05-e-waste-wrong.html
  4. http://www.bbc.com/future/story/20150402-the-worst-place-on-earth
  5. https://www.scmp.com/news/china/society/article/2104162/chinas-ageing-solar-panels-are-going-be-big-environmental-problem
  6. https://www.nationalreview.com/2017/06/solar-panel-waste-environmental-threat-clean-energy/
  7. https://www.city-journal.org/wind-power-is-not-the-answer
  8. https://www.resilience.org/stories/2018-08-01/an-engineer-an-economist-and-an-ecomodernist-walk-into-a-bar-and-order-a-free-lunch/
  9. https://news.harvard.edu/gazette/story/2018/10/large-scale-wind-power-has-its-down-side/
  10. https://iopscience.iop.org/article/10.1088/1748-9326/aae102
  11. https://phys.org/news/2018-11-farm-predator-effect-ecosystems.html
  12. https://www.theatlantic.com/science/archive/2018/05/how-do-aliens-solve-climate-change/561479/
  13. https://patzek-lifeitself.blogspot.com/2018/10/all-is-well-on-our-planet-earth-isnt-it.html
  14. https://www.versobooks.com/blogs/3797-end-the-green-delusions-industrial-scale-renewable-energy-is-fossil-fuel

On a particular thread which featured the story link above, I wrote this detailed observation: “Ecocide is continuing BAU, which is precisely what “renewables” will allow for. They are nothing but a distraction for three reasons:

1. Building “renewables” does nothing to solve the predicament of energy use and energy growth. Replacing one type of energy with another is doing nothing but choosing a slightly less evil bad choice.

2. “Renewable” energy will never be able to replace the concentrated energy available in fossil fuels, and this fact is missed by both the MSM and most people in society. This is a recipe for disaster as the amount of fossil energy available inevitably dwindles and countries begin to fight for survival.

3. “Renewables” can not replace fossil energy in another way besides concentration of energy – each popular device such as solar panels and wind turbines only last around 20 years. This is if they survive that long – many have met an early demise due to extreme weather events. So not only do they represent a never-ending merry-go-round of maintain and replace, rinse and repeat; but due to continued energy growth, more are constantly needed as well. That is precisely what makes them every bit as unsustainable as fossil fuels.

4. Now, for a fourth issue that hasn’t been mentioned in the first three – building “renewables” doesn’t serve any truly needed service. Human beings and all other life forms on this planet don’t actually require external electricity in order to survive. So the ONLY species that benefits from building these devices is us. Sadly, building these devices kills off species through habitat destruction and habitat fragmentation along with pollution loading and other causes.

So in effect, these not only don’t solve the issue they were designed for, they continue the same ecological destruction that we are accomplishing through utilizing fossil energy. As we continue pulling the Jenga blocks out of the tree of life, how long will it be before we unwittingly become functionally extinct through using these to continue BAU? As one can clearly see, if humans want to continue living, they have no choice but to reduce fossil and all other energy use and bring it down to zero very quickly.

Sadly, I have little doubt that this will not be accomplished in any kind of reasonable time frame, IF AT ALL (we are currently going the wrong direction and have been for the last two decades DESPITE these devices having been built and installed), given what has transpired over the previous five decades even though we’ve known about these predicaments since then.” Here are several links to files that contain yet more links to more info:





Big Picture article

14 12 2018

It’s so nice reading an article that joins the dots….  I get so sick of people concentrating on one issue or another, ignoring everything else troubling civilisation.  From Consciousness of Sheep, who else….?

Britain has – apparently – been thrown into crisis overnight.  Meanwhile across the channel, French president Macron is desperately trying to extinguish the flames of another weekend of mass protests that have now spread to Belgium and Holland.  In Eastern Europe the hard-right are gaining support; even undermining the previously untouchable Angela Merkel’s power base in the former East Germany.  Across the Atlantic meanwhile, the lines between deranged Democrats and MAGA nationalists are being drawn in readiness for America’s second civil war.  We are surely living through the greatest crisis in modern history.

Well, yes indeed we are.  But everything set out in the first paragraph is no more than the froth on the beer.  These political spasms are merely the outward manifestation of a human catastrophe that has been decades in the making.

Two far greater symptoms of our predicament have gained at least some public traction this year.  First was an all too visible plastic pollution crisis that is increasingly difficult to ignore now that China has ceased acting as the West’s rubbish dump.  Second is the somewhat less visible insect apocalypse that has seen the near extinction of a raft of pollinating insect species; without which we humans are doomed to starvation.  Interestingly, while these two symptoms are only tenuously related to climate change, they have tended to be included under that shorthand heading.  Plastic certainly damages the environment, but its build up owes far more to the ongoing power of the petrochemicals industry and the myth of recyclingthan to changes in climate.  The same goes for the insects.  While there may have been some climactic impact on migrations and reproduction, the main cause is the vast quantities of chemical insecticides required by an industrialised agriculture tasked with feeding 7.5 billion humans on a planet that could barely feed one seventh of that without fossil fuels and agrochemicals.

In the affected areas, local populations have been stunned by a series of “red tide” events that result in the mass deaths of fish and other marine creatures.  Climate change is indirectly involved in these events because of the increased rainfall from warmer storms.  But once again it is our industrial agriculture that is the primary cause – the giant oxygen-free zones beneath algae and phytoplankton blooms that form because of artificial fertilisers washed off the land when it rains.  When marine creatures stray into these oxygen-free zones (which are pinkish-red in colour due to concentrated hydrogen sulphide) they suffocate before they can swim to safety.

Off most people’s radar is the ongoing sixth mass extinction, as we lose thousands of species every year.  Again, while some of this is directly due to the changing climate, the larger part is due to human activities like agriculture, deforestation and strip mining simply chewing up natural habitats to make way for the creation of the various resources – including food – required to sustain a human population that is projected to reach 10 billion by mid-century.

The use of the term “climate change” to describe these catastrophes is deceptive.  If we were looking at our predicament in totality, we would include these crises alongside climate change as a series of (often interacting) sub-sets of a much greater problem… let’s call it the “human impact crisis.”

Crucially, by focussing solely on a changing climate, we can exercise a form of psychological denial in which human civilisation is able to continue chasing infinite growth on a finite planet while yet-to-be-invented technologies are deployed to magically heal the damage that our over-consumptive lifestyles are having on the human habitat.

The focus on climate change also permits us to avoid any examination of those human activities that increasingly stand in the way of the bright green technological future we keep promising ourselves.  Shortages in a range of key resources, including several rare earths, cobalt, lithium, chromium, zinc, gold and silver are very likely to materialise in the next decade if Western countries get anywhere close to their targets for switching to renewable electricity and electric cars (even though even these are just a fraction of what would be required to decarbonise the global economy).

Energy is an even bigger problem.  For the first time since the dark ages, humanity is switching from high-density energy sources (nuclear, coal, gas and oil) to ultra-low density energy sources (tide, wind, wave and solar).  We are – allegedly – choosing to do this.  However, because we have depleted fossil fuels on a low-hanging fruit basis, it is costing us more in both energy and money to maintain the energy needed to power the global economy.  As more of our energy has to be channelled into energy production (e.g. the hugely expensive Canadian bitumen sands and the US fracking industry) ever less energy is available to power the wider economy. This has forced us into a crisis I refer to as “Schrodinger’s renewables,” in which the technologies being deployed supposedly to wean us off fossil fuels end up merely being added in order to maintain sufficient economic growth to prevent the entire civilisation collapsing.

This, of course, brings us back to the increasingly heated debates in the US Congress, the UK Parliament and the streets of 100 French towns and cities.  Economic growth is the fantasy that almost everyone is buying into as a solution to our predicament.  Sure, some call it “green growth,” but it isn’t.  In reality it is, and always was central bank growth.  Why?  Because every unit of currency in circulation in the West was created with interest attached.  In such a system, we either grow the economy or we inflate the value currency back to something more in line with the real economy.  The former is impossible and the latter is devastating… which is why central bankers around the world have been quietly panicking for the best part of a decade.

To be clear, since 1980 the western economic system has inflated a series of asset bubbles, each of which has subsumed and outgrown its predecessor.  In the 1980s companies bailed out failing companies to save themselves.  In the 1990s stock markets bailed out companies to save stock markets.  In the 2000s banks bailed out stock markets and then states and central banks bailed out banks.  Next time around it will be states and currencies that need bailing out.  And in the absence of space aliens, it is not clear who is going to be riding to the rescue.  What that means, dear reader, is that everything you depend upon (but didn’t know it) for life support – inter-bank lending systems, letters of credit and freight insurance, international trade arrangements, employment, state pensions, etc.  – is going to go away (at least until some kind of debt-write-off (either directly or via “helicopter money”) and a new currency system can be put into place.

The other legacy from this period of debt-based asset inflation is a series of grossly unequal societies; divided, ultimately, between those who get to spend the (uninflated) debt-based currency first and those (the 99 percent) who only get the currency after its value has been inflated away – primarily those who depend upon a wage/salary from employment rather than an income from shares and other investments.  Most people accept some inequality.  However a lack of economic growth (outside banking and tech) has created deep hostility to those political parties that cling to the pre-2008 neoliberal orthodoxy.  The result has been a growth in populist movements claiming to know how to restore the economy to rates of growth last seen in the 1990s.  Political economist Mark Blyth summed up the difference between the left and right wing variants of populism thus:

  • The right says neoliberalism ruined the economy and immigrants took your jobs
  • The left says neoliberalism ruined the economy and capitalists took your jobs.

Needless to say – as the boy Macron is learning to his cost – now is not a happy time to be a neoliberal politician.  The broader problem, however, is that the proposed solutions from the populists are no more likely to result in another round of economic growth simply because western civilisation is already well past the point of overshoot.  China – the place where most of the jobs went and where most of the stuff we consume is made – already consumes half of the world’s coal, copper, steel, nickel and aluminium.  It also consumes nearly two-thirds of the world’s concrete.  To grow at just 3.5 percent would require that China consume all of the world’s reserves of those resources by 2038 – at which point it would also be consuming a quarter of the world’s oil and uranium and half of the world’s grain harvest.  The impossibility of this is what people mean when they use the word “unsustainable” to describe our situation.

Nevertheless, even supposedly green parties cling to the promotion of economic growth as an electoral strategy.  Rather than admit the impossibility of further growth, however, they reach instead for some mythical “green growth” that will supposedly follow the industrial scale deployment of non-renewable renewable energy harvesting technologies like wind turbines and solar panels that require fossil fuels in their manufacture , and for which the planet lacks sufficient material reserves.  Promising de-growth is, however, politically toxic in the current climate.

Most green growth advocates imagine a switch from extraction and manufacturing to (largely digital) services that will somehow decouple resource and energy growth from GDP.  That is, we can all continue to prosper even as our use of planetary resources falls back to something like the amounts consumed in the 1750s.  Writing in Resilience, Jason Hickel gives the lie to this:

“This sounds reasonable on the face of it. But services have grown dramatically in recent decades, as a proportion of world GDP — and yet global material use has not only continued to rise, but has accelerated, outstripping the rate of GDP growth. In other words, there has been no dematerialization of economic activity, despite a shift to services.

“The same is true of high-income nations as a group — and this despite the increasing contribution that services make to GDP growth in these economies. Indeed, while high-income nations have the highest share of services in terms of contribution to GDP, they also have the highest rates of resource consumption per capita. By far.

“Why is this? Partly because services require resource-intensive inputs (cinemas and gyms are hardly made out of air). And partly also because the income acquired from the service sector is used to purchase resource-intensive consumer goods (you might get your income from working in a cinema, but you use it to buy TVs and cars and beef).”

And, of course, without the income derived from making all of that stuff for service providers to consume, nobody can afford to buy the services and the economy will collapse.  Not that anyone has noticed this for now, as we are descend into the politics of blame in which widening inequality and poverty at the bottom is blamed on one or other of a culture’s preferred out groups – Tories, Democrats, socialists, libertarians, migrants, the banks, the European Union, Israel, Angela Merkel, the Rothschild family, Donald Trump… choose your favourite pantomime villain; but don’t expect to be going anywhere but down.

Politics matter, of course.  In a future of economic contraction it is far better to be governed consensually by people who understand the predicament and who plan a route to deindustrialisation that has as few casualties as possible on the way down… one reason not to keep voting for parties that dole out corporate welfare at the top while driving those at the bottom to destitution.  That road tends to end with guillotines and firing squads.

For all of its passion and drama, however, the role of politics in our current predicament is somewhat akin to the choice of footwear when setting out to climb a mountain.  Ideally you want to choose a pair of stout climbing boots; but nobody is offering those.  For now the choice is between high heels and flip-flops to climb the highest mountain we have ever faced.  If we are lucky, the political equivalent a half decent pair of training shoes might turn up, but while the world is focussed on economic growth; that is the best we can hope for… and we still have to climb the mountain whatever shoes we wear.





Italy and energy: a case study

22 10 2018

Since discovering Jean Marc Jancovici a couple of months ago, I have been following his work, which is mostly in French; but now and again he publishes something in English, so you guys can benefit from reading this while I prepare to drive my wife’s Suzuki Alto with a full load to Tasmania……  yes I am going to get my life back and get to enjoy sharing the fruits of my labour after a three year wait…..

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Italy is in trouble. Or more precisely, the country has been “abandonned by growth”. It is one of the few OECD countries that is unable to recover from the “2008 crisis”: its GDP is still lagging below 2007 levels. Would it be the simple result of the unability of the successive governments to make the “appropriate reforms”? It might well be that the explanation lies in something much more different, but much more unpleasant: physics.

First, statistics are unequivocal on the fact that growth has vanished, so far.

Year on year change of the GDP in Italy (or “annual growth rate”) since 1961 (blue curve), average per decade (red curve), and trend on the growth rate (green dotted line). It is easy to see that each decade has been less “successful” than the previous one since the beginning of this series, and that the decade that started in 2010 has an average growth rate which is… negative. Italy has therefore been in recession, “on average”, for the last 7 years.

Primary data from World Bank.

As the two are generally linked in Western countries, the debt on GDP ratio has risen to heights, botbh for public and private debt.

Debt on GDP ratio in Italy since 1995. Primary data from Eurostat.

Households debt on GDP ratio since 1960. Data from Bank for International Settlements.

Credit to the non financial sector on GDP ratio (corporates and households) for Italy. Data from Bank for International Settlements.

All this would not be so annoying – well, from an economic point of view – if growth were to resume, because then the money to repay all this extra debt would be available. But why doesn’t growth come back? Some say that this is due to the lack of reforms. This is due to the lack of reforms, but not the same (reforms), say others.

But what if the true reason is… the lack of energy? In Italy, as elsewhere, the machines that surround us everywhere (rolling mills, chemical plants, trains, fridges, elevators, trucks, cars, planes, stamping presses, drawers, extruders, tractors, pumps, cranes…) have 500 to 1000 times the power of the muscles of the population.

It’s these machines that produce, not men. Today, homes, cars, shirts, vacuum cleaners, fridges, chairs, glasses, cups, scissors, shampoo, books, frozen dishes, and all the other tens of thousands of products that you benefit from are produced by machines. If these machines lack energy, they operate less, production decreases, and so does the monetary counterpart of this production, that is the GDP. And it is probably what happened in our southern neighbor.

First of all, energy is definitely less abundant in Italy today than it was 10 years ago.

Primary energy used in Italy (sometimes called “primary energy consumption”; “primary” refers to the fact that it is the energy extracted from the environment in its raw form – raw coal, crude oil, crude gas, etc, not processed fuels or electricity that come out of the energy industries: refined fuels, electricity, processed gas, etc) since 1965. There was a maximum in 2005, i.e. 3 years before the fall of Lehman Brothers. It is impossible to attribute the decline in consumption to a crisis caused by the bankers’ negligence!

It is interesting to note that maximum of the energy consumption in Italy corresponds to the maximum gas production of Algeria (2005), Italy’s second largest gas supplier after Russia.

Oil and gas production in Algeria since 1965 (oil) and 1970 (gas). Oil production peaked in 2008, and gas production in 2003 so far (monthly data from the Energy Information Agency suggest that the gas production in Algeria is anew on the decline). Primary data from BP Statistical Review.

Italy is a major consumer of gas, because its electricity production relies on it for half of the domestic generation. This maximum (of energy consumption in Italy) also corresponds to the beginning of the stabilization of world oil production that took place between 2005 and 2010, which also led to a decrease in Italy’s import capacity in this precious liquid.

Monthly production of liquids (crude oil and condensates) worldwide. Data from the Energy Information Agency. We can clearly see the “plateau” that runs from 2005 to 2010, before the rise of the American shale oil, which has rekindled global growth and allowed the subsequent economic “rebound”.

Combined together, oil and gas accounted for 85% of Italian energy in 2005 (and accounted for 65% of its electricity production): less oil available on the world market (because a constant production must be shared with a growing importation from the emerging countries), and less gas available in Europe and Algeria led to a decline in supply beforethe beginning of the financial crisis.

In fact, when looking at trends over long periods, we can see that, in Italy as in all industrialized countries, i. e. with machines that produce instead of men, GDP is driven by available energy.

Rate of change (3 year running average) of the energy consumption in Italy (green curve) and rate of change (also 3 year running average) of the Italian GDP. It is noteworthy that the trend is the same for both. Where’s the hen, where’s the egg? For what follows, we just need one valid rule: less energy means less running machines and thus less GDP. And we see that when the energy growth slower, so does the GDP, one to two years later, which supports the idea that when it is energy that is constrained, GDP is forced to be constrained as well.

Data from BP Statistical Review for energy and World Bank for GDP

This “precedence” of energy over GDP will show up in another presentation of the same data.

Energy used in Italy (horizontal axis) vs. Italian GDP (in constant billions dollars) for the period 1965 to 2017. The curve start in 1965, at the bottom left, and then follows the chronological order upwards to the right

We note that the curve makes a series of “turns to the left” in 1974, 1979, and especially from 2005 onwards. The “turn on the left” means that it is first the energy that decreases, and then the GDP, excluding in fact a sequence that would explain the decrease in the energy consumed by the crisis alone (then the curve should “turn right”).

One can also notice that after the decline in GDP from 2006 to 2014, the line goes back to “normal”, that is going from “bottom left” to “top right”, which reflects a GDP that grows again because of an energy supply that does the same.

Author’s calculation based on BP Statistical Review & World Bank data

And then?

Well, for the moment energy supply is going downwards, but will it continue to do so in the future? For the first 3 components of the energy supply in Italy, things look pretty settled. For coal, all is imported. This fuel is a nightmare regarding logistics: a 1 GW power plant requires between 4000 and 10000 tonnes of coal per day, and this explains why when a country is not a coal producer its coal imports are never massive. Add on top that coal is clearly the first “climate ennemy” to shoot: calling massively on imported coal to compensate for the decline of the rest seems very unprobable.

Consumption (dotted lines) and production (solid line, actually zero all the time!) of coal in Italy. Data from BP Statistical Review.

Then comes oil. Italy imports almost all it uses, and when world production stopped growing in 2005, Italian consumption fell in a forced way – as in all OECD countries – because the emerging countries took an increasing share.

Consumption (dotted lines) and production (solid line) of oil in Italy. Data from BP Statistical Review.

Eventually comes gas. Here too, Italy had to reduce its consumption in a compulsory way after 2005, when Algerian production – which provides about a third of Italian consumption – peaked.

Consumption (dotted lines) and production (solid line) of gas in Italy. Data from BP Statistical Review.

Italy gave up nuclear power after Chernobyl, and so no “relief” can come from this technology. Hydroelectricity has been at its peak for decades, with all or most of the equippable sites having been equipped. In addition, the drying up of the Mediterranean basin due to climate change should also reduce rather than increase this production.

Hydroelectric production in Italy since 1965, in TWh (billion kWh) electricity. Data from BP Statistical Review.

Then remain the “new renewable”, mostly solar, biomass and wind energy, that now represent about the equivalent of hydropower. But solar and wind require a lot of capital to be deployed, and thus the irony is that if the economy “suffers” because of a decline in the supply of fossil fuels, there is fewer money to invest in this supply! Biomass requires a lot of land to become significant because of the biomass that has to be grown.

Non-fossil electricity production in Italy since 1965. We see that the “new renewable” (biomass, wind, solar) do a little more than hydroelectricity, i.e. 20% of the total production (of electricity only, of course). Data from BP Statistical Review.

As these means cannot quickly supply large extra quantities of electricity, and will quickly be limited by storage issues, the energy used in Italy remains massively fossil, and will do so in the short term.

Share of each energy in Italian consumption. Data from BP Statistical Review.

It is therefore likely that Italy will remain massively dependent on fossils fuels in the next 10 to 20 years, and since the supply of these fuels is likely to continue to decrease on average, which means that Italy will have to manage its destiny without a return to growth, or even with a structural recession.

It is to this conclusion that a “physical” reading of the economy leads. And what is happening to our neighbours to the south is, most probably, the “normal” way in which an industrialized country reacts to the beginning of an unexpected energy contraction (and then populists follow, because of promises that coldn’t be fulfiled). As other European countries do not anticipate any better their upcoming energy contraction (that will happen anyway because oil, gas and coal are not renewable), let us look carefully at what is happening in this country. Something similar is likely to happen in France (and in Europe, and in the OECD) too if we do not seriously address the issue of fossil fuels, or more precisely if we do not seriously begin to organise society with less and less fossil fuels, including if it means less and less GDP.





Towards a new operating system……

28 08 2018

Scientists Warn the UN of Capitalism’s Imminent Demise

A climate change-fueled switch away from fossil fuels means the worldwide economy will fundamentally need to change.

Image: Shutterstock

ANOTHER brilliant piece of journalism from Nafeez Ahmed. Originally sighted on MOTHERBOARD….

nafeezCapitalism as we know it is over. So suggests a new report commissioned by a group of scientists appointed by the UN Secretary-General. The main reason? We’re transitioning rapidly to a radically different global economy, due to our increasingly unsustainable exploitation of the planet’s environmental resources.

Climate change and species extinctions are accelerating even as societies are experiencing rising inequalityunemploymentslow economic growthrising debt levels, and impotent governments. Contrary to the way policymakers usually think about these problems, the new report says that these are not really separate crises at all.

Rather, these crises are part of the same fundamental transition to a new era characterized by inefficient fossil fuel production and the escalating costs of climate change. Conventional capitalist economic thinking can no longer explain, predict, or solve the workings of the global economy in this new age, the paper says.

Energy shift

Those are the stark implications of a new scientific background paper prepared by a team of Finnish biophysicists. The team from the BIOS Research Unit in Finland were asked to provide research that would feed into the drafting of the UN Global Sustainable Development Report (GSDR), which will be released in 2019.

For the “first time in human history,” the paper says, capitalist economies are “shifting to energy sources that are less energy efficient.” This applies to all forms of energy. Producing usable energy (“exergy”) to keep powering “both basic and non-basic human activities” in industrial civilisation “will require more, not less, effort.”

“Economies have used up the capacity of planetary ecosystems to handle the waste generated by energy and material use”

The amount of energy we can extract, compared to the energy we are using to extract it, is decreasing “across the spectrum—unconventional oils, nuclear and renewables return less energy in generation than conventional oils, whose production has peaked—and societies need to abandon fossil fuels because of their impact on the climate,” the paper states.

The shift to renewables might help solve the climate challenge, but for the foreseeable future will not generate the same levels of energy as cheap, conventional oil.

In the meantime, our hunger for energy is driving what the paper refers to as “sink costs.” The greater our energy and material use, the more waste we generate, and so the greater the environmental costs. Though they can be ignored for a while, eventually those environmental costs translate directly into economic costs as it becomes more difficult to ignore their impacts on our societies.

And the biggest “sink cost,” of course, is climate change:

“Sink costs are also rising; economies have used up the capacity of planetary ecosystems to handle the waste generated by energy and material use. Climate change is the most pronounced sink cost,” the paper states.

The paper’s lead author, Dr. Paavo Järvensivu, is a “biophysical economist”—an emerging type of economist exploring the role of energy and materials in fuelling economic activity.

The BIOS paper suggests that much of the political and economic volatility we have seen in recent years has a root cause in ecological crisis. As the ecological and economic costs of industrial overconsumption continue to rise, the constant economic growth we have become accustomed to is now in jeopardy. That, in turn, has exerted massive strain on our politics.

But the underlying issues are still unacknowledged and unrecognised by most policymakers.

“We live in an era of turmoil and profound change in the energetic and material underpinnings of economies. The era of cheap energy is coming to an end,” the paper says.

Conventional economic models, the Finnish scientists note, “almost completely disregard the energetic and material dimensions of the economy.”

“More expensive energy doesn’t necessarily lead to economic collapse,” Järvensivu told me. “Of course, people won’t have the same consumption opportunities, there’s not enough cheap energy available for that, but they are not automatically led to unemployment and misery either.”

The scientists refer to the pioneering work of systems ecologist Professor Charles Hall of the State University of New York with economist Professor Kent Klitgaard from Wells College. Earlier this year, Hall and Klitgaard released an updated edition of their seminal book, Energy and the Wealth of Nations: An Introduction to BioPhysical Economics.

Hall and Klitgaard are highly critical of mainstream capitalist economic theory, which they say has become divorced from some of the most fundamental principles of science. They refer to the concept of ‘Energy Return on Investment’ (EROI) as a key indicator of the shift into a new age of difficult energy. EROI is a simple ratio that measures how much energy we use to extract more energy.

“For the last century, all we had to do was to pump more and more oil out of the ground,” say Hall and Klitgaard. Decades ago, fossil fuels had very high EROI values—a little bit of energy allowed us to extract large amounts of oil, gas and coal.

“We face a form of capitalism that has hardened its focus to short-term profit maximization with little or no apparent interest in social good.”

Earlier in August, billionaire investor Jeremy Grantham—who has a track record of consistently calling financial bubbles—released an update to his April 2013 analysis, ‘The Race of Our Lives.’

The new paper, ‘The Race of Our Lives Revisited,’ provides a bruising indictment of contemporary capitalism’s complicity in the ecological crisis. Grantham’s verdict is that “capitalism and mainstream economics simply cannot deal with these problems,” namely, the systematic depletion of planetary ecosystems and environmental resources:

“The replacement cost of the copper, phosphate, oil, and soil—and so on—that we use is not even considered. If it were, it’s likely that the last 10 or 20 years (for the developed world, anyway) has seen no true profit at all, no increase in income, but the reverse,” he wrote.

Many experts believe we’re moving past capitalism, but they disagree on what the ultimate outcome will be. In his book Postcapitalism: A Guide to Our Future, British economics journalist Paul Mason theorises that information technology is paving the way for the emancipation of labour by reducing the costs of knowledge production—and potentially other kinds of production that will be transformed by AI, blockchain, and so on—to zero. Thus, he says, will emerge a utopian ‘postcapitalist’ age of mass abundance, beyond the price system and rules of capitalism.

It sounds peachy, but Mason completely ignores the colossal, exponentially increasing physical infrastructure for the ‘internet-of-things.’ His digital uprising is projected to consume evermore vast quantities of energy (as much as one-fifth of global electricity by 2025), producing 14 percent of global carbon emissions by 2040.

Toward a new economic operating system

Most observers, then, have no idea of the biophysical realities pointed out in the background paper commissioned by the UN Secretary-General’s IGS—that the driving force of the transition to postcapitalism is the decline of what made ‘endless growth capitalism’ possible in the first place: abundant, cheap energy.

The UN’s Global Sustainable Development Report is being drafted by an independent group of scientists (IGS) appointed by the UN Secretary-General. The IGS is supported by a range of UN agencies including the UN Secretariat, the UN Educational, Scientific and Cultural Organization, the UN Environment Programme, the UN Development Programme, the UN Conference on Trade and Development and the World Bank.

The paper, co-authored by Dr Järvensivu with the rest of the BIOS team, was commissioned by the UN’s IGS specifically to feed into the chapter on ‘Transformation: the Economy.’ Invited background documents are used as the basis of the GSDR, but what ends up in the final report will not be known until the final report is released next year.

“No widely applicable economic models have been developed specifically for the upcoming era”

Overall, the paper claims that we have moved into a new, unpredictable and unprecedented space in which the conventional economic toolbox has no answers. As slow economic growth simmers along, central banks have resorted to negative interest rates and buying up huge quantities of public debt to keep our economies rolling. But what happens after these measures are exhausted? Governments and bankers are running out of options.

“It can be safely said that no widely applicable economic models have been developed specifically for the upcoming era,” write the Finnish scientists.

Having identified the gap, they lay out the opportunities for transition.

In this low EROI future, we simply have to accept the hard fact that we will not be able to sustain current levels of economic growth. “Meeting current or growing levels of energy need in the next few decades with low-carbon solutions will be extremely difficult, if not impossible,” the paper finds. The economic transition must involve efforts “to lower total energy use.”

Key areas to achieve this include transport, food, and construction. City planning needs to adapt to the promotion of walking and biking, a shift toward public transport, as well as the electrification of transport. Homes and workplaces will become more connected and localised. Meanwhile, international freight transport and aviation cannot continue to grow at current rates.

As with transport, the global food system will need to be overhauled. Climate change and oil-intensive agriculture have unearthed the dangers of countries becoming dependent on food imports from a few main production areas. A shift toward food self-sufficiency across both poorer and richer countries will be essential. And ultimately, dairy and meat should make way for largely plant-based diets.

The construction industry’s focus on energy-intensive manufacturing, dominated by concrete and steel, should be replaced by alternative materials. The BIOS paper recommends a return to the use of long-lasting wood buildings, which can help to store carbon, but other options such as biochar might be effective too.

But capitalist markets will not be capable of facilitating the required changes – governments will need to step up, and institutions will need to actively shape markets to fit the goals of human survival. Right now, the prospects for this look slim. But the new paper argues that either way, change is coming.

Whether or not the system that emerges still comprises a form of capitalism is ultimately a semantic question. It depends on how you define capitalism.

“Capitalism, in that situation, is not like ours now,” said Järvensivu. “Economic activity is driven by meaning—maintaining equal possibilities for the good life while lowering emissions dramatically—rather than profit, and the meaning is politically, collectively constructed. Well, I think this is the best conceivable case in terms of modern state and market institutions. It can’t happen without considerable reframing of economic-political thinking, however.”





Primary Energy

27 08 2018

The internet is constantly bombarded with articles about how we need to go (or even ARE going) 100% renewable energy and get rid of fossil fuels…… now don’t get me wrong, I completely agree, it’s just that these people have no idea of the repercussions, nor of the size of the task at hand….)

Renewable energy zealots even believe that as more and more renewables are deployed, fossil fuels are being pushed out of the way, becoming irrelevant. Seriously.

Nothing of the sort is happening. In a recent article, Gail Tverberg wrote this…:

Of the 252 million tons of oil equivalent (MTOE) energy consumption added in 2017, wind ADDED 37 MTOE and solar ADDED 26 MTOE. Thus, wind and solar amounted to about 25% of total energy consumption ADDED in 2017. Fossil fuels added 67% of total energy consumption added in 2017, and other categories added the remaining 8%. [my emphasis on added…]

To put this in a graphic way, look at this…..

primary energy

Primary energy consumption has almost trebled since 1971, and renewables still only account for 2%…… while oil coal and gas has grown as a total percentage at the expense of nuclear. And…..  surprise surprise, OIL! Nothing to do with Peak Oil I suppose……

There is simply no way renewables will ever replace fossil fuels. California, with the aim of going 100% renewables doesn’t even have the necessary land available for the purpose according to some recent research…….

Last year, global solar capacity totaled about 219,000 megawatts. That means an all-renewable California would need more solar capacity in the state than currently exists on the entire planet. Sure, California can (and will) add lots of new rooftop solar over the coming decades. But Jacobson’s plan would also require nearly 33,000 megawatts of concentrated solar plants, or roughly 87 facilities as large as the 377-megawatt Ivanpah solar complex now operating in the Mojave Desert. Ivanpah, which covers 5.4 square miles, met fierce opposition from conservationists due to its impact on the desert tortoise, which is listed as a threatened species under the federal and California endangered species acts.

Wind energy faces similar problems. The Department of Energy has concluded in multiple reports over the last decade that no matter where they are located — onshore or offshore — wind-energy projects have a footprint that breaks down to about 3 watts per square meter.

To get to Jacobson’s 124,608 megawatts (124.6 billion watts) of onshore wind capacity, California would need 41.5 billion square meters, or about 16,023 square miles, of turbines. To put that into perspective, the land area of Los Angeles County is slightly more than 4,000 square miles — California would have to cover a land area roughly four times the size of L.A. County with nothing but the massive windmills. Turning over even a fraction of that much territory to wind energy is unlikely. In 2015, the L.A. County Board of Supervisors voted unanimously to ban large wind turbines in unincorporated areas. Three other California counties — San Diego, Solano and Inyo — have also passed restrictions on turbines.

Last year, the head of the California Wind Energy Assn. told the San Diego Union-Tribune, “We’re facing restrictions like that all around the state…. It’s pretty bleak in terms of the potential for new development.”

Don’t count on offshore wind either. Given the years-long battle that finally scuttled the proposed 468-megawatt Cape Wind project — which called for dozens of turbines to be located offshore Massachusetts — it’s difficult to imagine that Californians would willingly accept offshore wind capacity that’s 70 times as large as what was proposed in the Northeast.

To expand renewables to the extent that they could approach the amount of energy needed to run our entire economy would require wrecking vast onshore and offshore territories with forests of wind turbines and sprawling solar projects. Organizations like 350.org tend to dismiss the problem by claiming, for example, that the land around turbines can be farmed or that the placement of solar facilities can be “managed.” But rural landowners don’t want industrial-scale energy projects in their communities any more than coastal dwellers or suburbanites do.

The grim land-use numbers behind all-renewable proposals aren’t speculation. Arriving at them requires only a bit of investigation, and yes, that we do the math.

“Without coal we won’t survive”. Yet coal will/could kill us all. It’s the difference between a problem and a predicament…. problems have solutions, predicaments need management. Here’s a trailer of a movie soon to be released….