Three Things We Don’t Understand About Climate Change

3 09 2017

ANOTHER great article from Ahmed Nafeez’ new Medium website…….  Please support his magnificent efforts.

This is the most honest item on Climate Change I hace seen in quite a while. It almost goes as far as saying what I’ve now concluded, we must de-industrialise. Almost.

Go to the profile of Aarne Granlund
Aarne GranlundFollow

 

 

Thinking about climate change is not something that comes natural to humans — or ‘consumers’ as we have been called for decades. It is not only emotionally unpleasant, but analytically extremely challenging.

I argue that most of us do not grasp how immediate this situation has become, how fast it is progressing and what the scale of change needed is to reach the stabilisation targets of the Paris Agreement.

I also argue that after individuals, nations and corporations understand the urgency and the rate, they should be honest about the scale of action needed in order to avoid collapse of the biosphere and thus civilisation.

North America on 29th of August 2017. Tundra and forest fires in the Arctic + British Columbia and Hurricane Harvey off the coast of South Texas (Terra / MODIS @ Nasa WorldView).

Human society is deeply and permanently coupled to the Earth System. In the geological epoch we have entered called the Anthropocene, that system is undergoing immediate, massive disruption. The previous epoch of Holocene gave us agriculture and settled living arrangements.

Since the onset of industrial production at an accelerating rate and scale, human society has had deep and far ranging influence on natural processes which it depends on. Climate change is only one of the manifestations — there are multiple large-scale indicators of our presence on this planet from erosion to nitrogen runoff, species extinction to uncontrolled population growth.

1. Urgency

The first misunderstanding about climate change is related to how we perceive its impacts in the temporal space. It is not (only) a future issue, not a polar bear issue and certainly not an issue which only affects a few remote parts of the world.

Situation has become dangerous during the last three years of 2014, 2015, 2016 and now continuing into 2017. Certain parts of the world see less immediate danger but systematic changes affect us all.

NASA GISS dataset on land and ocean temperature anomalies (2017).

How is it possible that the Earth System has taken up our presence on the surface so lightly even when we have changed the chemistry of the atmosphere and the ocean with our carbon pollution?

Ocean heat uptake has doubled since 1997 (Gleckler et al, 2016).

Most of the energy (heat) human carbon pollution creates ends up warming the world ocean, some 93% of our pyromania ends up there. Every passing year we pump 41 gigatons (that is a very big number) of carbon dioxide into the Earth System, where roughly half of it is absorbed by natural sink capabilities of the ocean and the land biosphere. Rest of it ends up in the atmosphere with all the other gases we put up, including aerosols and certain novel entities that have never occured in the natural state of the Earth System.

The fact that increasing greenhouse gas loading from human sources in the carbon cycle is cumulative makes this an extremely vicious political, economic and social problem. The increment which ends up in the atmosphere can only be drawn down by the natural climate system on time scales extending to tens or hundreds of thousands of years.

The Global Carbon Budget from GCP, 2017.

One component of urgency is that when surface temperatures increase after being buffered by the ocean — without the world ocean we would already be 36°C hotter on the surface of continents from the increased atmospheric forcing — they can do so in a non-linear fashion.

This creates immediate impacts. Single exceptional extreme weather events are not caused by climate change but happen in a distinctively new climate. Hotter atmosphere holds more moisture which increases precipitation. Extreme heatwaves become more common. Ice in all its forms melts.

Right now there are multiple imminent disasters occuring in various parts of the planet. Global fire situation has been exceptional in Siberia, Greenland, Canada and in other parts of North America. Tundra burns, forests burn, people suffer. Europe has been under severe heat waves and there have been mass casualties from forest fires in Portugal.

There is extreme flooding in South Asia, impacting multiple cities and the country of Bangladesh of which one third is currently under water. Hurricane Harvey just hit South Texas at Category 4 strength and produced record precipitation totals for many locations, including but not limited to the City of Houston. Tens of millions suffer from these impacts — right now.

Arctic climate change is proceeding at fast pace (AMAP SWIPA, 2017 http://www.amap.no/swipa2017).

2. Rate and Scale of Change

The Arctic, area located on the top of the planet from 66°N north, is a prime example of systematic exponential change. It is warming at least twice as fast as the rest of the planet. There is less inertia in the Arctic than there is in the general climate system.

But even the general climate system is being pushed in ways which have no previous analogue in natural climate changes going back tens of millions of years. It is about the rate of carbon dioxide and other greenhouse gases added. There have been periods in the deep geological past of Earth when greenhouse gas concentrations have been much, much higher than they are today but increases have never occured this rapidly.

Proxy measurements of carbon dioxide from ice cores (NOAA @ NASA Climate Change https://climate.nasa.gov/vital-signs/carbon-dioxide/).

Earth is a fluid, non-linear system capable of abrupt and total change. Earth System has been in a hothouse state and for a while was mostly covered by ice. At current pathways we are literally going to lose very large portions of both continental polar ice sheets, possibly in their entirety. This will take centuries but when we commit, the result will be permanent. Permafrost is thawing, threathening both the carbon cycle and our settled living arrangements in the Arctic.

When climate scientists project future climate change up to and beyond 2050 and 2100 they refer to scenarios. They are used in policy making to set stabilisation targets.

Tipping elements in the climate system (Schellnhuber et al, 2015).

What is worrying is that humanity is currently putting in place an atmospheric forcing comparable to something between the RCP4.5 and 8.5 (watts per square meter) end results. The choice between the Paris Agreement ‘well below 2°C’ framing and higher, 3–4°C level of warming is the choice of having a civilisation with global governance capability or losing it.

At any pathway we choose to follow, in order for the climate to stabilise at a higher level of change, emissions need to be zero. If new carbon pollution enters the climate system, temperatures will go up. This also applies to 2.5°C emissions budgets as well as 3°C budgets.

3. Stabilisation

What is to be done? Multiple actions are under way. Our energy system is changing with global energy demand growth continuing to rise due to industrialisation of developing nations, but new added electricity capacity in the form of solar and wind power only appear to offset some of the added growth. Electricity is only a portion of our energy use profile.

The massive use of fossil fuels is the prime driver of human-caused climate change. The fraction of low-carbon energy is the same now that it was a few decades ago. Fossil fuels absolutely dominate our energy system at >80% share in total final energy consumption. Deforestation and other land-use change also contribute significantly, but our profligate use of fossil energy commits us to possibly catastrophic breakdowns of the climate system.

For a reasonable chance of keeping warming under 2℃ we can emit a further 865 billion tonnes of carbon dioxide (CO2). The climate commitments to reduce greenhouse gas emissions to 2030 are a first step, but recent analyses show they are not enough (Canadell and Smith, 2017 http://bit.ly/2jRNjIK).

The trouble with negative emissions (Peters and Anderson, 2016 http://science.sciencemag.org/content/354/6309/182).

The carbon budget framing might seem like a radical socio-political construct but it is in fact the best depiction of the physical reality of climate change. Cumulative emissions dictate the mitigation outcome — there is absolutely no doubt about this as the Intergovernmental Panel on Climate Change has shown.

The relationship between temperature change and cumulative CO2 emissions (in GtCO2) from 1870 to the year 2100. (IPCC 2014 Synthesis Report).

It is indeed the fact that many applications of fossil energy are growing exponentially that is the problem for climate stabilisationAir travel, road freight, shipping. Exponential global growth. Based on sound understanding of the physical reality, their fossil carbon use should be declining exponentially.

Three years to safeguard our climate (Figueres at al, 2017 http://go.nature.com/2t1gwUD).

All of this is sadly true and supremely distressing. Emissions from fossil fuels and land use change are 60% higher than they were in 1990 when scientists established most of what has been shown above with high certainty. Only the resolution of understanding has increased along with worsening climate impacts.

F/ Honesty

Finding out the reality of this situation is a profound experience. It is a state shift in human cognition, comparable to expansion of internet and global connectivity.

What I argue as citizen is to stop lying to ourselves. We have to obey the ancient laws of nature. No amount of economic growth, green shift, denial or activism can negotiate with physical constraints of the Earth System.

Our energy system will never be able to transform fast enough to meet the Paris Agreement stabilisation target without mad assumptions of building a carbon draw down device on this planet three times the size of the current oil industry, capable of sequestering greenhouse gases from ambient air on the order of what the natural sinks like the world ocean and the land biosphere are currently doing.

Roughly 10% of us generate almost as much greenhouse gas emissions from our lifestyle as the rest of the people on this planet. Finnish household consumption added to territorial emissions at >15 tons CO2 equivalent per capita will breach the global carbon budget for lower stabilisation targets within a decade. This is a pragmatic, but also a moral issue. Nobody can escape it, no matter how much one tries.

Finnish emissions reductions and negative emissions to meet Paris Agreement framing (Climate Analytics, 2016.)

We have to transform our diets, mobility systems, energy production and conspicuous consumption within a decade to limit risks of profound magnitude. The first decade should cut all of our carbon pollution in half. The next one should halve the portion left and so on. We have to put in policies which enchance natural sinks and research artificial new sinks.

This is not an obligation just to protect future generations, poor people or animals anymore. It is a threat to huge amounts of people living in the present moment on this finite planet in our vast universe.

We have to push through this mentally, keeping focus on what there is to be done with resolute purpose against nearly impossible odds. We have to be honest to ourselves, respectful of others and lead by example in everything we do.

Everybody can enter this space with relatively little sacrifice. It might be very painful in the beginning but truth is, after all, one of the most precious things this world has to offer.

Do what comes naturally, but always remember three things: how immediate this is, what kind of rates it is progressing at and what the scale of change needed must be in order to limit risk.

Advertisements




Fossil Carbon Safety Margin

11 02 2016

dr_susan_krumdieckA follower of DTM pointed out to me that one of my favourite sources of information, Susan Krumdieck, is now blogging……. here is her first effort on this new site, well worth the read.

by Dr. Susan P. Krumdieck, Professor in Mechanical Engineering, University of Canterbury

To me, as an engineer and a person with a family, the language of climate change action – for example setting “targets” for emissions – seems to be dangerously at odds with the science.

It seems obvious that the engineers of the world have a lot of work to do in changing everything that uses fossil fuel to use much less to no fossil fuel. However, this discussion is not really taking place.

The science is clear, so I wanted to look at how we might use the language of engineering to understand the way forward. The latest IPCC Fifth Assessment Report gives conclusive modelling and science observation that profoundly affects every person on the planet. However, the general population doesn’t seem to understand the message.
Everybody knows that it is not wise to exceed a safety limit, but we also know that we can probably get away with it. If the curve up ahead has a sign that says 65 km/hr, then I know it would be safe to take it at that speed. I also know I will “likely” make it through the curve if I do 70 or even 80 km/hr. Unsplash_Speed Sign

If I do speed through the curve, however, the risk of losing control, drifting into the wrong lane or not being able to manoeuvre to avoid any unexpected obstacles is higher. A failure limit in this situation would be the speed in the curve where a crash occurs. This could be 70 km/hr if there is any water or loose gravel on the road or if my tires don’t have good tread. There is also a speed, say 130 km/hr, at which it is likely that a person will crash going around the curve. In the best car on the best day with the best road conditions, there is a speed, say 250 km/hr, beyond which it is not physically possible for a car to stay in contact with the road and there will be a crash.

As a mechanical engineer, I can’t predict exactly at what speed a crash will occur. There are a lot of other factors. I also can’t predict exactly what will happen in the crash – whether it will involve rolling or hitting a tree or a fire – and I can’t predict whether you will live or what kind of injuries you will have. But – I can definitely recommend that you should not take that curve at more than 65 km/hr; this is the safety limit. I would call 130 km/hr the failure limit. I would call 250 km/hr suicide.

Now, let’s translate the climate science of atmospheric carbon dioxide (CO2) loading into terms of a safety limit. Dr James Hansen, former director of the US NASA Goddard Institute for Space Studies, explained to the Bush administration that 350 parts per million (ppm) was the safe limit for atmospheric CO2 concentration. If the accumulation of CO2 in the atmosphere got to this level, there would definitely be climate change.  Going over this level would be likely to cause warming that could do more than just change the weather; it could melt polar and glacial ice, acidify the oceans, cause changes in ocean currents, and change the climate in unpredictable ways. There would, however, be certainty that more frequent and more extreme storm events would occur. This safety limit of 350 ppm atmospheric CO2 has been exceeded. Current atmospheric CO2 concentration is over 400 ppm, and evidence is mounting of unprecedented warming and ocean acidification.

Limiting the thermal imbalance, or warming, to less than 2oC above the 1860-1880 decadal average would require cumulative CO2 emissions to be kept below a certain level. CO2 emissions are caused primarily by burning solid and liquid fossil fuels; other major sources include industrial production and deforestation. The cumulative carbon loading limit likely to result in 2oC global warming is 1000 gigatonnes of carbon (GtC) (with a probability of greater than 66%) burned since the 1860’s. Accounting for forcings from additional greenhouse gases lowers the failure limit to 790 GtC.

As of 2011, over 500 GtC of fossil fuel had been extracted and burned. Just like with our driving speed analogy, the exact risks and the exact failure mechanisms can’t be predicted. But, we are now beyond the safe level for fossil fuel use, and we are pushing toward a failure limit.  I hope this is clear. If today we stopped extracting and burning fossil carbon, we would still be above the safety limit for having no risk of climate changes, and we would watch over the next 100 years to see how the climate settled into a new warmer equilibrium. If we were to extract and burn another 300 GtC in fossil fuel, then the energy balance on the planet would likely result in a temperature rise of over 5oC and the changes to the climate would be catastrophic.

According to the International Energy Agency, in 2012, global CO2 emissions from all sources totalled about 31.5 GtCO2 per year. I will do the analysis using this number, but be aware that the 2015 emissions are expected to top 40 GtCO2. Note that emissions are discussed in terms of CO2 emitted, but production is in terms of the carbon in the fuel. Burning of one GtC of fossil fuel produces 3.7 GtCO2.  If we did not increase our consumption of fossil fuels any further above the current 11 GtC/yr, we would have less than 30 years until we have burned the amount of fossil carbon that is likely to cause catastrophic climate change. If all nations of the world actually had achieved reductions called for in the Kyoto Protocol of reducing emissions to 1990 levels (14 GtCO2) or lower, then at 3.8 GtC/yr of fuel production it would take 80 years to go past the failure limit. Which is more acceptable: exceeding the climate failure limit in about 30 years by limiting growth, or exceeding the failure limit in 80 years by dramatic reduction of fossil fuel production?

The only intellectually acceptable answer is neither. It is not acceptable to exceed the failure limit.

This is the point where we usually start arguing over the numbers. Should the failure limit be 800 GtC, or 1000 GtC?  What should we count in current emissions rates? We also start questioning what the catastrophes would be. Would the sea level rise be 2 m or 17 m? This is like arguing about taking a 65 km/hr curve at 130 or 200 km/hr, and whether the car would skid into a tree or roll into a ditch. Once you have exceeded a safety limit, and you are pushing into the range of increasingly likely failure, it is really not the time to be arguing about the details.  It is TIME TO SLOW DOWN!

For reference, the amount of proven reserves (oil, gas and coal) that the energy companies plan to extract and bring to the market is more than 2800 GtC. This figure does not include the Arctic oil that Shell and other oil companies are scouting for at the moment. The best engineering terms I can find to describe the extraction and burning of these reserves are: unthinkable, irresponsible, negligent, reprehensible, criminal, and suicidal.

How can I explain to my future granddaughter that we had to preserve our economy so we accepted policy which would breach the climate failure limit in 20-30 years? Why does 30 years seem like a long time in the future? Why has this rather clear bit of science not caused radical change?

In the next part of my blog, I will turn to the personal interaction with the data to see if it sheds any light.