A response to Changing the Conversation

8 12 2017

Ed. Note: Richard Smith’s article, Climate Crisis and Managed Deindustrialization: Debating Alternatives to Ecological Collapse, which Saral is responding to this post, can be found on Resilience.org here, or here on DTM where I republished it. My only gripe with Saral’s essay is the total lack of mention of debt abolition…..  canceling debt is the only way forward when we start talking about what to do about all the job losses.

By Saral Sarkar, originally published by Saral Sarkar blog

In his article,1 Richard calls upon his readers to “change the conversation”. He asks, “What are your thoughts?” He says, if we don’t “come up with a viable alternative, our goose is cooked.” I fully agree. So I join the conversation, in order to improve it.

Let me first say I appreciate Richard’s article very much. It is very useful, indeed necessary, to also present one’s cause in a short article – for those who are interested but, for whatever reason, cannot read a whole book. Richard has ably presented the eco-socialist case against both capitalism and “green” capitalism.

But the alternative Richard has come up with is deficient in one very important respect, namely in respect of viability. Allow me to present here my comradely criticisms. It will be short.

Is only Capitalism the Problem?

(1) Richard writes, “Capitalism, not population is the main driver of planetary ecological collapse … .”. It sounds like an echo of statements from old-Marxist-socialism. It is not serious. Is Richard telling us that, while we are fighting a long-drawn-out battle against capitalism in order to overcome it, we can allow population to continuously grow without risking any further destruction of the environment? Should we then think that a world population of ten billion by 2050 would not be any problem?

I would agree if Richard would say that capitalism is, because of its growth compulsion, one of the main drivers of ecological collapse. But anybody who has learnt even a little about ecology knows that in any particular eco-region, exponential growth of any one species leads to collapse of its ecological balance. If we now think of the planet Earth as one whole eco-region and consider all the scientific reports on rapid bio-diversity loss and rapid dwindling of the numbers of larger animals, then we cannot but correlate these facts with the exponential growth of our own species, homo sapiens sapiens, the latter being the cause of the former two.

No doubt, capitalism – together with the development of technologies, especially agricultural and medical technologies – has largely enabled the huge growth of human numbers in the last two hundred years. But human population growth has been occurring even in pre-capitalist and pre-medieval eras, albeit at a slower rate. Parallel to this, also environmental destruction has been occurring and growing in these eras.

It is not good to tell our readers only half the truth. The whole truth is succinctly stated in the equation:

I = P  x  A  x  T

where I stands for ecological impact (we can also call it ecological destruction), P for population, T for Technology and A for affluence. All these three factors are highly variable. Let me here also quote Paul Ehrlich, one of my teachers in political ecology. Addressing leftists, he once wrote, “Whatever [be] your cause, it is a lost cause unless we control population [growth]”. Note the phrase “whatever your cause”. Ehrlich meant to say, and I too think so, the cause may be environmental protection, saving the earth, protecting biodiversity, overcoming poverty and unemployment, women’s liberation, preventing racist and ethnic conflicts and cleansings, preventing huge unwelcome migration flows, preventing crime, fighting modern-day slavery, bringing peace in the world, creating a socialist world order etc. etc. etc., in all cases stopping population growth is a very important factor. Sure, that will in no case be enough. But that is an essential part of the solutions.

Note that in the equation cited above, there is no mention of capitalism. Instead, we find there the two factors technology and affluence. We can call (and we generally do call) the product of T x A (production of affluence by means of industrial technologies) industrialism, of which there has until now been two main varieties: the capitalist one and the planned socialist one (of the soviet type). Nothing will be gained for saving the ecological balance of the Earth if only capitalism is replaced with socialism, and ruling socialists then try to increase production at a higher rate, which they must do under the pressure of a growing population which, moreover, develops higher ambitions and aspirations, and demands all the good things that middle class Americans enjoy.

(2) Modern-day old-socialists do not deny the existence of an ecological problem. They have also developed several pseudo-solutions such as “clean” and “renewable” energies and materials, efficiency revolution, decoupling of GDP growth from resource use etc.

It’s good that Richard rejects the idea that green capitalism can save us. But why can’t it? “Because”, he writes, “companies can’t commit economic suicide to save the humans. There’s just no solution to our crisis within the framework of any conceivable capitalism.” This is good, but not enough. Because there are old-socialists (I know many in Germany) who believe that it is only individual capitalists/companies and the system capitalism that are preventing a rapid transition to 100 percent clean renewable energies and 100 percent recycling of all materials. Thanks to these possibilities, they believe, old-socialist type of industrialism, and even economic and population growth, can be reconciled with the requirements of sustainability. I don’t think that is possible, and I have also earlier elaborately explained why.2 Said briefly, “renewable energies” are neither clean nor renewable, and 100 percent recycling is impossible because the Entropy Law also applies to matter. What Richard thinks is not clear from this article of his. It is necessary to make his thoughts on this point clear.

Is Bottom-up Democracy of Any Use in the Transition Period?

(3) Richard writes, “Rational planning requires bottom-up democracy.” I do not understand the connection between the two, planning and democracy. At the most, one could say that for better planning for the villages, the planning commission should also listen to the villagers. But at the national level? Should, e.g., the inhabitants of each and every 500 souls village in the Ganges basin codetermine in a bottom up democratic planning process how the waters of the said river and its tributaries should be distributed among ca. 500 million inhabitants of the basin? If that were ever to be attempted, the result would be chaos, not planning. Moreover, how do you ensure that the villagers are capable of understanding the national interest and overcoming their particular interests? Such phrases are only illusions.

In his 6th thesis, Richard sketches a rosy, idealistic picture of a future eco-socialist society and its citizens. That may be attractive for him, me and other eco-socialists. But this future lies in distant future. First we would need a long transition period of contracting economies, and that would cause a lot of pain to millions of people spoilt by consumerism or promises of a consumerist future. We shall have to convince such people, and that would be an altogether difficult job. We should tell them the truth, namely that austerity is necessary for saving the earth. We can promise them only one thing, namely that all the pains and burdens as well as the benefits of austerity will be equitably distributed among all.

What to Do About Jobs?

(4) Richard writes: “Needless to say, retrenching and closing down such industries would mean job losses, millions of jobs from here to ChinaYet if we don’t shut down those unsustainable industries, we’re doomed.” And then he puts the question “What to do?” We can be sure that all people who wholly depend on a paid job for their livelihood, whom we must also win over, will confront us with this jobs question. Let me finish my contribution to this conversation with an answer to this question. 

There is not much use talking to ourselves, the already converted. We need to start work, immediately and all over the world, especially in those countries where poverty and unemployment is very high. We know that, generally, these countries are also those where population growth is very high. People from the rich countries cannot simply tell their people, sorry, we have to close down many factories and we cannot further invest in industrializing your countries. But the former can tell the latter that they can help them in controlling population growth. The latter will understand easily that it is an immediately effective way to reduce poverty and unemployment. A massive educative campaign will of course be necessary in addition to concrete monetary and technical help.

In the rich countries, contrary to what Richard perhaps thinks, it will not be possible to provide new equivalent jobs to replace those jobs we need to abolish. For such countries, reducing working hours and job-sharing in the short term, and, in the long term, ostracizing automation and labor-saving technologies, and using labor-intensive methods of production instead, are together the only solution. That is already known. Another thing that would be needed is to negate free trade and international competition. However, it must also be said openly that high wages and salaries cannot be earned under such circumstances. 

We eco-socialist activists must begin the work with a massive world-wide political campaign in favor of such ideas and policies.

Notes and References

1. Smith, Richard (2017) “ Climate Crisis and Managed Deindustrialization: Debating Alternatives to Ecological Collapse.”
https://forhumanliberation.blogspot.de/2017/11/2753-climate-crisis-and-managed.html
and
https://www.commondreams.org/views/2017/11/21/climate-crisis-and-managed-deindustrialization-debating-alternatives-ecological

2. My views expressed in this article have been elaborately presented in my book:
Eco-Socialism or Eco-Capitalism? – A Critical Analysis of Humanity’s Fundamental Choices (1999). London: Zed Books,  and in various articles published in my blog-site
www.eco-socialist.blogspot.com

Advertisements




Puerto Rico. Advanced showing of what collapse looks like.

30 09 2017

Puerto Rico now seems to be the first nation state, such as it is, to be destroyed by climate change……

maria_goe_2017263.0Now of course I am not saying that Hurrican Maria was caused by climate change, but the likelihood of it being hit twice in a week by two such powerful storms can only be put down to the unusually hot waters of the Atlantic Ocean. That it was totally destroyed can only be put down to bad management, and a history of US laisser faire with regards to its economy. Puerto Rico is a colony of the USA, not a state. It’s been treated by rich US citizens (including Donald Trump) as somewhere to go for idyllic tropical holidays, and not much else. For these things to happen, Puerto Rico was made to borrow well beyond its capacity to repay, it was bankrupt before the hurricane, there are no words to describe its position today. Except perhaps as a failed state, except it was never really a state in charge of its own destiny. And it now seems to be abondoned by the US, tossed into the garbage like an old unwanted disused toy.PR1

The one resource that stands out as lacking is diesel…..

This from the Organic Prepper…:

Hospitals are struggling to keep people alive.

And speaking of hospitals, 59 of the 69 on the island were, according to the Department of Defense, “operating on unknown status.”

Only 11 of 69 hospitals on Puerto Rico have power or are running on generators, FEMA reports. That means there’s limited access to X-ray machines and other diagnostic and life-saving equipment. Few operating rooms are open, which is scary, considering an influx of patients with storm-related injuries. (source)

A hospital in San Juan reported that two people in intensive care died when the diesel fueling the generator ran out. The children’s hospital has 12 little ones who depend on ventilators to survive, and once they ran out of fuel, they have gotten by on donations. FEMA has delivered diesel fuel to 19 hospitals.

But many darkened hospitals are unable to help patients who need it most.

Without sufficient power, X-ray machines, CT scans, and machines for cardiac catheterization do not function, and generators are not powerful enough to make them work. Only one in five operating rooms is functioning. Diesel is hard to find. And with a shortage of fresh water, another concern looms: a possible public health crisis because of unsanitary conditions…

The hospitals have been crippled by floods, damage and shortages of diesel. The governor said that 20 of the island’s hospitals are in working order. The rest are not operational, and health officials are now trying to determine whether it is because they lack generators, fuel or have suffered structural damage. All five of the hospitals in Arecibo, Puerto Rico’s largest city in terms of size, not population, are closed. (source)

PR2Now who would have thought that diesel keeps people alive………? On an island running on 100% renewables? The latest reports say the island may not get its electricity back for 12 months…..

There is of course also no food and water, and it’s a week now since Maria lashed those poor people. FEMA apparently dropped 4.4 million meals there, for 3.5 million people. You do the maths. Yet it appears that earlier in the 20th Century, Puerto Rico produced 70% of its food; but thanks to American management and love affair with debt, this slowly made all that disappear making the island fat and lazy and reliant on ever more debt to survive instead of concentrating on self sufficiency. After all, money is more important than food, right…….?

There is hardly any potable water.

Nearly half the people in Puerto Rico are without potable drinking water. The tap water that is restored has to be boiled and filtered, and others are finding water where they can. You can expect a health crisis soon due to waterborne illnesses. When I researched my book about water preparedness, I learned that waterborne illness is one of the deadliest threats post-disaster. Although FEMA has delivered 6.5 million liters of water, on an island with 3.4 million people, it isn’t enough.

Isabel Rullán is the co-founder and managing director of a non-profit group called ConPRmetidos. She is very concerned about the water situation. She said that even if people were able to acquire water “they may not have the power or means to boil or purify it.”

She added that the problem went beyond access to drinking water — it was becoming a real public health concern.

Compounding that issue was hospitals lacking diesel and being unable to take new patients, she said.

“There’s so much contamination right now, there’s so many areas that are flooded and have oil, garbage in the water, there’s debris everywhere,” she said by phone.

“We’re going to have a lot of people that are potentially and unfortunately going to get sick and may die,” she said. (source)

According to the Department of Defense, 56% of the island has potable water, but in one town, Arecibo, the only fresh water comes froma single fire hydrant. (source)

70,000 people were evacuated (to God knows where….) because a 90 year old dam could fail any day. As there’s no money – I can only surmise – the dam was not inspected for four years, when such an old piece of infrastructure should have yearly assessments. As we know here, crumbling infrastructure is the first sign of collapse.hurricane-maria-puerto-rico-dam

I could not help, however, thinking that this might be an opportunity. Puerto Rico could tell the USA to go to hell, and take its debts along for the ride. After all, its chances of paying it back now really are zero..! Not everyone will make it of course. The injured, elderly, diabetics, those in blacked out hospitals, not to mention those with no idea of how to deal in a post technology world, will almost certainly die. As I often say, nobody gets out alive. It’s how you check out that matters.

In all that destruction, there are many resources left. No shortage of building materials, perhaps even enough left over solar panels and peripherals to generate a modicum of electricity to run tools…. I can’t tell, not many people are thinking straight yet, and the media is so fickle that most bulletins are about what some clown rapper is going to sing at a footy grand final, Houston and Florida are already off the media screens. Why would anyone be interested in the beginning of global collapse…?

Richard HeinbergRichard Heinberg is thinking straight…. this article has just hit my newsfeed as I type:

A shrinking economy, a government unable to make debt payments, and a land vulnerable to rising seas and extreme weather: for those who are paying attention, this sounds like a premonition of global events in coming years. World debt levels have soared over the past decade as central banks have struggled to recover from the 2008 global financial crisis. Climate change is quickly moving from abstract scenarios to grim reality. World economic growth is slowing (economists obtusely call this “secular stagnation”), and is likely set to go into reverse as we hit the limits to growth that were first discussed almost a half-century ago. Could Puerto Rico’s present presage our own future?

If so, then we should all care a great deal about how the United States responds to the crisis in Puerto Rico. This could be an opportunity to prepare for metaphoric (and occasionally real) storms bearing down on everyone.

It’s relatively easy to give advice from the sidelines, but I do so having visited Puerto Rico in 2013, where I gave a presentation in the Puerto Rican Senate at the invitation of the Center for Sustainable Development Studies of the Universidad Metropolitana. There I warned of the inevitable end of world economic growth and recommended that Puerto Rico pave the way in preparing for it. The advice I gave then seems even more relevant now:

  • Invest in resilience. More shocks are on the way, so build redundancy in critical systems and promote pro-social behavior so that people’s first reflex is to share and to help one another.
  • Promote local food. Taking advantage of the island’s climate, follow the Cuban model for incentivizing careers in farming and increase domestic food production using permaculture methods.
  • Treat population decline as an opportunity. Lots of people will no doubt leave Puerto Rico as a result of the storm. This represents a cultural and human loss, but it also opens the way to making the size of the population of the island more congruent with its carrying capacity in terms of land area and natural resources.
  • Rethink transportation. The island’s current highway-automobile dominance needs to give way to increased use of bicycles, and to the provision of streetcars and and light rail. An interim program of ride- and car-sharing could help with the transition.
  • Repudiate debt. Use aid money to build a sharing economy, not to pay off creditors. Take a page from the European “degrowth” movement. An island currency and a Commonwealth bank could help stabilize the economy.
  • Build a different energy system. Patching up the old PREPA electricity generating and distribution system would be a waste of money. That system is both corrupt and unsustainable. Instead, invest reconstruction funds in distributed local renewables and low-power infrastructure.

Richard took the words right out of my mouth….. but what will the authorities do? Obviously nothing since Richard’s vist four years ago. Maybe this disaster will put a fire in ther bellies. Will it do the same elsewhere? i doubt it….. but I’m an old cynic! I have little doubt that Puerto Rico will be offered more debt money to ‘rebuild’ stuff that will be destroyed in the next storm.

Richard finishes with……

Obviously, the Puerto Rican people have immediate needs for food, water, fuel, and medical care. We mainland Americans should be doing all we can to make sure that help reaches those in the throes of crisis. But Puerto Ricans—all Americans, indeed all humans—should be thinking longer-term about what kind of society is sustainable and resilient in this time of increasing vulnerability to disasters of all kinds.

How could you disagree……?

 

 





I’m no longer advocating for clean energy; here’s why.

7 09 2017

Reblogged from The unpublished notebooks of J. M. Korhonen…….

My Finnish readers will already know that I announced some time ago that I’m done with energy/climate change discussions. I’ve been following the debate actively since about 2007 and have been writing about it since late 2010. I’ve written two books about the topic, one of which is translated into five languages, and blogged fairly regularly. But now it’s time to do something else.

The main reason why I’m refocusing is because I think the debate is going nowhere, and I don’t want to waste my time on a futile project. We are not going to get a decarbonized energy system by 2050. [I disagree here…….  there won’t be an economy that continues burning FFs by then…  DTM] We are going to fail the climate targets, probably by a large margin, and I suspect that a warming of about 3 degrees centigrade is going to be almost inevitable. It’s perfectly possible that self-amplifying feedback mechanisms under way will amplify this change even more. What this will mean for humans is difficult to assess, but I doubt it’s going to be anything good for the vast majority. The global poor will suffer the most, while we here in the rich North may be able – at least in the short term – to insulate ourselves from the worst effects and retreat to our own virtual bubbles to avoid hearing the cries of the others.

The reason why we’re going to fail is because we’re lulled into optimistic complacency. An occasional follower of the energy and climate news will inevitably conclude that climate change is as good as solved: page after page gushes about the relentless, inevitable progress of renewables and the just about imminent downfall of fossil fuel behemoths.

The reality, of course, is quite different from these uncritical pronouncements.

150521_Climate_Gamble_image.001

14947747_10154783178612728_7588800298934503291_n

Despite the very real advances of low-carbon energy sources in the recent decades, fossil fuels are still – relatively speaking – just as dominant as they were in 1980s. Since the global energy use has increased from those days, the problem of replacing practically all fossil fuel and most of the biomass use by 2050 (which would be required to stay at accepted climate targets) is hideously difficult.

However, nothing about this urgency is communicated to the broader audience. In general, people want to hear happy stories that fit their preconceptions; and the looming Ultimate Victory of renewable energy fits perfectly to the preconceptions of almost all environmentalists (who are also the only ones really concerned about climate change). The people want to hear that the new energy messiah will deliver us from evil; and scores of people around the world deliver. Very vocal groups argue that accomplishing 100% renewable energy system by 2050 is going to be easy and cheap; I can’t but keep on thinking how long it will take for the optimist groups to begin asserting that THEIR plan can do it by 2049 while giving everyone a pony as well.

Because we’ve been here before. In the 1960s nuclear energy was supposed to be THE energy source for the 2000s. Oil drilling was supposed to become unprofitable by the turn of the millennium, and the only real question was exactly how many nuclear power plants we’d ultimately end up building. The gushing, completely uncritical rhetoric that totally ignored any and all concerns about technical, economic and political issues inherent in such grand, technocratic schemes is almost word for word identical to the rhetoric employed today in 100% RE circles, as I’ve documented in several essays (e.g. herehere, here and here).

I and many others have tried to point out that there are still unsolved issues and potential pitfalls between the rhetoric and the ultimate, total victory of renewable energy. I at least have done this because I’d like to see renewable energy prosper: most if not all of us really are concerned about issues such as RE growth curve being logistic, integration costs, hidden environmental issues and local resistance to massive projects such as wind parks and power lines. We think that these issues have been downplayed or ignored entirely in the optimistic discussion, and that in order for renewable energy industry to avoid making the mistakes the nuclear industry made in the 1970s and 1980s, these issues would need to be addressed – soon. And, yes, we’ve been saying that a prudent climate mitigation strategy should include nuclear power as well, at least for as long as it is ACTUALLY DEMONSTRATED IN PRACTICE – not just in theoretical modeling – that major nations can get most of their energy from renewable sources alone.

All this has been to no avail. Realism never makes for a good copy, as long as there are people who make a living from selling a dream instead. No matter what we do, critical discussion of problems that are likely to crop up when renewable energy use increases has been confined to the blogs and discussions between a small group of like-minded people. Perhaps this shouldn’t have been surprising: after all, this is exactly what happened with nuclear energy as well. Critics of the nuclear dream were ignored, downplayed and vilified – until at some point, with enough experience, the actual technical, economic and political challenges became too large to ignore.

And that brings me to the last reason why I’m quitting. It’s bad enough that people who claim to be critical thinkers for the environment have swallowed the renewable advocacy hook, line and sinker (to the extent that it is environmentalists who most vocally deny that renewable energy could possibly have inadvertent environmental impacts) and are actively trying to undermine other low carbon energy, such as nuclear. However, the last straw for me is to keep on hearing that those who don’t uncritically buy the wildest renewable energy dreams and have some good questions about the research and thinking behind the dreams are shills for fossil fuels or nuclear power, and therefore the enemies of “proper” environmentalists. (See e.g. this piece.)

The fact that James Hansen, probably the most prominent climate researcher ever, is one of those critics (as are many other climate researchers around the world) makes no difference to these accusations.

I’ve been involved in environmental issues for a very long time now. I was a founding partner of the first eco-design consultancy in Finland in 2007, and I’m one of the founding members of the most recent environmental organization in Finland – the Finnish ecomodernist society. I’ve made major life choices to reduce my personal environmental impact, and have lectured for nearly a decade on how to design products that are less bad for the environment. (I always tell my students that if they want real change, they need to be more active politically – that designing “greener” products is good but a bit like rearranging deck chairs on board the Titanic.) I’m going to continue doing so, and I’m going to continue to advocate for climate change mitigation and clean energy in my own circles if the topic crops up. I may also comment every now and then if I feel like it, but I’m not going to follow the debate closely any longer.

temperature rise and its effects

But, since I’m so concerned about climate change that I favor keeping the options open until very high penetration of renewable energy is demonstrated in practice, I’m not welcome to the climate or environmental community, where opposition to nuclear power is a foundational precept of their beliefs and takes priority over practically all other considerations. I have no doubt that if, and probably when, the current wonder energy stalls in a manner very reminiscent of the stall of the nuclear power in the 1980s, I will be one of those people who are going to be blamed for the outcome. The explanation (that is already being practiced as renewable expansion is encountering the first signs of real trouble) will be that naysayers and the fossil fuel industry were in cahoots to stop the perfect energy source of the future. After all, this is the explanation the most ardent supporters of nuclear power have concocted: since they’ve convinced themselves that the technology was already very nearly perfect, the only possible reason for its demise has to be a conspiracy of critics and fossil fuel interests.

This attitude where the echo chambers of the faithful convince the participants to simply ignore the very real limitations of renewable energy, and the complacent optimism bred into the broader public by absolutely uncritical coverage of renewable energy claims and the renewable energy industry (which, by the way, is vastly larger, more profitable and more powerful than “big bad” nuclear industry), are the prime reasons we’re going to fail. We’d need much more effort to climate mitigation, but how on Earth can we persuade the people to vote for more effort and more hardships, when every environmental organization shouts out loud that the victory of renewable energy is just around the corner?

Perhaps we’d be losing even if this wasn’t the case. Fossil fuel interests and the logic of current capitalism are so powerful and they have such a grip on the world’s economy (and hence politics) that this may have been a losing battle regardless. Nevertheless, these divisions within the environmental movement critically diminish our influence just when we all ought to be advocating for more clean energy – not less, as many “green” organizations are de facto doing. We ought to fight and defeat the Great Enemy first, and then – only then – resume the old fight between nuclear and renewables. But that’s not going to happen. Some blame for this lies within nuclear advocates, also – too many are nothing more than mirror images of the individuals and organizations they claim are anti-science or unwilling to change their outdated thinking. That said, it is only from the ranks of the 100% RE advocates where I keep on hearing that we should exclude some potential solutions just on principle; there is nothing close to similar attitude within pro-nuclear environmentalist circles, few zealots excepted.

Yet nothing changes; we’ve had all these discussions at least a decade ago, and if my stash of old books is any indication, since the 1970s at least. Feel free to continue with this fruitless debate if you want; I’m going to direct my energy elsewhere.





What’s really driving the global economic crisis is net energy decline

3 08 2017

And there’s no going back. So let’s step into the future.

By Jonathan Rutherford

Source: Doug Menuez

Published by INSURGE INTELLIGENCE, a crowdfunded investigative journalism project for people and planet. Support us to keep digging where others fear to tread.

In the fifth contribution to our symposium, ‘Pathways to the Post-Carbon Economy’, Jonathan Rutherford explores the fundamental driver of global economic malaise: not debt; not banks; but a protracted, slow-burn crisis of ‘net energy decline.’

Cutting through the somewhat stale debate between advocates and critics of ‘peak oil’, Rutherford highlights some of the most interesting and yet little-known scientific literature on the intimate relationship between the global economy and energy.

Whatever happens with the shift to renewables, he argues, we are moving into an era in which fossil fuels will become increasingly defunct, especially after mid-century.

The implications for the future of the global economy will not be pretty — but if we face up to it, the transition to more sustainable societies will be all the better for facing reality, rather than continuing with our heads in the sand (or, as per the image above, stuck up the bull’s behind).


As argued in more detail by Ted Trainer in this symposium the best hope for transition to a ‘post carbon’ — or, better, a sustainable society (a much broader goal) — lies in a process of radical societal reconstruction, focused on the building, in the here and now, of self-governing and self-reliant settlements, starting at the micro-local level.

The ‘Simpler Way’ vision we promote, in my view, is an inspiring alternative that we can and should work for. The hope is that these local movements — which have already begun to emerge — will network, educate and scale up, as the global crisis intensifies.

In what follows, I want to complement this view, by sketching why I think the global economy will inevitably face a terminal crisis of net energy in coming years. In making this prediction, I am assuming that global transnational elites (i.e. G7 elites), as well as subordinate national elites — who manage the globalised neoliberal economy — will pursue economic growth at all costs, as elites have done since the birth of the capitalist system in Britain 300+ years ago.

That is, they will not voluntarily pursue a process of organised ‘degrowth’. In my view, at best, they will vigorously pursue ‘green’ growth, i.e. via the rapid scaling up of renewable energy and promoting efficiency etc., but with no intention of actively reducing the overall level of energy consumption — indeed, most of the mainstream ‘green growth’ scenarios assume a doubling of global energy demand by 2050 (for a critical review of one report, see here).

I am focusing on energy but, of course we can, and should, add to this picture the wider multidimensional ecological crisis (climate change impacts, soil depletion, water stress, biodiversity loss etc) which, among other things, means that an ever increasing proportion GDP growth takes the form of “compensatory and defensive costs” (See i.e Sarkar, The Crisis of Capitalism, p.267–275) to deal with past and expected future ecological damage.

Energy and GDP Growth

Axiom 1: As the biophysical economists have shown global economic growth is closely correlated with growth in energy consumption.

Professor Minqi Li of Utah University’s Department of Economics, for example, shows that between 2005 and 2016:

‘an increase in economic growth rate by one percentage point is associated with an increase in primary energy consumption by 0.96 percent.’

GDP growth also depends on improvements in energy efficiency — Li reports that over the last decade energy efficiency improved by an average of 1.7% per annum.

One of the future uncertainties is how rapidly we are likely to improve energy efficiency — future supply constraints are likely to incentivise this strongly, and there will be scope for significant efficiency improvements, but there is also to be diminishing returns once the low hanging fruit has been picked.

Axiom 2: Economic growth depends not just on increases in gross energy consumption and energy efficiency, but the availability of net energy. Net energy can be defined as the energy left over after subtracting the energy used to attain energy — i.e. the energy used during the process of extraction, harvesting and transportation of energy. Net energy is critical because it alone powers the non-energy sectors of the global economy.

Without net energy all non-energy related economic activity would cease to function.

Insight: An important implication is that net energy can be in decline, even while gross primary energy supply is constant or even increasing.

Below I will make my case for a probably intensifying global net energy contraction by discussing, first, broad factors shaping the probable trajectory of global primary energy growth, followed by a discussion of overall net energy. Most of the statistics are drawn from Minqi Li’s latest report which, in turn, draws on the latest BP’s Statistical Review of World Energy.

Prospects for Gross Energy Consumption

Over the last decade, world primary energy consumption grew at an average annual rate of 1.8 percent. It’s important to note, however, as Jean- Jancovici shows, that in per-capita terms the rate of energy growth has significantly slowed since the 1980s, increasing at an average annual rate of 0.4% since that time, compared to 1.2% in the century prior. This is mainly due to the slowing growth in world oil supply, since the two oil shocks in the 1970s.

There are strong reasons for thinking that the rate of increase in gross energy availability will slow further in coming decades. Recently a peer reviewed paper estimated the maximum rate at which humanity could exploit all ultimately recoverable fossil fuel resources. It found that depending on assumptions, the peak in all fossil fuels would be reached somewhere between 2025–2050 (a finding that aligns with several other studies see i.e Maggio and Cacciola 2012; Laherrere, 2015).

This is highly significant because today fossil fuels make up about 86% of global primary energy use — a figure that, notwithstanding all global efforts to date, has barely changed in three decades. This surprising early peak estimate is substantially associated with the recent radical down-scaling of estimated economically and technically recoverable coal reserves.

The situation for oil is particularly critical, especially given that it is by far the world’s major source of liquid fuel, powering 95% of all transport. A recent HSBC report found that, already today, somewhere between 60–80% of conventional oil fields are in terminal decline. It estimated that by 2040 the world would need to find four Saudi Arabia’s (the largest oil supplier) worth of additional oil just to maintain current rates of supply and more than double that to meet 2040 projected demand.

And yet, as the same report showed, new oil discoveries have been in long term decline — lately reaching record lows notwithstanding record investments between 2001–2014. Moreover, new discoveries are invariably smaller fields with more rapid peak and decline rates. The recent boom in US tight oil — a bubble fueled by low interest rates and record oil industry debts — has been responsible for most additional supply since the peak in conventional oil in 2005, but is likely to be in terminal decline within the next 5–10 years, if it has not already peaked.

All this, as Nafeez Ahmed has argued, is generating the conditions within the next few years (once the current oil glut has been drawn down) for an oil supply crunch and price spike that has the potential to send the debt-ridden global economy into a bigger and better global financial crisis tailspin. It may well be a seminal event that future historians look back as marking the beginning of the end for the oil age.

An alternative currently fashionable view is that peak oil will be effectively trumped by a near-term voluntary decline in oil demand (so called ‘peak demand’), mainly due to the predicted rise of electric vehicles. One reason (among several), however, to be skeptical of such forecasts is that currently there is absolutely no evidence that oil demand is in decline — on the contrary, it continues to increase every year, and since the oil price drop in 2014, at an accelerating rate.

When peak oil does arrive, there are likely to be powerful incentives to implement coal-to-liquids or gas-to-liquids but, apart from the huge logistical and infrastructure problems involved, a move in this direction will only accelerate the near-term peaking of coal and gas supply, especially given the energetic inefficiencies involved in fuel conversion. Peak oil will also likely incentivise the acceleration towards electrification of transport and renewable energy, to which I will now turn.

Given peak fossil fuels, the prospects for increasing, or even just maintaining, gross energy depends heavily on how fast renewable energy and nuclear power can be scaled up. Nuclear energy currently accounts for 4.5% of energy supply, but globally is in decline and there are good reasons for thinking that it will not — and should not —play a major role in the future energy mix (see i.e Our Renewable Future, Heinberg & Findlay, 2016, p132–135).

In 2016, all forms of renewable electricity (i.e. excluding bio-fuel) accounted for about 10% of global energy consumption in 2016, but a large portion of this was hydroelectricity, which has limited potential for expansion. Wind, Solar PV and Concentrated Solar Power (CSP) are generally agreed to be the major renewable technologies capable of a large increase in capacity but, notwithstanding rapid growth in recent years, in 2016 they still accounted for just 2.2% of world primary energy consumption.

Insight: In recent years many ‘green-growth’ reports have been published with optimistic renewable energy forecasts — one even claiming that renewables could supply all world energy (not just electricity) by 2050. But, it should be recognised that this would require a very dramatic increase in the rate of growth in renewable capacity.

In the last six years, new investment (including government, private sector etc) in all forms of renewable energy has leveled off at around the $300 billion a year. Heinberg and Finlay (p.123) estimate that this rate of investment would have to multiplied by more than a factor of ten and continued each year for several decades, if renewable energy was to meet current global energy demand, let alone the projected doubling of demand in most mainstream energy scenarios.

In other words, it would require an upfront annual investment of US$3 trillion a year (and more over the entire life cycle). By comparison, in 2014 the IEA estimated that global investment for all energy supply (i.e fossil fuels and renewables etc) in 2035 would be US $2 trillion per year. In addition, if fossil fuel capacity is to be phased out entirely by 2050, it would require much premature scrapping of existing capital — depriving investors of making full returns on their capital — which can be expected to trigger fierce resistance from large sections, if not the entire, transnational capitalist class.

Currently both oil and gas supply, if not coal, are growing much faster than all renewables, at least in absolute if not percentage terms. No wonder that the most ambitious IPCC emission reduction scenarios assume continued large scale use of fossil fuels through to 2050, and rely instead on highly uncertain and problematic ‘net emission’ technologies (i.e Carbon Capture and Storage, massive planting of trees etc).

Based on current trends, Minqi Li’s recent energy forecast predicts that the growth of renewable energy will, at best, offset the inevitable decline in fossil fuel energy over coming decades. He forecasts that a peak in gross global energy supply (including fossil fuels and renewables) will be reached by about 2050.

This of course does not include the very real possibility of serious energy ‘bottlenecks,’ resulting, for example, from the peak in oil — for which no government is adequately preparing — and with no alternative liquid fuel source, on the scale required, readily available.

The Net Energy Equation

The foregoing has just been about gross energy, but as mentioned above, the real prospects for the growth-industrial economy depend on net energy, which alone fuels the non-energy sectors of the economy. This is where the picture gets really challenging.

With regards to fossil fuels, EROI is on a downward trajectory. The current estimate (in 2014) for global oil & gas is that EROI is about 18:1. And while it’s true that technological innovation can improve the efficiency of oil extraction, in general this is being overwhelmed by the increasing global reliance on lower EROI unconventional oil & gas sources — a trend which will continue from now until the end of the fossil fuel age.

Axiom 3: What is often overlooked, is that declining EROI will exacerbate the problem of peak fossil fuels.

As Charles Hall explains, declining EROI will accelerate the advent of peak fossil fuels, because more energy is needed just to maintain the ratio of net energy needed to fuel the economy. And when, inevitably, we begin to move down the other side of Hubbert’s peak, things will get even more challenging. At this point, decreasing gross supply will be combined with ever greater reliance on lower EROI supplies, rapidly reducing the amount of net energy available to society.

The situation would be improved if the main renewables could provide an additional source of high net energy (i.e EROI). But, while this question is the subject of much current scholarly debate, and is quite unsettled, it seems highly likely that any future 100% renewable energy system (as opposed to individual technology) will provide far less net-energy than humanity — or at least, the minority of us in the energy rich affluent regions — has enjoyed during the fossil fuel epoch. This is for the following theoretical reasons outlined by energy experts Moriarty and Honnery in a recent paper:

  • Due to the more energy diffuse nature of renewable energy flows (sun and wind), harvesting this energy to produce electricity, requires the construction of complex industrial technologies. Currently, this requires the ‘hidden subsidy’ of fossil fuels, which are involved in the entire process of resource extraction, manufacturing and maintenance of these industrial technologies. As fossil fuels deplete, this subsidy will become costlier in both financial and energy terms, reducing the net-energy of renewable technologies.
  • The non-renewable resources (often rare) needed for construction of renewable technologies will deplete over time, and will thus take more energy to extract, again, reducing net energy.
  • Due to the intermittency of solar and wind, a 100% renewable energy system (or even a large portion of renewable energy within the overall mix) requires investment in either large amounts of redundant capacity (to ensure there is security of supply during calm and cloudy weather) or, alternatively, large amounts of (currently unforeseen on the scale needed) storage capacity — or both. Ultimately, either option will require energy investment for the total system.
  • Because the main renewable technologies generate electricity, there will be a large amount of energy lost through conversion (i.e. via hydrogen) to the many current energy functions that cannot easily be electrified (i.e. trucks, industrial heating processors etc). In fairness, the conversion of fossil fuels to electricity also involves substantial energy loss (i.e. about 2/3 on average), but given that about 80% of global primary energy is currently in a non-electrical form, this appears to be a far bigger problem for a future 100% renewable system.
  • As renewable energy capacity expands, it will inevitably have to be built in less ideal locations, reducing gross energy yield.

Axiom 4: Regardless of the net energy that a future 100% renewable energy system would provide, it is important to recognize that attempts to ramp up renewable energy at very fast rates — far from adding to the overall energy output of the global economy — will inevitably come at a net energy cost.

This is because there would need to be a dramatic increase in energy demand associated with the transitional process itself.

Modelling done by Josh Floyd has found that in their ‘baseline scenario’ (described here) — which looks to phase out fossil fuels in 50 years — net energy services for the global economy would decline during that transition period by more than 15% before recovering.

This would be true of any rapid energy transition, but the problem is particularly acute for a transition to renewable technologies due to their much higher upfront capital (and therefore energy) costs, compared to fossil fuel technologies.

Conclusion

The implication of the above arguments is that over the coming decades, the global economy will very likely face an increasing deterioration in net energy supply that will increasingly choke off economic growth. What will this look like for people in real life?

Economically, it will likely be revealed in terms of stagnating (or falling) real wages, rising costs of living, decreasing discretionary income and decreasing employment opportunities — symptoms, as Tim Morgan argues, we are already beginning to see, albeit, to varying extents across the globe — but which will intensify in coming years.

How slow or fast this happens nobody knows. But given capitalism is a system which absolutely depends on endless capital accumulation for its effective economic functioning and social legitimacy, this will prove to be a terminal crisis, from which the system cannot ultimately escape.

We therefore have no choice but to prepare for a future economy in which net energy is far lower than what we have been used to in the industrial era.

Insight: To be clear, crisis by itself, will not lead to desirable outcomes — far from it. Our collective fate, as Trainer explains, depends largely on the rapid emergence of currently small scale new society movements — building examples of the sane alternative in the shell of the old — and rapidly multiplying and scaling up, as the legitimacy of the system declines.


Jonathan Rutherford is coordinator of the new international bookshop, Melbourne Australia. He is involved in various local sustainability projects where he lives in Belgrave.





How an obscure Austrian philosopher saw through our empty rhetoric about ‘sustainability’

5 07 2017

Hot Mess

Marc Hudson, University of Manchester

“Sustainability” is, ironically, a growth industry. Ever since the term “sustainable development” burst onto the scene in 1987 with the release of Our Common Future (also known as the Brundtland report), there has been a dizzying increase in rhetoric about humanity’s relationship with our planet’s resources. Glossy reports – often featuring blonde children in front of solar panels or wind turbines – abound, and are slapped down on desks as proof of responsibility and stewardship.

Every few years a new term is thrown into the mix – usually preceded by adjectives like “participatory” or “community-led”. The fashionability of “resilience” as a mot du jour seems to have peaked, while more recently the “circular economy” has become the trendy term to put on grant applications, conference notices and journal special editions. Over time journals are established, careers are built, and library shelves groan.

Meanwhile, the planetary “overshoot”, to borrow the title of a terrifying 1980 book, goes on – exemplified by rising concentrations of atmospheric carbon dioxide, warmer oceans, Arctic melting, and other signs of the times.

With all this ink being spilled (or, more sustainably, electrons being pressed into service), is there anything new to say about sustainability? My colleagues and I think so.

Three of us (lead author Ulrike Ehgartner,
second author Patrick Gould
and myself) recently published an article called “On the obsolescence of human beings in sustainable development”.

In it we explore the big questions of sustainability, drawing on some of the work of an unjustly obscure Austrian political philosopher called Gunther Anders.

Who was Günther Anders?

He was born Günther Siegmund Stern in 1902. While he was working as a journalist in Berlin, an editor wanted to reduce the number of Jewish-sounding bylines. Stern plumped for “Anders” (meaning “other” or “different”) and used that nom de plume for the rest of his life.

Anders knew lots of the big philosophical names of the day. He studied under Edmund Husserl and Martin Heidegger. He was briefly married to Hannah Arendt, and Walter Benjamin was a cousin.

But despite his stellar list of friends and family, Anders himself was not well known. Harold Marcuse points out that the name “Stern” was pretty apt, writing:

His unsparingly critical pessimism may explain why his pathbreaking works have seldom sparked sustained public discussion.

While Hiroshima and the nuclear threat were the most obvious influences on Anders’ writing, he was also crucially influenced by the events at Auschwitz, the Vietnam War, and his periods in exile in France and the United States. But why should we care, and how can his ideas be applied to modern-day ideas about sustainability?

Space precludes a blow-by-blow account of what my colleagues and I wrote, but two ideas are worth exploring: the “Promethean gap” and “apocalyptic blindness”.

Anders suggested that the societal changes wrought by the industrial age – chief among them the division of labour – opened a gap between individuals’ capability to produce machines, and their capability to imagine and deal with the consequences.

So, riffing on the Greek myth of Prometheus (the chap who stole fire from Mount Olympus and gave it to humans), Anders proposed the existence of a “Promethean gap” which manifests in academic and scientific thinking and leads to the extensive trivialisation of societal issues.

The second idea is that of “apocalyptic blindness” – which is, according to Anders, the mindset of humans in the Age of the Third Industrial Revolution. This, as we write in our paper:

…determines a notion of time and future that renders human beings incapable of facing the possibility of a bad end to their history. The belief in progress, persistently ingrained since the Industrial Revolution, causes the incapability of humans to understand that their existence is threatened, and that this could lead to the end of their history.

Put simply, we don’t want to look an apocalypse in the eye, even if it’s heading straight towards us.

The climate connection

“So what?” you might ask. Why listen to yet another obscure philosopher railing about technology, in the vein of Lewis Mumford and Jacques Ellul? But I think a passing knowledge of Anders and his work reminds us of several important things.

This is nothing new. Recently, the very notion of ‘progress’ has come under renewed assault, with books questioning our assumptions about it. This is not new of course – in a 1967 short story collection about life at the United Nations, Shirley Hazzard had written:

About this development process there appeared to be no half-measures: once a country had admitted its backwardness, it could hope for no quarter in the matter of improvement. It could not accept a box of pills without accepting, in principle, an atomic reactor. Progress was a draught that must be drained to the last bitter drop.

The time – if ever there was one – for tinkering around the edges is over. We need to take stronger action than simply pursuing our feelgood preoccupation with sustainability.

This begs the question of who is supposed to shift us from the current course (or rather, multiple collision courses. That’s a difficult one to answer.

The hope that techno-fixes (including 100% renewable energy) will sort out our problems is a dangerous delusion (please note, I’m not against 100% renewables – I’m just saying that green energy is “necessary but not sufficient” for repairing the planet).

Similarly, the “circular economy” has a rather circular feeling to it – in the sense that we’ve seen all this before. It seems (to me anyway) to be the last gasp of the “ecological modernist” belief that with a bit more efficiency, everything can simply keep on progressing.

The ConversationOur problems go far deeper. We are going to need a rapid and fundamental shift in our values, habits, behaviours, and outlooks. Put in Anders’ terms, we need to stop being blind to the possibility of apocalypse. But then again, people have been saying that for a century or more.

Marc Hudson, PhD Candidate, Sustainable Consumption Institute, University of Manchester

This article was originally published on The Conversation. Read the original article.





The Dynamics of Depletion

27 06 2017

Originally published on the Automatic Earth, this further article on ERoEI and resource depletion ties all the things you need to understand about Limits to Growth in one neat package. 

Over the years, I have written many articles on the topic of EROEI (Energy Return on Energy Invested); there’s a whole chapter on it in the Automatic Earth Primer Guide 2017 that Nicole Foss assembled recently, which contains 17 well worth reading articles.

Since EROEI is still the most important energy issue there is, and not the price of oil or some new gas find or a set of windmills or solar panels or thorium as the media will lead you to believe, it can’t hurt to repeat it once again. Brian Davey wrote this item on his site CredoEconomics, it is part of his book “Credo”.

The reason I believe it can’t hurt to repeat this is because not nearly enough people understand that in the end, everything, the survival of our world, our way of life, is all about the ‘quality’ of energy, and about what we get in return when we drill and pump and build infrastructure; what remains when we subtract all the energy used to ‘generate’ energy, from (or at) the bottom line is all that’s left…….

nicolefoss

Nicole Foss

Nicole Foss: Energy is the master resource – the capacity to do work. Our modern society is the result of the enormous energy subsidy we have enjoyed in the form of fossil fuels, specifically fossil fuels with a very high energy profit ratio (EROEI). Energy surplus drove expansion, intensification, and the development of socioeconomic complexity, but now we stand on the edge of the net energy cliff. The surplus energy, beyond that which has to be reinvested in future energy production, is rapidly diminishing.

We would have to greatly increase gross production to make up for reduced energy profit ratio, but production is flat to falling so this is no longer an option. As both gross production and the energy profit ratio fall, the net energy available for all society’s other purposes will fall even more quickly than gross production declines would suggest. Every society rests on a minimum energy profit ratio. The implication of falling below that minimum for industrial society, as we are now poised to do, is that society will be forced to simplify.

A plethora of energy fantasies is making the rounds at the moment. Whether based on unconventional oil and gas or renewables (that are not actually renewable), these are stories we tell ourselves in order to deny that we are facing any kind of future energy scarcity, or that supply could be in any way a concern. They are an attempt to maintain the fiction that our society can continue in its current form, or even increase in complexity. This is a vain attempt to deny the existence of non-negotiable limits to growth. The touted alternatives are not energy sources for our current society, because low EROEI energy sources cannot sustain a society complex enough to produce them.

 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Using Energy to Extract Energy – The Dynamics of Depletion

 

brian-selfie

Brian Davey

Brian Davey: The “Limits to Growth Study” of 1972 was deeply controversial and criticised by many economists. Over 40 years later, it seems remarkably prophetic and on track in its predictions. The crucial concept of Energy Return on Energy Invested is explained and the flaws in neoclassical reasoning which EROI highlights.

The continued functioning of the energy system is a “hub interdependency” that has become essential to the management of the increasing complexity of our society. The energy input into the UK economy is about 50 to 70 times as great as what the labour force could generate if working full time only with the power of their muscles, fuelled up with food. It is fossil fuels, refined to be used in vehicles and motors or converted into electricity that have created power inputs that makes possible the multiple round- about arrangements in a high complex economy. The other “hub interdependency” is a money and transaction system for exchange which has to continue to function to make vast production and trade networks viable. Without payment systems nothing functions.

Yet, as I will show, both types of hub interdependencies could conceivably fail. The smooth running of the energy system is dependent on ample supplies of cheaply available fossil fuels. However, there has been a rising cost of extracting and refining oil, gas and coal. Quite soon there is likely to be an absolute decline in their availability. To this should be added the climatic consequences of burning more carbon based fuels. To make the situation even worse, if the economy gets into difficulty because of rising energy costs then so too will the financial system – which can then have a knock-on consequence for the money system. The two hub interdependencies could break down together.

“Solutions” put forward by the techno optimists almost always assume growing complexity and new uses for energy with an increased energy cost. But this begs the question- because the problem is the growing cost of energy and its polluting and climate changing consequences.

 

The “Limits to Growth” study of 1972 – and its 40 year after evaluation

It was a view similar to this that underpinned the methodology of a famous study from the early 1970s. A group called the Club of Rome decided to commission a group of system scientists at the Massachusetts Institute of Technology to explore how far economic growth would continue to be possible. Their research used a series of computer model runs based on various scenarios of the future. It was published in 1972 and produced an instant storm. Most economists were up in arms that their shibboleth, economic growth, had been challenged. (Meadows, Meadows, Randers, & BehrensIII, 1972)

This was because its message was that growth could continue for some time by running down “natural capital” (depletion) and degrading “ecological system services” (pollution) but that it could not go on forever. An analogy would be spending more than one earns. This is possible as long as one has savings to run down, or by running up debts payable in the future. However, a day of reckoning inevitably occurs. The MIT scientists ran a number of computer generated scenarios of the future including a “business as usual” projection, called the “standard run” which hit a global crisis in 2030.

It is now over 40 years since the original Limits to Growth study was published so it is legitimate to compare what was predicted in 1972 against what actually happened. This has now been done twice by Graham Turner who works at the Australian Commonwealth Scientific and Industrial Research Organisation (CSIRO). Turner did this with data for the rst 30 years and then for 40 years of data. His conclusion is as follows:

The Limits to Growth standard run scenario produced 40 years ago continues to align well with historical data that has been updated in this paper following a 30-year comparison by the author. The scenario results in collapse of the global economy and environment and subsequently, the population. Although the modelled fall in population occurs after about 2030 – with death rates reversing contemporary trends and rising from 2020 onward – the general onset of collapse first appears at about 2015 when per capita industrial output begins a sharp decline. (Turner, 2012)

So what brings about the collapse? In the Limits to Growth model there are essentially two kinds of limiting restraints. On the one hand, limitations on resource inputs (materials and energy). On the other hand, waste/pollution restraints which degrade the ecological system and human society (particularly climate change).

Turner finds that, so far it, is the former rather than the latter that is the more important. What happens is that, as resources like fossil fuels deplete, they become more expensive to extract. More industrial output has to be set aside for the extraction process and less industrial output is available for other purposes.

With signficant capital subsequently going into resource extraction, there is insufficient available to fully replace degrading capital within the industrial sector itself. Consequently, despite heightened industrial activity attempting to satisfy multiple demands from all sectors and the population, actual industrial output per capita begins to fall precipitously, from about 2015, while pollution from the industrial activity continues to grow. The reduction of inputs produced per capita. Similarly, services (e.g., health and education) are not maintained due to insufficient capital and inputs.

Diminishing per capita supply of services and food cause a rise in the death rate from about 2020 (and somewhat lower rise in the birth rate, due to reduced birth control options). The global population therefore falls, at about half a billion per decade, starting at about 2030. Following the collapse, the output of the World3 model for the standard run (figure 1 to figure 3) shows that average living standards for the aggregate population (material wealth, food and services per capita) resemble those of the early 20th century. (Turner, 2012, p. 121)

 

Energy Return on Energy Invested

A similar analysis has been made by Hall and Klitgaard. They argue that to run a modern society it is necessary that the energy return on energy invested must be at least 15 to 1. To understand why this should be so consider the following diagram from a lecture by Hall. (Hall, 2012)

eroei

The diagram illustrates the idea of the energy return on energy invested. For every 100 Mega Joules of energy tapped in an oil flow from a well, 10 MJ are needed to tap the well, leaving 90 MJ. A narrow measure of energy returned on energy invested at the wellhead in this example would therefore be 100 to 10 or 10 to 1.

However, to get a fuller picture we have to extend this kind of analysis. Of the net energy at the wellhead, 90 MJ, some energy has to be used to refine the oil and produce the by-products, leaving only 63 MJ.

Then, to transport the refined product to its point of use takes another 5 MJ leaving 58MJ. But of course, the infrastructure of roads and transport also requires energy for construction and maintenance before any of the refined oil can be used to power a vehicle to go from A to B. By this final stage there is only 20.5 MJ of the original 100MJ left.

We now have to take into account that depletion means that, at well heads around the world, the energy to produce energy is increasing. It takes energy to prospect for oil and gas and if the wells are smaller and more difficult to tap because, for example, they are out at sea under a huge amount of rock. Then it will take more energy to get the oil out in the first place.

So, instead of requiring 10MJ to produce the 100 MJ, let us imagine that it now takes 20 MJ. At the other end of the chain there would thus, only be 10.5MJ – a dramatic reduction in petroleum available to society.

The concept of Energy Return on Energy Invested is a ratio in physical quantities and it helps us to understand the flaw in neoclassical economic reasoning that draws on the idea of “the invisible hand” and the price mechanism. In simplistic economic thinking, markets should have no problems coping with depletion because a depleting resource will become more expensive. As its price rises, so the argument goes, the search for new sources of energy and substitutes will be incentivised while people and companies will adapt their purchases to rising prices. For example, if it is the price of energy that is rising then this will incentivise greater energy efficiency. Basta! Problem solved…

Except the problem is not solved… there are two flaws in the reasoning. Firstly, if the price of energy rises then so too does the cost of extracting energy – because energy is needed to extract energy. There will be gas and oil wells in favourable locations which are relatively cheap to tap, and the rising energy price will mean that the companies that own these wells will make a lot of money. This is what economists call “rent”. However, there will be some wells that are “marginal” because the underlying geology and location are not so favourable. If energy prices rise at these locations then rising energy prices will also put up the energy costs of production. Indeed, when the energy returned on energy invested falls as low as 1 to 1, the increase in the costs of energy inputs will cancel out any gains in revenues from higher priced energy outputs. As is clear when the EROI is less than one, energy extraction will not be profitable at any price.

Secondly, energy prices cannot in any case rise beyond a certain point without crashing the economy. The market for energy is not like the market for cans of baked beans. Energy is necessary for virtually every activity in the economy, for all production and all services. The price of energy is a big deal – energy prices going up and down have a similar significance to interest rates going up or down. There are “macro-economic” consequences for the level of activity in the economy. Thus, in the words of one analyst, Chris Skrebowski, there is a rise in the price of oil, gas and coal at which:

the cost of incremental supply exceeds the price economies can pay without destroying growth at a given point in time.(Skrebowski, 2011)

This kind of analysis has been further developed by Steven Kopits of the Douglas-Westwood consultancy. In a lecture to the Columbia University Center on Global Energy Policy in February of 2014, he explained how conventional “legacy” oil production peaked in 2005 and has not increased since. All the increase in oil production since that date has been from unconventional sources like the Alberta Tar sands, from shale oil or natural gas liquids that are a by-product of shale gas production. This is despite a massive increase in investment by the oil industry that has not yielded any increase in “conventional oil” production but has merely served to slow what would otherwise have been a faster decline.

More specifically, the total spend on upstream oil and gas exploration and production from 2005 to 2013 was $4 trillion. Of that amount, $3.5 trillion was spent on the “legacy” oil and gas system. This is a sum of money equal to the GDP of Germany. Despite all that investment in conventional oil production, it fell by 1 million barrels a day. By way of comparison, investment of $1.5 trillion between 1998 and 2005 yielded an increase in oil production of 8.6 million barrels a day.

Further to this, unfortunately for the oil industry, it has not been possible for oil prices to rise high enough to cover the increasing capital expenditure and operating costs. This is because high oil prices lead to recessionary conditions and slow or no growth in the economy. Because prices are not rising fast enough and costs are increasing, the costs of the independent oil majors are rising at 2 to 3% a year more than their revenues. Overall profitability is falling and some oil majors have had to borrow and sell assets to pay dividends. The next stage in this crisis has then been that investment projects are being cancelled – which suggests that oil production will soon begin to fall more rapidly.

The situation can be understood by reference to the nursery story of Goldilocks and the Three Bears. Goldilocks tries three kinds of porridge – some that is too hot, some that is too cold and some where the temperature is somewhere in the middle and therefore just right. The working assumption of mainstream economists is that there is an oil price that is not too high to undermine economic growth but also not too low so that the oil companies cannot cover their extraction costs – a price that is just right. The problem is that the Goldilocks situation no longer describes what is happening. Another story provides a better metaphor – that story is “Catch 22”. According to Kopits, the vast majority of the publically quoted oil majors require oil prices of over $100 a barrel to achieve positive cash flow and nearly a half need more than $120 a barrel.

But it is these oil prices that drag down the economies of the OECD economies. For several years, however, there have been some countries that have been able to afford the higher prices. The countries that have coped with the high energy prices best are the so called “emerging non OECD countries” and above all China. China has been bidding away an increasing part of the oil production and continuing to grow while higher energy prices have led to stagnation in the OECD economies. (Kopits, 2014)

Since the oil price is never “just right” it follows that it must oscillate between a price that is too high for macro-economic stability or too low to make it a paying proposition for high cost producers of oil (or gas) to invest in expanding production. In late 2014 we can see this drama at work. The faltering global economy has a lower demand for oil but OPEC, under the leadership of Saudi Arabia, have decided not to reduce oil production in order to keep oil prices from falling. On the contrary they want prices to fall. This is because they want to drive US shale oil and gas producers out of business.

The shale industry is described elsewhere in this book – suffice it here to refer to the claim of many commentators that the shale oil and gas boom in the United States is a bubble. A lot of money borrowed from Wall Street has been invested in the industry in anticipation of high profits but given the speed at which wells deplete it is doubtful whether many of the companies will be able to cover their debts. What has been possible so far has been largely because quantitative easing means capital for this industry has been made available with very low interest rates. There is a range of extraction production costs for different oil and gas wells and fields depending on the differing geology in different places. In some “sweet spots” the yield compared to cost is high but in a large number of cases the costs of production have been high and it is being said that it will be impossible to make money at the price to which oil has fallen ($65 in late 2014). This in turn could mean that companies funding their operations with junk bonds could find it difficult to service their debt. If interest rates rise the difficulty would become greater. Because the shale oil and gas sector has been so crucial to expansion in the USA then a large number of bankruptcies could have wider repercussions throughout the wider US and world economy.

 

Renewable Energy systems to the rescue?

Although it seems obvious that the depletion of fossil fuels can and should lead to the expansion of renewable energy systems like wind and solar power, we should beware of believing that renewable energy systems are a panacea that can rescue consumer society and its continued growth path. A very similar net energy analysis can, and ought to be done for the potential of renewable energy to match that already done for fossil fuels.

eroei-renewables

Before we get over-enthusiastic about the potential for renewable energy, we have to be aware of the need to subtract the energy costs particular to renewable energy systems from the gross energy that renewable energy systems generate. Not only must energy be used to manufacture and install the wind turbines, the solar panels and so on, but for a renewable based economy to be able to function, it must also devote energy to the creation of energy storage. This would allow for the fact that, when the wind and the sun are generating energy, is not necessarily the time when it is wanted.

Furthermore, the places where, for example, solar and wind potential are at this best – offshore for wind or in deserts without dust storms near the equator for solar – are usually a long distance from centres of use. Once again, a great deal of energy, materials and money must be spent getting the energy from where it is generated to where it will be used. For example, the “Energie Wende” (Energy Transformation) in Germany is involving huge effort, financial and energy costs, creating a transmission corridor to carry electricity from North Sea wind turbines down to Bavaria where the demand is greatest. Similarly, plans to develop concentrated solar power in North Africa for use in northern Europe which, if they ever come to anything, will require major investments in energy transmission. A further issue, connected to the requirement for energy storage, is the need for energy carriers which are not based on electricity. As before, conversions to put a current energy flux into a stored form, involve an energy cost.

Just as with fossil fuels, sources of renewable energy are of variable yield depending on local conditions: offshore wind is better than onshore for wind speed and wind reliability; there is more solar energy nearer the equator; some areas have less cloud cover; wave energy on the Atlantic coasts of the UK are much better than on other coastlines like those of the Irish Sea or North Sea. If we make a Ricardian assumption that best net yielding resources are developed first, then subsequent yields will be progressively inferior. In more conventional jargon – just as there are diminishing returns for fossil energy as fossil energy resources deplete, so there will eventually be diminishing returns for renewable energy systems. No doubt new technologies will partly buck this trend but the trend is there nonetheless. It is for reasons such as these that some energy experts are sceptical about the global potential of renewable energy to meet the energy demand of a growing economy. For example, two Australian academics at Monash University argue that world energy demand would grow to 1,000 EJ (EJ = 10 18 J) or more by 2050 if growth continued on the course of recent decades. Their analysis then looks at each renewable energy resource in turn, bearing in mind the energy costs of developing wind, solar, hydropower, biomass etc., taking into account diminishing returns, and bearing in mind too that climate change may limit the potential of renewable energy. (For example, river flow rates may change affecting hydropower). Their conclusion: “We nd that when the energy costs of energy are considered, it is unlikely that renewable energy can provide anywhere near a 1000 EJ by 2050.” (Moriarty & Honnery, 2012)

Now let’s put these insights back into a bigger picture of the future of the economy. In a presentation to the All Party Parliamentary Group on Peak Oil and Gas, Charles Hall showed a number of diagrams to express the consequences of depletion and rising energy costs of energy. I have taken just two of these diagrams here – comparing 1970 with what might be the case in 2030. (Hall C. , 2012) What they show is how the economy produces different sorts of stuff. Some of the production is consumer goods, either staples (essentials) or discretionary (luxury) goods. The rest of production is devoted to goods that are used in production i.e. investment goods in the form of machinery, equipment, buildings, roads, infrastracture and their maintenance. Some of these investment goods must take the form of energy acquisition equipment. As a society runs up against energy depletion and other problems, more and more production must go into energy acquisition, infrastructure and maintenance. Less and less is available for consumption, and particularly for discretionary consumption.

hall

Whether the economy would evolve in this way can be questioned. As we have seen, the increasing needs of the oil and gas sector implies a transfer of resources from elsewhere through rising prices. However, the rest of the economy cannot actually pay this extra without crashing. That is what the above diagrams show – a transfer of resources from discretionary consumption to investment in energy infrastructure. But such a transfer would be crushing for the other sectors and their decline would likely drag down the whole economy.

Over the last few years, central banks have had a policy of quantitative easing to try to keep interest rates low. The economy cannot pay high energy prices AND high interest rates so, in effect, the policy has been to try to bring down interest rates as low as possible to counter the stagnation. However, this has not really created production growth, it has instead created a succession of asset price bubbles. The underlying trend continues to be one of stagnation, decline and crisis and it will get a lot worse when oil production starts to fall more rapidly as a result of investment cut backs. The severity of the recessions may be variable in different countries because competitive strength in this model goes to those countries where energy is used most efficiently and which can afford to pay somewhat higher prices for energy. Such countries are likely to do better but will not escape the general decline if they stay wedded to the conventional growth model. Whatever the variability, this is still a dead end and, at some point, people will see that entirely different ways of thinking about economy and ecology are needed – unless they get drawn into conflicts and wars over energy by psychopathic policy idiots. There is no way out of the Catch 22 within the growth economy model. That’s why degrowth is needed.

Further ideas can be extrapolated from Hall’s way of presenting the end of the road for the growth economy. The only real option as a source for extra resources to be ploughed into changing the energy sector is from what Hall calls “discretionary consumption” aka luxury consumption. It would not be possible to take from “staples” without undermining the ability of ordinary people to survive day to day. Implicit here is a social justice agenda for the post growth – post carbon economy. Transferring resources out of the luxury consumption of the rich is a necessary part of the process of finding the wherewithal for energy conservation work and for developing renewable energy resources. These will be expensive and the resources cannot come from anywhere else than out of the consumption of the rich. It should be remembered too that the problems of depletion do not just apply to fossil energy extraction coal, oil and gas) but apply across all forms of mineral extraction. All minerals are depleted by use and that means the grade or ore declines over time. Projecting the consequences into the future ought to frighten the growth enthusiasts. To take in how industrial production can hit a brick wall of steeply rising costs, consider the following graph which shows the declining quality of ore grades mined in Australia.

mining-australia

As ores deplete there is a deterioration of ore grades. That means that more rock has to be shifted and processed to refine and extract the desired raw material, requiring more energy and leaving more wastes. This is occurring in parallel to the depletion in energy sources which means that more energy has to be used to extract a given quantity of energy and therefore, in turn, to extract from a given quantity of ore. Thus, the energy requirements to extract energy are rising at the very same time as the amount of energy required to extract given quantities of minerals are rising. More energy is needed just at the time that energy is itself becoming more expensive.

Now, on top of that, add to the picture the growing demand for minerals and materials if the economy is to grow.

At least there has been a recognition and acknowledgement in recent years that environmental problems exist. The problem is now somewhat different – the problem is the incredibly naive faith that markets and technology can solve all problems and keep on going. The main criticism of the limits to growth study was the claim that problems would be anticipated in forward markets and would then be made the subject of high tech innovation. In the next chapter, the destructive effects of these innovations are examined in more depth.





EROI explained and defended by Charles Hall, Pedro Prieto, and others

29 05 2017

Yes, another post on ERoEI……  why do I bang on about this all the time…?  Because it is the defining issue of our time, the issue that will precipitate Limits to Growth to the forefront, and eventually collapse civilisation as we know it.

There are two ways to collapse civilisation:
1) don’t end the burning of oil
2) end burning oil

And if that wasn’t enough, read this from srsroccoreport.com 

While the U.S. oil and gas industry struggles to stay alive as it produces energy at low prices, there’s another huge problem just waiting around the corner.  Yes, it’s true… the worst is yet to come for an industry that was supposed to make the United States, energy independent.  So, grab your popcorn and watch as the U.S. oil and gas industry gets ready to hit the GREAT ENERGY DEBT WALL.

So, what is this “Debt Wall?”  It’s the ever-increasing amount of debt that the U.S. oil and gas industry will need to pay each year.  Unfortunately, many misguided Americans thought these energy companies were making money hand over fist when the price of oil was above $100 from 2011 to the middle of 2014.  They weren’t.  Instead, they racked up a great deal of debt as they spent more money drilling for oil than the cash they received from operations.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

alice_friedemannAlice Friedemann   www.energyskeptic.com  author of “When Trucks Stop Running: Energy and the Future of Transportation”, 2015, Springer and “Crunch! Whole Grain Artisan Chips and Crackers”. Podcasts: Practical Prepping, KunstlerCast 253, KunstlerCast278, Peak Prosperity , XX2 report ]

Questions about EROI at researchgate.net 2015-2017

Khalid Abdulla, University of Melbourne asks:  Why is quality of life limited by EROI with renewable Energy? There are many articles explaining that the Energy Return on (Energy) Invested (EROI, or EROEI) of the sources of energy which a society uses sets an upper limit on the quality of life (or complexity of a society) which can be enjoyed (for example this one).  I understand the arguments made, however I fail to understand why any energy extraction process which has an external EROI greater than 1.0 cannot be “stacked” to enable greater effective EROI.  For example if EROI for solar PV is 3.0, surely one can get an effective EROI of 9.0 by feeding all output energy produced from one solar project as the input energy of a second? There is obviously an initial energy investment required, but provided the EROI figure includes all installation and decommissioning energy requirements I don’t understand why this wouldn’t work. Also I realise there are various material constraints which would come into play; but why does this not work from an energy point of view?

Charles A. S. Hall replies:  As the person who came up with the term  EROI in the 1970scharles-hall (but not the concept: that belongs to Leslie White, Fred Cotrell, Nicolas Georgescu Roegan and Howard Odum) let me add my two cents to the existing mostly good posts.  The problem with the “stacked” idea is that if you do that you do not deliver energy to society with the first (or second or third) investment — it all has to go to the “food chain” with only the final delivering energy to society.  So stack two EROI 2:1 technologies and you get 4:2, or the same ratio when you are done.

The second problem is that you do not need just 1.1:1 EROI to operate society.  We (Hall, Balogh and Murphy 2009) studied how much oil would need to be extracted to drive a truck including the energy to USE the energy.  So we added in the energy to get, refine and deliver the oil (about 10% at each step) and then the energy to build and maintain the roads, bridges, vehicles and so on.  We found you needed to extract 3 liters at the well head to use 1 liter in the gas tank to drive the truck, i.e. an EROI of 3:1 was needed.

But even this did not include the energy to put something in the truck (say grow some grain)  and also, although we had accounted for the energy for the depreciation of the truck and roads,  but not the depreciation of the truck driver, mechanic, street mender, farmer etc.: i.e. to pay for domestic needs, schooling, health care etc. of their replacement.    Pretty soon it looked like we needed an EROI of at least 10:1 to take care of the minimum requirements of society, and maybe 15:1 (numbers are very approximate) for a modern civilization. You can see that plus implications in Lambert 2014.

I think this and incipient “peak oil” (Hallock et al.)  is behind what is causing most Western economies to slow or stop  their energy and economic growth.   Low EROI means more expensive oil (etc) and lower net energy means growth is harder as there is less left over after necessary “maintenance metabolism”. This is explored in more depth in Hall and Klitgaard book  “Energy and the wealth of Nations” (Springer).

Khalid Abdulla asks: I’m still struggling a little bit with gaining an intuition of why it is not possible to stack/compound EROI. If I understand your response correctly part of the problem is that while society is waiting around for energy from one project to be fed into a second project (etc.) society needs to continue to operate (otherwise it’d all be a bit pointless!) and this has a high energy overhead.  I understand that with oil it is possible to achieve higher external EROI by using some of the oil as the main source of energy for extraction/processing. Obviously this means less oil is delivered to the outside world, but it is delivered at a higher EROI which is more useful. I don’t understand why a similar gearing is not possible with renewables.  Is it something to do with the timing of the input energy required VS the timing of the energy which the project will deliver over its life?

Charles A. S. Hall replies: Indeed if you update the QUALITY of the energy you can come out “ahead”.  My PhD adviser Howard Odum wrote a lot about that, and I am deeply engaged in a discussion about the general meaning of Maximum Power (a related concept) with several others.  So you can willingly turn more coal into less electricity because the product is more valuable.   Probably pretty soon (if we are not already) we will be using coal to make electricity to pump out ever more difficult oil wells….

I have also been thinking about EROI a lot lately and about what should the boundaries of analysis be.  One of my analyses is available in the book “Spain’s PV revolution: EROI and.. available from Springer or Amazon.

To me the issue of boundaries remains critical. I think it is proper to have very wide boundaries. Let’s say we run an economy just on a big PV plant. If the EROI is 8:1 (which you might get, or higher, from examining just the modules) then it seems like you could make your society work. But let’s look closer. If you add in security systems, roads, and financial services and the EROI drops to 3:1 then it seems more problematic. But if you add in labor (i.e. the energy it takes to make the food, housing etc that labor buys with its salaries, calculated from national mean energy intensities times salaries for all necessary workers) it might drop to 1:1. Now what this means is that the energy from the PV system will support all the purchases of the workers that are building/maintaining the PV system, let’s say 10% will be taken care of, BUT THERE WILL BE NO PRODUCTION OF GOODS AND SERVICES for the rest of the population. To me this is why we should include salaries of the entire energy delivery system (although I do not because it remains so controversial). I think this concept, and the flat oil production in most of the world, is why we need to think about ALL the resources necessary to deliver energy from a project/ technology/nation.”

Khalid Abdulla: My main interest is whether the relatively low EROI of renewable energy sources fundamentally limits the complexity of a society that can be fueled by them.

Charles A. S. Hall replies: Perhaps the easiest way to think about this is historical: certainly we had lots of sunshine and clever minds in the past.  But we did not have a society with many affluent people until the industrial revolution, based on millions of years of accumulated net energy from sunshine. An affluent king, living a life of affluence less than most people in industrial societies now, was supported by the labor of thousands or millions of serfs harvesting solar energy.  The way to get rich was to exploit the stored solar energy of other societies through war (see Plutarch or Tainter’s the collapse of complex societies).

But most renewable energy (good hydropower is an exception) are low EROI or else seriously constrained by intermittency. Look at all the stuff required to support “free” solar energy. We (and Palmer and Weisbach independently) found EROIs of about 3:1 at best when all costs are accounted for.

The lower the EROI the larger the investment needed for the next generation: that is why fossil fuels with EROIs of 30 or 50 to one have led to such wealth: the other 29 or 49 have been deliverable to society to do economic work or that can be invested in getting more fossil fuels.  If the EROI is 2:1 obviously half has to go into the next generation for the growth and much less is delivered to society.   One can speculate or fantasize about what one can do with some future technology but having been in the energy business for 50 years I have seen many come and go.  Meanwhile we still get about 75-80% of our energy from fossil fuels (with their attendant high EROI).

Obviously we could have some kind of culture with labor intensive, low energy input systems if people were willing to take a large drop in their life style.  I fear the problem might be that people would rather go to war than accept a decline in life style.

Lee’s assessment of the traditional  Kung hunter gatherer life style implies an EROI of 10:1 and lots of leisure (except during droughts–which is the bottleneck).  Past agricultural societies obviously had a positive EROI based on human labor input — otherwise they would have gone extinct.  But it required something like a hectare per person.  According to Jared Diamond cultures became more complex with agriculture vs hunter gatherer.

The best assessment I have about EROI and quality of life possible is in:  Lambert, Jessica, Charles A.S. Hall, Stephen Balogh, Ajay Gupta, Michelle Arnold 2014 Energy, EROI and quality of life. Energy Policy Volume 64:153-167 http://authors.elsevier.com/sd/article/S0301421513006447 — It is open access.  Also our book:  Hall and Klitgaard, Energy and the wealth of nations.   Springer

At the moment the EROI of contemporary agriculture is 2:1 at the farm gate but much less, perhaps one returned for 5 invested  by the time the food is processed, distributed and prepared (Hamilton 2013).

As you can see from these studies to get numbers with any kind of reliability requires a great deal of work.

Sourabh Jain asks: Would it be possible to meet the EROI goal of, say for example 10:1, in order to maintain our current life style by mixing wind, solar and hydro? Can we have an energy system various renewable energy sources of different EROI to give a net EROI of 10:1?

Charles A. S. Hall replies:  Good question.  First of all I am not sure that we can maintain our current life style on an EROI of 10:1, but let’s assume we can (Hall 2014, Lambert 2014).  We would need liquid fuels of course for tractors , airplanes and ships — I cannot quite envision running those machines on electricity.

The problem with wind is that it tends to blow only 30% of the time, so we would need massive storage.  To the degree that we can meet intermittency with hydro that is good, although it is tough on the fish and insects below the dam.  The energy cost of that would be huge, prohibitive with respect to batteries, huge with respect to pumped storage, and what happens when the wind does not blow for two weeks, as is often the case?

Solar PV may or may not have an EROI of 10:1 (I assume you know of the three studies that came up with about 3:1: Prieto and Hall, Graham Palmer, Weisbach — but there are others higher and certainly the price and hence presumed energy cost is coming down –but you should also know that many structures are lasting only 12, not 25 years) — — this needs to be sorted out ).  But again the storage issue will be important.   (Palmer’s rooftop study included storage).

These are all important issues.  So I would say the answer seems to be no, although it might work well for let’s say half of our energy use.   As time goes on that percentage might increase (or decrease).

Jethro Betcke writes: Charles Hall: You make some statements that are somewhat inaccurate and could easily mislead the less well informed: Wind turbines produce electricity during 70 to 90% of the time. You seems to have confused capacity factor with relative time of operation.  Using a single number for the capacity factor is also not so accurate. Depending on the location and design choices the capacity factor can vary from 20% to over 50%.  With the lifetime of PV systems you seem to have confused the inverter with the system as a whole. The practice has shown that PV modules last much longer than the 25 years guaranteed by the manufacturer. In Oldenburg we have a system from 1976 that is still producing electricity and shows little degradation loss [1]. Inverters are the weak point of the system and sometimes need to be replaced. Of course, this would need to be considered in an EROEI calculation. But this is something different than what you state. [1] http://www.presse.uni-oldenburg.de/download/einblicke/54/parisi-heinemann-juergens-knecht.pdf

Charles A. S. Hall replies: I resent your statement that I am misleading anyone.   I write as clearly, accurately and honestly as I can, almost entirely in peer reviewed publications, and always have. I include sensitivity analysis while acknowledging legitimate uncertainty (for example p. 115 in Prieto and Hall).  Some people do not like my conclusions. But no one has shown with explicit analysis that Prieto and Hall is in any important way incorrect.  At least three other peer reviewed papers) (Palmer 2013, 2014; Weisbach et al. 2012 and Ferroni and Hopkirk (2016) have come up with similar conclusions on solar PV.  I am working on the legitimate differences in technique with legitimate and credible solar analysts with whom I have some differences , e.g. Marco Raugei.  All of this will be detailed in a new book from Springer in January on EROI.

First I would like to say that the bountiful energy blog post is embarrassingly poor science and totally unacceptable. As one point the author does not back his (often erroneous) statements with references. The importance of peer review is obvious from this non peer-reviewed post.

Second I do not understand your statement about wind energy producing electricity 70-90 percent of the time.  In England, for example, it is less than 30 percent (Jefferson 2015).

Third your statement on the operational lifetime of actual operational PV systems is incorrect. Of course one can find PV systems still generating electricity after 30 years.  But actual operational systems requiring serious maintenance (and for which we do not yet have enough data) often do not last more than 18-20 years, For example Spain’s “Flagship ” PV plant (which was especially well maintained) is having all modules replaced and treated as “electronic trash” after 20 years : http://renewables.seenews.com/news/spains-ingeteam-replaces-modules-at-europes-oldest-pv-plant-538875    Ferroni and Hopkirk found an 18 year lifespan in Switzerland.

Pedro Prieto replies: The production of electricity of wind turbines the 70-90% of time is a very inaccurate quote. Every wind turbine has a nominal capacity in MW. The important factor is not how many hours they move the blades at any working regime, but how many EQUIVALENT peak hours they work at the end of the year. That is, to know how much real energy they generate within one year. This is what the industry uses as a general and accurate measurement and it is the load factor or capacity factor.

Of course, this factor may change from the location or the design choices, but there is an incontrovertible figure: when we take the total world installed wind power in MW (435 Gw as of 2015) from January 2004 up to December 2015 and the total energy generated in Twh (841 Twh as of 2015) in the same period and calculate the averaged capacity factor, the resulting figure slightly varies around 15% AT WORLD LEVEL. This is REAL LIFE, much more than your unsupported theoretical figures of 20 to over 50% capacity factor in privileged wind fields for privileged wind turbines.

Interesting enough, some countries like the US, United Kingdom or Spain have capacity factors reaching 20% in the last years, but the world total installed capacity has not really improved so much in the last ten years, despite of theoretically much more efficient wind turbines (i.e. multipole with permanent magnets), very likely for the reasons that good wind fields in some countries were already used up. Other countries like China, India or France show, on the contrary very poor capacity factors even in 2015.

 

With respect to the lifetime of the PV systems, nor Charles Hall neither myself have confused the inverter lifetime with the solar PV system as a whole. The practice has not shown that modules have lasted more than 25 years in general over the world installed base. The fact that one single system is still working after more than 30 years of operation, if it was carefully manufactured with high quality materials, and was well cared, cleaned and free from environmental pollutants, like several modules we have also in Spain, does not mean AT ALL that the massive deployments (about 250 GW as of 2015) are going to last over 25 years.

I have to clarify also a common mistake: almost all main world manufacturers guarantee a maximum of 25 years (NOT 30) to the modules, but this is the “power” guarantee. This means that they “guarantee” (assuming they will be still alive as companies in 25 years from the sales period, something which is rather difficult for many of the manufacturers that went out of business in shorter periods of time than the guarantee of their modules. Of course, this guarantee is given with the subsequent module degradation specs over time, which in many cases has been proved be higher than specified.

But not only that. Most of the module manufacturers have a second guarantee: the “material’s guarantee”. And this is offered for between 5 and 10 years. This is the one by which the manufacturer guarantees the module replacement if it fails. Beyond that date, if the module fails, the buyer has to buy a new one (if still being manufactured, with the same specs power and size), because the second guarantee SUPERSEDES the first one.

Last but not least, there is already quite a large experience in Europe (Germany, France, Switzerland, Spain, Italy, etc.) of the number of faulty modules that have been decommissioned in the last years (i.e. period 2010-2015) as for instance, accounted by PV-Cycle, a company specialized in decommission and recycling modules in Europe. As the installed base is well known in volumes per year, it is relatively easy to calculate, in a very conservative (optimistic) mode the percentage over the total that failed and the number of years that lasted in this period and the average years for that sample that died before the theoretical 25-30 years lifetime and make the proportion on the total installed base.

The study conducted by Ferroni and Hopkirk gives an approximate lifetime for the installed base of lower than 20 years. And this is Europe, where the maintenance is supposed to be much better made than in the rest of the developing world. And the figures of failed modules given by PV-Cycle did not include the many potential plants that did not deliver their failed modules to this company for recycling

What it seems impossible for some academic people is to recognize that perhaps the “standards” they adhered to (namely IEA PVPS Task 12 in this case) and through which they published a big number of papers, should be revisited, because they lacked some essential measurements that could help to understand why renewables are not replacing fossils at the required speed, despite having claimed for years that they reached grid parity or that their Levelized Cost of Electricity (LCOE) is cheaper than coal, nuclear or gas. 

I am afraid that peer reviewed authors are not immune to having preconceived ideas even more difficult to eradicate. Excessive pride, lack of humility, considerable distance between the academy (i.e. imagined solar production levels versus real data from actual solar PV plants and lack of a systemic vision due to an excess of specialization are the main hurdles. Of course in my humble opinion.

References

  • Hall, C.A.S., Balogh, S., Murphy, D.J.R. 2009. What is the Minimum EROI that a Sustainable Society Must Have? Energies, 2: 25-47.
  • Hall, Charles  A.S., Jessica G.Lambert, Stephen B. Balogh. 2014.  EROI of different fuels  and the implications for society Energy Policy Energy Policy. Energy Policy, Vol 64 141-52
  • Hallock Jr., John L., Wei Wu, Charles A.S. Hall, Michael Jefferson. 2014. Forecasting the limits to the availability and diversity of global conventional oil supply: Validation. Energy 64: 130-153. (here)
  • Hamilton A , Balogh SB, Maxwell A, Hall CAS. 2013. Efficiency of edible agriculture in Canada and the U.S. over the past 3 and 4 decades. Energies 6:1764-1793.
  • Lambert, Jessica, Charles A.S. Hall, et al.  Energy, EROI and quality of life.  Energy Policy