The spiralling environmental cost of our lithium battery addiction

8 08 2018

Here’s a thoroughly modern riddle: what links the battery in your smartphone with a dead yak floating down a Tibetan river? The answer is lithium – the reactive alkali metal that powers our phones, tablets, laptops and electric cars.

In May 2016, hundreds of protestors threw dead fish onto the streets of Tagong, a town on the eastern edge of the Tibetan plateau. They had plucked them from the waters of the Liqi river, where a toxic chemical leak from the Ganzizhou Rongda Lithium mine had wreaked havoc with the local ecosystem.

There are pictures of masses of dead fish on the surface of the stream. Some eyewitnesses reported seeing cow and yak carcasses floating downstream, dead from drinking contaminated water. It was the third such incident in the space of seven years in an area which has seen a sharp rise in mining activity, including operations run by BYD, the world’ biggest supplier of lithium-ion batteries for smartphones and electric cars. After the second incident, in 2013, officials closed the mine, but when it reopened in April 2016, the fish started dying again.

Salar de Uyuni, Bolivia. Workers drill though the crust of the world’s biggest salt flat with large rigs. They are aiming for the brine underneath swathes of magnesium and potassium in the hope of finding lithium-rich spots. Since the 2000s, most of the world’s lithium has been extracted this way, rather than using mineral ore sources such as spodumene, petalite and lepidolite

Matjaž Krivic/INSTITUTE

Lithium-ion batteries are a crucial component of efforts to clean up the planet. The battery of a Tesla Model S has about 12 kilograms of lithium in it, while grid storage solutions that will help balance renewable energy would need much more.

Demand for lithium is increasing exponentially, and it doubled in price between 2016 and 2018. According to consultancy Cairn Energy Research Advisors, the lithium ion industry is expected to grow from 100 gigawatt hours (GWh) of annual production in 2017, to almost 800 GWhs in 2027.

William Adams, head of research at Metal Bulletin, says the current spike in demand can be traced back to 2015, when the Chinese government announced a huge push towards electric vehicles in its 13th Five Year Plan. That has led to a massive rise in the number of projects to extract lithium, and there are “hundreds more in the pipeline,” says Adams.

But there’s a problem. As the world scrambles to replace fossil fuels with clean energy, the environmental impact of finding all the lithium required to enable that transformation could become a serious issue in its own right. “One of the biggest environmental problems caused by our endless hunger for the latest and smartest devices is a growing mineral crisis, particularly those needed to make our batteries,” says Christina Valimaki an analyst at Elsevier.

Tahua, Bolivia. Salt miners load a truck with lithium-rich salt. The ground beneath Bolivia’s salt flats are thought to contain the world’s largest reserves of the metal. (The Bolivian Andes may contain 70 per cent of the planet’s lithium.) Many analysts argue that extracting lithium from brine is more environmentally friendly than from rock. However, as demand increases, companies might resort to removing lithium from the brine by heating it up, which is more energy intensive.

Matjaž Krivic/INSTITUTE

In South America, the biggest problem is water. The continent’s Lithium Triangle, which covers parts of Argentina, Bolivia and Chile, holds more than half the world’s supply of the metal beneath its otherworldly salt flats. It’s also one of the driest places on earth. That’s a real issue, because to extract lithium, miners start by drilling a hole in the salt flats and pumping salty, mineral-rich brine to the surface.

Then they leave it to evaporate for months at a time, first creating a mixture of manganese, potassium, borax and lithium salts which is then filtered and placed into another evaporation pool, and so on. After between 12 and 18 months, the mixture has been filtered enough that lithium carbonate – white gold – can be extracted.

It’s a relatively cheap and effective process, but it uses a lot of water – approximately 500,000 gallons per tonne of lithium. In Chile’s Salar de Atacama, mining activities consumed 65 per cent of the region’s water. That is having a big impact on local farmers – who grow quinoa and herd llamas – in an area where some communities already have to get water driven in from elsewhere.

There’s also the potential – as occurred in Tibet – for toxic chemicals to leak from the evaporation pools into the water supply. These include chemicals, including hydrochloric acid, which are used in the processing of lithium into a form that can be sold, as well as those waste products that are filtered out of the brine at each stage. In Australia and North America, lithium is mined from rock using more traditional methods, but still requires the use of chemicals in order to extract it in a useful form. Research in Nevada found impacts on fish as far as 150 miles downstream from a lithium processing operation.

Rio Grande, Bolivia. An aerial view of the mineral formations along the Rio Grande delta, at the edges of the salt flats. The delta is mostly dry due to the effects of lithium mining, which is heavily reliant on water for its shallow artificial salt-pans, or solar evaporation ponds, in which saline solutions are left to dry out over a period of months, leaving the minerals behind. This drying out of the delta has led to a lack of stability in water levels, both on top of and below the surface. The river is home to a wide variety of freshwater fish, many originating in the Amazon basin

Matjaž Krivic/INSTITUTE

According to a report by Friends of the Earth, lithium extraction inevitably harms the soil and causes air contamination. In Argentina’s Salar de Hombre Muerto, locals claim that lithium operations have contaminated streams used by humans and livestock, and for crop irrigation. In Chile, there have been clashes between mining companies and local communities, who say that lithium mining is leaving the landscape marred by mountains of discarded salt and canals filled with contaminated water with an unnatural blue hue.

“Like any mining process, it is invasive, it scars the landscape, it destroys the water table and it pollutes the earth and the local wells,” said Guillermo Gonzalez, a lithium battery expert from the University of Chile, in a 2009 interview. “This isn’t a green solution – it’s not a solution at all.”

But lithium may not be the most problematic ingredient of modern rechargeable batteries. It is relatively abundant, and could in theory be generated from seawater in future, albeit through a very energy-intensive process.

Salar de Uyuni, Bolivia. Lino Fita, head of potassium extraction for mining company Comibol, looks out over his factory. The brine in this region is rich with potassium and magnesium, which makes it harder and more expensive to extract lithium. The brine is put in large ponds for many months to evaporate excess water and separate its salts. The remaining compound is then purified and processed. Very few lithium-processing experts work in the factory, as there is a nationwide shortage of staff. In the past, as few as three people have run the factory’s entire production line

Matjaž Krivic/INSTITUTE

Two other key ingredients, cobalt and nickel, are more in danger of creating a bottleneck in the move towards electric vehicles, and at a potentially huge environmental cost. Cobalt is found in huge quantities right across the Democratic Republic of Congo and central Africa, and hardly anywhere else. The price has quadrupled in the last two years.

Unlike most metals, which are not toxic when they’re pulled from the ground as metal ores, cobalt is “uniquely terrible,” according to Gleb Yushin, chief technical officer and founder of battery materials company Sila Nanotechnologies.

“One of the biggest challenges with cobalt is that it’s located in one country,” he adds. You can literally just dig up the land and find cobalt, so there’s a very strong motivation to dig it up and sell it, and a a result there’s a lot of motivation for unsafe and unethical behaviour.” The Congo is home to ‘artisanal mines’, where cobalt is extracted from the ground by hand, often using child labour, without protective equipment.

Salar de Uyuni, Bolivia. Brine is pumped out of a nearby lake into a series of evaporation ponds and left for 12 to 18 months. Various salts crystallise at different times as the solution becomes more concentrated. It is also treated with lime to remove traces of magnesium. When the minerals are ready for processing, they are taken to the nearby Planta Li lithium factory to produce the ions that will go into batteries. In 2017, the factory produced 20 tonnes of lithium carbonate

Matjaž Krivic/INSTITUTE

There’s also a political angle to be considered. When Bolivia started to exploit its lithium supplies from about 2010, it was argued that its huge mineral wealth could give the impoverished country the economic and political heft that the oil-rich nations of the Middle East. “They don’t want to pay a new OPEC,” says Lisbeth Dahllöf, of the IVL Swedish Environmental Institute, who co-authored a report last year on the environmental footprint of electric car battery production.

In a recent paper in the journal Nature, Yushin and his co-authors argued that new battery technology needs to be developed that uses more common, and environmentally friendly materials to make batteries. Researchers are working on new battery chemistries that replace cobalt and lithium with more common and less toxic materials.

But, if new batteries are less energy dense or more expensive than lithium, they could end up having a negative effect on the environment overall. “Assessing and reducing the environmental cost is a more complex issue than it initially appears,” says Valimaki. “For example, a less durable, yet more sustainable device could entail a larger carbon footprint once your factor in transportation and the extra packaging required.”

Salar de Uyuni, Bolivia. Graves such as this one are a common sight on the salt flats. The area has experienced very little rainfall over the last two years, which has affected the lives of local quinoa farmers. The lithium plants, which use vast amounts of water, have exacerbated shortages: in locations such as Pastos Chicas, near the Argentina/Chile border, additional water had to be shipped in from elsewhere to meet demand

Matjaž Krivic/INSTITUTE

At the University of Birmingham, research funded by the government’s £246m Faraday Challenge for battery research is trying to find new ways of recycling lithium-ion. Research in Australia found that only two per cent of the country’s 3,300 tonnes of lithium-ion waste was recycled. Unwanted MP3 players and laptops can end up in landfill, where metals from the electrodes and ionic fluids from the electrolyte can leak into the environment.

A consortium of researchers, led by the Birmingham Energy Institute are using robotics technology developed for nuclear power plants to find ways to safely remove and dismantle potentially explosive lithium-ion cells from electric vehicles. There have been a number of fires at recycling plants where lithium-ion batteries have been stored improperly, or disguised as lead-acid batteries and put through a crusher.

Xiangtan, China. Workers on the production line at Soundon New Energy, a huge lithium-ion battery company in eastern China. Most electric vehicles in use today are yet to reach the end of their cycle. The first all-electric car to be powered by lithium-ion batteries, the Tesla Roadster, made its market debut in 2008. This means the first generation of electric vehicle batteries have yet to reach the recycling stage

Matjaž Krivic/INSTITUTE

Because lithium cathodes degrade over time, they can’t simply be placed into new batteries (although some efforts are underway to use old vehicle batteries for energy storage applications where energy density is less critical). “That’s the problem with recycling any form of battery that has electrochemistry – you don’t know what point it is at in its life,” says Stephen Voller, CEO and founder of ZapGo. “That’s why recycling most mobile phones is not cost effective. You get this sort of soup.”

Another barrier, says Dr Gavin Harper of the Faraday Institution’s lithium recycling project, is that manufacturers are understandably secretive about what actually goes into their batteries, which makes it harder to recycle them properly. At the moment recovered cells are usually shredded, creating a mixture of metal that can then be separated using pyrometallurgical techniques – burning. But, this method wastes a lot of the lithium.

Linyi County, China. A production line at Chinese electric-car company ZD, in Linyi County. The company’s small, urban electric two-seaters are made exclusively for the Italian market, where ZD has a joint-venture company Share’ngo, a car-sharing startup in Milan. China is the world’s largest electric car manufacturer, and over the past few years, the country has been looking to increase the number of countries it exports to

Matjaž Krivic/INSTITUTE

UK researchers are investigating alternative techniques, including biological recycling where bacteria are used to process the materials, and hydrometallurgical techniques which use solutions of chemicals in a similar way to how lithium is extracted from brine to begin with.

For Harper, it’s about creating a process to shepherd lithium-ion batteries safely through their whole lifecycle, and making sure that we’re not extracting more from the ground unnecessarily, or allowing chemicals from old batteries to do damage. “Considering that all of the materials in these batteries have already had an environmental and social impact in their extraction, we should be mindful of ensuring good custody,” he says.





Lithium’s limits to growth

7 08 2017

The ecological challenges of Tesla’s Gigafactory and the Model 3

From the eclectic brain of Amos B. Batto

A long but well researched article on the limitations of the materials needed for a transition to EVs…..

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Many electric car advocates are heralding the advent of Tesla’s enormous battery factory, known as the “Gigafactory,” and its new Model 3 electric sedan as great advances for the environment.  What they are overlooking are the large quantities of energy and resources that are consumed in lithium-ion battery manufacturing and how these quantities might increase in the future as the production of electric vehicles (EVs) and battery storage ramps up.

Most of the credible life cycle assessment (LCA) studies for different lithium-ion chemistries find large large greenhouse gas emissions per kWh of battery. Here are the CO2-eq emissions per kWh with the battery chemistry listed in parentheses:
Hao et al. (2017): 110 kg (LFP), 104 kg (NMC), 97 kg (LMO)
Ellingsen et al. (2014): 170 kg (NMC)
Dunn et al. (2012): 40 kg (LMO)
Majeau-Bettez et al. (2011): 200 kg (NMC), 240 kg (LFP)
Ou et al (2010): 290 kg (NMC)
Zackrisson et al (2010): 440 kg (LFP)

Dunn et al. and Hao et al. are based on the GREET model developed by Argonne National Laboratory, which sums up the steps in the process and is based on the estimated energy consumption for each step. In contrast, Ellingsen et al. and Zackrisson et al. are based on the total energy consumption used by a working battery factory, which better captures all the energy in the processing steps, but the data is old and the battery factory was not very energy efficient, nor was it operating at full capacity. Battery manufacturing is getting more energy efficient over time and the energy density of the batteries is increasing by roughly 7% a year, so less materials are needed per kWh of battery. It is also worth noting that no LCA studies have been conducted on the NCA chemistry used by Tesla. NCA has very high emissions per kg due to the large amount of nickel in the cathode, but is very energy dense, so less total material is needed per kWh, so it is probably similar in emissions to NMC.

The big debate in the LCA studies of battery manufacturing is how much energy is consumed per kWh of battery in the battery factory. In terms of MJ per kWh of battery, Ellingsen et al. estimate 586 MJ, Zachrisson et al. estimate 451 MJ and Majeu-Bettez et al. estimate 371-473 MJ. However, the energy for the drying rooms and factory equipment is generally fixed, regardless of the throughput. Ellingsen et al (2014) found that the energy expended to manufacture a kWh of battery could vary as much as 4 times, depending on whether the factory is operating at full capacity or partial capacity. Since the Gigafactory will probably be operating a full capacity and energy efficiency is improving, let’s assume between 100 MJ and 150 MJ per kWh of battery in the Gigafactory (which converts to 28 – 42 kWh per kWh of battery). It is unlikely to be significantly less, because it is more energy efficient to burn natural gas for the drying rooms than use electric heaters, but the Gigafactory will have to use electric heaters to meet Musk’s goal of 100% renewable energy.

If producing 105 GWh of batteries per year at 100 – 150 MJ per kWh, plus another 45 GWh of packs with batteries from other factories at 25 MJ per kWh, the Gigafactory will consume between 3,229 and 4,688 GWh per year, which is between 8.3% and 12.0% of the total electrical generation in Nevada in 2016. I calculate that 285 MW of solar panels can be placed on the roof of the Gigafactory and they will only generate 600 GWh per year, assuming a yearly average of 7.16 kWh/m2/day of solar radiation, 85% (1.3 million m2) of the roof will be covered, 20% efficiency in the panels and a 10% system loss.

Solar panels in dusty locations such as Nevada loose roughly 25% of their output if they are not regularly cleaned. Although robots have been developed to clean panels with brushes, water will most likely be used to clean the Gigafactory’s panels. A study by Sandia National Laboratory found that photovoltaic energy plants in Nevada consume 0.0520 acre-feet of water per MW of nameplate capacity per year. The solar panels at the Gigafactory will probably have 25% less area per MW than the solar panels in the Sandia study, so we can guesstimate that the solar panels on the Gigafactory roof will consume 11.1 acre-feet or 13,700 cubic meters of water per year.

Solar panels can also be placed on the ground around the factory, and but consider the fact that the Gigafactory will only receive 4.23 kWh/m2/day in December, compared to 9.81 kWh/m2/day in July. With less than half the energy from the panels during the winter, the Gigafactory will need other sources of energy during the times when it is cloudy and the sun’s rays are more indirect. Even during the summer, the Gigafactory will probably have to use temporary battery storage to smooth out the solar output or get additional energy with electric utilities which use gas peaking, battery storage or buy energy from the regional grid to give the Gigafactory a stable supply of electricity.

The original mockup of the Gigafactory showed wind turbines on the hillsides around the plant, but wind energy will not work onsite, because the area has such low wind speed. A weather station in the Truckee River valley along I-80, near the Gigafactory, measures an average wind speed of 3.3 m/s at a height of 6 meters, although the wind speed is probably higher at the site of the Gigafactory. Between 4 to 5 m/s is the minimum wind speed to start generating any energy, and between 5 and 6 m/s is generally considered the minimum for wind turbines to be economically viable. It might be possible to erect viable wind turbines onsite with 150 m towers to capture better wind, but the high costs make it likely that Tesla will forgo that option.

The region has good geothermal energy at depths of 4000 to 6000 feet and this energy is not variable like solar and wind. However, there is a great deal of risk in geothermal exploration which costs $10 million to drill a test well. It is more likely that Tesla will try to buy geothermal energy from nearby producers, but geothermal energy in the region is already in heavy demand, due to the clean energy mandates from California, so it won’t be cheap.

Despite Musk’s rhetoric about producing 100% of the Gigafactory’s energy onsite from renewable sources, Tesla knows that it is highly unrealistic, which is why it negotiated to get $8 million in electricity rebates from the state of Nevada over an 8 year period. It is possible that the Gigafactory will buy hydroelectric energy from Washington or Oregon, but California already competes for that electricity. If Tesla wants a diversified supply of renewable energy to balance out the variability of its solar panels, it will probably have to provide guaranteed returns for third parties to build new geothermal plants or wind farms in the region.

I would guesstimate that between 2/3 of the electricity consumed by the Gigafactory will come from the standard Nevada grid, whereas 1/3 will be generated onsite or be bought from clean sources. In 2016, utility-scale electricity generation in Nevada was 72.8% natural gas, 5.5% coal, 4.5% hydroelectric, 0.9% wind, 5.7% PV solar, 0.6% concentrated solar, 9.8% geothermal, 0.14% biomass and 0.03% petroleum coke. If we use the grams of CO2-eq per kWh estimated by IPCC AR5 WGIII and Bruckner et al (2014), then natural gas emits 595 g, coal emits 1027 g, petroleum emits 880 g, hydroelectric emits 24 g, terrestrial wind emits 11 g, utility PV solar emits 48 g, residential PV solar emits 41 g, concentrated solar emits 27 g, geothermal emits 38 g and biomass emits 230 g. Based on those emission rates, grid electricity in Nevada emits 499 g CO2-eq per kWh. If 2/3 comes from the grid and 1/3 comes from rooftop PV solar or a similar clean source, then the electricity used in the Gigafactory will emit 346 g CO2 per kWh. If consuming between 3,229 and 4,688 GWh per year, the Gigafactory will emit between 1.12 and 1.62 megatonnes of CO2-eq per year, which represents between 3.1% and 4.5% of the greenhouse gas emissions that the state of Nevada produced in 2014 according to the World Resources Institute.

Aside from the GHG emissions from the Gigafactory, it is necessary to consider the greenhouse gas emissions from mining, refining and processing the materials used in the Gigafactory. The materials used in batteries consume a tremendous amount of energy and resources to produce. The various estimates of the energy to produce the materials in batteries and their greenhouse gas emissions shows the high impact that battery manufacturing has on the planet.

ImpactPerKgBatteryMaterials

To get some idea of how much materials will be used in the NCA cells produced by the Gigafactory, I attempted to do a rough calculation of the weight of materials in 1 kWh of cells. Taking the weight breakdown of an NMC battery cell in Olofsson and Romare (2013), I used the same weight percentages for the cathode, electrolyte, anode and packaging, but scaled the energy density up from 233 kW per kg in the NCA cells in 2014 to 263 kW per kg, which is a 13% increase, since Telsa claims a 10% to 15% increase in energy density in the Gigafactory’s cells. Then, I estimated the weight of the components in the cathode, using 76% nickel, 14% cobalt, and 10% aluminum and some stochiometry to calculate the lithium and oxygen compared to the rest of the cathode materials. The 2170 cells produced by the Gigafactory will probably have different weight ratios between their components, and they will have more packaging materials than the pouch cells studied by Olofsson and Romare, but this provides a basic idea how much material will be consumed in the Tesla cells.

BatteryMaterialsIn1KWhGigafactory

The estimates of the energy, the emissions of carbon dioxide equivalent, sulfur dioxide equivalent, phosphorous equivalent and human toxicity to produce the metals are taken from Nuss and Eckelman (2014), which are process-sum estimates based on the EcoInvent database. These are estimates to produce generic metals, not the highly purified metals used in batteries, and the process-sum methodology generally underestimates the emissions, so the estimates should be taken with a grain of salt but they do give some idea about the relative impact of the different components in battery cells since they use the same methodology in their calculations.

At this point we still don’t know how large the battery will be in the forthcoming Model 3, but it has been estimated to have a capacity of 55 kWh based on a range of 215 miles for the base model and a 20% reduction in the size of the car compared to the Model S. At that battery size, the cells in the Model 3 will contain 6.3 kg of lithium, 26.4 kg of nickel, 4.9 kg of cobalt, 27.9 kg of aluminum, 56.6 kg of copper and 21.0 kg of graphite.

Even more concerning is the total impact of the Gigafactory when it ramps up to its planned capacity of 150 GWh per year. Originally, the Gigafactory was scheduled to produce 35 GWh of lithium ion batteries by 2020, plus package an additional 15 GWh of cells produced in other factories. After Tesla received 325,000 preorders for the Model 3 within a week of being announced on March 31, 2016, the company ambitiously announced that it would triple its planned battery production and be able to produce 500,000 cars a year by 2018–two years earlier than initially planned. Now Elon Musk is talking about building 2 to 4 additional Gigafactories and one is rumored to have signed a deal to build one of them in Shanghai.

If the components for 1 kWh of Gigafactory batteries is correct and the Nevada plant manages to produce as much as Musk predicts, then the Gigafactory and the cells it packages from other battery factories will consume 17,119 tonnes of lithium, 71,860 tonnes of nickel, 13,292 tonnes of cobalt, 154,468 tonnes of copper and 75,961 tonnes of aluminum. All of these metals except aluminum have limited global reserves, and North America doesn’t have enough production capacity to hope to supply all the demand of the Gigafactory, except in the case of aluminum and possibly copper.

150GWhInGigafactory

When the Gigafactory was originally announced, Telsa made statements about sourcing the battery materials from North America which would both reduce its costs and lower the environmental impact of its batteries. These claims should be treated with skepticism. The Gigafactory will reduce the transportation emissions in battery manufacturing, since it will be shipping directly from the refineries and processors, but the transportation emissions will still be very high because North America simply doesn’t produce enough of the metals needed by the Gigafactory. If the Gigafactory manufacturers 150 GWh of batteries per year, then it will consume almost 200 times more lithium than North America produced in 2013. In addition, it will also consume 166% of the cobalt, 133% of the natural graphite, 25.7% of the nickel, and 5.6% of the copper produced by North American mines in 2016. Presumably synthetic graphite will be used instead of natural graphite because it has a higher purity level of carbon and more uniform spheroid flakes which allow for the easier flow of electrons in the cathode, but most synthetic graphite comes from Asia. Only in the case of aluminum does it seem likely that the metal will come entirely from North America, since Gigafactory will consume 1.9% of North American mine production and the US has excess aluminum refining capacity and no shortage of bauxite. Even when considering that roughly 45 GWh of the battery cells will come from external battery factories which are presumably located in Asia, the Gigafactory will overwhelm the lithium and cobalt markets in North America, and strain the local supplies of nickel and copper.

GigafactoryMetalConsumption

Shipping from overseas contributes to greenhouse gases, but shipping over water is very energy efficient. The Gigafactory is located at a nexus of railroad lines, so it can efficiently ship the battery materials coming from Asia through the port of Oakland. The bigger problem is that most ships on international waters use dirty bunker fuels that contain 2.7% sulfur on average, so they release large quantities of sulfur dioxide into the atmosphere that cause acid rain and respiratory diseases.

A larger concern than the emissions from shipping is the fact that the production of most of these battery materials is an energy intensive process that consumes between 100 and 200 mejajoules per kg. The aluminum, copper, nickel and cobalt produced by North America is likely to come from places powered by hydroelectric dams in Canada and natural gas in the US, so they are comparatively cleaner.  Most of the metal refining and graphite production in Asia and Australia, however, is done by burning coal. Most of the places that produce battery materials either lack strong pollution controls, as is the case in Russia, the Democratic Republic of Congo (DRC), Zambia, Philippines or New Caledonia, or they use dirty sources of energy, as is the case in China, India, Australia, the DRC, Zambia, Brazil and Madagascar.

MineProductionByCountry

Most of the world’s lithium traditionally came from pumping lithium rich subsurface water out of the salt flats of Tibet, northeast Chile, northwest Argentina and Nevada, but the places with concentrated lithium brines are rapidly being exhausted. The US Geological Survey estimates that China’s annual production of lithium which mostly comes from salt flats in Tibet has fallen from 4500 tonnes in 2012 to just 2000 tonnes in 2016. Silver Peak, Nevada, which is the only place in North America where lithium is currently extracted, may be experiencing similar production problems due to the exhaustion of its lithium, but its annual production numbers are confidential.

Since 1966 when brine extraction began in Silver Peak, the concentration of lithium in the water has fallen from 360 to 230 ppm (parts per million), and it is probably around 200 ppm today. At that concentration of lithium, 14,300 liters of water need to be extracted to produce 1 kg of battery-grade lithium metal. This subsurface water is critical in a state that only receives an average of 9 inches of rain per year. Parts of Nevada are already suffering from water rationing, so a massive expansion of lithium extraction is an added stress, but the biggest risk is that brine operations may contaminate the ground water. 30% of Nevada’s water is pumped from underground aquifers, so protecting this resource is vitally important. Lithium-rich water is passed through a series of 4 or 5 evaporation pools over a series of 12 to 18 months, where it is converted to lithium chloride, which is toxic to plants and aquatic life and can contaminate the ground water. Adams-Kszos and Stewart (2003) measured the effect of lithium chloride contamination in aquatic species 150 miles away from brine operations in Nevada.

As the lithium concentrations fall in the water, more energy is expended in pumping water and evaporating it to concentrate the lithium for processing. Argonne National Laboratory estimates that it takes 3 times as much energy to extract a tonne of lithium in Silver Peak, Nevada as in the Atacama Salt Flats of Chile, where the lithium is 7 times more concentrated.  Most of the lithium in Chile and Argentina is produced with electricity from diesel generators, but in China and Australia it comes from burning coal, which is even worse.

For every kg of battery-grade lithium, 4.4 kg of slaked lime is consumed to remove magnesium and calcium from the brine in Silver Peak. The process of producing this lime from limestone releases 0.713 kg of COfor every kg of lime. In addition, 5 kg of soda ash (Na2CO3) is added for each kilo of battery-grade lithium to precipitate it as lithium carbonate. Production of soda ash is also an energy intensive process which produces greenhouse gases.

Although lithium is an abundant element and can be found in ocean water and salty lakes, there are only 4 places on the planet where it is concentrated enough without contaminants to be economically extracted from the water and the few places with concentrated lithium water are rapidly being exploited. In 2008, Meridian International estimated that 2 decades of mining had extracted 20% of the lithium from the epicenter of the Atacama Salt Flats where lithium concentrations are above 3000 ppm. According to Meridian’s calculations, the world only had 4 million tonnes of high-concentration lithium brine reserves remaining in 2008.

As the best concentrations of lithium brine are being exhausted, extraction is increasingly moving to mining pegmatites, such as spodumene. North Carolina, Russia and Canada shut down their pegmatite operations because they couldn’t compete with the cheap cost of lithium from the salt flats of Chile and Argentine, but Australia and Zimbabwe have dramatically increased their production of lithium from pegmatites in recent years. Between 2004 and 2016, the percentage of global lithium from pegmatites increased from 39% to 44%.

LithiumFromPegmatites

In 2016, Australia produced 40.9% of the global lithium supply by processing spodumene, which is an extremely energy-intensive process. It takes 125 MJ of energy to extract a kilo of lithium from Chile’s salt flats, whereas 850 MJ is consumed to extract the same amount of lithium from spodumene in Australia. The spodumene is crushed, so it can be passed through a flotation beneficiation process to produce a concentrate. That concentrate is then heated to 1100ºC to change the crystal structure of the mineral. Then, the spodumene is ground and mixed with sulfuric acid and heated to 250ºC to form lithium sulfate. Water is added to dissolve the lithium sulfate and it is filtered before adding soda ash which causes it to precipitate as lithium carbonate. As lithium extraction increasingly moves to pegmatites and salt flats with lower lithium concentrations, the energy consumption will dramatically increase to produce lithium in the future.

Likewise, the energy to extract nickel and cobalt will also increase in future. The nickel and cobalt from Canada and the copper from the United States, generally comes from sulfide ores, which require much less energy to refine, but these sulfide reserves are limited. The majority of nickel and cobalt, and a sizable proportion of the copper used by the Gigafactory will likely come from places which present ethical challenges. Nickel from sulfide ores generally consumes less than 100 MJ of energy per kg, whereas nickel produced from laterite ores consumes between 252 and 572 MJ per kg. All the sulfide sources emit less than 10 kg of CO2 per kg of nickel, whereas the greenhouse gas emissions from laterite sources range from 25 to 46 kg  CO2 per kg of nickel. It is generally better to acquire metals from sulfide ores, since they emit fewer greenhouse gases and they generally come from deeper in the ground, whereas laterite ores generally are produced by open pit and strip mining which causes greater disruption of the local ecology. Between 2004 and 2016, the percentage of global primary production of nickel from laterite ores increase from 40% to 60% and that percentage will continue to grow in the future, since 72% of global nickel “resources” are laterites according to the US Geological Survey.

globalNickelProduction

Cobalt is a byproduct of copper or nickel mining. The majority of the sulfide ores containing copper/cobalt are located in places like Norilsk, Russia, Zambia and the Katanga Province of the Democratic Republic of Congo, where there are no pollution controls to capture the large amounts of sulfur dioxide and heavy metals released by smelting. The refineries in Norilsk, Russia, which produce 11% of the world’s nickel and 5% of its cobalt, are so polluting, that nothing grows within a 20 kilometer radius of the refineries and it is reported that Norilsk has the highest rates of lung cancer in the world.

The Democratic Republic of Congo currently produces 54% of the world’s cobalt and 5% of its copper. Buying cobalt from the DRC helps fuel a civil war in the Katanga Province where the use of children soldiers and systematic rape are commonplace. Zambia, which is located right over the border from Katanga Province, produces 4% of the world’s cobalt and copper and it also has very lax pollution controls for metal refining.

Most of the cobalt and nickel produced by the DRC and Zambia is shipped to China for refining by burning coal. China has cracked down on sulfur dioxide and heavy metal emissions in recent years, and now the DRC is attempting to do more of the refining within its own borders. The problem is that the DRC produces most of its energy from hydroelectric dams in tropical rainforests, which is the dirtiest energy on the planet. According to the IPCC (AR5 WGIII 2014), hydroelectric dams typically emit a medium of 24 g of  CO2-eq per kWh, but tropical dams accumulate large amounts of vegetation which collect at the bottom of the dam where bacteria feeding on the decaying matter release methane (CH4) in the absence of oxygen. There have been no measurements of the methane released by dams in the DRC, but studies of 3 Amazonian hydroelectric dams found that they emit an average of 2556 g CO2-eq per kWh. Presumably the CO2 from these dams would have been emitted regardless of whether the vegetation falls on the forest floor or in a dam, but rainforest dams are unique environments without oxygen that produces methane. If we only count the methane emissions, then Amazonian hydroelectric dams emit an average of 2044 g CO2-eq per kWh. Any refining of copper/cobalt in the DRC and Zambia or nickel/cobalt in Brazil will likely use this type of energy which emits twice as much greenhouse gases as coal.

To avoid the ethical problems with obtaining nickel and cobalt from Russia and cobalt and copper from the DRC and Zambia, the Gigafactory will have to consume metals from laterite ores in places like Cuba, New Caledonia, Philippines, Indonesia and Madagascar, which dramatically increases the greenhouse gas emissions of these metals. The nickel/cobalt ore from Moa, Cuba is shipped to Sherritts’ refineries in Canada, so presumably it will be produced with pollution controls in Cuba and Canada and relatively clean sources of energy. In contrast, the nickel/cobalt mining in the Philippines and New Caledonia has generated protracted protests by the local population who are effected by the contamination of their water, soil and air. When Vale’s $6 billion high pressure acid leaching plant in Goro, New Caledonia leaked 100,000 liters of acid-tainted effluent leaked into a local river in May 2014, protesters frustrated by the unaccountability of the mining giant burned a third of its trucks and one of its buildings, causing between $20 and $30 million in damages. The mining companies extracting nickel and cobalt in the Philippines have shown so little regard for the health of the local people, that the public outcry induced the Duterte administration to recently announce that it will prohibit all open pit mining of nickel. If this pronouncement is enforced, the operations of 28 of the 41 companies mining nickel/cobalt in the country will be shut down and the global supply of nickel will be reduced between 8% and 10%.

Most refining of laterite ores in the world is done with dirty energy, which is problematic because these ores require so much more energy than sulfide ores. Much of the copper/cobalt from the DRC and Zambia and the nickel/cobalt from the Philippines is shipped to China where it is refined with coal. The largest nickel/cobalt laterite mine and refinery in the world is the Ambatovy Project in Madagascar. Although the majority of the electricity on the island comes from hydroelectric dams, the supply is so limited that Ambatovy constructed three 30 MW coal-powered generators, plus 30 MW diesel powered generators.

It is highly likely that many of the LCA studies of lithium-ion batteries have underestimated the energy and greenhouse gas emissions to produce their metals, because they assume that the lithium comes from brine operations and the copper, nickel and cobalt come from sulfide ores with high metal concentrations. As lithium extraction increasingly shifts to spodumene mining and nickel and cobalt mining shifts to laterite ores, the greenhouse gas emissions to produce these metals will dramatically increase.

As the global production of lithium-ion batteries ramps up, the most concentrated ores for these metals will become exhausted, so that mining will move to less-concentrated sources, which require more energy and resources in the extraction and processing.  In 1910, copper ore in the US contained 1.9% copper. By 1950, this percentage had fallen to 0.9% copper, and by 1980 it was at 0.5% copper. As the concentration of copper in the ore has fallen, the environmental impact of extraction has risen. In a study of the smelting and refining of copper and nickel, Norgate and Rankin (2000) found that the energy consumption, greenhouse gas emissions and sulfur dioxide emissions per kg of metal rose gradually when changing from ore with 3% or 2% metal to 1% metal, but below 1% the environmental impacts increased dramatically. MJ/kg, CO2/kg and SO2/kg doubled when moving from ore with 1% metal to ore with 0.5% metal, and they doubled again when moving to 0.25% metal. Producing a kilo of copper today in the US has double the environmental impact of a kg of copper half a century ago and it will probably have 4 times the impact in the future.

The enormous demand for metals by battery manufacturers will force the mining companies to switch to less and less concentrated ores and consume more energy in their extraction. If the Nevada Gigafactory produces 150 GWh of batteries per year, then it will dramatically reduce the current global reserves listed by the US Geological survey. The Nevada Gigafatory will cut the current global lithium reserves from 400 to 270 years, assuming that current global consumption in other sectors does not change (which is highly unlikely). If the Gigafactory consumes metals whose recycled content is the US average recycling rate, then the current global copper reserves will be reduced from 37.1 to 36.9 years, the nickel reserves from 34.7 to 33.9 years, and the cobalt reserves from 56.9 to 52.5 years.

Recycling at the Gigafactory will not dramatically reduce its demand for metals. If we assume that 80% of the metal consumed by the Gigafactory will come from recycled content starting in 15 years when batteries start to be returned for recycling, then current global reserves will be extended 0.04 years for copper, 0.09 years for nickel, 0.9 years for cobalt. Only in the case of lithium will recycling make a dramatic difference, extending the current reserves 82 years for lithium.

The prospects for global shortages of these metals will become even more dire if the 95.0 million vehicles that the world produced in 2016 were all long-range electrics as Elon Musk advocates for “sustainable transport.” If the average vehicle (including all trucks and buses) has a 50 kWh battery, then the world would need to produce 4750 GWh of batteries per year just for electric vehicles. With energy storage for the electrical grid, that total will probably double, so 64 Gigafactories will be needed. Even that might not enough. In Leonardo de Caprio’s documentary Before the Flood, Elon Musk states, “We actually did the calculations to figure out what it would take to transition the whole world to sustainable energy… and you’d need 100 Gigafactories.”

Lithium-ion batteries will get more energy dense in the future, but they are unlikely to reach the high energy density of the NCA cells produced in the Gigafactory, if using the LMO or LFP chemistries. For that kind of energy density, they will probably need either an NCA or an altered NMC chemistry which is 70%-80% nickel, so the proportion of lithium, nickel, cobalt and copper in most future EV batteries is likely to be similar to the Gigafactory’s NCA cells. If 4750 GWh of these batteries are produced every year at an energy density of 263 Wh/kg, then the current global reserves will be used up in 24.5 years for lithium, 31.2 years for copper, 20.2 years for nickel, and 15.4 years for cobalt. Even if those batteries are produced with 80% recycled metals, starting in 15 years time, the current global lithium reserves would be extended 6.6 years, or 7.4 years if all sectors switch to using 80% recycled lithium. Using 80% recycled metal in the batteries would extend current copper, nickel and cobalt reserves by 0.7, 0.5 and 0.1 years, respectively. An 80% recycling rate in all sectors would make a difference for copper, extending its reserves by 11.5 years, but only 2.8 years for nickel and 0.2 years for cobalt. In other words, recycling will not significantly reduce the enormous stresses that lithium-ion batteries will place on global metal supplies, because they represent so much new demand for metals.

As the demand for these metals increases, the prices will increase and new sources of these metals will be found, but they will either be in places like the DRC with ethical challenges or in places with lower quality ores which require more energy and resources to extract and refine. We can expect more energy-intensive mining of spodumene and  more strip mining of laterite ores which cause more ecological disruption. The ocean floor has enormous quantities of manganese, nickel, copper and cobalt, but the energy and resources to scrap the bottom of the ocean will dramatically increase the economic and ecological costs. If battery manufacturing dramatically raises the prices of lithium, nickel, cobalt, copper (and manganese for NMC cells), then it will be doubly difficult to transition to a sustainable civilization in other areas. For example, nickel and cobalt are essential to making carbide blades, tool dies and high-temperature turbine blades and copper is a vital for wiring, electronics and electrical motors. It is hard to imagine how the whole world will transition to a low-carbon economy if these metals are made prohibitively expensive by manufacturing over a billion lithium-ion batteries for EVs.

Future batteries will probably be able to halve their weight by switching to a solid electrolyte and using an anode made of lithium metal, lithiated silicon or carbon nanotubes (graphene), but that will only eliminate the copper, while doing little to reduce the demand for the other metals. Switching the anode to spongy silicon or graphene will allow batteries to hold more charge per kilogram, but those materials also dramatically increase the cost and the energy and resources that are consumed in battery manufacturing.

In the near future, lithium-ion batteries are likely to continue to follow their historical trend of using 7% less materials each year to hold the same amount of charge. That rate of improvement, however, is unlikely to last. An NCA cathode currently holds a maximum of 200 mAh of energy per gram, but its theoretical maximum is 279 mAh/g. It has already achieved 72% of what is theoretically possible, so there is little scope to keep improving. NMC at 170 mAh/g is currently farther from its theoretical limit of 280 mAh/g, but the rate of improvement is likely to slow as these battery chemistries bump against their theoretical limits.

Clearly the planet doesn’t have the resources to build 95 million long-range electric vehicles each year that run on lithium-ion batteries. Possibly a new type of battery will be invented that only uses common materials, such as aluminum, zinc, sodium and sulfur, but all the batteries that have been conceived with these sorts of material still have significant drawbacks. Maybe a new type of battery will be invented that is suitable for vehicles or the membranes in fuel cells will become cheap enough to make hydrogen a viable competitor, but at this point, lithium-ion batteries appear likely to dominate electric vehicles for the foreseeable future. The only way EVs based on lithium-ion can become a sustainable solution for transport is if the world learns to live with far fewer vehicles.

Currently 3% more vehicles are being built each year, and there is huge demand for vehicles in the developing world. While demand for cars has plateaued in the developed world, vehicle manufacturing since 1999 has grown 17.4% and 10.5% per year in China and India, respectively. If the developing world follows the unsustainable model of vehicle ownership found in the developed world, then the transition to electrified transport will cause severe metal shortages. Based on current trends, Navigant Research predicts that 129.9 million vehicles will be built in the year 2035, when there will be 2 billion vehicles on the road.

GlobalAutoProduction

On the other hand, James Arbib and Tony Seba believe that autonomous vehicles and Transport as a Service (TaaS) such as Uber and Lyft will dramatically reduce demand for vehicles, lowering the number of passenger vehicles on American roads from 247 to 44 million by 2030. If 95% of passenger miles are autonomous TaaS by 2030 and the lifespan of electric vehicles grows to 500,000 miles as Arbib and Seba predict, then far fewer vehicles will be needed. Manufacturing fewer electric vehicles reduces the pressure to extract metals from laterite ores, pegmatites, the ocean floor, and lower-grade ores in general with higher ecological costs.

Ellingsen et al (2016) estimate that the energy consumed by battery factories per kWh of batteries has halved since 2012, however, that has to be balanced by the growing use lithium from spodumene and nickel and cobalt from laterite ores, and ores with lower metal concentrations that require more energy and produce more pollution. Given the increased energy efficiency in battery manufacturing plants and the growing efficiencies of scale, I would guesstimate that lithium-ion battery emissions are currently at roughly 150 kg  CO2-eq per kWh of battery and that the Gigafactory will lower those emissions by a third to roughly 100 kg  CO2-eq / kWh. If the Model 3, uses a 55 kWh battery, then its battery emissions would be roughly 5500 kg  CO2-eq.

Manufacturing a medium-sized EV without the battery emits 6.5 tonnes of  CO2-eq according to Ellingsen et al (2016). Electric cars don’t have the huge engine block of an ICE car, but they have large amounts of copper in the motor’s rotor and the windings and the Model 3 will have far more electronics than a standard EV. The Model S has 23 kg of electronics and I would guesstimate that the Model 3 will have roughly 15 lbs of electronics if it contains nVidia’s Drive PX or a custom processor based on the K-1 graphics processor. If the GHG emissions are roughly 150 kg  CO2-eq per kg of electronics, we can guesstimate that 2.2 tonnes of  CO2-eq will be emitted to manufacture the electronics in the Model 3. Given the large amount of copper, electronics and sensors in the Model 3, add an additional tonne, plus 5.5 tonnes for its 50 kWh battery, so a total of 13 tonnes of  CO2-eq will be emitted to manufacture the entire car.

Manufacturing a medium-sized ICE car emits between 5 and 6 tonnes, so there is roughly a 7.5 tonne difference in GHG emissions between manufacturing the Model 3 and a comparable ICE car. A new ICE car the size of the Model 3 will get roughly 30 mpg. In the US, a gallon of gasoline emits 19.64 lbs of CO2, but it emits 24.3 lbs of  CO2e when the methane and nitrous oxide are included, plus the emissions from extraction, refining and transportation, according to the Argonne National Laboratory. Therefore, we will need to burn 680 gallons of gasoline or drive 20,413 miles at 30 mpg to equal those 7.5 extra tonnes in manufacturing the Model 3.

At this point, the decision whether the Model 3 makes ecological sense depends on where the electricity is coming from. Let’s assume that the Model 3 will consume 0.30 kWh of electricity per mile, which is what the EPA estimates the Nissan Leaf to consume. The Model S will be a smaller and more aerodynamic car than the Leaf, but it will also weigh significantly more due to its larger battery. If we also include the US national average of 4.7% transmission losses in the grid, then the Model 3 will consume 0.315 kWh per mile. After driving the Model 3 100,000 miles, the total greenhouse gas emissions (including the production emissions) will range between 14.1 and 45.3 tonnes, depending on its energy source to charge the battery.

VehicleEmissions100000miles

In comparison, driving a 30 mpg ICE car (with 5.5 tonnes in production emissions) will emit 42.2 tonnes of  CO2-eq after 100,000 miles. If we guesstimate that manufacturing a Toyota Prius will emit 7 tonnes, then driving it 100,000 miles at 52 mpg will emit 28.2 tonnes. Only in places like Kentucky which get almost all their electricity from coal is an ICE car the better environmental choice. The Model 3, however, will have worse emissions than most of its competitors in the green car market, if it is running on average US electricity, which emits 528 grams of CO2-eq per kWh. It will emit slightly more than a plugin hybrid like the Chevy Volt and an efficient hybrid like the Toyota Prius and substantially more than a short-range electric, like the Nissan Leaf.

Most previous comparisons between electric cars and ICE cars were based on short-range electrics with smaller batteries, such as the Nissan Leaf, which is why environmental advocates are so enthusiastic about EVs. However, comparing the Model S and Model 3 to the Nissan Leaf, Chevy Volt and Toyota Prius hybrid shows that the environmental benefits of long-range EVs are questionable when compared to short-range EVs, plugin hybrids and hybrids. Only when running the Model 3 on cleaner sources of electricity does it emit less greenhouse gases than hybrids and plugin hybrids, but in the majority of the United States it will emit slightly more. Many of the early adopters of EVs also owned solar panels, so buying a Model 3 will reduce their carbon footprint, but the proportion of EV owners with solar panels on their roofs is falling. According to CleanTechnica’s PlugInsights annual survey, 25% of EV buyers before 2012 had solar panels on their roofs, compared to just 12% in 2014-2015. Most people who own solar panels do not have a home battery system so they can not use their clean energy all day, and most EV charging will happen at night using dirtier grid electricity.

Another factor to consider is the effect of methane leakage in the extraction and transport of natural gas. There is a raging scientific debate about what percentage of natural gas leaks into the atmosphere without being burned. A number of studies have concluded that the leakage of methane causes electricity from natural gas to have GHG emissions similar to coal, but there is still no consensus on the matter.  If the leakage rate is as high as some researchers believe, then EVs will emit more greenhouse gases than hybrids and efficient ICE cars in places like California which burn large amounts of natural gas.

On the other hand, many people believe that EVs will last 300,000 miles or even 500,000 miles since they have so few moving parts, so their high emissions in manufacturing will be justified. However, the EV battery will probably have to be replaced, and the manufacturing emissions for a long range EV battery can be as high as building a whole new ICE car. Another factor that could inhibit the long life of Telsa’s cars is the fact that the company builds cars described as “computers on wheels,” which are extremely difficult for third parties to fix and upgrade over time. Telsa only sells its parts to authorized repair shops and much of the functionality of car is locked up with proprietary code and secret security measures, as many do-it-yourselfers have discovered to their chagrin. When Tesla cars are damaged and sold as salvage, Tesla remotely disables its cars, so that they will no longer work even if repaired. The $600 inspection fee to reactivate the car plus the towing fees discourage Teslas from being fixed by third parties. These policies make it less likely that old Teslas will be fixed and their lifespans extended to counterbalance the high environmental costs of producing the cars.

Although the Model 3 has high greenhouse gas emissions in its production and driving it is also problematic in parts of the world that currently use dirty energy, those emissions could be significantly reduced in the future if they are accompanied by a shift to renewable energy, more recycling and the electrification of mining equipment, refining and transport. The car’s ecological benefits will increase if the emissions can be decreased in producing battery materials and the greater energy density of batteries is used to decrease the total materials in batteries rather than keep extending the range of EVs. Producing millions of Model 3s will strain the supply of vital metals and shift extraction to reserves which have higher ecological costs. However, the Model 3 could become a more sustainable option if millions of them are deployed in autonomous Transport as a Service fleets, which Arbib and Seba predict will be widespread by 2030, since TaaS will cost a tenth of the price of owning a private vehicle. If the Model 3 and future autonomous EVs become a means to drop the global demand for private vehicles and that helps reduce the demand for lithium, nickel, cobalt and copper down to sustainable levels, then the high environmental costs of manufacturing the Model 3 would be justified.

Nonetheless, the Model 3 and the NCA 2170 batteries currently being produced by Tesla offer few of those possible future ecological benefits. Most of the metal and graphite in the battery is being produced with energy from fossil fuels. In the short term at least, Telsa batteries will keep growing in capacity to offer more range, rather than reducing the total consumption of metals per battery. The extra sensors, processing power and electronics in the current Model 3 will increase its ecological costs without providing the Level 4 or 5 autonomy that would make it possible to convince people to give up their private vehicles. In the here and now, the Model 3 is generally not the best ecological choice, but it might become a better choice in the future.

The Model 3 promises to transform the market not only for EVs, but cars in general. If the unprecedented 500,000 pre-orders for the Model 3 are any indication of future demand, then long-range electrics with some degree of autonomous driving like the Model 3 will capture most of the EV market. Telsa’s stunning success will induce the rest of auto-makers to also start making long-range EVs with large batteries, advanced sensors, powerful image processors, advanced AI, cellular networking, driving data collection and large multimedia touchscreens. These features will dramatically increase the environmental costs of car manufacturing. Whether these features will be balanced by other factors which reduce their environmental costs remains to be seen.

Much of this analysis is guess work, so it should be taken with a grain of salt, but it points out the problems with automatically assuming that EVs are always better for the environment. If we consider sulfate emissions, EVs are significantly worse for the environment. Also, when we consider the depletion of critical metal reserves, EVs are significantly worse than ICE vehicles.

The conclusion should be that switching to long-range EVs with large batteries and advanced electronics bears significant environmental challenges. The high manufacturing emissions of these types of EVs make their ecological benefits questionable for private vehicles which are only used on average 4% of the time. However, they are a very good option for vehicles which are used a higher percentage of the time such as taxis, buses and heavy trucks, because they will be driven many miles to counterbalance their high manufacturing emissions. Companies such as BYD and Proterra provide a model of the kinds of electric vehicles that Tesla should be designing to promote “sustainable transport.” Tesla has a few ideas on the drawing board that are promising from an ecological perspective, such as its long-haul semi, the renting out of Teslas to an autonomous TaaS fleet, and a new vehicle that sounds like a crossover between a sedan and a minibus for public transport. The current Model 3, however, is still a vehicle which promotes private vehicle ownership and bears the high ecological costs of long-range lithium batteries and contributes to the growing shortage of critical metals.

Clearly, EVs alone are not enough to reduce greenhouse gas emissions or attain sustainable transport in general. The first step is to work on switching the electric grid to cleaner renewable energy and installing more residential solar, so that driving an EV emits less CO2. However, another important step is redesigning cities and changing policies so that people aren’t induced to drive so many private vehicles. Instead of millions of private vehicles on the road, we should be aiming for walkable cities and millions of bikes and electric buses, which are far better not only for human health, but also for the environment.

A further step where future Model 3s may help is in providing autonomous TaaS that helps convince people to give up their private vehicles. However, autonomous EVs need to be matched by public policies that disincentivize the kind of needless driving that will likely occur in the future. The total number of miles will likely increase in the future due to autonomous electric cars driving around looking for passengers to pick up and people who spend more time in the car because they can surf the web, watch movies, and enjoy the scenery without doing the steering. Plus, the cost of the electricity to charge the battery is so cheap compared to burning gasoline that people will be induced to drive more, not less.





Why I chose Nickel Iron Batteries……

13 03 2016

When I first started spruiking the long life capability of Nickel Iron batteries, I quoted an internet source that claimed these had actually lasted 100 years and were still going. Such claims are of course difficult to check, but then, out of the blue, this paper written by Peter J. DeMar from Battery Research and Testing Inc, Oswego, NY, USA turned up on my FaceBook page…..  never belittle FB for anything, it’s how you use it that matters, not how other people do…!

UPDATE: since writing this I have also posted this article about NiFe batteries…..

Also since originally posting this, Geoff Lawton and Mike Haydon (the chap who sold me my Victron inverter) put this video together……

I put the above link to that paper on my last NiFe battery post, but then thought this was so significant, it needed airing properly here.

This all but forgotten technology has a very important place to occupy with users that desire very long life and the ability to suffer abuse in their battery systems, especially in a post collapse world where buying replacement batteries will be nigh impossible.

My son the scientist was so impressed with this, and as he will be in charge of looking after this system after I’m long gone, he googled how to make the Potassium Hydroxide electrolyte, and contacted me to say it was a piece of cake, and, that apple wood is among the best to make lye!

EDIT: Since writing this post, I have gone to a biochar workshop where I learned how to make lye. Our battery system is also up and running, and you can see it here.

Read on…….

Abstract

This paper is going to look at real life aged 80+ year old Nickel-Iron cells that are still functional and will explain the simple recovery techniques that were documented in an original Edison Alkaline Storage Battery brochure from the 1920’s. Some of the cells had been charged intermittently, many had sat off charge for many years, and some had sat off charge and all but empty, but all made very substantial recoveries, and when subjected to discharge testing that followed the guidelines of the IEEE 1115 they all were able to pass load tests at their applicable rate.
I. INTRODUCTION
The aim of this paper is to introduce this very old battery technology, which is over 100 years old, to those that have no idea that such a battery exists, or ever did exist. The majority of us are most familiar with various forms of lead acid, or nickel-cadmium as they were and still are the batteries of choice for most stationary applications, with Lithium Ion (in various forms) and other technologies gaining acceptance in many stationary applications. The cells that are reported on in this paper are real life aged
cells with an average age of 85 years, and the conditions that they were operated in and stored in were less than ideal. They spent the last approximately 60 years in a wooden shed, at a hunting lodge in the Adirondack Mountains, with temperatures from below -18C to above 32C. They were charged intermittently and often sat in a partial or full discharged state for weeks or months or years, at a time. Their function was to provide lighting to the lodge.

Waldemar Jungner of Sweden created the first Nickel-Iron battery in the late 1890’s and has multiple patents on the design. However he found that by substituting Cadmium
instead of Iron that he could improve the performance and efficiency of the cells, and he abandoned the development of the Nickel-Iron cell in favor of Nickel-Cadmium. There are
two patents for the Ni-Fe technology and one for the Ni-Cd technology in his name from 1899.

Thomas Edison believed that Ni-Fe could displace lead acid as the battery of choice and in 1901 obtained both a US and a European patent for his version of the technology. Edison
performed some very extensive testing on his cell designs to verify their hardiness for usage in RR applications, or electric automobiles (which he thought would replace internal
combustion engines), or material handling (tuggers and such). Two of my favorite tests that he created to demonstrate the durability of his Ni-Fe batteries are as follows.
He mounted a battery system on a cart and then the cart was rammed into a brick wall at 15 MPH and the battery had to survive 1,000 such shocks, which it did. My favorite test
though was where he hooked a cell to a motor driven pendulum and the device raised the cell 1⁄2” and dropped the cell onto a wooden platform. The cell survived 1, 776,000 such drops and then following that it passed a load test. (1) The Thomas Edison battery factory in West Orange New Jersey USA produced cells from 1903 to 1972 when it was sold to the Exide Battery Company (name at that time), which continued production until 1975 when the factory was closed.

Presently there are two companies that are still manufacturing Ni-Fe cells and they are Kursk Accumulator in Russia, and ChangHong Battery in China. It is our belief that this very old technology still has a place in the current market, where the user has a need for a very long life battery that can stand frequent cycling and abusive conditions. In America these are being offered for usage in the off grid market due to their long life and ability to withstand the daily repeated cycling, and setting in a partial state of  discharge for extended periods.

II. THE BOAST
It has been stated that Thomas Edison boasted of a 100 year battery with his Nickel-Iron design, but I have not been able to successfully locate those exact words. Now that sounds like a pretty bold marketing statement, sort of like the original marketing words “Maintenance Free” when referring to VRLA cells. However our experience in testing these old Nickel Iron cells convinced us that it may not have been just boldness or
marketing on his part.

III. THE OPPORTUNITY TO PROVE OR DISPROVE
picture2As can be seen in the following picture of the three different cell sizes the two on the left are the A4H and the A8H, and the one on the right is an A8 cell. With our gaining access to a substantial number of Thomas Edison Alkaline cells in two different amp hour sizes (150 and 300AH) at the five hour rate, we had an opportunity to find out if there was any validity in a 100 year life statement. Our first task was to locate documentation on these cells, and we turned to the Internet to locate manuals, documents, specifications, etc (1,2). While locating different manuals was easy enough, we could not determine the serial number code that was stamped into the top of each cell, so we did not know the age of any of the cells. Luckily we finally reached out to Ole Vigerstol of Saft who contacted their Railroad Group people, who then provided us with the original Edison Date codes. And yes we did have cells that were all built between 1924 and 1931.

We also utilized installation and maintenance manuals from both Saft (3) and ChangHong (5) as guides or comparison purposes, to see if there were any major differences in their
instructions from the Edison manuals. While there were some differences none of the differences were of any great concern. When we received the cells they were in various conditions of charge, or fill, or just plain cleanliness. It must be understood the majority of these cells had been setting off charge in various states for many years.

picture1This shows the general condition of some of the cells as we received them. These originally were coated with a rubber like paint compound which was named Esbalite which is described in the Edison manuals as a special insulating paint. This coating covered the sides and the bottom, but none was on the top of any cell. However during the cleaning process of the cells, the
coating came off and we have not yet determined what we will use as a coating, so for our experiments we used wood spacers to maintain separation between the cells.picture3

The following picture shows the carbonate build up that we found in some of the cells, which of course has a severe impact on the cells performance.

IV. RECOVERY PROCEDURES
We randomly took cells of the same AH rating and made up different battery strings, and in some cases we took single cells and with each we boost charged and then float charged at the voltages that were stated in a 1916 Thomas Edison manual and then followed up with load testing at the full published five hour rate. All of the cells or battery strings failed miserably.Our as found individual cell voltages ranged from 0.06 of a volt to 1.36 volts. We attributed this wide of a voltage spread to the fact that some cells had been on charge just prior to our receiving them and some had been off charge for months or
years. Some were filled with electrolyte and some were empty or nearly so. manufactures
Nickel-Cadmium cells, ChangHong manufacturers both Nickel-Cadmium and Nickel-Iron, and of course the Edison cells are all Nickel-Iron. The common denominators are the Nickel and the Potassium Hydroxide electrolyte. We decided to follow Edison’s procedure since the cells were Edison cells.

The following is from one string of A8 cells and is an example of the age of the cells, and the as found open circuit voltages. As can be seen in this battery the age of the cells range from 1926 to 1930 with a voltage spread from 0.005 to 1.356. It is easy to see which cells have been sitting around the longest and which ones were recently on charge. After the electrolyte replacement we placed the cells back on float and then boost charged at 1.65 VPC followed by a return to float at 1.49 volts per cell and then further load tests.

The following shows the same cells as the previous chart, but with the respective float voltages following 100 hours of boost charging, and then being on float charge for about six weeks.

While experimenting with these cells we realized that even though the voltage would rapidly drop off in a matter of minutes when we tried to run a load test at the full published rate of the particular cell or battery, that if we lowered the discharge rate, the battery would hold voltage for a substantially longer amount of time, even though the best string would only support a 10 amp load for 22 minutes to an end voltage of 12.0 volts.

Throughout our testing we followed the instructions in the Edison manuals, and following those instructions we decided to replace the electrolyte. We obtained new electrolyte from
Saft as they are a major supplier of Nickel-Cadmium batteries and the Potassium Hydroxide that they use is the same as what is utilized in the Nickel-Iron batteries. Both Saft and ChangHong also provide instructions that explain that when the capacity drops off and boost charging does not return desirable results, that the electrolyte needs to be replaced.

A discrepancy that we discovered between the three manufacturers (Edison, Saft, and ChangHong) is that during the electrolyte replacement procedures, Edison states to pour out about half of the old electrolyte then to shake the cell vigorously and then to pour out the remaining electrolyte, but to not rinse with any water, and then to fill with new
electrolyte. Changhong says to pour out the old electrolyte and to shake it, and if the electrolyte is dirty in color to rinse it with distilled water two or three times, and then to fill with new electrolyte. Saft says to carefully pour out the old electrolyte and then to fill with new. This was the only real difference that we found between the three manufacturers. Of course Saft manufactures Nickel-Cadmium cells, ChangHong
manufactures both Nickel-Cadmium and Nickel-Iron, and of course the Edison cells are all Nickel-Iron. The common denominators are the Nickel and the Potassium Hydroxide
electrolyte. We decided to follow Edison’s procedure since the cells were Edison cells.
chart1chart2

 

 

 

 

 

 

V. PUBLISHED RATINGS

There were three different model cells that we had received and played with. There were models A4H, A8, and A8H cells. The H in any model just means that the cell is the same AH rating but it has more electrolyte reservoir and is approximately 7.6 Centimeters taller than the cells that do not have the H in their model number. The H designated cells were to be used in applications where there longer time periods between maintenance intervals.
With the three battery strings that we are reporting on here, we utilized the five hour rating from the Edison manual, and we used the end voltage of 1.0 VPC, also from the Edison manual.

The published rate for the A4H cells is 30 amps for five hours to an end voltage of 1.0 volt.
The published rate for the A8 and A8H cells is 60 amps for  five hours to 1.0 volt.

VI. WHAT WERE WE TRYING TO UNDERSTAND
We are trying to learn if the Edison Alkaline cells that we had would indeed function at their advanced ages. But there is no existing standard to follow as a guide, so we decided to
utilize the IEEE 1106 (4) since it is for Nickel-Cadmium cells and the only primary difference between the two types is the Cadmium content in place of the Iron, otherwise they are Nickel and Potassium hydroxide.With our main goal being to determine if these cells or batteries would work reliably at their extended ages, and not to prove a specific capacity we decided to utilize the 1% per year aging factor from annex E of the IEEE 1106 .
With cell ages ranging from 80 to 87 years of age and an average of 85 years we decided to be conservative and used an aging factor of 0.2 which would reflect a 1% per year de-rating
factor for an 80 year old cell. With that decision made we made we settled on the following discharge rates. As you will notice we used the same five hour rate for the two different
models, even though one was a 150 AH model and two were 300 AH models. We do not yet understand why the A4H cells performed so much better than the A8 and A8H cells. We are suspecting that it was due to the fact that the A4H string had many more discharge/recharge sequences than either of the other strings, but only time will tell if the A8 and A8H strings continue to improve over time and cycling.
A8 and A8H cells used a 15 amp rate to 1.0 VPC

graph1
The following charts show the load test results at various times over the past approximately twelve months on all three of the strings. All of the load tests were run at the five hour rates to 1.0 VPC. As can be seen, the load tests that were run before we replaced the electrolyte were somewhat dismal, however as you will see in the load tests that were run after the electrolyte had been replaced were substantially improved, and then by the last load tests which were all performed in July 2011 there was further improvement.
graph2
Run time in minutes of the A4H string at 15 amp load A4H cells used a 15 amp rate to 1.0 VPC, where as if we used a 0.2 aging factor the rate would have been 6 amps. We made up one twelve cell string from the A8 cells, another twelve cell string from the A8H cells and an 18 cell string from the A4H cells. Each was placed upon its own charger. We utilized a varying range of float voltages at different times as part of this experiment. Primarily we kept the voltage between 1.47 and 1.5 but did sometimes go up to 1.57 volts per cell and 1.65 up to 1.85 when we equalized or boost charged. These voltages came out of the Edison manual and the float voltage corresponds to that recommended by both ChangHong and by Saft.
16‐Aug‐10
Chart 1. This chart shows the increase in run time with this battery with a 15
amp load.
graph3
VII. TEST RESULTS
As can be seen in the following charts, with each battery string there was some amount of run time under load but it was not until we replaced the electrolyte and then ran a number of discharge and recharge scenarios that the run time really returned. While we could not get any strings to recover to a level where they could support their full published rates, it was encouraging that they could support an age related reduced discharge rate for a full five hours. In each chart the left hand column is the original as found run time, with boost and float charging but no electrolyte replacements.

The middle column is after electrolyte replacement and boost charging and from float voltage. The green line is after some number of discharges and boost charges and also is from a float condition. Run time in minutes of the A8 string at 15 amp load
Chart 2. This chart shows the increase in run time with this battery with a 15 amp load.
Chart 3 is the string that is made up of the A8H cells.That these 80+ year old cells are still functional proves without any doubt that Nickel-Iron is a long lived design, now it will just take another 15 years to see if they will still be functioning at 100 years of age as Thomas Edison is supposed  to have declared.

VIII. CONCLUSION
This find of these old Thomas Edison Nickel-Iron cells has been quite an education for us at Battery Research and Testing, as our work for the past 29 years has been primarily
with lead acid and some Nickel-Cadmium, but with nothing of the age of these cells. In fact the oldest lead acid cells that we have load tested and that were still functional were old Exide Manchex strings that were 42 years old, and it appears that the only existing lead acid cells that might be able to be functional at 40 years of age are the Bell developed round cells for Telecom applications.

What we have learned has opened up our minds to explore possibilities for this design long life design cell. It would sure seem that any site that has a requirement for a long life battery that will tolerate abusive conditions would consider the total life costs of these type cells and see which works out to be the most cost effective.

I have approached the IEEE Battery Working Group to have Nickel-Iron included in the IEEE 1106 and IEEE 1115 documents during the recent re-affirmation process, but it was
decided to not include Nickel-Iron in those documents at this time. It would seem that since the IEEE 450 and IEEE 485 documents cover all of the different Vented Lead Acid designs such as Lead Antimony, Lead Selenium, Plante, or Lead Calcium which all use sulfuric Acid, that the IEEE 1106 and IEEE 1115 which covers Nickel-Cadmium cells which also uses Potassium Hydroxide as the electrolyte could easily have been expanded to include the Nickel-Iron cells.

IX. ACKNOWLEDGEMENTS
I would like to extend a special thank you to Weston Mitchell of the Fayetteville Hunting Club for providing us a chance to learn about Nickel-Iron cells and these specific pieces of the Thomas Edison history. If it had not been for his environmental consciousness, we would not have our eyes opened to this very durable battery technology that is all but
forgotten here in the US. Also thanks need to go to Bob Howland and Jim Miner of Battery Research for their  assistance and technicians time to perform the various assembly of the strings and testing. And last but not least, thanks to Ole Vigerstol and Jim McDowall from Saft for their assistance and comments, as well as to Sam Zhow from Sichuan Changhong Battery Company for his support.

X. REFERENCES
1. General Information and Instructions for the Operation and Care of the Edison Alkaline Storage Battery. Edison Publication Bulletin 850X.
2. The Edison Alkaline Storage Battery. By the technical staff of the Edison Storage Battery Company. For the National Education Association Joint-Committee Series Monograph
III. Document 804. Copyright 1916. From the University of Michigan Libraries. Digitized by Google.
3. Saft Installation and operating instructions for single cell Ni-Cd, models SCL, SCM, and SCH plastic case cells.
4. IEEE Std. 1106. IEEE Recommended Practice for Installation, Maintenance, Testing, and Replacement of Nickel-Cadmium Batteries for Stationary Applications.
5. ChangHong Battery Performance Data Manual. ChangHong Battery Operation and Maintenance Manual.





We cannot shop our way out of environmental crisis, ‘green’ or not

20 08 2014

1Guest post by Pete Dolack.  Pete is an activist, writer, poet and photographer. He wishes he could keep all those balls in the air but keeps dropping some of them. He has worked with a variety of groups as an activist, and currently works with Trade Justice New York Metro as part of the effort to stop the Trans-Pacific Partnership. He writes about the economic crisis, and ideas for a better world in his blog Systemic Disorder. He is also the author of the upcoming book, It’s Not Over: Lessons from the Socialist Experiment.

Originally published at Generation Alpha

 

 

There is no alternative to a dramatic change in the organization of the global economy. We cannot make ‘green’ what cannot be green. A powerful 33-page paper by Dr. Richard Smith, Green capitalism: the god that failed, demonstrates this as effectively as anything I have read. Richard, from the Institute for Policy Research & Development in London, argues that:

  • “Green capitalism” is “doomed from the start” because maximizing profit and ecological sustainability are broadly in conflict; the occasional time when they might be in harmony are temporary and rare exceptions. This is because corporations are answerable to private owners and shareholders, not to society. Profit maximization trumps all else under capitalism and thereby sets limits to ecological reform.
  • No capitalist government can impose “green taxes” effective enough to end the coal or other destructive industries because the result would be recession and mass unemployment.
  • Green-capitalism proponents vastly underestimate the speed with which environmental collapse is coming. No amount of tinkering can alter the course of environmental destruction under the present system. Humanity, therefore, must replace capitalism with a post-capitalist ecologically sustainable economy.
  • Resource extraction is inherently polluting but can’t be shut down without chaos. It is not possible to “dematerialize” much of the economy, as green-capitalism proponents believe possible. The only way to reduce greenhouse-gas emissions is to “enforce a drastic contraction of production in the industrialized countries.” This is not possible under capitalism because the affected industries would be committing suicide. It could only be carried out through a socialization of industry and a redeployment of labour to sectors that need to be developed for social good.
  • Consumerism and over-consumption are not “cultural” or the result of personal characteristics — they are a natural consequence of capitalism and built into the system. Problems like climate change and other aspects of the world environmental crisis can only be solved on a global level through democratic control of the economy, not by individual consumer choices or national governments.

 

Cap-and-trade equals profits by polluting

European attempts to implement “cap and trade” schemes to limit greenhouse-gas emissions were countered from the start by industry lobbyists asking for exceptions because, they argued, they would lose competitiveness. Some threatened to move elsewhere, taking jobs with them. Governments gave in. Polluters and traders took in windfall profits, with no real effect on emissions. Dr. Smith writes:

“German electricity companies were supposed to receive 3 per cent fewer permits than they needed to cover their total emissions between 2005 and 2007, which would have obliged them to cut emissions by that amount. Instead the companies got 3 percent more than they needed — a windfall worth about $374 billion at that time.”

A proposal to directly tax carbon in France, proposed by the administration of Nicolas Sarkozy, was ruled unconstitutional because most of France’s major polluters would have been let off the hook entirely while households would have assumed the burden. Dr. Smith put the farce of this failed proposal in perspective:

“The court said that more than 1,000 of France’s biggest polluters could have been exempted from the charges, and that 93 percent of industrial emissions would not have been taxed at all. But even if Sarkozy had successfully imposed his carbon tax, this tax would have raised the price of gasoline by just 25 US cents per gallon. Given that the French already pay nearly $9 per gallon for gasoline, it’s hard to see how an additional 25 cents would seriously discourage consumption let alone ‘save the human race.’ ”

Some advocates of cap-and-trade or carbon taxes in the United States try to get around industry pushback by advocating they become “revenue-neutral.” But if “carbon tax offsets are revenue neutral, then they are also ‘impact neutral,’ ” Dr. Smith writes. That brings us back to the reality that imposing drastic cuts would be the only way to effect the significant reductions in greenhouse-gas emissions necessary to prevent catastrophic climate change in coming decades. That, in turn, can’t be done without massive dislocation.

Yet reductions are not only necessary, but will be required by physical limits — the world’s population is using the resources at the rate of 1.5 Earths and the United Nations predicts we’ll be using two Earths by 2030. Moreover, if all the world’s peoples used resources at the rate that the United States does, “we would need 5.3 planets to support all this.” Needless to say, we have only one Earth available.

 

More efficiency leads to more consumption

One of the pillars on which green capitalists rest their advocacy is increased efficiency of energy usage, achieved through technological innovation. But energy usage has been increasing, not decreasing, despite greater efficiencies gained out of a range of products. Gains in efficiency can, and frequently are, used to expand production; given that capitalist incentives reward expansion, that is what is done. Moreover, “green” industries are not necessarily green. The paper points out:

“Even when it’s theoretically possible to shift to greener production, given capitalism, as often as not, ‘green’ industries just replace old problems with new problems: So burning down tracts of the Amazon rainforest in order to plant sugarcane to produce organic sugar for Whole Foods or ethanol to feed cars instead of people, is not so green after all. Neither is burning down Indonesian and Malaysian rainforests to plant palm-oil plantations so Britons can tool around London in their obese Landrovers.”

Making motor vehicles more fuel-efficient, although a goal that should be pursued, nonetheless falls far short of a solution. Fuel usage from the increasing number of vehicles and longer distances travelled are greater than all the savings from fuel efficiency. And focusing on only when the vehicle is being driven leaves untouched most of the pollution caused by them. Dr. Smith writes:

“Most of the pollution any car will ever cause is generated in the production process before the car even arrives at the showroom — in the production of all the steel, aluminium, copper and other metals, glass, rubber, plastic, paint and other raw materials and inputs that go into every automobile, and in the manufacturing process itself. Cars produce 56 percent of all the pollution they will ever produce before they ever hit the road. … [S]o long as [automakers] are free to produce automobiles without limit more cars will just mean more pollution, even if the cars are hybrids or plug-in electric cars.”

Those electric vehicles are only as “clean” as the source of electricity used to power them. Many plug-in electric vehicles are coal-powered vehicles because coal is a common source of electricity. Looking at it holistically, such an electric vehicle would be more polluting than a gasoline-fuelled vehicle; and the majority of the pollution from the manufacturing (for the vehicle itself) would be there just the same. Then there is the pollution and greenhouse-gas emissions of the electric-car battery. Nickel is a primary input; the Russian city that is the site of the world’s largest source of nickel, Norilsk, is one of the world’s most polluted places.

“I would not be surprised if the most ecological cars on the planet today are not those Toyota Priuses or even the Chevy Volts with their estimated [seven- to 10-year] lifespan, but those ancient Fords, Chevrolets, and Oldsmobiles cruising round the streets of Havana. For even if their gas mileage is lower than auto-producer fleet averages today, they were still produced only once, whereas American ‘consumers’ have gone through an average of seven generations of cars since 1960 (when the U.S. embargo ended car imports to Cuba), with all the manufacturing and disposal pollution that entailed.”

 

Consumerism props up capitalist economies

Planned obsolescence is part of the problem, across the spectrum of manufactured products. Capitalist manufacturers don’t want products that last a long time; repeatedly selling new products is far more profitable. But it would be overly simplistic to lay full blame for this on greed, however much greed is rewarded by a capitalist economy. Household consumption — all the things that people buy for personal use from toothbrushes to automobiles — accounts for 60 to 70 percent of gross domestic product in almost all advanced capitalist countries. If people aren’t buying things, the economy struggles.

Proponents of green capitalism fail to grasp the structural causes of over-consumption. However much better for the environment, and the world’s future, drastic reductions in consumerism would be, moral exhortations can’t be effective. Trapped in an idealist mirage that capitalism can be “tamed” or “repurposed,” green capitalists, through seeking individual solutions to structural and systemic problems, not only miss the forest for the trees but leave the economic structure responsible untouched. People in the global North should consume less, but to place the blame on individual behaviour lets the manufacturers of useless products off the hook and is blind to the economic realities should the system be left in place intact.

Once again, we cannot shop our way out of economic and environmental problems. Even not shopping would bring its own set of problems, Dr. Smith writes:

“[H]ow can we ‘reject consumerism’ when we live in a capitalist economy where, in the case of the United States, more than two-thirds of market sales, and therefore most jobs, depend on direct sales to consumers while most of the rest of the economy, including the infrastructure and not least, the military, is dedicated to propping up this super consumerist ‘American way of life?’ Indeed, most jobs in industrialized countries critically depend not just on consumerism but on ever-increasing over-consumption. We ‘need’ this ever-increasing consumption and waste production because, without growth, capitalist economies collapse and unemployment soars. …

[I]t’s not the culture that drives the economy so much as, overwhelmingly, the economy that drives the culture: It’s the insatiable demands of shareholders that drive corporate producers to maximize sales, therefore to constantly seek out new sales and sources in every corner of the planet, to endlessly invent [new needs]. … ‘[C]onsumerism’ is not just a ‘cultural pattern,’ it’s not just ‘commercial brainwashing’ or an ‘infantile regression.’ … Insatiable consumerism is an everyday requirement of capitalist reproduction, and this drives capitalist invention and imperial expansion. No overconsumption, no growth, no jobs. And no voluntarist ‘cultural transformation’ is going to overcome this fundamental imperative so long as the economic system depends on over-consumption for its day-to-day survival.”

There is no way out other than replacing capitalism with a steady-state economy based on meeting human needs, and that could only be attained through bottom-up, democratic control. No one promises new jobs to those who would be displaced under capitalism; logically, then, those who jobs and ability to earn a living is dependent on polluting or wasteful industries resist environmental initiatives. The wholesale changes that are necessary to prevent a global environmental catastrophe can’t be accomplished under the present economic system; it would require a different system with the flexibility to re-deploy labor in large numbers when industries are reduced or eliminated, and one that would have no need to grow. Inequality would have to be eliminated for any kind of global democratic economy to be able to function.

Dr. Smith pronounces this “a tall order to be sure.” That it is. But with many world cities, and entire countries, at risk of becoming inhabitable due to rising sea levels, more erratic weather and an accelerated timetable to deplete the world’s resources, what choice do we have? Green capitalism is not only not green, it is worse than illusion because of the false hope it dangles in front of our eyes.