A question too obvious…

25 04 2018

Every now and again someone poses a question so obvious that you wonder why nobody asked it before.  When that happens, it is usually because it reveals an unconscious narrative that you have been following.  It is precisely because it jars with what you thought you knew that it is so unsettling.  And, of course, most people will seek some means of avoiding the ramifications of the question; such as questioning the motives of the person asking it.

So it is that Time Magazine “Hero of the Environment,” Michael Shellenberger poses just such an apparently innocuous question:

“If solar and wind are so cheap, why are they making electricity so expensive?”

Image result for grid renewables

There are clearly merits to this question.  The spiralling cost of electricity played a major role in the recent Australian election.  In Britain, even the neoliberal Tory government has been obliged to introduce legislation to cap energy prices; while the Labour opposition threatens to dispense with the private energy market altogether.  Across the USA prices are spiralling ever upward, making Trump’s pro-fossil fuel stance popular for large numbers of Americans:

“Over the last year, the media have published story after story after story about the declining price of solar panels and wind turbines.  People who read these stories are understandably left with the impression that the more solar and wind energy we produce, the lower electricity prices will become.

“And yet that’s not what’s happening. In fact, it’s the opposite.

“Between 2009 and 2017, the price of solar per watt declined by 75 percent while the price of wind declined by 50 percent.  And yet — during the same period — the price of electricity in places that deployed significant quantities of renewables increased dramatically.”

According to Shellenberger, countries and states that have led the green energy charge have also led the charge to higher electricity prices.  Denmark has seen a 100 percent price increase, Germany 51 percent and California 24 percent.  At face value, these electricity price increases flatly contradict the narrative that we – and especially our governments – have been sold: that ever cheaper renewable energy technologies are the solution to our energy security and climate change problems.

Since the price of coal and gas has also fallen, we cannot point to fossil fuels as the cause of increasing energy prices.  That is, rushing to replace “dirty” fossil fuel power stations with even more “cheap” wind turbines and solar panels is unlikely to halt the rise in energy prices.

This brings us back to the apparently cheap renewables.  Could there be something about them that has caused prices to rise?

Once again, challenging the narrative helps expose the problem.  As with the term “renewable” itself, the problem is with our failure to examine the whole picture.  While to all intents and purposes, sunlight and wind are inexhaustible sources of energy, the technologies that harness and convert that energy into useful electrical energy are not – both are highly dependent on oil-based global supply chains.  In the same way, while the cost of manufacturing and deploying wind turbines and solar panels has dropped sharply in the past 20 years, the opposite is true of the deliverable electricity they generate.

For all the talk about this or that organisation, city or country generating 100 percent of its electricity from renewables, the reality is that the majority of their (and our) electricity is generated from gas together with smaller volumes of nuclear and coal.  Just because a company like Apple or Google pays extra for us to pretendthat it doesn’t use fossil fuels does not change the reality that without fossil fuels those companies would be out of business.  And that isn’t going to change unless someone can find a way of making the sun shine at night and the wind to blow 24/7/365.

The economic problem that Shellenberger points to is simply that the value of renewable electricity is in inverse proportion to its availability.  That is, when the wind isn’t blowing and the sun isn’t shining, additional electricity is at a premium.  When the sun is blazing and the wind is blowing on the other hand, there is often more electricity than is needed.  The result is that the value of that electricity falls.  In both circumstances, however, the monetary costs fall on the fossil fuel and nuclear generators that provide baseload and back-up capacity.  When there is insufficient renewable electricity, they have to be paid more to increase their output.  When there is too much renewable electricity, they have to be paid more to curtail their output.  Those additional monetary costs are then added to the energy bills of their consumers.

In these circumstances, the falling cost of the renewable electricity technology is almost irrelevant.  According to Shellenberger:

“Part of the problem is that many reporters don’t understand electricity. They think of electricity as a commodity when it is, in fact, a service — like eating at a restaurant.

“The price we pay for the luxury of eating out isn’t just the cost of the ingredients most of which, like solar panels and wind turbines, has declined for decades.

“Rather, the price of services like eating out and electricity reflect the cost not only of a few ingredients but also their preparation and delivery.”

Even if the price of renewable technologies fell to zero, the cost of supplying electricity to end users would continue to rise.  Indeed, paradoxically, if the cost fell to zero, the price would spiral out of control precisely because of the impact on the wider system required to move that renewable electricity from where it is generated to where and when it is required.  In short, and in the absence of cheap and reliable storage and back-up technologies that have yet to be invented, the more renewable electricity generating technologies we deploy, the higher our electricity bills are going to rise.

This may, of course, be considered (at least among the affluent liberal classes) to be a price worth paying to reduce our carbon emissions (although there is little evidence that this is happening).  But it has potentially explosive political consequences.  As the UK government’s energy policy reviewer, Dieter Helm pointed out:

“It is not particularly difficult to set out what an efficient energy system might look like which meets the twin objectives of the climate change targets and security of supply. There would, however, remain a binding constraint: the willingness and ability to pay for it. There have to be sufficient resources available, and there has in a democracy to be a majority who are both willing to pay and willing to force the population as a whole to pay. This constraint featured prominently in the last three general elections, and it has not gone away.” (My emphasis)

Energy poverty and discontent is a growing phenomenon across Western states, as stagnating real wages leave millions of families struggling to cover the cost of basics like food and energy that have risen in price far faster than official inflation.  This has already translated into the disruptive politics of Brexit, Donald Trump and the rise of the European far right and far left parties.  In acknowledging this constraint, Helm points to the true depths of our current trilemma – we have simultaneous crises in our environment, our energy and resource base and our economy.

Thus far, “solutions” put forward to address any one arm of the trilemma – economic growth, renewable energy, hydraulic fracturing – impact negatively on the other arms; ultimately rendering the policy undeliverable.  Until we can drop our illusory narratives, grasp the full implications of the trilemma, and begin to develop policy accordingly, like the rising price of supposedly cheaper renewable electricity, things can only go from bad to worse.

Advertisements




Wind will never make a significant contribution to energy supplies

9 04 2018

Portrait photographer newcastleMatt Ridley. May 15, 2017. Wind turbines are neither clean nor green and they provide zero global energy. Even after 30 years of huge subsidies, it provides about zero energy. The Spectator.

The Global Wind Energy Council recently released its latest report, excitedly boasting that ‘the proliferation of wind energy into the global power market continues at a furious pace, after it was revealed that more than 54 gigawatts of clean renewable wind power was installed across the global market last year’.

You may have got the impression from announcements like that, and from the obligatory pictures of wind turbines in any BBC story or airport advert about energy, that wind power is making a big contribution to world energy today. You would be wrong. Its contribution is still, after decades — nay centuries — of development, trivial to the point of irrelevance.

Even put together, wind and photovoltaic solar are supplying less than 1 per cent of global energy demand. From the International Energy Agency’s 2016 Key Renewables Trends, we can see that wind provided 0.46 per cent of global energy consumption in 2014, and solar and tide combined provided 0.35 per cent. Remember this is total energy, not just electricity, which is less than a fifth of all final energy, the rest being the solid, gaseous, and liquid fuels that do the heavy lifting for heat, transport and industry.

[One critic suggested I should have used the BP numbers instead, which show wind achieving 1.2% in 2014 rather than 0.46%. I chose not to do so mainly because that number is arrived at by falsely exaggerating the actual output of wind farms threefold in order to take into account that wind farms do not waste two-thirds of their energy as heat; also the source is an oil company, which would have given green blobbers a excuse to dismiss it, whereas the IEA is unimpleachable But it’s still a very small number, so it makes little difference.]

Such numbers are not hard to find, but they don’t figure prominently in reports on energy derived from the unreliables lobby (solar and wind). Their trick is to hide behind the statement that close to 14 per cent of the world’s energy is renewable, with the implication that this is wind and solar. In fact the vast majority — three quarters — is biomass (mainly wood), and a very large part of that is ‘traditional biomass’; sticks and logs and dung burned by the poor in their homes to cook with. Those people need that energy, but they pay a big price in health problems caused by smoke inhalation.

Even in rich countries playing with subsidised wind and solar, a huge slug of their renewable energy comes from wood and hydro, the reliable renewables. Meanwhile, world energy demand has been growing at about 2 per cent a year for nearly 40 years. Between 2013 and 2014, again using International Energy Agency data, it grew by just under 2,000 terawatt-hours.

If wind turbines were to supply all of that growth but no more, how many would need to windmountainbe built each year? The answer is nearly 350,000, since a two-megawatt turbine can produce about 0.005 terawatt-hours per annum. That’s one-and-a-half times as many as have been built in the world since governments started pouring consumer funds into this so-called industry in the early 2000s.

At a density of, very roughly, 50 acres per megawatt, typical for wind farms, that many turbines would require a land area [half the size of] the British Isles, including Ireland. Every year. If we kept this up for 50 years, we would have covered every square mile of a land area [half] the size of Russia with wind farms. Remember, this would be just to fulfil the new demand for energy, not to displace the vast existing supply of energy from fossil fuels, which currently supply 80 per cent of global energy needs. [para corrected from original.]

Do not take refuge in the idea that wind turbines could become more efficient. There is a limit to how much energy you can extract from a moving fluid, the Betz limit, and wind turbines are already close to it. Their effectiveness (the load factor, to use the engineering term) is determined by the wind that is available, and that varies at its own sweet will from second to second, day to day, year to year.

As machines, wind turbines are pretty good already; the problem is the wind resource itself, and we cannot change that. It’s a fluctuating stream of low–density energy. Mankind stopped using it for mission-critical transport and mechanical power long ago, for sound reasons. It’s just not very good.

As for resource consumption and environmental impacts, the direct effects of wind turbines — killing birds and bats, sinking concrete foundations deep into wild lands — is bad enough. But out of sight and out of mind is the dirty pollution generated in Inner Mongolia by the mining of rare-earth metals for the magnets in the turbines. This generates toxic and radioactive waste on an epic scale, which is why the phrase ‘clean energy’ is such a sick joke and ministers should be ashamed every time it passes their lips.

It gets worse. Wind turbines, apart from the fibreglass blades, are made mostly of steel, with concrete bases. They need about 200 times as much material per unit of capacity as a modern combined cycle gas turbine. Steel is made with coal, not just to provide the heat for smelting ore, but to supply the carbon in the alloy. Cement is also often made using coal. The machinery of ‘clean’ renewables is the output of the fossil fuel economy, and largely the coal economy.

A two-megawatt wind turbine weighs about 250 tonnes, including the tower, nacelle, rotor and blades. Globally, it takes about half a tonne of coal to make a tonne of steel. Add another 25 tonnes of coal for making the cement and you’re talking 150 tonnes of coal per turbine. Now if we are to build 350,000 wind turbines a year (or a smaller number of bigger ones), just to keep up with increasing energy demand, that will require 50 million tonnes of coal a year. That’s about half the EU’s hard coal–mining output.

The point of running through these numbers is to demonstrate that it is utterly futile, on a priori grounds, even to think that wind power can make any significant contribution to world energy supply, let alone to emissions reductions, without ruining the planet. As the late David MacKay pointed out years back, the arithmetic is against such unreliable renewables.

MacKay, former chief scientific adviser to the Department of Energy and Climate Change, said in the final interview before his tragic death last year that the idea that renewable energy could power the UK is an “appalling delusion” — for this reason, that there is not enough land.





The Bumpy Road Down, Part 4: Trends in Collapse

27 01 2018

IrvMillsIrv Mills has just published part 4 of his Bumpy Road Down series of articles…..

This time I’m going to look at some of the changes that will happen along the bumpy road down and the forces and trends that will lead to them. If you followed what I was saying in my last post, you’ll have realized that the bumpy road will be a matter of repeatedly getting slapped down as a result of going into overshoot—exceeding our limits, crashing, then recovering, only to get slapped again as we go into overshoot yet again.

Along the way, where people have a choice, they will choose to do a range of different things (some beneficial, others not so much), according to their circumstances and inclinations. Inertia is also an important factor—people resist change. And politicians are adept at “kicking the can down the road”—patching together the current system to keep it working for little while longer and letting the guy who gets elected next worry about the consequences.

Because the world will become a smaller place for most of us, we’ll feel less influence from other areas and in turn have less influence over them. There will be a lot more “dissensus”—people doing their own thing and letting other people do theirs. I expect this will lead to quite a variety of approaches, some that fail and some that do work to some extent. In the short run, of course, “working” means recovering from whatever disaster we are currently trying to cope with. But in the long run, the real challenge is learning to live within our limits and accept “just enough” rather than always striving for more. Trying a lot of different approaches to this will make it more likely that we find some that are successful.

Anyways—changes, forces and trend…and how they will work on the bumpy road down.

I’ve included the stepped or oscillating decline diagram from my last post here to make it easier to visualize what I’m talking about.

ENERGY DECLINE

Because I’m a “Peak Oil guy” and because energy is at the heart of the financial problems we’re facing, I’ll talk about energy first. As I said in a recent post:

“Despite all the optimistic talk about renewable energy, we are still dependent on fossil fuels for the great majority of our energy needs, and those needs are largely ones that cannot be met by anything other than fossil duels, especially oil. While it is true that fossil fuels are far from running out, the amount of surplus energy they deliver (the EROEI—energy returned on energy invested) has declined to the point where it no longer supports robust economic growth. Indeed, since the 1990s, real economic growth has largely stopped. What limited growth we are seeing is based on debt, rather than an abundance of surplus energy.”

It is my analysis that there is zero chance of implementing any alternative to fossil fuels remotely capable of sustaining “business as usual” in the remaining few years before a major economic crash happens and changes everything. So the first trend I’ll point to is a continued reliance on fossil fuels. Fuels of ever decreasing EROEI, which will increase the stress on the global economy and continue contribute to climate change and ocean acidification.

Those who are mainly concerned about the environmental effects of continuing to burn fossil fuels would have us stop using those fuels, whatever the cost. But it is clear to me that the cost of such a move would be a global economic depression different only in the details from the one I’ve been predicting. Lack of energy, excess of debt, environmental disaster—take your pick….

It has been interesting to watch the governments of Canada and the US take two different approaches to this over the last couple of years.

The American approach has been based on denial. Denial of climate change on the one hand, and denial of the fossil fuel depletion situation on the other. “Drill baby, drill!” is expected to solve the energy problem without causing an environmental problem. I don’t believe that either expectation will be borne out over the next few years.

Our Canadian government under Prime Minister Justin Trudeau has made quite a bit of political hay by acknowledging the reality of climate change and championing the Paris Climate Agreement in the international arena. Here at home, though, it is clear that Trudeau understands the role of oil in our economy and he has been quick to quietly reassure the oil companies that they have nothing to fear, approving two major pipeline projects to keep oil flowing from Alberta to the Pacific coast and, eventually, to Chinese markets.

Yes, Ottawa has set a starting price of $10 a tonne on carbon dioxide emissions in 2018, increasing to $50 a tonne by 2022. This is to be implemented by provincial governments who have until the end of the year to submit their own carbon pricing plans before a national price is imposed on those that don’t meet the federal standard. It will be interesting to see how this goes and if the federal government sticks to its plan. Canada is one of the most highly indebted nations in the world and I wouldn’t be surprised if our economy was one of the first to falter.

At any rate, sometime in the next few years the economy is going to fall apart (point “c” in the diagram). As I’ve said, this may well be initiated by volatility in oil prices as the current oil surplus situation comes to an end. This will lead to financial chaos that soon spreads to the rest of the economy.

On the face of it this isn’t too different from the traditional Peak Oil scenario—the collapse of industrial civilization caused by oil shortages and sharply rising oil prices. But as you might guess by now, this isn’t exactly what I think will happen.

In fact, I think that we’ll see an economic depression where the demand for oil drops more quickly than the natural decline rate of our oil supplies and the price falls even further than it did in the last few years. We won’t be using nearly so much oil as at present, so we will once again accumulate a surplus, and we’ll even leave some reserves of oil in the ground, at least initially. This will help drive a recovery after the depression bottoms out (point “e” in the diagram). Please note that I am talking about the remaining relatively high EROEI conventional oil here. Unconventional sources just don’t produce enough surplus energy to fuel a recovery.

But the demand for oil will be a lot less than it is today and this will have a very negative effect on oil companies. Some governments will subsidize the oil industry even more than they have traditionally, just to keep to it going in the face of low prices. Other governments will outright nationalize their oil industries to ensure oil keeps getting pumped out of the ground, even if it isn’t very profitable to do so. Bankruptcy of critical industries in general is going to be a problem during and after the crash. More on that in my next post.

During the upcoming crash and depression fossil fuel use may well decline enough to significantly reduce our releases of CO2 into the atmosphere—not enough perhaps to stop climate change, but enough to slow it down. As we continue down the bumpy road, though, our use of fossil fuels and the release of CO2 from burning them will taper off to essentially nothing, allowing the ecosphere to finally begin a slow recovery from the abuses of the industrial age.

The other trend involving fossil fuels, as we go further down the bumpy road, will be their declining availability as we gradually use them up. Eventually our energy consumption will be determined by local availability of renewable energy that can be accessed using a relatively low level of technology. Things like biomass (mainly firewood), falling water, wind, passive solar, maybe even tidal and wave energy. Since these sources vary in quantity from one locality to another, the level of energy use will vary as well. Where these sources are intermittent, the users will simply have to adapt to that intermittency.

No doubt some of my readers will be wondering why I don’t think high tech renewables like solar cells and large wind turbines will save the day. The list of reasons is a long one—difficulty raising capital in a contracting economy, low EROEI, intermittency of supply and difficulty of operating, maintaining and regularly replacing such equipment once fossil fuels are gone—to mention just a few.

Large scale storage of power to deal with intermittency will in the long run prove unfeasible. Certainly batteries aren’t going to do it. There are a few locations where pumped storage of water can be set up at a relatively low cost, but not enough to make a big difference. And on top of all that, I very much doubt that large electrical grids are feasible in the long run (and I spent half my life maintaining on one such grid).

THE FIRE INDUSTRIES

The next trend I can see is in the FIRE (financial, insurance and real estate) sector of the economy. During the growth phase of our economy over that last couple of centuries the FIRE industries embodied a wide range of organizational technologies that facilitated business, trade and growth. Unfortunately, because they were set up to support growth, they were unable to cope with the end of real growth late in the twentieth century. They have supported debt based growth for the last couple of decades as the only alternative that they could deal with. This led to the unprecedented amount of debt that we see in the world today. Much of this debt is quite risky and will likely lead to a wave of bankruptcies and defaults—the very crash I’ve been talking about.

The FIRE industries will be at the heart of that crash and will suffer horribly. Many, perhaps the majority, of the companies in that sector won’t survive. In today’s world they wield a great deal of political power. During the global financial crisis (GFC) in 2007-8 that power was enough to see them through largely unscathed. This is unlikely to be the case in the upcoming crash, creating a desperate need for their services and an opportunity to fill that need which will be another factor in the recovery after the crash bottoms out. But of course there is more than one way it can be done.

In the 3rd4th5th6th and 7th posts in my ” Collapse Step by Step” series, I dealt with the political realities of our modern world, which limit what can be done by democratic governments. I identified a political spectrum defined by those limits. At the left end of this spectrum we have Social Democratic societies, which still practice capitalism, but where those in power are concerned with the welfare of everyone within the society. At the right end we have Right Wing Capitalist societies where the ruling elite is concerned only with accumulating more wealth and power for itself.

Since the FIRE industries are crucial to the accumulation and distribution of wealth in our societies, the way they are rebuilt following the crash will be largely determined by the political goals of those doing the rebuilding.

At the left end of the spectrum there is much that can be done to regulate the FIRE industries and stop their excesses from leading immediately to further crises.

At the right end of the political spectrum the elite is so closely tied to the FIRE industries and so little concerned with the welfare of the general populace, that those industries will likely be rebuilt on a plan very similar to their current organization. A policy of “exterminism” is likely to be followed, where prosperity for the elite and an ever shrinking middle class is seen as the only goal and the poor are a burden to be abandoned or outright exterminated.(Thanks for Peter Frase, author of Four Futures—Life After Captialism for the term “exterminism”.)

In the case of either of these extremes, or anywhere along the spectrum between them, there are some common things I can see happening.

The whole FIRE sector depends on trust. In the last few decades (since the 1970s) we have switched from currencies based on precious metals to “fiat money” which is based on nothing but trust in the governments issuing it. This was done to accommodate growth fueled by abundant surplus energy and then to facilitate issuing ever more debt as the surplus energy supply declined. I don’t advocate going back to precious metals—what we need is a monetary system that can accommodate degrowth, of which a great deal lies in our future. Unfortunately we don’t yet know what such a system might look like.

It is clear, though, that the coming crash is going to shake our trust in the FIRE industries to its very roots. Since central banks will have been central to the monetary problems leading to the crash, they may well be set up as scapegoats for that crash and their relative lack of success in coping with it. People will be very suspicious after watching the FIRE industries fall apart during the crash and their lack of trust will force those industries to take some different approaches.

I think governments will take over the functions of central banks and stop charging themselves interest on the money they print. Yes, I know that printing money has often led to runaway inflation, but the conditions during the crash and its aftermath will be so profoundly deflationary that inflation will not likely be a problem.

The creation of debt will be viewed much less favourably and credit will be much harder to get. And of course this will make the crash and following depression that much worse. In response to this many areas will create local banks and currencies to provide the services that local businesses need to get moving again.

During the last couple of decades there has been a move to loosen regulations in the FIRE industries, to let single large entities become involved in investment banking, business and personal banking, insurance and real estate. Most such entities began as experts in one of those areas, but one has to question their expertise in the new areas they moved into. In any case they became “too big to fail” and their failure threatened the stability the whole FIRE sector. Following the GFC there was only minor tightening of regulations to discourage this sort of thing, but after the upcoming crash I suspect many governments, especially toward the left end of the political spectrum, will institute a major re-regulation of the FIRE industries and a splitting up of the few “too big to fail” companies who didn’t actually fail.

It is all very well to talk about business and even governments failing when their debt load becomes too great. But there is also a lot of personal debt that is, at this point, unlikely ever to get paid back. What does it mean, in this context, for a person to fail? What I carry as debt is an asset for someone else—probably the share holders of a bank. They are understandably reluctant to watch their assets evaporate, and I have to admit that there is a moral hazard involved in just letting people walk away from their debts. That feeling was so strong in the past that those who couldn’t pay their debts ended up in debtors’ prisons. Such punishment was eventually seen as futile and the practice was abandoned and personal bankruptcies were allowed.

One suspects that in the depression following the coming crash it will be necessary to declare a jubilee, forgiving large classes of personal debt. What might become of all the suddenly destitute people depends on where their country lies on the political spectrum. I wouldn’t rule out debtors prisons or work camps, the sort of modern slavery that is already gaining a foothold in the prison system of the United States.

If we were willing to give up growth as the sole purpose of our economic system, there are many changes that could be made to the FIRE industries that would allow them to provide the services needed by businesses and individuals without stimulating the unchecked growth that leads to collapse. I think we are unlikely to see this happen after the upcoming crash—we will be desperate for recovery and that will still mean growth at destructive levels.

I think the crash following that recovery will involve the food supply and still unchecked population growth and sadly a lot of people won’t make it through (more on this in my next post). Following that, it’s even possible that in some areas people may reach the conclusion that growth is the problem and quit sticking their heads up to get slapped down again. They’ll have to find a more sustainable way to live, but with it will come a less bumpy road forward.

AUTHORITARIANISM

In the aftermath of the next crash, I think we’ll see an increase in authoritarianism in an attempt to optimize the systems that failed during the crash—to make them work again and work more effectively. Free market laissez faire economics will be seen to have failed by many people. Others will hang tight, claiming that if they just keep doing yet again the same thing that failed before, it will finally work.

As is always the case with this sort of optimization, it will create a less resilient system, much more susceptible to subsequent crashes. And after those crashes governments will be reduced to such a small scale affair that authoritarianism won’t be so much of an issue.

Fortunately, beyond authoritarianism, there are some other trends that will lead to increased resilience and sustainability. We’ll take a look at those in my next post.





Is Australia’s energy crisis starting…..?

9 03 2017

This morning on the news, we were woken up to the fact we could be facing gas shortages in Australia. And because more and more electricity is generated with this fuel (Tasmania and South Australia immediately come to mind), the repercussions could be electricity rationing, as well as gas for heating and cooking.

An assessment from the Australian Energy Market Operator (AEMO) is warning that, without a swift response, Australia could face a difficult choice — keeping the power on versus cutting gas supplies to residential and business customers.

“If we do nothing, we’re going to see shortfalls in gas, we’re going to see shortfalls in electricity,” AEMO chief operating officer Mike Cleary said.

The analysis said without new development to support more gas-powered electricity generation, modelling showed supply shortfalls of between 80 gigawatt hours and 363 gigawatt hours could be expected from summer 2018/19 until 2020/21.

It’s not like we weren’t warned……  I wrote about this almost three years ago…. at the time, I quoted Matt Mushalik…: “In July 2006 then Prime Minister Howard declared Australia an energy super power. Two years earlier his energy white paper set the framework for unlimited gas exports while neglecting to set aside gas for domestic use”

Bloomberg agrees…..

Australia, the world’s second-largest exporter of liquefied natural gas, needs to remove road blocks to gas exploration on the east coast that Prime Minister Malcolm Turnbull blames for a looming domestic supply crisis.

“We are facing an energy crisis in Australia because of this restriction of gas,” Turnbull told a business conference in Sydney on Thursday. “Gas reserves or gas resources are not the issue. The biggest problem at the moment is the political opposition from state governments to it being exploited.”

Hang on a minute…… if we are indeed the world’s second biggest gas exporter, why do we need more exploration (code for really dirty coal seam gas)..? And if we are exporting so much gas, why can’t we cut down on the exports, and keep some for ourselves?

I smell a rat…….

According to Bloomberg again……

Origin Energy Ltd, Australia’s largest electricity company, on Tuesday said Queensland gas intended for LNG exports to Asia may be diverted to ease an expected supply shortfall this winter.

So there’s no problem then…?

Royal Dutch Shell Plc, owner of the $20 billion Queensland Curtis LNG development, said in an emailed statement that its QGC Ltd. subsidiary will continue to make gas available “where we have the capacity to do so.”

gas burning.So there’s capacity for export but not for domestic use…. and the hogwash continues at full speed with more statements like “Energy security has come under scrutiny since a state-wide blackout in September hit South Australia, the mainland state most reliant on renewable energy generation. Turnbull’s conservative leaning government called the state “utterly complacent” due to its over reliance on renewable energy following a partial blackout in February, whilst later attacking other left-leaning state governments for similar ambitions.” Oh I get it now…..  it’s the renewables’ fault that we are short on gas. And what on Earth is a left leaning state? You mean like Queensland’s ALP government going full steam ahead to support Adani’s project for the world’s largest coal mine..?

Give me a break Malcolm….  this is all your greedy lot’s fault, you damn well know you can get more money for gas overseas than we are willing (or able) to pay for it locally.

Do the morons in charge really think we are all dills who can’t see through all their propaganda?   “Economics and engineering, they should be the two load stars of our national energy policy,” Turnbull said. “We’ve got to get the ideology and the politics out of it.”  YOU first Malcolm….. you’re not interested in Australia’s energy security, you just want to kow-tow to the right wing nuts in your party, and maximise your mates’ profits…..

Consumer groups are saying it’s too early to advise people whether to switch away from gas, despite the forecast by the Australian Energy Market Operator of a looming shortage on the country’s east coast. Energy Consumers Australia (ECA) said householders should instead research the most competitive offers available from across the range of energy providers. I think consumers should look at alternative technologies myself. While I constantly discredit solar PV on this blog, the most sustainable form of solar power, solar water heating, is struggling to make inroads these days.

Some of the advice is simply ludicrous…. as if LED lights will save you from an energy crisis (let’s call a spade a spade here..) and “The main use of gas is in central heating and hot water, so if you’re building a new house think about reverse cycle air-conditioning or heat pumps” Mr Stock said.  But but…….  Mr Stock, do you realise it’s possible to build houses that actually do NOT need any heating and cooling?

And people wonder why I think we’ll be rooned…….. my wood fired AGA‘s looking pretty good right now.





And the oil rout continues unabated..

26 02 2017

Paul Gilding, whose work I generally admire, has published a new item on his blog after quite some time off. “It’s time to make the call – fossil fuels are finished. The rest is detail.” Sounds good, until you read the ‘detail’. Paul is still convinced that it’s renewable energy that will sink the fossil fuel industry. He writes…..:

The detail is interesting and important, as I expand on below. But unless we recognise the central proposition: that the fossil fuel age is coming to an end, and within 15 to 30 years – not 50 to 100 – we risk making serious and damaging mistakes in climate and economic policy, in investment strategy and in geopolitics and defence.

Except the fossil fuel age may be coming to an end within five years.. not 15 to 30.

The new emerging energy system of renewables and storage is a “technology” business, more akin to information and communications technology, where prices keep falling, quality keeps rising, change is rapid and market disruption is normal and constant. There is a familiar process that unfolds in markets with technology driven disruptions. I expand on that here in a 2012 piece I wrote in a contribution to Jorgen Randers book “2052 – A Global Forecast” (arguing the inevitability of the point we have now arrived at).

This shift to a “technology” has many implications for energy but the most profound one is very simple. As a technology, more demand for renewables means lower prices and higher quality constantly evolving for a long time to come. The resources they compete with – coal, oil and gas – follow a different pattern. If demand kept increasing, prices would go up because the newer reserves cost more to develop, such as deep sea oil. They may get cheaper through market shifts, as they have recently, but they can’t keep getting cheaper and they can never get any better.

In that context, consider this. Renewables are today on the verge of being price competitive with fossil fuels – and already are in many situations. So in 10 years, maybe just 5, it is a no-brainer that renewables will be significantly cheaper than fossil fuels in most places and will then just keep getting cheaper. And better.

With which economy Paul….? Come the next oil crisis, the economy will simply grind to a halt. Paul is also keen on electric cars….

Within a decade, electric cars will be more reliable, cheaper to own and more fun to drive than oil driven cars. Then it will just be a matter of turning over the fleet. Oil companies will then have their Kodak moment. Coal will already be largely gone, replaced by renewables.

When the economy crashes, no one will have any money to buy electric cars. It’s that simple….. Peak Debt is only just starting to make its presence felt…:

The carnage continues in the U.S. major oil industry as they sink further and further in the RED.  The top three U.S. oil companies, whose profits were once the envy of the energy sector, are now forced to borrow money to pay dividends or capital expenditures.  The financial situation at ExxonMobil, Chevron and ConocoPhillips has become so dreadful, their total long-term debt surged 25% in just the past year.

Unfortunately, the majority of financial analysts at CNBC, Bloomberg or Fox Business have no clue just how bad the situation will become for the United States as its energy sector continues to disintegrate.  While the Federal Government could step in and bail out BIG OIL with printed money, they cannot print barrels of oil.

Watch closely as the Thermodynamic Oil Collapse will start to pick up speed over the next five years.

According to the most recently released financial reports, the top three U.S. oil companies combined net income was the worst ever.  The results can be seen in the chart below:

Can the news on the collapse of the oil industry worsen…..? You bet……

According to James Burgess,

A total of 351,410 jobs have been slashed by oil and gas production companies worldwide, with the oilfield services sector bearing much of this burden, according to a new report released this week.

The report, based on statistical analysis by Houston-based Graves & Co., puts the number of jobs lost in the oilfield services sector at 152,015 now—or 43.2 percent of the global total since oil prices began to slump in mid-2014.

And then there are the bankruptcies……

A report published earlier this month by Haynes and Boone found that ninety gas and oil producers in the United States (US) and Canada have filed for bankruptcy from 3 January, 2015 to 1 August, 2016.

Approximately US$66.5 billion in aggregate debt has been declared in dozens of bankruptcy cases including Chapter 7, Chapter 11 and Chapter 15, based on the analysis from the international corporate law firm.

Texas leads the number of bankruptcy filings with 44 during the time period measured by Haynes and Boone, and also has the largest number of debt declared in courts with around US$29.5 billion.

Forty-two energy companies filed bankruptcy in 2015 and declared approximately US$17.85 billion in defaulted debt. The costliest bankruptcy filing last year occurred in September when Samson Resources filed for Chapter 11 protection with an accumulated debt of roughly US$4.2 billion.

Then we have Saudi Arabia’s decision to cut production to manipulate the price of oil upwards. So far, it appears to have reached a ceiling of $58 a barrel, a 16 to 36 percent increase over the plateau it had been on for months last year. But this has also come at a cost.

The world hasn’t really caught on yet, but OPEC is in serious trouble.  Last year, OPEC’s net oil export revenues collapsed.  How bad?  Well, how about 65% since the oil price peaked in 2012.  To offset falling oil prices and revenues, OPEC nations have resorted to liquidating some of their foreign exchange reserves.

The largest OPEC oil producer and exporter, Saudi Arabia, has seen its Foreign Currency reserves plummet over the past two years… and the liquidation continues.  For example, Saudi Arabia’s foreign exchange reserves declined another $2 billion in December 2016 (source: Trading Economics).

Now, why would Saudi Arabia need to liquidate another $2 billion of its foreign exchange reserves after the price of a barrel of Brent crude jumped to $53.3 in December, up from $44.7 in November??  That was a 13% surge in the price of Brent crude in one month.  Which means, even at $53 a barrel, Saudi Arabia is still hemorrhaging.

Before I get into how bad things are becoming in Saudi Arabia, let’s take a look at the collapse of OPEC net oil export revenues:

The mighty OPEC oil producers enjoyed a healthy $951 billion in net oil export revenues in 2012.  However, this continued to decline along with the rapidly falling oil price and reached a low of $334 billion in 2016.  As I mentioned before, this was a 65% collapse in OPEC oil revenues in just four years.

Last time OPEC’s net oil export revenues were this low was in 2004.  Then, OPEC oil revenues were $370 billion at an average Brent crude price of $38.3.  Compare that to $334 billion in oil revenues in 2016 at an average Brent crude price of $43.5 a barrel…….

This huge decline in OPEC oil revenues gutted these countries foreign exchange reserves.  Which means, the falling EROI- Energy Returned On Investment is taking a toll on the OPEC oil exporting countries bottom line.  A perfect example of this is taking place in Saudi Arabia.

Saudi Arabia was building its foreign exchange reserves for years until the price of oil collapsed, starting in 2014.  At its peak, Saudi Arabia held $797 billion in foreign currency reserves:

(note: figures shown in SAR- Saudi Arabia Riyal currency)

In just two and a half years, Saudi Arabia’s currency reserves have declined a staggering 27%, or roughly $258 billion (U.S. Dollars) to $538 billion currently.  Even more surprising, Saudi Arabia’s foreign currency reserves continue to collapse as the oil price rose towards the end of 2016:

The BLUE BARS represent Saudi Arabia’s foreign exchange reserves and the prices on the top show the average monthly Brent crude price.  In January 2016, Brent crude oil was $30.7 a barrel.  However, as the oil price continued to increase (yes, some months it declined a bit), Saudi’s currency reserves continued to fall.

This problem is getting bad enough that for the first time ever, the Saudi government has, shock horror,  started taxing its people….

Tax-free living will soon be a thing of the past for Saudis after its cabinet on Monday approved an IMF-backed value-added tax to be imposed across the Gulf following an oil slump.

A 5% levy will apply to certain goods following an agreement with the six-member Gulf Cooperation Council in June last year.

Residents of the energy-rich region had long enjoyed a tax-free and heavily subsidised existence but the collapse in crude prices since 2014 sparked cutbacks and a search for new revenue.

How long before Saudi Arabia becomes the next Syria is anyone’s guess, but I do not see any economic scenario conducive to Paul Gilding’s “Great Disruption”. The great disruption will not be the energy take over by renewables, it will be the end of freely available energy slaves supplied by fossil fuels. I believe Paul has moved to Tasmania, in fact not very far from here….. I hope he’s started digging his garden.





What is this ‘Crisis’ of Modernity?

22 01 2017

But why is the economy failing to generate prosperity as in earlier decades?  Is it mainly down to Greenspan and Bernanke’s monetary excesses?  Certainly, the latter has contributed to our contemporary stagnation, but perhaps if we look a little deeper, we might find an additional explanation. As I noted in a Comment of 6 January 2017, the golden era of US economic expansion was the ‘50s and ‘60s – but that era had begun to unravel somewhat, already, with the economic turbulence of the 70s. However, it was not so much Reagan’s fiscal or monetary policies that rescued a deteriorating situation in that earlier moment, but rather, it was plain old good fortune. The last giant oil fields with greater than 30-to-one, ‘energy-return’ on ‘energy-cost’ of exploitation, came on line in the 1980s: Alaska’s North Slope, Britain and Norway’s North Sea fields, and Siberia. Those events allowed the USA and the West generally to extend their growth another twenty years.

This week, there has been an avalanche of articles on Limits to Growth, just not titled so……. it’s almost as though the term is getting stuck in people’s throats, and are unable to pronounce them….

acrooke

Alastair Crooke

This article by former British diplomat and MI6 ‘ranking figure’ Alastair Crooke, is an unpublished article I’ve lifted from the Automatic Earth…… as Raul Ilargi succinctly puts it…:

 

His arguments here are very close to much of what the Automatic Earth has been advocating for years [not to mention DTM’s…], both when it comes to our financial crisis and to our energy crisis. Our Primers section is full of articles on these issues written through the years. It’s a good thing other people pick up too on topics like EROEI, and understand you can’t run our modern, complex society on ‘net energy’ as low as what we get from any of our ‘new’ energy sources. It’s just not going to happen.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Alastair Crooke: We have an economic crisis – centred on the persistent elusiveness of real growth, rather than just monetised debt masquerading as ‘growth’ – and a political crisis, in which even ‘Davos man’, it seems, according to their own World Economic Forum polls, is anxious; losing his faith in ‘the system’ itself, and casting around for an explanation for what is occurring, or what exactly to do about it. Klaus Schwab, the founder of the WEF at Davos remarked  before this year’s session, “People have become very emotionalized, this silent fear of what the new world will bring, we have populists here and we want to listen …”.

Dmitry Orlov, a Russian who was taken by his parents to the US at an early age, but who has returned regularly to his birthplace, draws on the Russian experience for his book, The Five Stages of Collapse. Orlov suggests that we are not just entering a transient moment of multiple political discontents, but rather that we are already in the early stages of something rather more profound. From his perspective that fuses his American experience with that of post Cold War Russia, he argues, that the five stages would tend to play out in sequence based on the breaching of particular boundaries of consensual faith and trust that groups of human beings vest in the institutions and systems they depend on for daily life. These boundaries run from the least personal (e.g. trust in banks and governments) to the most personal (faith in your local community, neighbours, and kin). It would be hard to avoid the thought – so evident at Davos – that even the elites now accept that Orlov’s first boundary has been breached.

But what is it? What is the deeper economic root to this malaise? The general thrust of Davos was that it was prosperity spread too unfairly that is at the core of the problem. Of course, causality is seldom unitary, or so simple. And no one answer suffices. In earlier Commentaries, I have suggested that global growth is so maddeningly elusive for the elites because the debt-driven ‘growth’ model (if it deserves the name ‘growth’) simply is not working.  Not only is monetary expansion not working, it is actually aggravating the situation: Printing money simply has diluted down the stock of general purchasing power – through the creation of additional new, ‘empty’ money – with the latter being intermediated (i.e. whisked away) into the financial sector, to pump up asset values.

It is time to put away the Keynesian presumed ‘wealth effect’ of high asset prices. It belonged to an earlier era. In fact, high asset prices do trickle down. It is just that they trickle down into into higher cost of living expenditures (through return on capital dictates) for the majority of the population. A population which has seen no increase in their real incomes since 2005 – but which has witnessed higher rents, higher transport costs, higher education costs, higher medical costs; in short, higher prices for everything that has a capital overhead component. QE is eating into peoples’ discretionary income by inflating asset balloons, and is thus depressing growth – not raising it. And zero, and negative interest rates, may be keeping the huge avalanche overhang of debt on ‘life support’, but it is eviscerating savings income, and will do the same to pensions, unless concluded sharpish.

But beyond the spent force of monetary policy, we have noted that developed economies face separate, but equally formidable ‘headwinds’, of a (non-policy and secular) nature, impeding growth – from aging populations in China and the OECD, the winding down of China’s industrial revolution,  and from technical innovation turning job-destructive, rather than job creative as a whole. Connected with this is shrinking world trade.

But why is the economy failing to generate prosperity as in earlier decades?  Is it mainly down to Greenspan and Bernanke’s monetary excesses?  Certainly, the latter has contributed to our contemporary stagnation, but perhaps if we look a little deeper, we might find an additional explanation. As I noted in a Comment of 6 January 2017, the golden era of US economic expansion was the ‘50s and ‘60s – but that era had begun to unravel somewhat, already, with the economic turbulence of the 70s. However, it was not so much Reagan’s fiscal or monetary policies that rescued a deteriorating situation in that earlier moment, but rather, it was plain old good fortune. The last giant oil fields with greater than 30-to-one, ‘energy-return’ on ‘energy-cost’ of exploitation, came on line in the 1980s: Alaska’s North Slope, Britain and Norway’s North Sea fields, and Siberia. Those events allowed the USA and the West generally to extend their growth another twenty years.

And, as that bounty tapered down around the year 2000, the system wobbled again, “and the viziers of the Fed ramped up their magical operations, led by the Grand Vizier (or “Maestro”) Alan Greenspan.”  Some other key things happened though, at this point: firstly the cost of crude, which had been remarkably stable, in real terms, over many years, suddenly started its inexorable real-terms ascent.  And from 2001, in the wake of the dot.com ‘bust’, government and other debt began to soar in a sharp trajectory upwards (now reaching $20 trillion). Also, around this time the US abandoned the gold standard, and the petro-dollar was born.

 


Source: Get It. Got It. Good, by Grant Williams

Well, the Hill’s Group, who are seasoned US oil industry engineers, led by B.W. Hill, tell us – following their last two years, or so, of research – that for purely thermodynamic reasons net energy delivered to the globalised industrial world (GIW) per barrel, by the oil industry (the IOCs) is rapidly trending to zero. Note that we are talking energy-cost of exploration, extraction and transport for the energy-return at final destination. We are not speaking of dollar costs, and we are speaking in aggregate. So why should this be important at all; and what has this to do with spiraling debt creation by the western Central Banks from around 2001?

The importance? Though we sometimes forget it, for we now are so habituated to it, is that energy is the economy.  All of modernity, from industrial output and transportation, to how we live, derives from energy – and oil remains a key element to it.  What we (the globalized industrial world) experienced in that golden era until the 70s, was economic growth fueled by an unprecedented 321% increase in net energy/head.  The peak of 18GJ/head in around 1973 was actually of the order of some 40GJ/head for those who actually has access to oil at the time, which is to say, the industrialised fraction of the global population. The Hill’s Group research  can be summarized visually as below (recall that these are costs expressed in energy, rather than dollars):

 


Source: http://cassandralegacy.blogspot.it/2016/07/some-reflections-on-twilight-of-oil-age.html

[This study was also covered here on Damnthematrix starting here…]

But as Steve St Angelo in the SRSrocco Reports states, the important thing to understand from these energy return on energy cost ratios or EROI, is that a minimum ratio value for a modern society is 20:1 (i.e. the net energy surplus available for GDP growth should be twenty times its cost of extraction). For citizens of an advanced society to enjoy a prosperous living, the EROI of energy needs to be much higher, closer to the 30:1 ratio. Well, if we look at the chart below, the U.S. oil and gas industry EROI fell below 30:1 some 46 years ago (after 1970):

 


Source: https://srsroccoreport.com/the-coming-breakdown-of-u-s-global-markets-explained-what-most-analysts-missed/

“You will notice two important trends in the chart above. When the U.S. EROI ratio was higher than 30:1, prior to 1970, U.S. public debt did not increase all that much.  However, this changed after 1970, as the EROI continued to decline, public debt increased in an exponential fashion”. (St Angelo).

In short, the question begged by the Hill’s Group research is whether the reason for the explosion of government debt since 1970 is that central bankers (unconsciously), were trying to compensate for the lack of GDP stimulus deriving from the earlier net energy surplus.  In effect, they switched from flagging energy-driven growth, to the new debt-driven growth model.

From a peak net surplus of around 40 GJ  (in 1973), by 2012, the IOCs were beginning to consume more energy per barrel, in their own processes (from oil exploration to transport fuel deliveries at the petrol stations), than that which the barrel would deliver net to the globalized industrial world, in aggregate.  We are now down below 4GJ per head, and dropping fast. (The Hill’s Group)

Is this analysis by the Hill’s Group too reductionist in attributing so much of the era of earlier western material prosperity to the big discoveries of ‘cheap’ oil, and the subsequent elusiveness of growth to the decline in net energy per barrel available for GDP growth?  Are we in deep trouble now that the IOCs use more energy in their own processes, than they are able to deliver net to industrialised world? Maybe so. It is a controversial view, but we can see – in plain dollar terms – some tangible evidence fo rthe Hill’s Groups’ assertions:

 


Source: https://srsroccoreport.com/wp-content/uploads/2016/08/Top-3-U.S.-Oil-Companies-Free-Cash-Flow-Minus-Dividends.png

(The top three U.S. oil companies, ExxonMobil, Chevron and ConocoPhillips: Cash from operations less Capex and dividends)

Briefly, what does this all mean? Well, the business model for the big three US IOCs does not look that great: Energy costs of course, are financial costs, too.  In 2016, according to Yahoo Finance, the U.S. Energy Sector paid 86% of their operating income just to service the interest on the debt (i.e. to pay for those extraction costs). We have not run out of oil. This is not what the Hill’s Group is saying. Quite the reverse. What they are saying is the surplus energy (at a ratio of now less than 10:1) that derives from the oil that we have been using (after the energy-costs expended in retrieving it) – is now at a point that it can barely support our energy-driven ‘modernity’.  Implicit in this analysis, is that our era of plenty was a one time, once off, event.

They are also saying that this implies that as modernity enters on a more severe energy ‘diet’, less surplus calories for their dollars – barely enough to keep the growth engine idling – then global demand for oil will decline, and the price will fall (quite the opposite of mainstream analysis which sees demand for oil growing. It is a vicious circle. If Hills are correct, a key balance has tipped. We may soon be spending more energy on getting the energy that is required to keep the cogs and wheels of modernity turning, than that same energy delivers in terms of calorie-equivalence.  There is not much that either Mr Trump or the Europeans can do about this – other than seize the entire Persian Gulf.  Transiting to renewables now, is perhaps too little, too late.

And America and Europe, no longer have the balance sheet ‘room’, for much further fiscal or monetary stimulus; and, in any event, the efficacy of such measures as drivers of ‘real economy’ growth, is open to question. It may mitigate the problem, but not solve it. No, the headwinds of net energy per barrel trending to zero, plus the other ‘secular’ dynamics mentioned above (demography, China slowing and technology turning job-destructive), form a formidable impediment – and therefore a huge political time bomb.

Back to Davos, and the question of ‘what to do’. Jamie Dimon, the CEO of  JPMorgan Chase, warned  that Europe needs to address disagreements spurring the rise of nationalist leaders. Dimon said he hoped European Union leaders would examine what caused the U.K. to vote to leave and then make changes. That hasn’t happened, and if nationalist politicians including France’s Marine Le Pen rise to power in elections across the region, “the euro zone may not survive”. “The bottom line is the region must become more competitive, Dimon said, which in simple economic terms means accept even lower wages. It also means major political overhauls: “I say this out of respect for the European people, but they’re going to have to change,” he said. “They may be forced by politics, they may be forced by new leadership.”

A race to the bottom in pay levels?  Italy should undercut Romanian salaries?  Maybe Chinese pay scales, too? This is politically naïve, and the globalist Establishment has only itself to blame for their conviction that there are no real options – save to divert more of the diminished prosperity towards the middle classes (Christine Lagarde), and to impose further austerity (Dimon). As we have tried to show, the era of prosperity for all, began to waver in the 70s in America, and started its more serious stall from 2001 onwards. The Establishment approach to this faltering of growth has been to kick the can down the road: ‘extend and pretend’ – monetised debt, zero, or negative, interest rates and the unceasing refrain that ‘recovery’ is around the corner.

It is precisely their ‘kicking the can’ of inflated asset values, reaching into every corner of life, hiking the cost of living, that has contributed to making Europe the leveraged, ‘high cost’, uncompetitive environment, that it now is.  There is no practical way for Italians, for example, to compete with ‘low cost’ East Europe, or  Asia, through a devaluation of the internal Italian price level without provoking major political push-back.  This is the price of ‘extend and pretend’.

It has been claimed at Davos that the much derided ‘populists’ provide no real solutions. But, crucially, they do offer, firstly, the hope for ‘regime change’ – and, who knows, enough Europeans may be willing to take a punt on leaving the Euro, and accepting the consequences, whatever they may be. Would they be worse off? No one really knows. But at least the ‘populists’ can claim, secondly, that such a dramatic act would serve to escape from the suffocation of the status quo. ‘Davos man’ and woman disdain this particular appeal of ‘the populists’ at their peril.





Some reflections on the Twilight of the Oil Age (part III)

21 07 2016

Guest post by Louis Arnoux, republished from Ugo Bardi’s excellent blog

Part I

Part 3 – Standing slightly past the edge of the cliff

The Tooth Fairy Syndrome that I discussed in Part 2 is, in my view, the fundamental reason why those holding onto BAU will grab every piece of information that can possibly, superficially, back up their ideology and twist it to suit their viewa, generating much confusion in the process.  It is also probably fair to say that the advocates of various versions of“energy transition” are not immune to this kind of syndrome when they remain oblivious to the issues explored in Parts 1 and 2.  Is it possible to go beyond such confusion?

The need to move away from ideology

The impact of the Tooth Fairy Syndrome is all the more felt in the main media and among politicians – with the end result that so many lay people (and many experts) end up highly confused about what to think and do about energy matters.  Notably, we often encounter articles advocating, even sensationalising, various energy transition technologies or instead seeking to rubbish them by highlighting what they present as problematic issues without any depth of analysis.  For example, a 2013 article from the Daily Mail was highlighted in recent discussions among energy experts as a case in point.[1]  The UK is indeed installing large numbers of subsidized, costly diesel generators to be used as back-up at times of low electricity supplies from wind turbines. This article presented this policy as very problematic but failed to set things in perspective about what such issues say about the challenges of any energy transition.

In New Zealand, where I lived close to half of my life before a return to my dear Provence (De reditu suo mode, as a wink to an earlier post by Ugo) about 73% of electricity is deemed renewable (with hydro 60%, geothermal 10%, wind 3%, PVs about 0.1%); the balance being generated from gas and coal.  There is a policy to achieve 90% renewables by 2025. Now, with that mix we have had for many years something like what the UK is building, with a number of distributed generators for emergency back-up without this being a major issue.  The main differences I see with the UK are that (1) in NZ we have only about 5M people living in an area about half that of France (i.e. the chief issue is a matter of renewable production per head of population) and (2) the system is mostly hydro, hence embodying a large amount of energy storage, that Kiwi “sparkies” have learned to manage very well.  It ensues that a few diesel or gas generators are not a big deal there.  By contrast, the UK in my view faces a very big challenge to go “green”.

The above example illustrates the need to extricate ourselves from ideology and look carefully into systems specifics when considering such matters as the potential of various technologies, like wind turbine, PVs, EVs, and so on, as well as capacity factors and EROI levels in the context of going 100% renewable.  All too often, vital issues keep being sidestepped by both BAU and non-BAU parties; while ignoring them often leads to erroneous “solutions” and even dangerous ones.  So as a conclusion of this three-part series focused on “enquiring into the appropriateness of the question”, here are some of the fundamental issues that I see in front of us (the list is not exhaustive):

“Apocalypse now”

At least since the early 1970s and the Meadows’ work, we have known that the globalised industrial world (GIW) is on a self-destructive path, aka BAU (Business as usual). We now know that we are living through the tail end of this process, the end of the Oil Age, precipitating what I have called the Oil Fizzle Dragon-King, Seneca style, that is, after a slow, relatively smooth climb (aka “economic growth”) we are at the beginning of an abrupt fall down a thermodynamic cliff.

The chief issue is whole system change. This means thinking in whole systems terms where the thermodynamics of complex systems operating far from equilibrium is the key.  In terms of epistemology and methods, this requires what in anthropology is called the “hermeneutic circle”: moving repeatedly from the particulars, the details, to the whole system, improving our understanding of the whole and from this going back to the particulars, improving our understanding of them, going back to considering the whole, and so on.  Whole system replacement, i.e. going 100% renewable, requires a huge energy embodiment, a kind of “primitive accumulation” (as a wink to Marx) that presently, under the prevailing paradigm and technology set, is not feasible.  Having the “Energy Hand” in mind (Figure 5), where does this required energy may come from in a context of sharp decline of net energy from oil and Red Queen effect, and concerning renewable, inverse Red Queen/cannibalisation effects?  As another example of the importance of whole system thinking, Axel Kleidon has raised the question of the viability of very large-scale wind versus direct solar.[2]

Solely considering the performances and cost of this or that alternative energy technology won’t suffice.  Short of addressing the complexities of whole system replacement, the situation we are in is some kind of “Apocalypse now”.  The chief challenge I see is thus how to shift safely, with minimal loss of life (substantial loss of life there will be; this has become unavoidable), from fossil-BAU (and thus accessorily nuclear) to 100% sustainable, which means essentially, in one form or another, a direct solar-based society.

We currently have some 17 TW of power installed globally (mostly fossil with some nuclear), i.e. about 2.3kW/head, but with some 4 billion people who at best are grossly energy stressed, many who have no access to electricity at all and only limited transport, in a context of an efficiency of global energy systems in the order of 12%.[3]  To address the Oil Fizzle Dragon-King and the Perfect Storm that it is in the process of whipping up, I consider that we need to move to 4kW/head for the whole population (assuming it levels off at some 8 billion people instead of the currently expected 11 billions), plus some 10TW additional to address climate change and other ecological energy related issues, hence about 50TW, 100% direct solar based, for the whole spectrum of energy uses including transport; preferably over 20 years.  Standing where we now are, slightly past the edge of the thermodynamic cliff, this is my understanding of what’s required.

In other words, going “green” and surviving it (i.e. avoiding the inverse Red Queen effect) means increasing our Energy Hand from 17 TW to 50 TW (as a rough order of magnitude), with efficiencies shifting from 12% to over 80%.

To elaborate this further, I stress it again, currently the 17 TW do not even suffice to cater for the whole 7.3 billion global population and by a wide margin.  Going “green” with the current “renewable” technology mix and related paradigm would mean devoting a substantial amount of those 17 TW to the “primitive accumulation” of the “green” system.  It should be clear that under this predicament something would have to give, i.e. some of us would get even more energy stressed, and die, or as the Chinese and Indians have been doing for a while we would use much more of remaining fossil resources but then this would accelerate global warming and many other nasties. Alternatively we may face up to changing paradigm so as to rapidly steer away from global EROIs below 10:1 and global energy efficiency around 12%.  This is the usual “can’t have one’s cake and eat it” situation writ large.

Put in an other way, when looking at whole societal system replacement one must look at the whole of what’s required to make the system work, including people and their own energy requirements – this is fundamentally a matter of system boundary definitions related to problem definition (in David Bhom’s sense).   We can illustrate this by considering the Kingdom of Saudi Arabia (KSA).  As a thought experiment, remove oil (the media have reported that KSA’s Crown Prince has seen the writing on some wall re the near end of the oil bonanza).  This brings the KSA population from some 27M down to some 2M, i.e. some 25M people are currently required to keep oil flowing at some 10M bbl/day (including numerous Filipino domestics, medics, lawyers, and so on) plus about three times that population overseas to supply what the 25M require to keep the oil flowing…

Globally, I estimate very roughly that some 1.5 billion people, directly related to oil production, processing distribution and transport matters did require oil at above $100/bbl for their livelihood (including the Filipino domestics).  I call them the Oil People. [4]  Most of them currently are unhappy and struggle; their “demand” for goods and services has dropped considerably since 2014.

So all in all, whole system replacement (on a “do or die” mode) requires considering whole production chain networks from mining the ores, through making the metals, cement, etc., to making the machines, to using them to produce the stuff we require to go 100% sustainable, as well as the energy requirements of not only the Oil People but the full compendium of the Energy People involved, both the “fossil” ones and the “green” ones; while meanwhile we need to keep existing fossil-based energy systems going as much as possible.  Very roughly the Energy People are probably in the order of 3 billion people (and it is not easy to convert a substantial proportion of the “fossil” ones to “green”, including their own related energy requirements – this too has a significant energy cost).  This is where Figure 2, with the interplay of Red Queen and the inverse Red Queen, comes in.

Figure 2

redqueen
In my view at this whole system level we do have a major problem.  Given the very short time window constraint, we can’t afford to get it wrong in terms of how to possibly getting out of there – we have hardly enough time to have one go at it.

Remaining time frame

Indeed, under the sway of the Tooth Fairy (see Part 2) and an increasingly asthmatic Red Queen, we no longer have 35 years, (say up to around 2050).  We have at best 10 years, not to debate and agonise but to actually do, with the next three years being key.  The thermodynamics on this, summarised in Part 1, is rock hard.  This timeframe, combined with the Oil Pearl Harbor challenge and the inverse Red Queen constraints, means in my view that none of the current“doings” renewable-wise can cut it.  In fact much of these stand to make matters worse – I refer here to current interactions between efforts at going green largely within the prevailing paradigm and die hard BAU efforts at keeping fossils going, as perhaps exemplified in the current UK policies discussed earlier.

Weak links

Notwithstanding its apparent power, the GIW is in fact extremely fragile.  It embodies a number of very weak links in its networks.  I have highlighted the oil issue, an issue that defines the overall time frame for dealing with “Apocalypse now”.  In addition to that and to climate change, there are a few other challenges that have been variously put forward by a range of researchers in recent years, such as fresh water availability, massive soil degradation, trace pollutants, degradation of life in oceans (about 99% of life is aquatic), staple food threats (e.g. black stem rust, wheat blast, ground level ozone, etc.), loss of biodiversity and 6th mass extinction, all the way to Joseph Tainter’s work concerning the links between energy flows, power (in TW), complexity and overshoot to collapse.[5]

These weak links are currently in the process of breaking or are about to break, the breaks forming a self-reinforcing avalanche (SOC) or Perfect Storm.  All have the same key timeframe of about 10 years as an order of magnitude for acting.  All require a fair “whack” of energy as a prerequisite to handling them (the “whack” being a flexible and elastic unit of something substantial that usually one does not have).

It’s all burnt up

carbonbudget

Figure 6 – Carbon all burnt

Recent research shows that sensitivity to climate forcing has been substantially underestimated, meaning that we must expect much more warming in the longer term than touted so far.[6]  This further exacerbates what we already knew, namely that there is no such thing as a “carbon budget” of fossils the GIW could still burn, and no way of staying below the highly political and misleading 2oC COP21 objective (Figure 6).[7]

The 350ppm CO2 equivalent advocated by Hansen et al. is a safe estimate – a boundary crossed in the late 1980s, some 28 years ago.  So the reality is that we can’t escape actually extracting CO2 from the atmosphere, somehow, if we want to avoid trying to survive in a few mosquito infested areas of the far north and south, while some 80% of the planet becomes non-habitable in the longer run.  Direct Air Capture of atmospheric CO2 (DAC) is something that also requires a fair “whack” of energy, hence the additional 10TW I consider is required to get out of trouble.

Cognitive failure

eroei

Figure 7 – EROI cognitive failure

The “Brexit” saga is perhaps the latest large-scale demonstration of cognitive failure in a very long series.  That is to say, the failure on the part of decision-making elites to make use of available knowledge, experience, and expertise to tackle effectively challenges within the timeframe required to do so.

Cognitive failure is probably most blatant, but largely remaining unseen, concerning energy, the Oil Fizzle DK and matters of energy returns on energy investments (EROI or EROEI).  What we can observe is a triple failure of BAU, but also of most current “green” alternatives (Figure 7): (1) the BAU development trajectory since the 1950s failed; (2) there has been a failure to take heed of over 40 years of warnings; and (3) there has been a failure to develop viable alternatives.

However, although I am critical of aspects of recent evaluations of the feasibility of going 100% renewable,[8] I do think it remains feasible with existing knowledge, no “blue sky” required, i.e. to reach in the order of 50TW 100% solar I outlined earlier, but I also think that a crash on the cliff side of the Seneca is no longer avoidable.  In other words I consider that it remains possible to partly retrieve the situation while the GIW crashes so long as enough people do realise that one can’t change paradigm on the down side as one may do on the upside of a Seneca, which presently our elites, in full blown cognitive failure mode, don’t understand.

To illustrate this matter further and highlight why I consider that production EROIs well above 30:1 are necessary to get us out of trouble consider Figure 8.

freelunch

Figure 8 – The necessity of very high EROIs

This is expanded from similar attempts by Jessica Lambert et al., to perhaps highlights what sliding down the thermodynamic cliff entails.  Charles Hall has shown that a production EROI of 10:1 corresponds roughly to an end-user EROI of 3.3:1 and is the bare minimum for an industrial society to function.[9]  In sociological terms, for 10:1 think of North Korea.  As shown on Figure 7, currently I know of no alternative, either unconventional fossils based, nuclear or “green” technologies with production EROIs (i.e. equivalent to the well head EROI for oil) above 20:1; most remain below 10:1.  I do think it feasible to go back above 30:1, in 100% sustainable fashion, but not along prevalent modes of technology development, social organisation, and decision-making.

The hard questions

So prevailing cognitive failure brings us back to Bohm’s “enquiry into the appropriateness of the question”.  In conclusion of a 2011 paper, Joseph Tainter raised four questions that, in my view, squarely address such an enquiry (Figure 9).[10] To date those four questions remain unanswered by both tenants of BAU and advocates of going 100% renewable.

We are in an unprecedented situation.  As stressed by Tainter, no previous civilisation has ever managed to survive the kind of predicament we are in.  However, the people living in those civilisations were mostly rural and had a safety net, in that their energy source was 100% solar, photosynthesis for food, fibre and timber – they always could keep going even though it may have been under harsh conditions.  We no longer have such a safety net; our entire food systems are almost completely dependent on that net energy from oil that is in the process of dropping to the floor and our food supply systems cannot cope without it.

Figure 9 – Four questions

perfectstorm2

Figure 10 summarises how, in my view, Tainter’s four questions, his analyses and mine combine to define the unique situation we are in.  If we are to avoid sliding all the way down the thermodynamic cliff, we must shift to a new “energy pool”.  In this respect, dealing with the SOC-like Perfect Storm while carrying out such a shift both excludes “shrinking”our energy base (as many “greens” would have it) and necessitates abandoning the present highly wasteful energy use paradigm – hence the shift from 17TW fossil to 50TW 100% solar-based and with over 80% useful uses of energy that I advocated earlier, over a 20 to 30 years timeframe.

Figure 10 – Ready to jumping into a new energy pool?

specialtimes

 

Figure 10 highlights that humankind has been through a number of such shifts over the last 6 million years or so.  Each shift has entailed:

(1) a nexus of revolutionary innovations encompassing thermodynamics and related techniques,

(2) social innovation (à la Cornelius Castoriadis’ imaginary institution of society) and

(3) innovations concerning the human psyche, i.e. how we think, decide and act.

Our predicament, as we have just begun to slide down the fossil fuels thermodynamic cliff, similarly requires such a nexus if we are to succeed at a new “energy pool shift”.  Just focusing on thermodynamics and technology won’t suffice.  The kind of paradigm change I keep referring to integrates technology, social innovations and innovation concerning the human psyche about ways of avoiding cognitive failure.  This is a lot to ask, however it is necessary to address Tainter’s questions.

This challenge is a measure of the huge selection pressure humankind managed to place itself under.  Presently, I see a lot going on very creatively in all these three intimately related domains.  Maybe we will succeed in making the jump over the cliff?

Bio: Dr Louis Arnoux is a scientist, engineer and entrepreneur committed to the development of sustainable ways of living and doing business.  His profile is available on Google+ at: https://plus.google.com/u/0/115895160299982053493/about/p/pub

[1] Dellingpole, James, 2013, “The dirty secret of Britain’s power madness: Polluting diesel generators built in secret by foreign companies to kick in when there’s no wind for turbines – and other insane but true eco-scandals”, in The Daily Mail, 13 July.

[2] As another example, Axel Kleidon has shown that extracting energy from wind (as well as from waves and ocean currents) on any large scale would have the effect of reducing overall free energy usable by humankind (free in the thermodynamic sense, due to the high entropy levels that these technologies do generate, and as opposed to the direct harvesting of solar energy through photosynthesis, photovoltaics and thermal solar, that instead do increase the total free energy available to humankind) – see Kleidon, Axel, 2012, How does the earth system generate and maintain thermodynamic disequilibrium and what does it imply for the future of the planet?, Max Planck Institute for Biogeochemistry, published in Philosophical Transaction of the Royal Society A,  370, doi: 10.1098/rsta.2011.0316.

[3] E.g. Murray and King, Nature, 2012.

[4] This label is a wink to the Sea People who got embroiled in the abrupt end of the Bronze Age some 3,200 years ago, in that same part of the world currently bitterly embroiled in atrocious fighting and terrorism, aka MENA.

[5] Tainter, Joseph, 1988, The Collapse of Complex Societies, Cambridge University Press; Tainter, Joseph A., 1996, “Complexity, Problem Solving, and Sustainable Societies”, in Getting Down to Earth: Practical Applications of Ecological Economics, Island Press, and Tainter, Joseph A. and Crumley, Carole, “Climate, Complexity and Problem Solving in the Roman Empire” (p. 63), in Costanza, Robert, Graumlich, Lisa J., and Steffen, Will, editors, 2007, Sustainability or Collapse, an Integrated History and Future of People on Earth, The MIT Press, Cambridge, Massachusetts and London, U.K., in cooperation with Dahlem University Press.

[6] See for example Armour, Kyle, 2016, “Climate sensitivity on the rise”, www.nature.com/natureclimatechange, 27 June.

[7] For a good overview, see Spratt, David, 2016, Climate Reality Check, March.

[8] For example, Jacobson, Mark M. and Delucchi, Mark A., 2009, “A path to Sustainability by 2030”, in Scientific American, November.

[9] Hall, Charles A. S. and Klitgaard, Kent A., 2012, Energy and the Wealth of Nations, Springer; Hall, Charles A. S., Balogh, Stephen, and Murphy, David J. R., 2009, “What is the Minimum EROI that a Sustainable Society Must Have?” inEnergies, 2, 25-47; doi:10.3390/en20100025. See also Murphy, David J., 2014, “The implications of the declining energy return on investment of oil production” in Philosophical Transaction of the Royal Society A, 372: 20130126,http://dx.doi.org/10.1098/rsta.2013.0126.

[10] Joseph Tainter, 2011, “Energy, complexity, and sustainability: A historical perspective”, Environmental Innovation and Societal Transitions, Elsevier