Not so renewables

12 05 2018

Lifted from the excellent consciousness of sheep blog…..

For all practical purposes, solar energy (along with the wind, waves and tides that it drives) is unending.  Or, to put it more starkly, the odds of human beings being around to witness the day when solar energy no longer exists are staggeringly low.  The same, of course, cannot be said for the technologies that humans have developed to harvest this energy.  Indeed, the term “renewable” is among the greatest PR confidence tricks ever to be played upon an unsuspecting public, since solar panels and wind (and tidal and wave) turbines are very much a product of and dependent upon the fossil carbon economy.

Until now, this inconvenient truth has not been seen as a problem because our attention has been focussed upon the need to lower our dependency on fossil carbon fuels (coal, gas and oil).  In developed states like Germany, the UK and some of the states within the USA, wind and solar power have reduced the consumption of coal-generated electricity.  However, the impact of so-called renewables on global energy consumption remains negligible; accounting for less than three percent of total energy consumption worldwide.

A bigger problem may, however, be looming as a result of the lack of renewability of the renewable energy technologies themselves.  This is because solar panels and wind turbines do not follow the principles of the emerging “circular economy” model in which products are meant to be largely reusable, if not entirely renewable.

dead turbine

According to proponents of the circular economy model such as the Ellen MacArthur Foundation, the old fossil carbon economy is based on a linear process in which raw materials and energy are used to manufacture goods that are used and then discarded:


This approach may have been acceptable a century ago when there were less than two billion humans on the planet and when consumption was largely limited to food and clothing.  However, as the population increased, mass consumption took off and the impact of our activities on the environment became increasingly obvious, it became clear that there is no “away” where we can dispose of all of our unwanted waste.  The result was the shift to what was optimistically referred to as “recycling.”  However, most of what we call recycling today is actually “down-cycling” – converting relatively high value goods into relatively low value materials:


The problem with this approach is that the cost of separating small volumes of high-value materials (such as the gold in electrical circuits) is far higher than the cost of mining and refining them from scratch.  As a result, most recycling involves the recovery of large volumes of relatively low value materials like aluminium, steel and PET plastic.  The remainder of the waste stream ends up in landfill or, in the case of toxic and hazardous products in special storage facilities.

In a circular economy, products would be designed as far as possible to be reused, bring them closer to what might realistically be called “renewable” – allowing that the second law of thermodynamics traps us into producing some waste irrespective of what we do:


Contrary to the “renewables” label, it turns out that solar panels and wind turbines are anything but.  They are dependent upon raw resources and fossil carbon fuels in their manufacture and, until recently, little thought had been put into how to dispose of them at the end of their working lives.  Since both wind turbines and solar panels contain hazardous materials, they cannot simply be dumped in landfill.  However, their composition makes them – at least for now – unsuited to the down-cycling processes employed by commercial recycling facilities.

While solar panels have more hazardous materials than wind turbines, they may prove to be more amenable to down-cycling, since the process of dismantling a solar panel is at least technically possible.  With wind turbines it is a different matter, as Alex Reichmuth at Basler Zeitung notes:

“The German Wind Energy Association estimates that by 2023 around 14,000 MW of installed capacity will lose production, which is more than a quarter of German wind power capacity on land. How many plants actually go off the grid depends on the future electricity price. If this remains as deep as it is today, more plants could be shut down than newly built.

“However, the dismantling of wind turbines is not without its pitfalls. Today, old plants can still be sold with profit to other parts of the world, such as Eastern Europe, Russia or North Africa, where they will continue to be used. But the supply of well-maintained old facilities is rising and should soon surpass demand. Then only the dismantling of plants remains…

“Although the material of steel parts or copper pipes is very good recyclable. However, one problem is the rotor blades, which consist of a mixture of glass and carbon fibers and are glued with polyester resins.”

According to Reichmuth, even incinerating the rotor blades will cause problems because this will block the filters used in waste incineration plants to prevent toxins being discharged into the atmosphere.  However, the removal of the concrete and steel bases on which the turbines stand may prove to be the bigger economic headache:

“In a large plant, this base can quickly cover more than 3,000 tons of reinforced concrete and often reach more than twenty meters deep into the ground… The complete removal of the concrete base can quickly cost hundreds of thousands of euros.”

It is this economic issue that is likely to scupper attempts to develop a solar panel recycling industry.  In a recent paper in the International Journal of Photoenergy, D’Adamo et. al. conclude that while technically possible, current recycling processes are too expensive to be commercially viable.  As Nate Berg at Ensia explains:

“Part of the problem is that solar panels are complicated to recycle. They’re made of many materials, some hazardous, and assembled with adhesives and sealants that make breaking them apart challenging.

“’The longevity of these panels, the way they’re put together and how they make them make it inherently difficult to, to use a term, de-manufacture,’ says Mark Robards, director of special projects for ECS Refining, one of the largest electronics recyclers in the U.S. The panels are torn apart mechanically and broken down with acids to separate out the crystalline silicon, the semiconducting material used by most photovoltaic manufacturers. Heat systems are used to burn up the adhesives that bind them to their armatures, and acidic hydro-metallurgical systems are used to separate precious metals.

“Robards says nearly 75 percent of the material that gets separated out is glass, which is easy to recycle into new products but also has a very low resale value…”

Ironically, manufacturers’ efforts to drive down the price of solar panels make recycling them even more difficult by reducing the amount of expensive materials like silver and copper for which there is demand in recycling.

In Europe, regulations for the disposal of electrical waste were amended in 2012 to incorporate solar panels.  This means that the cost of disposing used solar panels rests with the manufacturer.  No such legislation exists elsewhere.  Nor is it clear whether those costs will be absorbed by the manufacturer or passed on to consumers.

Since only the oldest solar panels and wind turbines have to be disposed of at present, it might be that someone will figure out how to streamline the down-cycling process.  As far more systems come to the end of their life in the next decade, volume may help drive down costs.  However, we cannot bank on this.  The energy and materials required to dismantle these technologies may well prove more expensive than the value of the recovered materials.  As Kelly Pickerel at Solar Power World concedes:

“System owners recycle their panels in Europe because they are required to. Panel recycling in an unregulated market (like the United States) will only work if there is value in the product. The International Renewable Energy Agency (IRENA) detailed solar panel compositions in a 2016 report and found that c-Si modules contained about 76% glass, 10% polymer (encapsulant and backsheet), 8% aluminum (mostly the frame), 5% silicon, 1% copper and less than 0.1% of silver, tin and lead. As new technologies are adopted, the percentage of glass is expected to increase while aluminum and polymers will decrease, most likely because of dual-glass bifacial designs and frameless models.

“CIGS thin-film modules are composed of 89% glass, 7% aluminum and 4% polymers. The small percentages of semiconductors and other metals include copper, indium, gallium and selenium. CdTe thin-film is about 97% glass and 3% polymer, with other metals including nickel, zinc, tin and cadmium telluride.

“There’s just not a large amount of money-making salvageable parts on any type of solar panel. That’s why regulations have made such a difference in Europe.”

Ultimately, even down-cycling these supposedly “renewable” technologies will require state intervention.  Or, to put it another way, the public – either as consumers or taxpayers – are going to have to pick up the tab in the same way as they are currently subsidising fossil carbon fuels and nuclear.  The question that the proponents of these technologies dare not ask, is how far electorates are prepared to put up with these increasing costs before they turn to politicians out of the Donald Trump/ Malcolm Turnbull stable who promise the cheapest energy irrespective of its environmental impact.


As usual….. it’s the money stupid.

12 05 2018

How “Green” is Lithium?

17 04 2016

Originally published on the KITCO website in 2014….. interesting how this makes no mention of NiFe batteries, they are simply ‘under the radar’……


The market for battery electric and hybrid vehicles is growing slowly but steadily – from 0.4% in 2012 to 0.6% in 2013 and 0.7% in 2014 (year-to-date) in the United States alone.

Consumers buy these vehicles despite lower gas prices out of a growing conscience and concern for the environment. With this strong attraction to alternative energy, grows the demand for lithium, which is predominantly mined and imported from countries like Bolivia, Chile, China and Argentina.

Within the U.S., only Nevada, future home of Tesla’s new “Gigafactory” for batteries, produces lithium. However, the overall ecological impact of lithium ion batteries remains somewhat unclear, as does the “well-to-wheel” effort and cost to recharge such batteries.

To fully grasp the relevance and environmental impact of lithium it is important to note that lithium ion batteries are also found in most mobile phones, laptop computers, wearable electronics and almost anything else powered by rechargeable batteries.

Dozens of reports are available on the ecological impact of lithium mining. Unfortunately, many of them are influenced by the perspective of the organizations or authors releasing them. Reducing the available information to studies carried out by government bodies and research institutes around the world, a picture emerges nonetheless:

  • Elemental lithium is flammable and very reactive. In nature, lithium occurs in compounded forms such as lithium carbonate requiring chemical processing to be made usable.
  • Lithium is typically found in salt flats in areas where water is scarce. The mining process of lithium uses large amounts of water. Therefore, on top of water contamination as a result of its use, depletion or transportation costs are issues to be dealt with. Depletion results in less available water for local populations, flora and fauna.
  • Toxic chemicals are used for leaching purposes, chemicals requiring waste treatment. There are widespread concerns of improper handling and spills, like in other mining operations around the world.
  • The recovery rate of lithium ion batteries, even in first world countries, is in the single digit percent range. Most batteries end up in landfill.
  • In a 2013 report, the U.S. Environmental Protection Agency (EPA) points out that nickel and cobalt, both also used in the production of lithium ion batteries, represent significant additional environmental risks.

A 2012 study titled “Science for Environment Policy” published by the European Union compares lithium ion batteries to other types of batteries available (lead-acid, nickel-cadmium, nickel-metal-hydride and sodium sulphur). It concludes that lithium ion batteries have the largest impact on metal depletion, suggesting that recycling is complicated. Lithium ion batteries are also, together with nickel-metal-hydride batteries, the most energy consuming technologies using the equivalent of 1.6kg of oil per kg of battery produced. They also ranked the worst in greenhouse gas emissions with up to 12.5kg of CO2 equivalent emitted per kg of battery. The authors do point out that “…for a full understanding of life cycle impacts, further aspects of battery use need to be considered, such as length of usage, performance at different temperatures, and ability to discharge quickly.”

Technology will of course improve, lithium supplies will be sufficient for the foreseeable future, and recycling rates will climb. Other issues like the migration of aging cars and electronic devices to countries with less developed infrastructures will, however, remain. As will the reality of lithium mining and processing. It is therefore conceivable that new battery technologies (sea water batteries or the nano-flowcell, for instance) will gain more importance in years to come, as will hydrogen fuel cells.

We will report about the pros and cons of each of these alternatives in future issues of Tech Metals Insider.

Bodo Albrecht,

Energy storage for the Tasmanian Project

3 02 2016

I’ve done it.  I’ve ordered my Nickel Iron batteries and Victron charger/inverter. Once I’ve ironcoreascertained whether or not I can afford it, I will purchase a second Victron for future backup, fingers crossed the economy (and our funds!) hold out long enough.  The batteries, a 48V 200Ah bank, won’t get here from Russia for another six or so weeks, and when they do, I’ll post more about the installation.


Victron inverter/charger

What really got me started re posting this was the extraordinary episode of Catalyst aired on ABC TV last night….

Anyone watching this will have been totally taken over by techno utopianism of the highest quality.  Dr Jonica Newby is a veterinarian, and unfortunately doesn’t seem to know the difference between power and energy, but maybe I’m just splitting hairs….. it was nonetheless frustrating to constantly hear battery banks rated in kW rather than kWh, big difference….

The “we’ll be saved by these batteries” gushing coming from everyone’s mouths in this show was only interrupted for a few seconds when one commentator expressed his doubt over the financial viability of the very first Tesla power wall installed in Australia.  He asked how this was remotely viable when the payback was 23 years, and the equipment was only warranted for 10? Which was swiftly glossed over for the remaining 25 minutes and never mentioned again…..

Worse, the evangelical fervour used to extol the virtues of Lithium Ion batteries, a technology that I am certain will disappoint a lot of owners in the future, bordered on religion……  think back to how long batteries in your laptops and cell phones last, and wonder how long before all that stuff ends up on landfill.

From Computer World:

Dell plans to recycle however many of the 4.1 million recalled batteries that customers turn in (see Dell battery recall not likely to have big environmental impact), but what happens to the other 2 billion lithium ion batteries which will be sold this year? Most will last for 300 to 500 full recharges (one to three years of use) before failing and ending up in your local municipal landfill or incinerator.

Europeans have a dimmer view of landfilling lithium ion batteries. “There is always potential contamination to water because they contain metals,” says Daniel Cheret, general manager at Belgium-based Umicore Recycling Solutions. The bigger issue is a moral one: the products have a recycling value, so throwing away 2 billion batteries a year is just plain wasteful – especially when so many American landfills are running out of space. “It’s a pity to landfill this material that you could recover,” Charet says. He estimates that between 8,000 and 9,000 tons of cobalt is used in the manufacture of lithium ion batteries each year. Each battery contains 10 to 13% cobalt by weight. Umicore recyles all four metals used in lithium ion batteries.

The reason why more lithium ion batteries aren’t recycled boils down to simple economics: the scrap value of batteries doesn’t amount to much – perhaps $100 per ton, Cheret says. In contrast, the cost of collecting, sorting and shipping used batteries to a recycler exceeds the scrap value, so batteries tend to be thrown away. Unfortunately, the market does not factor in the social cost of disposal, nor does it factor in the fact that recycling metals such as cobalt has a much lower economic and environmental cost than mining raw materials. So we throw them away by the millions.

To be fair, Professor Thomas Maschmeyer also introduced zinc bromide battery technology to the show, and it sounds impressive, with very fast charging times, which by the way is irrelevant to home battery charging. Amusingly, our veterinarian presenter had never heard of gel cells and looked mightily impressed with that too.  It’s easy to be impressed with technology you’re not familiar with, or don’t understand I guess….. and a timeline of 10 or 20 years was mentioned, as if we actually have 10 or 20 years to solve our climate and energy predicaments.

As was to be expected, the main theme of the show was all about how much money could be made from this, not how it was going to save us from climate change or anything else important.  I could not stop laughing when, poised over a computer monitor, Josh Byrne of Gardening Australia fame makes five cents from exporting battery power to his electricity supplier…… what a waste of batteries. How anyone can think that shortening the life of one’s battery bank for five cents is worthwhile truly staggers me. Especially when the service provider then sells it to his neighbours for four times that much!

To his credit, I hasten to add, Josh Byrne has built a 10 star energy efficient house which, powered by just 3kW (when just about everyone these days installs five…) appears to be managing almost as well as we used to in Queensland. I think a program devoted to this aspect of his energy management would be far more useful than the one being discussed at the moment…

Josh House 3D render

Josh’s house project

There was, as usual, much talk about how we could go fossil fuel free, without any acknowledgement whatsoever that all the stuff that goes into these magic boxes of tricks have to be mined, refined, shipped, manufactured, and installed, using….. fossil fuels of course!!  Nor was there any mention of where the money to make all this stuff would come from.

Fascinatingly, the ‘big three’ electricity suppliers in Australia are getting in on the act. Why they would do this when they are constantly expressing their anti renewables positions is puzzling.  Could it be more ‘we’re greener than thou’?

I remain totally baffled by this race to the bottom.


I have just been pointed to this paper written by Peter J. DeMar, Battery Research and Testing, Inc. Oswego, NY, USA

They actually managed to revive 85+ year old NiFe batteries to close to their original capacity, even though most of them had been abused beyond belief….. they’re going to keep them going for another fifteen years, just to show if Edison’s original claim that they would last 100 years isn’t mere marketing…..

They concluded…….:

This find of these old Thomas Edison Nickel-Iron cells has been quite an education for us at Battery Research and Testing, as our work for the past 29 years has been primarily with lead acid and some Nickel-Cadmium, but with nothing of the age of these cells. In fact the oldest lead acid cells that we have load tested and that were still functional were old Exide Manchex strings that were 42 years old, and it appears that the only existing lead acid cells that might be able to be functional at 40 years of age are the Bell developed round cells for Telecom applications.

What we have learned has opened up our minds to explore possibilities for this design long life design cell. It would sure seem that any site that has a requirement for a long life battery that will tolerate abusive conditions would consider the total life costs of these type cells and see which works out to be the most cost effective.


The Sixth Great Extinction

6 10 2014

When I first read that in the past 40 years the world has lost over 50% its vertebrate wildlife (mammals, birds, reptiles, amphibians and fish)….  I was dumbstruck.  What, already?  Isn’t this sixth extinction just starting?  Surely this has to be the moment at which any thinking person should stop and wonder what on Earth are we doing……?  If such news fail to inform us that everything we are doing is wrong, and that the way we live needs revolutionary change, it’s hard to imagine what else could….

The speed of destruction, George Monbiot recently wrote, “exceeds even that of the first settlement of the Americas, 14,000 years ago, when an entire hemisphere’s ecology was transformed through a firestorm of extinction within a few dozen generations, in which the majority of large vertebrate species disappeared.”  George then goes on to say:

Many people blame this process on human population growth, and there’s no doubt that it has been a factor. But two other trends have developed even faster and further. The first is the rise in consumption; the second is amplification by technology. Every year, new pesticides, new fishing technologies, new mining methods, new techniques for processing trees are developed. We are waging an increasingly asymmetric war against the living world.

But why are we at war? In the rich nations, which commission much of this destruction through imports, most of our consumption has nothing to do with meeting human needs.

This is what hits me harder than anything: the disproportion between what we lose and what we gain. Economic growth in a country whose primary and secondary needs have already been met means developing ever more useless stuff to meet ever fainter desires.

Rubbish dumped on the tundra outside llulissat in Greenland with icebergs behind from the Sermeq Kujullaq or llulissat Ice fjord. The Ilulissat ice fjord is a Unesco world heritage site

Greenland rubbish dump near the llulissat Ice fjord – a Unesco world heritage site

The whole consumption thing is like a funnel to landfill.  Input thousands of tonnes of steel, copper, aluminium, gold even, plastic, you name it, turn it into meaningless crap that’s used a few times, then toss it in the bin ready to be picked up by a diesel eating monster that takes it to the tip.  Hedonism at best.  Total insanity, for sure.  And we call it progress, and when I dare suggest that it must end, and surely, will end, I get comments like “were f*cked”!  Really……?  People believe that if their ability to drive their SUV to the corner shop to buy new batteries for their latest toys, their lives will end?  Is that not pure insanity?

Not even isolated places like Greenland are immune to this madness.  I’m starting to think that not one square inch of this planet has been altered by us.

George Monbiot describes this senseless way of life well with…:

What and whom is this growth for?

It’s for the people who run or own the banks, the hedge funds, the mining companies, the advertising firms, the lobbying companies, the weapons manufacturers, the buy-to-let portfolios, the office blocks, the country estates, the offshore accounts. The rest of us are induced to regard it as necessary and desirable through a system of marketing and framing so intensive and all-pervasive that it amounts to brainwashing.

A system that makes us less happy, less secure, that narrows and impoverishes our lives, is presented as the only possible answer to our problems. There is no alternative – we must keep marching over the cliff. Anyone who challenges it is either ignored or excoriated.

That’s us I suppose……  the fringe dwellers.