Peak Copper is coming….

26 08 2019

Elon Musk told a closed-door Washington conference of miners, regulators and lawmakers that he sees a shortage of EV minerals coming, including copper and nickel (Scheyder 2019).   Other rare metals used in cars include neodymium, lanthanum, terbium, and dysprosium (Gorman 2009).

Alice Friedemann   www.energyskeptic.com  author of “When Trucks Stop Running: Energy and the Future of Transportation”, 2015, Springer and “Crunch! Whole Grain Artisan Chips and Crackers”. Podcasts: Derrick JensenPractical PreppingKunstlerCast 253KunstlerCast278Peak Prosperity , XX2 report

***

Richard A. Kerr. February 14, 2014. The Coming Copper Peak.  Science 343:722-724.

Production of the vital metal will top out and decline within decades, according to a new model that may hold lessons for other resources.

If you take social unrest and environmental factors into account, the peak could be as early as the 2020s

As a crude way of taking account of social and environmental constraints on production, Northey and colleagues reduced the amount of copper available for extraction in their model by 50%. Then the peak that came in the late 2030s falls to the early 2020s, just a decade away.

After peak Copper

Whenever it comes, the copper peak will bring change.  Graedel and his Yale colleagues reported in a paper published on 2 December 2013 in the Proceedings of the National Academy of Sciences that copper is one of four metals—chromium, manganese, and lead being the others—for which “no good substitutes are presently available for their major uses.”

If electrons are the lifeblood of a modern economy, copper makes up its blood vessels. In cables, wires, and contacts, copper is at the core of the electrical distribution system, from power stations to the internet. A small car has 20 kilograms (44 lbs) of copper in everything from its starter motor to the radiator; hybrid cars have twice that. But even in the face of exponentially rising consumption—reaching 17 million metric tons in 2012—miners have for 10,000 years met the world’s demand for copper.

But perhaps not for much longer. A group of resource specialists has taken the first shot at projecting how much more copper miners will wring from the planet. In their model runs, described this month in the journal Resources, Conservation and Recyclingproduction peaks by about mid-century even if copper is more abundant than most geologists believe.

Predicting when production of any natural resource will peak is fraught with uncertainty. Witness the running debate over when world oil production will peak (Science, 3 February 2012, p. 522).

The team is applying its depletion model to other mineral resources, from oil to lithium, that also face exponentially escalating demands on a depleting resource.

The world’s copper future is not as rosy as a minimum “125-year supply” might suggest, however. For one thing, any future world will have more people in it, perhaps a third more by 2050. And the hope, at least, is that a larger proportion of those people will enjoy a higher standard of living, which today means a higher consumption of copper per person. Sooner or later, world copper production will increase until demand cannot be met from much-depleted deposits. At that point, production will peak and eventually go into decline—a pattern seen in the early 1970s with U.S. oil production.

For any resource, the timing of the peak depends on a dynamic interplay of geology, economics, and technology. But resource modeler Steve Mohr of the University of Technology, Sydney (UTS), in Australia, waded in anyway. For his 2010 dissertation, he developed a mathematical model for projecting production of mineral resources, taking account of expected demand and the amount thought to be still in the ground. In concept, it is much like the Hubbert curves drawn for peak oil production, but Mohr’s model is the first to be applied to other mineral resources without the assumption that supplies are unlimited.

Exponential growth

Increasing the amount of accessible copper by 50% to account for what might yet be discovered moves the production peak back only a few years, to about 2045 — even doubling the copper pushes peak production back only to about 2050.  Quadrupling only delays peak until 2075.

Copper trouble spots

The world has been so thoroughly explored for copper that most of the big deposits have probably already been found. Although there will be plenty of discoveries, they will likely be on the small side.

“The critical issues constraining the copper industry are social, environmental, and economic,” Mudd writes in an e-mail. Any process intended to extract a kilogram of metal locked in a ton of rock buried hundreds of meters down inevitably raises issues of energy and water consumption, pollution, and local community concerns.

Civil war and instability make many large copper deposits unavailable

Mudd has a long list of copper mining trouble spots. The Reko Diq deposit in northwestern Pakistan close to both Iran and Afghanistan holds $232 billion of copper, but it is tantalizingly out of reach, with security problems and conflicts between local government and mining companies continuing to prevent developmentThe big Panguna mine in Bougainville, Papua New Guinea, has been closed for 25 years, ever since its social and environmental effects sparked a 10-year civil war that left about 20,000 dead.

Are we about to destroy the largest salmon fishery in the world for copper?

On 15 January the U.S. Environmental Protection Agency issued a study of the potential effects of the yet-to-be-proposed Pebble Mine on Bristol Bay in southwestern Alaska. Environmental groups had already targeted the project, and the study gives them plenty of new ammunition, finding that it would destroy as much as 150 kilometers of salmon-supporting streams and wipe out more than 2000 hectares of wetlands, ponds, and lakes.

Gold and Oil have already peaked

Copper is far from the only mineral resource in a race between depletion—which pushes up costs—and new technology, which can increase supply and push costs down. Gold production has been flat for the past decade despite a soaring price (Science, 2 March 2012, p. 1038). Much crystal ball–gazing has considered the fate of world oil production. “Peakists” think the world may be at or near the peak now, pointing to the long run of $100-a-barrel oil as evidence that the squeeze is already on.

Coal likely to peak in 2034, all fossil fuels by 2030, according to Mohr’s model

Fridley, Heinberg, Patzek, and other scientists believe Peak Coal is already here or likely by 2020.

Coal will begin to falter soon after, his model suggests, with production most likely peaking in 2034. The production of all fossil fuels, the bottom line of his dissertation, will peak by 2030, according to Mohr’s best estimate. Only lithium, the essential element of electric and hybrid vehicle batteries, looks to offer a sufficient supply through this century. So keep an eye on oil and gold the next few years; copper may peak close behind.

References

Gorman, S. August 30, 2009. As hybrid cars gobble rare metals, shortage looms. Reuters.

Scheyder, E. 2019. Exclusive: Tesla expects global shortage of electric vehicle battery minerals. Reuters.





Is peak everything just around the corner?

15 01 2019

What Happened in 2015 that Changed the World? Peak Civilization, Maybe?

“Peak Cement” may have taken place in 2015, stopping the exponentially growing curve that would have led us to turn the Earth into a bowling ball, similar to the fictional planet Trantor, Galactic capital in Isaac Asimov’s series “Foundation” (image source).

Signs of economic slowdowns are everywhere now….. last night in the news, Alan Kohler showed a chart describing how Chinese car sales flipped from growing at 10% to shrinking at 10%, in just three months, and evidence od Chinese economic collapse are even on mainstream news now…. Retail sales in Australia are taking a hit too.  And now this from Ugo Bardi’s Cassandra’s Legacy…

When giving an example of an exponentially growing production curve, I used to cite cement production. Look at the data up to 2013: a beautiful growing curve with a doubling time of — very roughly — 10 years. Then, if we assume that the current concrete covered area in the world is about 2%  (an average of the data by Schneider et al., 2009and the Global Rural-Urban Mapping Project, 2004) then we would get to Trantor — bowling ball planet — in some 50 years. Of course that wasn’t possible, but it was still a surprise to discover how abrupt the change has been: here are the most recent data (the value for 2018 is still an estimate from cemnet.com)

Impressive, right? Steve Rocco, smart as usual, had already noticed this trend in 2017, but now it is clearer. It looks like a peak, it has the shape of a peak, it gives the impression of a peak. Most likely it is a peak — actually, it could be the start of an irreversible decline in the global cement production. 

Now, what caused the decline? If you look at the disaggregated data, it is clear that the slowdown was mainly created by China, but not just by China. Several countries in the world are going down in terms of cement production — in Italy, the decline started in 2010.

My impression — that I share with the one proposed by Rocco — is that this is not a blip in the curve, nor a special case among the various mineral commodities produced nowadays. It is a symptom of a general problem: it may be the clearest manifestation of the concept of “peak civilization” that the 1972 “Limits to Growth” study had placed for some moment during the 1st or 2nd decades of the 21st century.

Peak Cement is not alone another major peak was detected by Antonio Turiel for diesel fuel in 2015.

And, of course, we know that another major commodity went through a global peak in 2014: coal. (data from bp.com)

So, are we really facing “peak civilization”? It is hard to say. On a time scale of a few years, many things could change and, in any case, you don’t expect peaking to take place at the same time for all mineral commodities, everywhere. A strong indication that the whole world system is peaking would come from the behavior of the global GDP. Rocco had proposed that also the GDP had peaked in 2015, but the data available at present are insufficient to prove that. 

In any case, it has been said that we would see the great peak “in the rear mirror”and this may well be what we are seeing. Whatever is happening it will be clearer in the future but, if it is really “the peak“, expect the Seneca cliff to open up in front of us in the coming years. And maybe it won’t be such a bad thing(*): did we really want to turn the Earth into a bowling ball?





Heavy Oil Shock……

25 11 2018

paris fuel riots 2.jpg.jpg

As the French government increases taxes on petrol and diesel to encourage people to switch to ‘cleaner’ transport, as if they can afford to just dump the cars they now own to buy something really expensive…..  this is what collapse looks like, no doubt about it. And it’s spreading to Belgium…

paris fuel riots.jpg

How long before Alice’s “When Trucks Stop” scenario comes to realisation..?

For all the talk about electric cars and renewable electricity, global oil production rose above 100 million barrels a day last month.  For all the policy pronouncements to the contrary, the stark reality remains that our insatiable demand for oil, the products of oil, and all of the stuff that we transport with oil continues to drive up demand.

From Consciousness of Sheep…..

There is, however, a big problem with that 100mbb/d figure that has yet to make it to the forefront of media and political debate.  This is that not all oil is equal.  This ought to be obvious enough to anyone living in my part of the world; where our economic history was shaped by the difference between the low-quality bituminous coal at the east of the South Wales coalfield and the high-quality anthracite coal in the west.  The same issues are true for oil.  On the one hand there is the sweet crude from fields in Texas, Libya, Saudi Arabia and the Gulf States; on the other there are the ultra-light condensates fracked out of the shale plays, the bitumen boiled out of Canadian tar sands and the high-sulphur toxic stew being extracted in Kazakhstan.  The former powered the unprecedented burst of global industrial expansion between 1953 and 1973.  The latter are the dregs that humanity will have to get by on in the future.

Not, of course, that this has been a problem so far.  Those older oil fields are still producing – although many are past their peak – and with a little tweaking of the set-up, refineries can manage blends of heavy and light oils that approximate the sweet crude they were designed for.  But there are limits to the tweaking.  And as the world comes to depend increasingly on blends of too light and too heavy oils, refineries will not be able to supply enough of the fuels that we have built the global economy upon.

Refining uses a combination of heat and chemistry to “crack” the molecule chains in the crude oil into various lengths according to the fuel being produced – butane and petrol (gasoline) are the lightest, kerosene and diesel in the middle and the heaviest are fuel oils used in shipping and building heating.  And while you and I might value the lighter fuels for sparking up a barbecue or powering a car, for the global transportation system it is the middle and heavier fuels that are the most important.  Most important of all, of course, is the diesel oil that powers all of the heavy machinery and trucks that are essential to the extractive processes that convert naturally occurring materials into the resources used to manufacture all of the stuff – including our food – which we consume.

Simply looking at total global oil production, then, is only part of the story.  What we also need to know is what fuel products those 100 mbb/d are being converted into.  This is where a recent post on The Oil Crash blog should ring alarm bells.  Drawing on data from the JODI database, they show that:

“Since 2007 (and therefore before the official start of the economic crisis) the production of other [heavy] fuel oils is in decline and also seems perfectly consolidated…

“The fact is that if you have made changes in the refineries to crack more oil molecules and get other lighter products (and that is why less heavy fuel oil is produced), those molecules that used to go to heavy fuel oil should now go to other products. It follows, taking into account the added value of fuels with longer molecules, that these heavy fuel oils are being cracked especially to generate diesel and possibly more kerosene for airplanes and eventually more gasoline.”

Heavy oil production
Heavy fuel production

Concern about peak oil was always, ultimately a concern about peak diesel because of its central role in the global economy.  However, producing ever less heavy oils to maintain the output of diesel and kerosene (and eventually petrol) can only be a temporary solution.   Indeed, the JODI data shows an alarming decline in diesel fuel production since 2015:

Diesel fuel production

“That is why, dear reader, when you are told that the taxes on your diesel car will be raised in a brutal way, now you will know why.  Because they prefer to adjust these imbalances with a mechanism that seems to be a market (although this is actually less free and more intervened) to explain the truth. The fact is that from now on what can be expected is a real persecution against cars with internal combustion engines (gasoline will continue for a few years longer than diesel).”

To add to our woes, the decline in heavy oil production is compounded by new regulations that will dramatically increase demand for diesel just as the industry’s ability to produce it is in decline.  As Nick Cunningham at Business Insider reported back in July:

“A research paper from economist and oil market watcher Philip K. Verleger predicts there could be a shortage of low-sulfur diesel fuel in 2020 as a result of regulations from the International Maritime Organization (IMO) aimed at cutting sulfur emissions…

“Up until now, the maritime industry has been burning the residual fuel oil left over after the refining process. Fuel oil is the bottom of the barrel – it’s the cheapest, most viscous and dirtiest part of the barrel.”

The choice facing the shipping industry is whether to invest in expensive scrubbers and filters designed to capture sulphur that would otherwise escape into the atmosphere or whether to make much cheaper engine alterations in order to run ships on diesel.  It is difficult to argue with Cunningham assessment:

“By 2020, diesel production will need to rise by at least seven percent, according to Philip K. Verleger, on top of the three percent increase needed for road transport and other uses. All of it will need to be low-sulfur.”

If ship owners switch fuels, we are looking at a global oil price above $200 per barrel; with diesel fuel being priced well above anything ordinary working people can afford for powering cars; and other fuels following close behind.  This will impact British and American motorists far harder than those in Europe because of our systematic neglect of public transport and our insistence in building out into the suburbs.  The broader question, however, is whether the current strategy of relying on a combination of fuel taxes and higher prices is a sensible approach to diesel shortages.

Prices and taxes most often result in the misallocation of resources.  This is most obvious when we contrast the suffering of millions of people in poorer countries against the frivolous consumption of the fortunate top ten percent of the global population living in the G7 states.  However, because the growth in global energy consumption has allowed billions of people to experience an increase in their standard of living in the years since World War Two, the misallocation has appeared to be less urgent (to those in the developed states).  In the event that strategic fuel production falls – as it appears to be doing – continued misallocation will accelerate the process of collapse.

For example, most farmers depend upon diesel-powered machinery to maintain yields.  Unfortunately, many of those same farmers are already struggling to remain in business despite already receiving subsidies from the state.  And while there are some alternative power sources (batteries, biogas, hydrogen) for light vehicles, there is no means by which heavy diesel machinery and haulage vehicles can be substituted.  Thus, if diesel prices rise, either food prices rise accordingly or (and most likely both) farmers go out of business.  At the same time, however, the very richest one percent of the population is likely to regard the rise in diesel prices as a good thing since it will remove much of the road congestion they experience without preventing them from driving and flying.

The alternative would be to develop and implement a rationing scheme based on the need to maintain critical infrastructure (including food production) even if this comes at the expense of limiting private vehicle use and severely restricting commercial air travel.  In practice, unfortunately, our response to this looming fuel crisis is more likely to follow the pattern of our response to climate change; with powerful lobbies paying to distract our attention, large numbers denying the crisis exists, and most of those who acknowledge the crisis grasping at techno-utopian pseudo-solutions like electric cars and windmills.

All I can say is hold onto your hats because when oil prices spike above $200 and our ability to consume collapses, we are going to witness economic and social dislocation on a scale that will make Brexit and the policies of Donald Trump that everyone seems so exercised about look trivial.

As an aside, I currently have three French wwoofers, and you better believe they are right on top of collapse and planning all sorts of things to get ready, not least coming here to learna trick or two. I’m so proud of being able to teach them stuff…..

If the embedded video doesn’t show English subtitles, they are available at youtube….





Can we save energy, jobs and growth at the same time ?

20 05 2018

I apologise in advance to anyone with a short attention span, this is a bit long at almost one and a half hours……  especially as if you are new to limits to growth, you might have to watch it more than once!
If you ever needed proof that economics is an imbecilic proposal, then this is it.

Published on 30 Jan 2018

Jancovici’s conference in ENS School of Paris – 08/01/2018 To download the Presentation : https://fr.slideshare.net/JoelleLecon… The depletion of natural resources, with oil to start with, and the need for a stable climate, will make it harder and harder to pursue economic growth as we know it. It has now become urgent to develop a new branch of economics which does not rely on the unrealistic assumption of a perpetual GDP increase. In this Colloquium, I will discuss a “physical” approach to economics which aims at understanding and managing the scaling back of our world economy. Biography : Jean-Marc Jancovici, is a French engineer who graduated from École Polytechnique and Télécom, and who specializes in energy-climate subjects. He is a consultant, teacher, lecturer, author of books and columnist. He is known for his outreach work on climate change and the energy crisis. He is co-founder of the organization “Carbone 4” and president of the think tank “The Shift Project”. Original video : https://www.youtube.com/watch?v=ey7_F… Facebook page : https://www.facebook.com/jeanmarc.jan… Website : https://jancovici.com/




Blindspots and Superheroes

14 05 2017

I haven’t heard much from Nate Hagens in recent times, but when he does come out of the woodwork, his communications skills certainly come through….. We who follow the collapse of the world as we know it probably know most of what’s in this admirable presentation, but it is absolutely captivating, and you will learn something new, or see it in a different perspective. It’s an hour and twenty minutes long (I actually drove down town to use the library’s free wi-fi to download it, my mobile phone data allowance won’t stretch to a quarter Gig for one video!), so make yourself a cup of your favourite poison, and enjoy the show……

Nathan John Hagens is a former Wall Street analyst, turned college professor and systems-science advocate. Nate has an MBA with Honors from the University of Chicago and a PhD in Natural Resources/Energy from the University of Vermont. He is on the Boards of Post Carbon Institute, Institute for Integrated Economic Research, and Institute for the Study of Energy and our Future. He teaches a class at the University of Minnesota called “Reality 101 – A Survey of the Human Predicament”.

Nate, partnering with environmental strategist DJ White, has created the “Bottleneck Foundation”, a nonprofit initiative designed to help steer towards better human and ecological futures than would otherwise be attained. The “Bottlenecks” are the cultural, biological, and technological challenges which will arise as energy and terrestrial biomass begin their long fall back toward sustainable-flow baselines this century. The “Foundation” part of the name is a tip of the hat to Asimov’s “Foundation” series of novels, about an organization designed to mitigate the negative effects of societal simplification. BF is dedicated to making “synthesis science” accessible to a new generation of engaged people, through educational materials and projects which demonstrate that reality is a lot different from our culture currently thinks it is.





Forget 1984…. 2020 is the apocalypse year

26 01 2017

The crescendo of news pointing to 2020 as the date to watch is growing apace…. it won’t be the year collapse happens, because collapse is a process, not an event; but it will definitely be the year this process starts to become obvious. To people other than followers of this blog at least…!

RIYADH, Saudi ArabiaAccording to the International Monetary Fund, Saudi Arabia’s economy is in danger of collapse as oil prices grow increasingly unstable.

The warning appeared in the “Regional Economic Outlook” for the Middle East and Central Asia published on Oct. 15, an annual report published by IMF economists. Adam Leyland, writing on Oct. 23 for The Independent, explained the grim prognosis for Saudi’s economy, which is almost completely dependent on fossil fuels:

“[T]he IMF said that the kingdom will suffer a negative 21.6 per cent ‘General Government Overall Fiscal Balance’ in 2015 and a 19.4 per cent negative balance in 2016, a massive increase from only -3.4 per cent in 2014.

Saudi Arabia currently has $654.5 billion in foreign reserves, but the cash is disappearing quickly.

The Saudi Arabian Monetary Agency has withdrawn $70 billion in funds managed by overseas financial institutions, and has lost almost $73 billion since oil prices slumped, according to Al-Jazeera. Saudi Arabia generates 90 per cent of its income from oil.”

AND……..

Tax-free living will soon be a thing of the past for Saudis after its cabinet on Monday approved an IMF-backed value-added tax to be imposed across the Gulf following an oil slump.

A 5% levy will apply to certain goods following an agreement with the six-member Gulf Cooperation Council in June last year.

Residents of the energy-rich region had long enjoyed a tax-free and heavily subsidised existence but the collapse in crude prices since 2014 sparked cutbacks and a search for new revenue.

Author Dr Nafeez Ahmed, a Visiting Fellow at Anglia Ruskin University’s Global Sustainability Institute, is making even more waves today, saying………:

“Syria and Yemen demonstrate how climate and energy crises work together to undermine state power and fuel terrorism. 

“Climate-induced droughts ravage agriculture, swell the ranks of the unemployed and destroy livelihoods.  Domestic oil depletion undercuts state revenues, weakening the capacity to sustain domestic subsidies for fuel and food.  As the state is unable to cope with the needs of an increasingly impoverished population, this leads to civil unrest and possibly radicalisation and terrorism. 

“These underlying processes are not isolated to Syria and Yemen.  Without a change of course, the danger is that eventually they will occur inside the US and Europe.”

Failing States, Collapsing Systems: BioPhysical Triggers of Political Violence, authored by Dr Nafeez Ahmed, published by Springer Briefs in Energy includes the following key points…:
  • Global net energy decline is the underlying cause of the decline in the rate of global economic growth.  In the short term, slow or absent growth in Europe and the US is complicit in voter discontent and the success of anti-establishment politicians. 
  • Europe is now a post-peak oil society, with its domestic oil production declining every year since 1999 by 6%.  Shale oil and gas is unlikely to offset this decline. 
  • Europe’s main sources of oil imports are in decline. Former Soviet Union producers, their production already in the negative, are likely to terminate exports by 2030.  Russia’s oil production is plateauing and likely to decline after 2030 at the latest. 
  • In the US, conventional oil has already peaked and is in sharp decline.  The shortfall is being made up by unconventional sources such as tight oil and shale gas, which are likely to peak by 2025. California will continue to experience extensive drought over the coming decades, permanently damaging US agriculture.
  • Between 2020 and 2035, the US and Mexico could experience unprecedented military tensions as the latter rapidly runs down its conventional oil reserves, which peaked in 2006. By 2020, its exports will revert to zero, decimating Mexican state revenues and potentially provoking state failure shortly thereafter.
  • After 2025, Iraq is unlikely to survive as a single state.  The country is experiencing worsening water scarcity, fueling an ongoing agricultural crisis, while its oil production is plateauing due to a combination of mounting costs of production and geopolitical factors.
  • Saudi Arabia will face a ‘perfect storm’ of energy, food and economic shocks most likely before 2030, and certainly within the next 20 years.
  • Egypt will begin to experience further outbreaks of civil unrest leading to escalating state failure after 2021.  Egypt will likely become a fully failed state after 2037.
  • India’s hopes to become a major economic player will falter due to looming food, water and energy crises.  India’s maximum potential domestic renewable energy capacity is insufficient to meet projected demand growth.
  • China’s total oil production is likely to peak in 2020.  Its rate of economic growth is expected to fall continuously in coming decades, while climate change will damage its domestic agriculture, forcing it to rely increasingly on expensive imports by 2022.

I wish Julian Simon could read this….. it seems all our limits to growth chickens are coming home to roost, and very soon now.





2017: The Year When the World Economy Starts Coming Apart

20 01 2017

Conclusion

The situation is indeed very concerning. Many things could set off a crisis:

  • Rising energy prices of any kind (hurting energy importers), or energy prices that don’t rise (leading to financial problems or collapse of exporters)
  • Rising interest rates.
  • Defaulting debt, indirectly the result of slow/negative economic growth and rising interest rates.
  • International organizations with less and less influence, or that fall apart completely.
  • Fast changes in relativities of currencies, leading to defaults on derivatives.
  • Collapsing banks, as debt defaults rise.
  • Falling asset prices (homes, farms, commercial buildings, stocks and bonds) as interest rates rise, leading to many debt defaults.

FOLLOWING ON from my last post exposing HSBC’s forecast of a peak oil caused economic collapse, along comes this piece from Gail Tverberg predicting it may all start this year…….

Most of this article is a rehash of things she’s said before all consolidated in one lengthy essay, and some of them were published here before. It’s becoming increasingly difficult to not recognise all our ducks are lining up on the wall…….

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Some people would argue that 2016 was the year that the world economy started to come apart, with the passage of Brexit and the election of Donald Trump. Whether or not the “coming apart” process started in 2016, in my opinion we are going to see many more steps in this direction in 2017. Let me explain a few of the things I see.

[1] Many economies have collapsed in the past. The world economy is very close to the turning point where collapse starts in earnest.  

Figure 1

The history of previous civilizations rising and eventually collapsing is well documented.(See, for example, Secular Cycles.)

To start a new cycle, a group of people would find a new way of doing things that allowed more food and energy production (for instance, they might add irrigation, or cut down trees for more land for agriculture). For a while, the economy would expand, but eventually a mismatch would arise between resources and population. Either resources would fall too low (perhaps because of erosion or salt deposits in the soil), or population would rise too high relative to resources, or both.

Even as resources per capita began falling, economies would continue to have overhead expenses, such as the need to pay high-level officials and to fund armies. These overhead costs could not easily be reduced, and might, in fact, grow as the government attempted to work around problems. Collapse occurred because, as resources per capita fell (for example, farms shrank in size), theearnings of workers tended to fall. At the same time, the need for taxes to cover what I am calling overhead expenses tended to grow. Tax rates became too high for workers to earn an adequate living, net of taxes. In some cases, workers succumbed to epidemics because of poor diets. Or governments would collapse, from lack of adequate tax revenue to support them.

Our current economy seems to be following a similar pattern. We first used fossil fuels to allow the population to expand, starting about 1800. Things went fairly well until the 1970s, when oil prices started to spike. Several workarounds (globalization, lower interest rates, and more use of debt) allowed the economy to continue to grow. The period since 1970 might be considered a period of “stagflation.” Now the world economy is growing especially slowly. At the same time, we find ourselves with “overhead” that continues to grow (for example, payments to retirees, and repayment of debt with interest). The pattern of past civilizations suggests that our civilization could also collapse.

Historically, economies have taken many years to collapse; I show a range of 20 to 50 years in Figure 1. We really don’t know if collapse would take that long now. Today, we are dependent on an international financial system, an international trade system, electricity, and the availability of oil to make our vehicles operate. It would seem as if this time collapse could come much more quickly.

With the world economy this close to collapse, some individual countries are even closer to collapse. This is why we can expect to see sharp downturns in the fortunes of some countries. If contagion is not too much of a problem, other countries may continue to do fairly well, even as individual small countries fail.

[2] Figures to be released in 2017 and future years are likely to show that the peak in world coal consumption occurred in 2014. This is important, because it means that countries that depend heavily on coal, such as China and India, can expect to see much slower economic growth, and more financial difficulties.

While reports of international coal production for 2016 are not yet available, news articles and individual country data strongly suggest that world coal production is past its peak. The IEA also reports a substantial drop in coal production for 2016.

Figure 2. World coal consumption. Information through 2015 based on BP 2016 Statistical Review of World Energy data. Estimates for China, US, and India are based on partial year data and news reports. 2016 amount for "other" estimated based on recent trends.

The reason why coal production is dropping is because of low prices, low profitability for producers, and gluts indicating oversupply. Also, comparisons of coal prices with natural gas prices are inducing switching from coal to natural gas. The problem, as we will see later, is that natural gas prices are also artificially low, compared to the cost of production, So the switch is being made to a different type of fossil fuel, also with an unsustainably low price.

Prices for coal in China have recently risen again, thanks to the closing of a large number of unprofitable coal mines, and a mandatory reduction in hours for other coal mines. Even though prices have risen, production may not rise to match the new prices. One article reports:

. . . coal companies are reportedly reluctant to increase output as a majority of the country’s mines are still losing money and it will take time to recoup losses incurred in recent years.

Also, a person can imagine that it might be difficult to obtain financing, if coal prices have only “sort of” recovered.

I wrote last year about the possibility that coal production was peaking. This is one chart I showed, with data through 2015. Coal is the second most utilized fuel in the world. If its production begins declining, it will be difficult to offset the loss of its use with increased use of other types of fuels.

Figure 3. World per capita energy consumption by fuel, based on BP 2016 SRWE.

[3] If we assume that coal supplies will continue to shrink, and other production will grow moderately, we can expect total energy consumption to be approximately flat in 2017. 

Figure 5. World energy consumption forecast, based on BP Statistical Review of World Energy data through 2015, and author's estimates for 2016 and 2017.

In a way, this is an optimistic assessment, because we know that efforts are underway to reduce oil production, in order to prop up prices. We are, in effect, assuming either that (a) oil prices won’t really rise, so that oil consumption will grow at a rate similar to that in the recent past or (b) while oil prices will rise significantly to help producers, consumers won’t cut back on their consumption in response to the higher prices.

[4] Because world population is rising, the forecast in Figure 4 suggests that per capita energy consumption is likely to shrink. Shrinking energy consumption per capita puts the world (or individual countries in the world) at the risk of recession.

Figure 5 shows indicated per capita energy consumption, based on Figure 4. It is clear that energy consumption per capita has already started shrinking, and is expected to shrink further. The last time that happened was in the Great Recession of 2007-2009.

Figure 5. World energy consumption per capita based on energy consumption estimates in Figure 4 and UN 2015 Medium Population Growth Forecast.

There tends to be a strong correlation between world economic growth and world energy consumption, because energy is required to transform materials into new forms, and to transport goods from one place to another.

In the recent past, the growth in GDP has tended to be a little higher than the growth in the use of energy products. One reason why GDP growth has been a percentage point or two higher than energy consumption growth is because, as economies become richer, citizens can afford to add more services to the mix of goods and services that they purchase (fancier hair cuts and more piano lessons, for example). Production of services tends to use proportionately less energy than creating goods does; as a result, a shift toward a heavier mix of services tends to lead to GDP growth rates that are somewhat higher than the growth in energy consumption.

A second reason why GDP growth has tended to be a little higher than growth in energy consumption is because devices (such as cars, trucks, air conditioners, furnaces, factory machinery) are becoming more efficient. Growth in efficiency occurs if consumers replace old inefficient devices with new more efficient devices. If consumers become less wealthy, they are likely to replace devices less frequently, leading to slower growth in efficiency. Also, as we will discuss later in this  post, recently there has been a tendency for fossil fuel prices to remain artificially low. With low prices, there is little financial incentive to replace an old inefficient device with a new, more efficient device. As a result, new purchases may be bigger, offsetting the benefit of efficiency gains (purchasing an SUV to replace a car, for example).

Thus, we cannot expect that the past pattern of GDP growing a little faster than energy consumption will continue. In fact, it is even possible that the leveraging effect will start working the “wrong” way, as low fossil fuel prices induce more fuel use, not less. Perhaps the safest assumption we can make is that GDP growth and energy consumption growth will be equal. In other words, if world energy consumption growth is 0% (as in Figure 4), world GDP growth will also be 0%. This is not something that world leaders would like at all.

The situation we are encountering today seems to be very similar to the falling resources per capita problem that seemed to push early economies toward collapse in [1]. Figure 5 above suggests that, on average, the paychecks of workers in 2017 will tend to purchase fewer goods and services than they did in 2016 and 2015. If governments need higher taxes to fund rising retiree costs and rising subsidies for “renewables,” the loss in the after-tax purchasing power of workers will be even greater than Figure 5 suggests.

[5] Because many countries are in this precarious position of falling resources per capita, we should expect to see a rise in protectionism, and the addition of new tariffs.

Clearly, governments do not want the problem of falling wages (or rather, falling goods that wages can buy) impacting their countries. So the new game becomes, “Push the problem elsewhere.”

In economic language, the world economy is becoming a “Zero-sum” game. Any gain in the production of goods and services by one country is a loss to another country. Thus, it is in each country’s interest to look out for itself. This is a major change from the shift toward globalization we have experienced in recent years. China, as a major exporter of goods, can expect to be especially affected by this changing view.

[6] China can no longer be expected to pull the world economy forward.

China’s economic growth rate is likely to be lower, for many reasons. One reason is the financial problems of coal mines, and the tendency of coal production to continue to shrink, once it starts shrinking. This happens for many reasons, one of them being the difficulty in obtaining loans for expansion, when prices still seem to be somewhat low, and the outlook for the further increases does not appear to be very good.

Another reason why China’s economic growth rate can be expected to fall is the current overbuilt situation with respect to apartment buildings, shopping malls, factories, and coal mines. As a result, there seems to be little need for new buildings and operations of these types. Another reason for slower economic growth is the growing protectionist stance of trade partners. A fourth reason is the fact that many potential buyers of the goods that China is producing are not doing very well economically (with the US being a major exception). These buyers cannot afford to increase their purchases of imports from China.

With these growing headwinds, it is quite possible that China’s total energy consumption in 2017 will shrink. If this happens, there will be downward pressure on world fossil fuel prices. Oil prices may fall, despite production cuts by OPEC and other countries.

China’s slowing economic growth is likely to make its debt problem harder to solve. We should not be too surprised if debt defaults become a more significant problem, or if the yuan falls relative to other currencies.

India, with its recent recall of high denomination currency, as well as its problems with low coal demand, is not likely to be a great deal of help aiding the world economy to grow, either. India is also a much smaller economy than China.

[7] While Item [2] talked about peak coal, there is a very significant chance that we will be hitting peak oil and peak natural gas in 2017 or 2018, as well.  

If we look at historical prices, we see that the prices of oil, coal and natural gas tend to rise and fall together.

Figure 6. Prices of oil, call and natural gas tend to rise and fall together. Prices based on 2016 Statistical Review of World Energy data.

The reason that fossil fuel prices tend to rise and fall together is because these prices are tied to “demand” for goods and services in general, such as for new homes, cars, and factories. If wages are rising rapidly, and debt is rising rapidly, it becomes easier for consumers to buy goods such as homes and cars. When this happens, there is more “demand” for the commodities used to make and operate homes and cars. Prices for commodities of many types, including fossil fuels, tend to rise, to enable more production of these items.

Of course, the reverse happens as well. If workers become poorer, or debt levels shrink, it becomes harder to buy homes and cars. In this case, commodity prices, including fossil fuel prices, tend to fall.  Thus, the problem we saw above in [2] for coal would be likely to happen for oil and natural gas, as well, because the prices of all of the fossil fuels tend to move together. In fact, we know that current oil prices are too low for oil producers. This is the reason why OPEC and other oil producers have cut back on production. Thus, the problem with overproduction for oil seems to be similar to the overproduction problem for coal, just a bit delayed in timing.

In fact, we also know that US natural gas prices have been very low for several years, suggesting another similar problem. The United States is the single largest producer of natural gas in the world. Its natural gas production hit a peak in mid 2015, and production has since begun to decline. The decline comes as a response to chronically low prices, which make it unprofitable to extract natural gas. This response sounds similar to China’s attempted solution to low coal prices.

Figure 7. US Natural Gas production based on EIA data.

The problem is fundamentally the fact that consumers cannot afford goods made using fossil fuels of any type, if prices actually rise to the level producers need, which tends to be at least five times the 1999 price level. (Note peak price levels compared to 1999 level on Figure 6.) Wages have not risen by a factor of five since 1999, so paying the prices that fossil fuel producers need for profitability and growing production is out of the question. No amount of added debt can hide this problem. (While this reference is to 1999 prices, the issue really goes back much farther, to prices before the price spikes of the 1970s.)

US natural gas producers also have plans to export natural gas to Europe and elsewhere, as liquefied natural gas (LNG). The hope, of course, is that a large amount of exports will raise US natural gas prices. Also, the hope is that Europeans will be able to afford the high-priced natural gas shipped to them. Unless someone can raise the wages of both Europeans and Americans, I would not count on LNG prices actually rising to the level needed for profitability, and staying at such a high level. Instead, they are likely to bounce up, and quickly drop back again.

[8] Unless oil prices rise very substantially, oil exporters will find themselves exhausting their financial reserves in a very short time (perhaps a year or two). Unfortunately, oil importerscannot withstand higher prices, without going into recession. 

We have a no win situation, no matter what happens. This is true with all fossil fuels, but especially with oil, because of its high cost and thus necessarily high price. If oil prices stay at the same level or go down, oil exporters cannot get enough tax revenue, and oil companies in general cannot obtain enough funds to finance the development of new wells and payment of dividends to shareholders. If oil prices do rise by a very large amount for very long, we are likely headed into another major recession, with many debt defaults.

[9] US interest rates are likely to rise in the next year or two, whether or not this result is intended by the Federal reserve.

This issue here is somewhat obscure. The issue has to do with whether the United States can find foreign buyers for its debt, often called US Treasuries, and the interest rates that the US needs to pay on this debt. If buyers are very plentiful, the interest rates paid by he US government can be quite low; if few buyers are available, interest rates must be higher.

Back when Saudi Arabia and other oil exporters were doing well financially, they often bought US Treasuries, as a way to retain the benefit of their new-found wealth, which they did not want to spend immediately. Similarly, when China was doing well as an exporter, it often bought US Treasuries, as a way retaining the wealth it gained from exports, but didn’t yet need for purchases.

When these countries bought US Treasuries, there were several beneficial results:

  • Interest rates on US Treasuries tended to stay artificially low, because there was a ready market for its debt.
  • The US could afford to import high-priced oil, because the additional debt needed to buy the oil could easily be sold (to Saudi Arabia and other oil producing nations, no less).
  • The US dollar tended to stay lower relative to other currencies, making oil more affordable to other countries than it otherwise might be.
  • Investment in countries outside the US was encouraged, because debt issued by these other countries tended to bear higher interest rates than US debt. Also, relatively low oil prices in these countries (because of the low level of the dollar) tended to make investment profitable in these countries.

The effect of these changes was somewhat similar to the US having its own special Quantitative Easing (QE) program, paid for by some of the counties with trade surpluses, instead of by its central bank. This QE substitute tended to encourage world economic growth, for the reasons mentioned above.

Once the fortunes of the countries that used to buy US Treasuries changes, the pattern of buying of US Treasuries tends to change to selling of US Treasuries. Even not purchasing the same quantity of US Treasuries as in the past becomes an adverse change, if the US has a need to keep issuing US Treasuries as in the past, or if it wants to keep rates low.

Unfortunately, losing this QE substitute tends to reverse the favorable effects noted above. One effect is that the dollar tends to ride higher relative to other currencies, making the US look richer, and other countries poorer. The “catch” is that as the other countries become poorer, it becomes harder for them to repay the debt that they took out earlier, which was denominated in US dollars.

Another problem, as this strange type of QE disappears, is that the interest rates that the US government needs to pay in order to issue new debt start rising. These higher rates tend to affect other rates as well, such as mortgage rates. These higher interest rates act as a drag on the economy, tending to push it toward recession.

Higher interest rates also tend to decrease the value of assets, such as homes, farms, outstanding bonds, and shares of stock. This occurs because fewer buyers can afford to buy these goods, with the new higher interest rates. As a result, stock prices can be expected to fall. Prices of homes and of commercial buildings can also be expected to fall. The value of bonds held by insurance companies and banks becomes lower, if they choose to sell these securities before maturity.

Of course, as interest rates fell after 1981, we received the benefit of falling interest rates, in the form of rising asset prices. No one ever stopped to think about how much of the gains in share prices and property values came from falling interest rates.

Figure 8. Ten year treasury interest rates, based on St. Louis Fed data.

Now, as interest rates rise, we can expect asset prices of many types to start falling, because of lower affordability when monthly payments are based on higher interest rates. This situation presents another “drag” on the economy.

In Conclusion

The situation is indeed very concerning. Many things could set off a crisis:

  • Rising energy prices of any kind (hurting energy importers), or energy prices that don’t rise (leading to financial problems or collapse of exporters)
  • Rising interest rates.
  • Defaulting debt, indirectly the result of slow/negative economic growth and rising interest rates.
  • International organizations with less and less influence, or that fall apart completely.
  • Fast changes in relativities of currencies, leading to defaults on derivatives.
  • Collapsing banks, as debt defaults rise.
  • Falling asset prices (homes, farms, commercial buildings, stocks and bonds) as interest rates rise, leading to many debt defaults.

Things don’t look too bad right now, but the underlying problems are sufficiently severe that we seem to be headed for a crisis far worse than 2008. The timing is not clear. Things could start falling apart badly in 2017, or alternatively, major problems may be delayed until 2018 or 2019. I hope political leaders can find ways to keep problems away as long as possible, perhaps with more rounds of QE. Our fundamental problem is the fact that neither high nor low energy prices are now able to keep the world economy operating as we would like it to operate. Increased debt can’t seem to fix the problem either.

The laws of physics seem to be behind economic growth. From a physics point of view, our economy is a dissipative structure. Such structures form in “open systems.” In such systems, flows of energy allow structures to temporarily self-organize and grow. Other examples of dissipative structures include ecosystems, all plants and animals, stars, and hurricanes. All of these structures constantly “dissipate” energy. They have finite life spans, before they eventually collapse. Often, new dissipative systems form, to replace previous ones that have collapsed.