Delusions of Grandeur in Building a Low-Carbon Future

31 01 2018

With many thanks from Ugo Bardi who first published this on Cassandra’s Legacy…… 

Some excerpts from Carey King’s excellent paper titled “Delusion of Grandeur in building a low-carbon future” (2016). By all means worth reading: it identifies the delusionary approach of some policy proposals. Image Credit: K. Cantner, AGI.

…. the outcomes of economic models used to inform policymakers and policies like the Paris Agreement are fundamentally flawed to the point of being completely delusional. It isn’t the specific economic assumptions related to the “low-carbon” transition that are the problem, but structural flaws in the economic models themselves.

There is a very real trade-off between the rate at which we address climate change and the amount of economic growth we can expect during the transition to a low-carbon economy, but most economic models insufficiently address this trade-off, and thus are incapable of assessing the transition. If we ignore this trade-off, or worse, we rely on models that are built on faulty premises, then we risk politicians and citizens revolting against the energy transition midway into it when the substantial growth and prosperity they’ve been told to expect will accompany the low-carbon transition don’t materialize. It is important to note that citizens are also told that doubling-down on fossil energy also only provides growth and prosperity. But this is a major point of this article: mainstream economic models can’t tell the difference. There are foreseeable feedbacks of a fast transition to a low-carbon economy that increase the risk of major recessions.

The AR5 indicates that if the world invests enough to reduce greenhouse gas emissions over time — such that total annual greenhouse gas emissions are practically zero by 2100 — to stay within the 450 ppm and 2-degree-Celsius target, then the modeled decline in the size of the economy relative to business-as-usual scenarios is typically less than 10 percent. In other words, instead of the economy in 2100 being 300 to 800 percent larger than in 2010 without any mitigation, it is only 270 to 720 percent larger with full mitigation. Meanwhile, there is no reported possibility of a smaller future economy. Apparently, we’ll be much richer in the future no matter if we mitigate greenhouse gas emissions or not.

This result is delusional and doesn’t pass the smell test.

Another flawed piece of the framework in the IAMs is that they assume that factors in the economy during and after a low-carbon transition will remain at or return to the statistically positive trends of the last several decades — the trend of growth, the trend of high employment levels, the trend of technological innovation. Those positive trends change over time, however, so it is faulty to assume they’ll continue at historic levels independent of the need for rapid changes in the energy system. They also assume that energy costs will not significantly increase over the long term. Further, they extrapolate trends in growth, employment and technology from the past and current carbon-based economy to apply to a future decarbonized economy in ways that represent guesswork at best, and ideology at worst.

Perhaps most importantly, IAMs do not consider the substantial negative feedback between high energy costs and overall economic growth. Negative feedback means that when one factor increases (energy prices, for example), another factor consequently decreases. Many of us know from practical experience that if gasoline costs too much — like when it was near $4 per gallon in 2008 — it may eat into our budget to such an extent that we can’t pay all our bills or can’t pursue hobbies. On a personal level, then, we see that increased gas prices cause decreased discretionary spending — a negative feedback. This idea can be extended to the entire economy’s budget and income.
….. the models currently answer a question that is barely useful: “If the economy grows this much, what types of energy investments can we make, and at what rate?” The models should address the question we really need to answer: “If we make these energy investments at this rate, what happens to the economy?”

There is a fundamental conflict between achieving low- or zero-carbon energy systems and growing an economy. Both the scale and rate of change during a low-carbon transition matter. So, let’s create macroeconomic models that can plausibly replicate historical trends of the most important energy and economic variables in times of high energy investment, recession and growth, so that we have confidence that we can ask relevant and informative questions about how low-carbon investments impact economic growth. Let’s stop deluding ourselves by using models that assume answers we want to see.

Read the complete paper (open access) at this link


Three Things We Don’t Understand About Climate Change

3 09 2017

ANOTHER great article from Ahmed Nafeez’ new Medium website…….  Please support his magnificent efforts.

This is the most honest item on Climate Change I hace seen in quite a while. It almost goes as far as saying what I’ve now concluded, we must de-industrialise. Almost.

Go to the profile of Aarne Granlund
Aarne GranlundFollow



Thinking about climate change is not something that comes natural to humans — or ‘consumers’ as we have been called for decades. It is not only emotionally unpleasant, but analytically extremely challenging.

I argue that most of us do not grasp how immediate this situation has become, how fast it is progressing and what the scale of change needed is to reach the stabilisation targets of the Paris Agreement.

I also argue that after individuals, nations and corporations understand the urgency and the rate, they should be honest about the scale of action needed in order to avoid collapse of the biosphere and thus civilisation.

North America on 29th of August 2017. Tundra and forest fires in the Arctic + British Columbia and Hurricane Harvey off the coast of South Texas (Terra / MODIS @ Nasa WorldView).

Human society is deeply and permanently coupled to the Earth System. In the geological epoch we have entered called the Anthropocene, that system is undergoing immediate, massive disruption. The previous epoch of Holocene gave us agriculture and settled living arrangements.

Since the onset of industrial production at an accelerating rate and scale, human society has had deep and far ranging influence on natural processes which it depends on. Climate change is only one of the manifestations — there are multiple large-scale indicators of our presence on this planet from erosion to nitrogen runoff, species extinction to uncontrolled population growth.

1. Urgency

The first misunderstanding about climate change is related to how we perceive its impacts in the temporal space. It is not (only) a future issue, not a polar bear issue and certainly not an issue which only affects a few remote parts of the world.

Situation has become dangerous during the last three years of 2014, 2015, 2016 and now continuing into 2017. Certain parts of the world see less immediate danger but systematic changes affect us all.

NASA GISS dataset on land and ocean temperature anomalies (2017).

How is it possible that the Earth System has taken up our presence on the surface so lightly even when we have changed the chemistry of the atmosphere and the ocean with our carbon pollution?

Ocean heat uptake has doubled since 1997 (Gleckler et al, 2016).

Most of the energy (heat) human carbon pollution creates ends up warming the world ocean, some 93% of our pyromania ends up there. Every passing year we pump 41 gigatons (that is a very big number) of carbon dioxide into the Earth System, where roughly half of it is absorbed by natural sink capabilities of the ocean and the land biosphere. Rest of it ends up in the atmosphere with all the other gases we put up, including aerosols and certain novel entities that have never occured in the natural state of the Earth System.

The fact that increasing greenhouse gas loading from human sources in the carbon cycle is cumulative makes this an extremely vicious political, economic and social problem. The increment which ends up in the atmosphere can only be drawn down by the natural climate system on time scales extending to tens or hundreds of thousands of years.

The Global Carbon Budget from GCP, 2017.

One component of urgency is that when surface temperatures increase after being buffered by the ocean — without the world ocean we would already be 36°C hotter on the surface of continents from the increased atmospheric forcing — they can do so in a non-linear fashion.

This creates immediate impacts. Single exceptional extreme weather events are not caused by climate change but happen in a distinctively new climate. Hotter atmosphere holds more moisture which increases precipitation. Extreme heatwaves become more common. Ice in all its forms melts.

Right now there are multiple imminent disasters occuring in various parts of the planet. Global fire situation has been exceptional in Siberia, Greenland, Canada and in other parts of North America. Tundra burns, forests burn, people suffer. Europe has been under severe heat waves and there have been mass casualties from forest fires in Portugal.

There is extreme flooding in South Asia, impacting multiple cities and the country of Bangladesh of which one third is currently under water. Hurricane Harvey just hit South Texas at Category 4 strength and produced record precipitation totals for many locations, including but not limited to the City of Houston. Tens of millions suffer from these impacts — right now.

Arctic climate change is proceeding at fast pace (AMAP SWIPA, 2017

2. Rate and Scale of Change

The Arctic, area located on the top of the planet from 66°N north, is a prime example of systematic exponential change. It is warming at least twice as fast as the rest of the planet. There is less inertia in the Arctic than there is in the general climate system.

But even the general climate system is being pushed in ways which have no previous analogue in natural climate changes going back tens of millions of years. It is about the rate of carbon dioxide and other greenhouse gases added. There have been periods in the deep geological past of Earth when greenhouse gas concentrations have been much, much higher than they are today but increases have never occured this rapidly.

Proxy measurements of carbon dioxide from ice cores (NOAA @ NASA Climate Change

Earth is a fluid, non-linear system capable of abrupt and total change. Earth System has been in a hothouse state and for a while was mostly covered by ice. At current pathways we are literally going to lose very large portions of both continental polar ice sheets, possibly in their entirety. This will take centuries but when we commit, the result will be permanent. Permafrost is thawing, threathening both the carbon cycle and our settled living arrangements in the Arctic.

When climate scientists project future climate change up to and beyond 2050 and 2100 they refer to scenarios. They are used in policy making to set stabilisation targets.

Tipping elements in the climate system (Schellnhuber et al, 2015).

What is worrying is that humanity is currently putting in place an atmospheric forcing comparable to something between the RCP4.5 and 8.5 (watts per square meter) end results. The choice between the Paris Agreement ‘well below 2°C’ framing and higher, 3–4°C level of warming is the choice of having a civilisation with global governance capability or losing it.

At any pathway we choose to follow, in order for the climate to stabilise at a higher level of change, emissions need to be zero. If new carbon pollution enters the climate system, temperatures will go up. This also applies to 2.5°C emissions budgets as well as 3°C budgets.

3. Stabilisation

What is to be done? Multiple actions are under way. Our energy system is changing with global energy demand growth continuing to rise due to industrialisation of developing nations, but new added electricity capacity in the form of solar and wind power only appear to offset some of the added growth. Electricity is only a portion of our energy use profile.

The massive use of fossil fuels is the prime driver of human-caused climate change. The fraction of low-carbon energy is the same now that it was a few decades ago. Fossil fuels absolutely dominate our energy system at >80% share in total final energy consumption. Deforestation and other land-use change also contribute significantly, but our profligate use of fossil energy commits us to possibly catastrophic breakdowns of the climate system.

For a reasonable chance of keeping warming under 2℃ we can emit a further 865 billion tonnes of carbon dioxide (CO2). The climate commitments to reduce greenhouse gas emissions to 2030 are a first step, but recent analyses show they are not enough (Canadell and Smith, 2017

The trouble with negative emissions (Peters and Anderson, 2016

The carbon budget framing might seem like a radical socio-political construct but it is in fact the best depiction of the physical reality of climate change. Cumulative emissions dictate the mitigation outcome — there is absolutely no doubt about this as the Intergovernmental Panel on Climate Change has shown.

The relationship between temperature change and cumulative CO2 emissions (in GtCO2) from 1870 to the year 2100. (IPCC 2014 Synthesis Report).

It is indeed the fact that many applications of fossil energy are growing exponentially that is the problem for climate stabilisationAir travel, road freight, shipping. Exponential global growth. Based on sound understanding of the physical reality, their fossil carbon use should be declining exponentially.

Three years to safeguard our climate (Figueres at al, 2017

All of this is sadly true and supremely distressing. Emissions from fossil fuels and land use change are 60% higher than they were in 1990 when scientists established most of what has been shown above with high certainty. Only the resolution of understanding has increased along with worsening climate impacts.

F/ Honesty

Finding out the reality of this situation is a profound experience. It is a state shift in human cognition, comparable to expansion of internet and global connectivity.

What I argue as citizen is to stop lying to ourselves. We have to obey the ancient laws of nature. No amount of economic growth, green shift, denial or activism can negotiate with physical constraints of the Earth System.

Our energy system will never be able to transform fast enough to meet the Paris Agreement stabilisation target without mad assumptions of building a carbon draw down device on this planet three times the size of the current oil industry, capable of sequestering greenhouse gases from ambient air on the order of what the natural sinks like the world ocean and the land biosphere are currently doing.

Roughly 10% of us generate almost as much greenhouse gas emissions from our lifestyle as the rest of the people on this planet. Finnish household consumption added to territorial emissions at >15 tons CO2 equivalent per capita will breach the global carbon budget for lower stabilisation targets within a decade. This is a pragmatic, but also a moral issue. Nobody can escape it, no matter how much one tries.

Finnish emissions reductions and negative emissions to meet Paris Agreement framing (Climate Analytics, 2016.)

We have to transform our diets, mobility systems, energy production and conspicuous consumption within a decade to limit risks of profound magnitude. The first decade should cut all of our carbon pollution in half. The next one should halve the portion left and so on. We have to put in policies which enchance natural sinks and research artificial new sinks.

This is not an obligation just to protect future generations, poor people or animals anymore. It is a threat to huge amounts of people living in the present moment on this finite planet in our vast universe.

We have to push through this mentally, keeping focus on what there is to be done with resolute purpose against nearly impossible odds. We have to be honest to ourselves, respectful of others and lead by example in everything we do.

Everybody can enter this space with relatively little sacrifice. It might be very painful in the beginning but truth is, after all, one of the most precious things this world has to offer.

Do what comes naturally, but always remember three things: how immediate this is, what kind of rates it is progressing at and what the scale of change needed must be in order to limit risk.

Paris, climate and surrealism

27 07 2017

Speaker: Prof. Kevin Anderson, Professor of energy and climate change

Title: Paris, climate and surrealism: how numbers reveal an alternate reality

The Paris Agreement’s inclusion of “well below 2°C” and “pursue … 1.5°C” has catalysed fervent activity amongst many within the scientific community keen to understand what this more ambitious objective implies for mitigation. However, this activity has demonstrated little in the way of plurality of responses. Instead there remains an almost exclusive focus on how future ‘negative emissions technologies’ (NETs) may offer a beguiling and almost free “get out of jail card”.
This presentation argues that such a dominant focus reveals an endemic bias across much of the academic climate change community determined to voice a politically palatable framing of the mitigation landscape – almost regardless of scientific credibility. The inclusion of carbon budgets within the IPCC’s latest report reveals just how few years remain within which to meet even the “well below 2°C” objective.

Making optimistic assumptions on the rapid cessation of deforestation and uptake of carbon capture technologies on cement/steel production, sees a urgent need to accelerate the transformation of the energy system away from fossil fuels by the mid 2030s in the wealthier nations and 2050 globally. To put this in context, the national mitigation pledges submitted to Paris see an ongoing rise in emissions till 2030 and are not scheduled to undergo major review until 2023 – eight years, or 300 billion tonnes of CO2, after the Paris Agreement.

Despite the enormity and urgency of 1.5°C and “well below 2°C” mitigation challenge, the academic community has barely considered delivering deep and early reductions in emissions through the rapid penetration of existing end-use technologies and profound social change. At best it dismisses such options as too expensive compared to the discounted future costs of a technology that does not yet exist. At worst, it has simply been unprepared to countenance approaches that risk destabilising the political hegemony.

Ignoring such sensibilities, the presentation concludes with a draft vision of what an alternative mitigation agenda may comprise.

Our Aversion to Doom and Gloom Is Dooming Us

20 07 2017

Reproduced from Commondreams.

I worked for over 35 years in the environmental field, and one of the central debates I encountered was whether to “tell it like it is,” and risk spreading doom and gloom, or to focus on a more optimistic message, even when optimism wasn’t necessarily warranted.

The optimists nearly always won this debate. For the record, I was—and am—a doom and gloomer.  Actually, I like to think I’m a realist. I believe that understating the problems we face leads to understated—and inadequate responses.  I also believe that people, when dealt with honestly, have responded magnificently, and will do so again, if and when called. Witness World War II, for example, when Churchill told the Brits, “I have nothing to offer but blood, toil, tears, and sweat.” In those words, he helped ignite one of the most noble and dedicated periods of unity and resistance in all the annals of human endeavor.

Finally, I believe that the principles of risk management dictate that when the consequences of our actions —or our inactions—are pervasive, long lasting, irreversible and potentially devastating, we should assume worst-case outcomes.  That’s why people get health insurance; it’s why they purchase insurance for their homes; it’s why they get life insurance. No one assumes they’ll get sick, that their house will burn down, or that they’re about to die, but it makes sense to hedge against these events.  It’s why we build in huge margins of safety when we design bridges or airplanes. You can’t undo an airplane crash, or reverse a bridge failure.

And you can’t restore a livable climate once it’s been compromised.  Not in anything other than geologic timeframes.

Yet we routinely understate the threat that climate change poses, and reject attempts to characterize the full extent of the potential for catastrophe it poses. And it’s killing us.

David Wallace-Wells’ recent article in the New York magazine, The Uninhabitable Earth, is a case in point.  It was an attempt to describe the worst-case scenario for climate change.  Here’s the opening sentences to give you an idea of what Mr. Wallace-Wells had to say:

It is, I promise, worse than you think. If your anxiety about global warming is dominated by fears of sea-level rise, you are barely scratching the surface of what terrors are possible, even within the lifetime of a teenager today. 

Predictably, a large part of the scientific community reacted with hostility, and environmentalists were essentially silent. For example, Climate Feedback published a critique of Wallace-Well’s article by sixteen climate scientists, leading with Michael Mann, originator of the famous hockey stick, which graphically showed how rapidly the Earth was warming. Here’s part of what Dr. Mann had to say:

The evidence that climate change is a serious problem that we must contend with now, is overwhelming on its own. There is no need to overstate the evidence, particularly when it feeds a paralyzing narrative of doom and hopelessness.

The last part of Dr. Mann’s statement may explain the real reason the environmental and scientific communities reacted so hostilely to Wallace-Well’s article, and why they generally avoid gloom and doom, even when the news is gloomy—the notion that presenting information that details just how bad climate change could be, leads to “paralysis.”

This, together with scientists’ tendency to stick to the most defensible positions and the scenarios that are accepted by the mainstream—what climate scientist James Hansen calls dangerous scientific reticence—probably explain why the scientific community has tended to understate the threat of climate change, although few would describe Dr. Mann as reticent.

And it should be noted that Mr. Wallace-Well’s did overstate some of the science. For example, given out current understanding of methane and carbon releases from permafrost, it appears as though it would take much longer to play out than Wallace-Wells suggested, although it likely would add as much as 2°C to projected warming by 2100. But for the most part, he simply took worst-case forecasts and used them. As Dr. Benjamin Horton—one of the scientists commenting on the Wallace-Wells article put it, “Most statements in the article are based on peer-reviewed literature.”

One of the reason worst-case projections seem so dire, is that the scientific community—and especially the IPCC—has been loath to use them. For the record, ex-ante analysis of previous forecasts with actual changes show a trend that is nearer to—or worse than—the worst-case forecasts than they are to the mid-range.

The article also forecast some of the social, demographic, and security consequences of climate change that can’t be scientifically verified, but which comport with projections made by our own national security experts.

For example, in this years’ Worldwide Threat Assessment of the US Intelligence Community, climate change was identified as a “threat multiplier” and Dan Coats, Director of National Intelligence, said in testimony presented to the Senate Select Committee on Intelligence in May of this year:

Climate change influences the entire geostrategic landscape. In that sense, one could  walk through the entire threat assessment report and identify ways in which climate  change will intersect with nearly every risk identified, and in most cases, make them worse.

Director Coats specifically highlighted health security, terrorism and nuclear proliferation as threats that climate change would exacerbate. This is coming from the Trump administration, which has been censoring climate-related information coming out of NOAA and EPA.  It’s a measure of how seriously the national security community takes the threat of climate change that they fought to keep the issue above the political fray.

Yet here again, the scientific community took issue with these claims, because they were conjecture.  Never mind that those whose job it is to assess these kinds of risks found the forecasts likely and actionable. Scientists want data and the certainty it brings, not extrapolation.

So what’s the gap between future worst-case and the more typically used mid-range projections the media and scientists favor?  It’s huge, and consequential.  I’ve pointed out some of the risky—if not absurd—assumptions  underlying the Paris Agreement in the past, but let’s briefly outline some numbers that highlight the difference between what’s typically discussed in the media, with projections based on worst-case—but entirely plausible—forecasts.

After Paris, there was a lot of attention paid to two targets: a limit of less than 2°C warming, and a more aggressive limit of no more than 1.5°C warming.  What was less well known and discussed was the fact that the Agreement would have only limited warming to 3.5°C by 2100, using the IPCC’s somewhat optimistic assumptions.

What is virtually unknown by most of the public and undiscussed by scientists and the media is that even before the US dropped out of the Treaty, the worst-case temperature increase under the Treaty could have been nearly twice that.

Here’s why.

As noted, the 3.5°C figure had a number of conservative assumptions built into it, including the fact that there is a 34 percent chance that warming will exceed that, and the idea that we could pass on the problem to our children and their children by assuming that they would create an as yet unknown technology that would extract massive amounts of carbon from the atmosphere in a cost-effective way, and safely and permanently sequester it, thus allowing us to exceed the targets for a limited amount of time.

But the fact is, some projections found that temperature increase resulting from meeting the Paris targets would exceed 4°C by 2100, even if we continued to make modest progress after meeting them – something the Treaty doesn’t require. The IPCC forecasts also ignored feedbacks, and research shows that just 3 of these will add another 2.5°C of warming by 2100, bringing the total to more than 6.5°C (or nearly 12°F). At this point, we’re talking about trying to live on an essentially alien planet.

Finally, there’s evidence that the Earth’s natural sinks are being compromised by the warming that’s happened so far, and this means that more of what we emit will remain in the atmosphere, causing it to warm much more than the IPCC models have forecasted. This could (not would) make Wallace-Well’s thesis not only plausible, but likely.

But rather than discussing these entirely plausible forecasts, the media, environmentalists and too many scientists, would rather focus on a more optimistic message, and avoid “doom and gloom.”

What they’re actually doing is tantamount to playing Russian Roulette with our children’s future with two bullets in the chamber. Yes, the odds are that it won’t go off, but is this the kind of risk we should be taking with our progeny’s future?

There is something paternalistic and elitist about this desire to spare the poor ignorant masses the gory details.  It is condescending at best, self-defeating at worst.  After all, if the full nature of the challenge we face is not known, we cannot expect people take the measures needed to meet it.

I believe now, and I have always believed, that humans are possessed with an inherent wisdom, and that, given the right information, they will make the right choices.

As an aside, Trump is now President because the Democrats followed the elitist and paternalistic path of not trusting the people – that and their decision to put corporate interests above the interests of citizens.

Watching Sanders stump against the Republican’s immoral tax cut for the rich disguised as a health care bill, shows the power of a little honest doom and gloom.

We could use a lot more of it across the political spectrum.

John Atcheson

John Atcheson is author of the novel, A Being Darkly Wise, and he has just completed a book on the 2016 elections titled, WTF, America? How the US Went Off the Rails and How to Get It Back on Track. It is available in hardcover now, and the ebook will be available shortly. Follow him on Twitter:@john_atcheson

Who cares………?

2 06 2017

Trump has just declared he’s taking the USA out of the Paris accord, and everyone’s freaking out…….. I personally don’t care much, and here’s why…..

Most people don’t realize, because they’re asleep at the wheel, read too many mainstream media headlines, and rather than do their own research before holding opinions believe what they are spoon fed by their TV screens that…..:

The Paris climate agreement:

1) had absolutely no binding language in it whatsoever, nor any repercussions for any countries that did not abide by it…..

2) required an increase in fossil fuel use up to the year 2100

3) would have already at this point required absolutely no new development of fossil fuels – only what was already “proven reserves”

4) has already been violated so badly that we absolutely cannot, by their own reckoning, keep levels below a 2 degree rise by 2050

5) completely and entirely relied on “carbon capture” – a technology which doesn’t yet exist in any form and is only dreamt of – to come along by mid-century and save us from catastrophic climate change.

 Professor Kevin Anderson has this to say about the Paris agreement….

The Paris Agreement is a genuine triumph of international diplomacy and of how the French people brought an often-fractious world together to see beyond national self interest. Moreover, the agreement is testament to how assiduous and painstaking science ultimately defeated the unremitting programme of misinformation by powerful vested interests. It is the twenty-first century’s equivalent to the success of Heliocentrism over the malign and unscientific inquisition.

The international community not only acknowledged the seriousness of climate change, but demonstrated sufficient unanimity to quantitatively define it: to hold “the increase in … temperature to well below 2°C … and to pursue efforts to limit the temperature increase to 1.5°C”. But, as the time-weary idiom suggests, “the devil is in the detail” – or perhaps more importantly, the lack of it.

The deepest challenge to whether the Agreement succeeds or fails, will not come from the incessant sniping of sceptics and luke-warmers or those politicians favouring a literal reading of Genesis over Darwin. Instead, it was set in train many years ago by a cadre of well-meaning scientists, engineers and economists investigating a Plan B. What if the international community fails to recognise that temperatures relate to ongoing cumulative emissions of greenhouse gases, particularly carbon dioxide? What if world leaders remain doggedly committed to a scientifically illiterate focus on 2050 (“not in my term of office”)? By then, any ‘carbon budget’ for even an outside chance of 2°C will have been squandered – and our global experiment will be hurtling towards 4°C or more. Hence the need to develop a Plan B.

Well the answer was simple. If we choose to continue our love affair with oil, coal and gas, loading the atmosphere with evermore carbon dioxide, then at some later date when sense prevails, we’ll be forced to attempt sucking our carbon back out of the atmosphere. Whilst a plethora of exotic Dr Strangelove options vie for supremacy to deliver on such a grand project, those with the ear of governments have plumped for BECCS (biomass energy carbon capture and storage) as the most promising “negative emission technology”. However these government advisors (Integrated Assessment Modellers – clever folk developing ‘cost-optimised’ solutions to 2°C by combining physics with economic and behavioural modelling) no longer see negative emission technologies as a last ditch Plan B – but rather now promote it as central pivot of the one and only Plan.

The speed and scale of emissions reduction that is actually required probably cannot be achieved while preserving the economic status quo. As climate scientist Kevin Anderson points out in a recent Nature Geoscience paper:

According to the IPCC’s Synthesis Report, no more than 1,000 billion tonnes (1,000 Gt) of CO2 can be emitted between 2011 and 2100 for a 66% chance (or better) of remaining below 2° C of warming (over preindustrial times). . . . However, between 2011 and 2014 CO2 emissions from energy production alone amounted to about 140 Gt of CO2. . . .” [Subtracting realistic emissions budgets for deforestation and cement production,] “the remaining budget for energy-only emissions over the period 2015–2100, for a ‘likely’ chance of staying below 2° C, is about 650 Gt of CO2.

To put this into perspective, recent data shows global food production (itself a major CO2 emitter), was 3.9Gt; Coal production was 9Gt; Iron Ore was 3.22Gt. The simple fact is that if we want to capture and store CO2, it will have to be done on a scale we do nothing else at……. not feeding the world, and not even feeding it its fossil fuels. ‘They’ expect to do this within less than twenty years, with technology that doesn’t yet exist, and anything remotely like what is needed,

Definition of Insanity

The world’s first commercial CO2 capture plant will be used to increase economic activity and will therefore actually increase CO2 emissions.

“It’s important to note that they will not be permanently storing the CO2 that will be captured,” she said. “Instead, it will be used for greenhouses, producing synfuels, etc. No negative emissions will be generated.”

“The captured carbon dioxide could also be used to manufacture transportation fuel, carbonated soft drinks and other products, Gebald said.”

“In order to meet the goal of removing the equivalent of 1 percent of annual global carbon dioxide emissions, 250,000 similar direct-air capture plants would have to be built, Gebald said.”

In other words, because we need to reduce our emissions by more than 50%, means we need to build over 12,500,000 of these CO2 removal machines. In under twenty years…… Think about the CO2 and debt required to accomplish this. Obviously it won’t happen, and if we try it will make things worse, because it appears that everyone’s oblivious to the fact that it is cumulative emissions that are doing the harm.

Until we get an ‘agreement’ to cease economic growth, nothing worthwhile will happen, and I therefore still hold to the conclusion nothing less than an economic collapse will ‘save us’ from climate change….. because I just cannot see any such agreement ever coming forth.

No fracking, drilling or digging: it’s the only way to save life on Earth

29 09 2016

“Do they understand what they have signed? Plainly they do not. Governments such as ours, now ratifying the Paris agreement on climate change, haven’t the faintest idea what it means – either that or they have no intention of honoring it” writes George Monbiot in the Guardian…… but does George himself ‘get’ what he’s writing….?

Any regular visitor to this blog will know I entirely agree with the title of Monbiot’s thesis. But at least, I know it also means the end of civilisation as we know it.

Using the industry’s own figures, it shows that burning the oil, gas and coal in the fields and mines that is already either in production or being developed, is likely to take the global temperature rise beyond 2C. And even if all coal mining were to be shut down today, the oil and gas lined up so far would take it past 1.5C. The notion that we can open any new reserves, whether by fracking for gas, drilling for oil or digging for coal, without scuppering the Paris commitments is simply untenable.

Too right. Especially as we have pretty well already reached the 1.5°C threshold according to several sources.


The only means of reconciling governments’ climate change commitments with the opening of new coal mines, oilfields and fracking sites is carbon capture and storage: extracting carbon dioxide from the exhaust gases of power stations and burying it in geological strata. But despite vast efforts to demonstrate the technology, it has not been proved at scale, and appears to be going nowhere. Our energy policies rely on vapourware.

All this nonsense is a substitute for a simple proposition: stop digging. There is only one form of carbon capture and storage that is scientifically proven, and which can be deployed immediately: leaving fossil fuels in the ground.

So far so good…..

[governments’] choices are as follows. First: a gradual, managed decline of existing production and its replacement with renewable energy and low-carbon infrastructure, which offer great potential for employment. Second: allowing fossil fuel production to continue at current rates for a while longer, followed by a sudden and severe termination of the sector, with dire consequences for both jobs and economies. Third: continuing to produce fossil fuels as we do today, followed by climate breakdown. Why is this a hard choice to make?

But George…… if we are at 1.5°C already, not even choice 1 is viable….


The Arctic ice death spiral has lost no momentum, with current volumes at the lowest they have ever been recorded, and cruise ships actually being sent to the North West Passage for the filthy rich to see the product of their handy work……

Only an economic collapse can fix this ongoing insanity. At least it’s interesting to see Monbiot making no mention of nuclear power in this Guardian article. Has he changed his mind, or was it a mere omission..?