The Make Believe Future

6 02 2020

Put simply, there is not enough Planet Earth left

for us to grow our way to sustainability

Another brilliant post from Tim at Consciousness of Sheep…

US President John F. Kennedy began the political fad of setting targets for the future US President John F. Kennedy began the political fad of setting targets for the future when, on 25 May 1961, he persuaded the Congress to agree to the goal of landing men on the moon by the end of the decade. On 12 September 1962 he made his more famous public speech at Rice University:

“We choose to go to the moon. We choose to go to the moon in this decade and do the other things, not because they are easy, but because they are hard, because that goal will serve to organize and measure the best of our energies and skills, because that challenge is one that we are willing to accept, one we are unwilling to postpone, and one which we intend to win…”

Notice that Kennedy referred to going to the moon as hard; not once did he use the word “impossible.” Even in 1962, all of the technologies required already existed. For sure they needed refining and developing. Certainly there would be hardships – including several tragic deaths – along the way. But success largely depended upon the political, organisational and economic requirements of the project rather than the creation of novel technologies.

Although largely a Cold War project, the moon landings were widely viewed at the time as a stepping stone on humanity’s journey of discovery to the stars. In hindsight, the years 1969-72 marked the apex of human progress. The oil shocks and economic crises of the 1970s removed the optimism of the previous two decades. Humans were never again to venture out beyond a low Earth orbit. The new space technologies and energy sources that might have bridged the enormous distances between us and our nearest celestial neighbours failed to put in an appearance. Closer to home, other “leading edge” technologies such as commercial supersonic flight were also being mothballed – only the Concorde, heavily subsidised by British and French taxpayers, continued to ferry the rich and famous across the Atlantic.

We have been on a downward trajectory ever since. During the boom years 1953-73, as the economies of the developed and developing states made the switch from coal to oil, energy per capita rose exponentially alongside oil production. Had it not been for the 1973 OPEC embargo, global oil production might have managed a couple more years of exponential growth before the inevitable slowdown began. As it was, 1973 – the year after the final moon landing – marks the point at which energy per capita across the developed economies went into reverse. This sounds technical, but the consequence was that productivity (essentially using more energy or using energy more efficiently to generate more economic value) began to slow. And since productivity growth is what allows wage growth, wages began to fall too. The wage-price inflationary spiral of the 1970s – exacerbated by state currency-printing and capital control policies – was the result of a battle between capital and organised labour over the relative shares of falling productivity growth.

John Michael Greer described the practical consequences when he pointed to the difference in living standards between a semi-skilled manual worker in the 1970s and a semi-skilled worker of today. In those days, a single worker on the average semi-skilled wage could afford to buy a house, support a family, run a car and enjoy annual holidays. Today a single semi-skilled worker would be lucky to avoid homelessness. The consequence of our now falling energy per capita is that productivity has ceased entirely. We now face a series of linked crises in the economy, environment and energy which severely limit our scope for action. Wages in the developed economies have been stagnant since the financial crash in 2008. Wages in the emerging market economies are now also slowing. Outside a handful of niche industries like tech and pharmaceuticals – which survive on the back of huge state subsidies – investment has switched away from technology into a series of derivative financial instruments that have no practical value and add nothing to economic development.

Even things that were once hard, but possible – like landing people on the moon – are now beyond us. But John F. Kennedy’s words continue to echo down the decades to reach the ears of contemporary politicians who mistakenly believe that we only need to set a goal and smart people somewhere else will make it happen. So it is that our political leaders have committed to decarbonising the economy by 2050 despite – unlike the Apollo Project – several of the required technologies and the resources to construct them only existing in the pages of science fiction novels.

More recently, the Prime Minister of the (increasingly un-) United Kingdom – a man who studied classics and, apparently is clueless about climate change – has decided to bring forward to 2035 the ban on new internal combustion engine cars and vans. Worse still, and to the horror of motoring organisations, vehicle manufacturers and grid engineers, he has decided to include hybrid vehicles in the ban. On the same day – and also in response to government climate commitments – the UK air industry announced plans to become “net zero carbon” by 2050. This, apparently, is to be achieved using yet-to-be-invented lean-burn engines which use yet-to-be-invented artificial hydrocarbon fuels manufactured by combining hydrogen with carbon dioxide sucked out of the air.

At least electric cars actually exist. The infrastructure required to make the switch is an altogether different matter. As Will Bedingfield at Wired warned last month:

“[A] spectre is haunting the UK’s emissions targets – the spectre of nuclear retirement… By the early 2030s, just one of the UK’s seven nuclear power stations will be operational. Over the last few years, plans to construct three new power stations – Hitachi’s Wylfa Newydd nuclear plants on Anglesey in Wales and Oldbury in Gloucestershire, and Toshiba’s Moorside project in Cumbria – which together could have met 15 per cent of the UK’s future electricity demands, have been scrapped.”

Meanwhile, efforts to fill the gap with non-renewable renewable energy-harvesting technologies have stalled, as Phillip Inman at the Guardian explains:

“Britain’s green economy has shrunk since 2014, heightening concerns that the government will miss targets to cut greenhouse gas emissions by the middle of the decade.

“The number of people employed in the “low carbon and renewable energy economy” declined by more than 11,000 to 235,900 between 2014 and 2018, according to the Office for National Statistics (ONS). Green businesses fared little better, seeing their numbers drop from an estimated 93,500 to 88,500 over the same four-year period.”

There are some big offshore wind projects still to come online, but without government subsidies, these may be the last of their kind. In any case, they provide nothing like the generating capacity which will be lost as coal and nuclear plants are decommissioned.

The absolute numbers also hide the technical issues around intermittency and grid frequency which resulted in a nationwide blackout in August last year. National Grid had been relying on combined cycle gas turbine plants, which can rapidly increase and decrease production, to iron out the intermittent generation from wind and solar. However, as the percentage of renewable energy fed into the grid passes two-thirds, it appears that this solution is no longer sufficient. The temporary – and probably unsustainable – fix for this is to pay for gas power plants just to keep the turbines spinning even if the electricity generated is not needed. As Nina Chestney and Noor Zainab Hussain at Reuters report:

“National Grid’s said on Wednesday it had agreed contracts with five parties worth 328 million pounds ($431 million) over a six-year period for services to manage the stability of its electricity system in Britain…

“The key service to be provided is what is known as ‘inertia’ on the grid, which helps to keep the electricity system running at the right frequency… Under the new approach, National Grid said inertia will be achieved without having to provide electricity. This will allow more renewable generation to operate and ensure system stability at lower costs.”

The “lower costs” refers to the difference between this approach and paying for expensive storage. Paying someone to provide additional inertia is not cheaper than not having to do it at all. Even so, inertia balancing is just one of a plethora of the headaches currently stressing grid managers and engineers. As James Sillars at Sky reports:

“The UK’s electricity network needs urgent investment to prepare for an electric vehicle future or risk blackouts, a report for the government has warned.

“The Electric Vehicles Energy Task Force, commissioned by ministers, urges a ‘smart charging’ approach – utilising times of weak demand – along with a power network able to adapt to shifts in electricity use.”

Nor, apparently, is electric vehicle infrastructure easily constructed by energy engineering companies tasked with keeping an increasingly old and frail grid infrastructure operating. When it comes to public charging facilities, delays of several years are not uncommon. As Peter Campbell and Nathalie Thomas at the Financial Times reported last month:

“Britain’s electricity network is ‘not fit for purpose’ and is stifling the rollout of electric vehicle chargers along key trunk roads in the UK, say motorway services operators.

“Electric vehicles currently account for only about 2 per cent of sales in the UK, but a steep rise is expected during the next two years as carmakers strive to meet new stringent CO2 targets and as the country gears up to hit its target of net zero carbon emissions by 2050.

“Motorway service areas are preparing to increase their charging provisions to meet the jump in demand. But Simon Turl, chairman of operator RoadChef, said his company’s attempts to add charging services have been held up by distribution network operators (DNOs), which own local electricity grids and demand millions of pounds and waits of up to three years, to install new power lines.”

Electric vehicles are, of course, merely one component of the fantasy zero-carbon future. The wider task is truly staggering, as another Sky News report explains:

“A mass recruitment drive involving hundreds of thousands of people is needed by the energy sector if the UK’s 2050 target for zero net emissions is to be met, a new report claims.

“The National Grid says 400,000 skilled tradespeople, engineers and other specialists are required across the industry, with at least 117,000 of them needed in the next 10 years.

“However the report says the sector is facing stiff competition for staff from other areas such as tech and finance, while a looming retirement crunch and not enough young people choosing to study science, technology, engineering and maths, are making matters worse.”

As I pointed out last month:

“An energy transition which requires this number of new skilled workers is simply not going to happen. Nor is the UK in a position to easily afford the £3.75bn per year additional wage bill for the 117,000 new workers in the 2020s; still less the £12.8bn annual wage bill in the 2030s and 2040s. In the event that government continues adding the cost of upgrading the energy grid onto household bills, this amounts to an annual increase of £667 for every household in the UK. At a time when household purchasing power – still lower in real terms than in 2008 – has fallen to the point that tens of thousands of retail jobs are being lost, it is doubtful that the economy can afford the additional cost without being plunged into recession.”

This is where our tendency to believe that since economists are on a par with astrologers and homeopaths, the economy itself doesn’t matter. However – as Henry Ford discovered in the early days of oil-powered vehicles – unless the workers can afford the technologies, the energy revolution simply isn’t going to happen. And at present, American cities have joined the third world while urban British workers shiver in the dark, as a new report from The Prince’s Trust explains:

“The research suggests that young people are skipping meals, selling items that are important to them and not putting the heating on to save money. The research reveals a gap between the confidence levels of the UK’s most and least disadvantaged young people, with those from disadvantaged backgrounds feeling less hopeful about their future prospects…

“The research shows that one in three young people aged 18 and over with an overdraft facility are regularly using it, and one in five (18 per cent) go further into their overdraft each month. Over a fifth (22 per cent) of young people in rented accommodation struggle to pay their rent. Borrowing from family and friends has also been a necessity for some, with one in four young people (26 per cent) admitting they have done this in the past year. However, six in ten young people (62 per cent) are embarrassed to ask others for financial support.”

When John F. Kennedy sold the Apollo Project to the American people, he had the luxury of an expanding economy in which all but the very poorest were experiencing rising standards of living. The energy, materials, technology and the surplus value needed for the moon shot were all available in abundance. None of those prerequisites is true of the proposed energy transition today. The energy cost of energy has risen beyond the point that developed economies can continue to grow; and is fast reaching the point at which the emerging economies which have provided at least some growth for the past decade are beginning to stall. Whereas the 1960s USA had access to the raw resources of a largely untapped planet, today we are squeezing the last accessible dregs out of our exhausted Earth. As a recent letter from scientists at the Natural History Museum warned:

“To replace all UK-based vehicles today with electric vehicles (not including the LGV and HGV fleets), assuming they use the most resource-frugal next-generation NMC 811 batteries, would take 207,900 tonnes cobalt, 264,600 tonnes of lithium carbonate (LCE), at least 7,200 tonnes of neodymium and dysprosium, in addition to 2,362,500 tonnes copper. This represents, just under two times the total annual world cobalt production, nearly the entire world production of neodymium, three quarters the world’s lithium production and at least half of the world’s copper production during 2018. Even ensuring the annual supply of electric vehicles only, from 2035 as pledged, will require the UK to annually import the equivalent of the entire annual cobalt needs of European industry…

“There are serious implications for the electrical power generation in the UK needed to recharge these vehicles. Using figures published for current EVs (Nissan Leaf, Renault Zoe), driving 252.5 billion miles uses at least 63 TWh of power. This will demand a 20% increase in UK generated electricity.

“Challenges of using ‘green energy’ to power electric cars: If wind farms are chosen to generate the power for the projected two billion cars at UK average usage, this requires the equivalent of a further years’ worth of total global copper supply and 10 years’ worth of global neodymium and dysprosium production to build the windfarms.

“Solar power is also problematic – it is also resource hungry; all the photovoltaic systems currently on the market are reliant on one or more raw materials classed as “critical” or “near critical” by the EU and/ or US Department of Energy (high purity silicon, indium, tellurium, gallium) because of their natural scarcity or their recovery as minor-by-products of other commodities. With a capacity factor of only ~10%, the UK would require ~72GW of photovoltaic input to fuel the EV fleet; over five times the current installed capacity. If CdTe-type photovoltaic power is used, that would consume over thirty years of current annual tellurium supply.

“Both these wind turbine and solar generation options for the added electrical power generation capacity have substantial demands for steel, aluminium, cement and glass.”

Put simply, there is not enough Planet Earth left for us to grow our way to sustainability. And even if there was, the environmental damage of constructing an entirely new infrastructure would likely destroy what remains of the human habitat anyway. In any case, without further economic growth and in the absence of a radical redistribution of wealth of a kind that would have made Lenin blush, it is hard to imagine increasingly impoverished populations voting for ever more expensive energy bills. There is a reason why Luddites like Trump and Morrison are currently getting away with dismantling environmental laws and regulations – and they are the relatively benign face of a nationalist populism that will get a lot worse if current levels of inequality continue to grow.

The challenge of a zero-carbon civilisation only appears realistic when one of its elements is viewed in isolation. Once it is seen in its complete energetic, material, technological, environmental, economic and political dimensions it is an obvious fiction. There is simply no way in which we get to continue with business as usual simply by swapping one energy technology for another. And attempts at channelling the ghost of John F. Kennedy will not change this.

A question too obvious…

25 04 2018

Every now and again someone poses a question so obvious that you wonder why nobody asked it before.  When that happens, it is usually because it reveals an unconscious narrative that you have been following.  It is precisely because it jars with what you thought you knew that it is so unsettling.  And, of course, most people will seek some means of avoiding the ramifications of the question; such as questioning the motives of the person asking it.

So it is that Time Magazine “Hero of the Environment,” Michael Shellenberger poses just such an apparently innocuous question:

“If solar and wind are so cheap, why are they making electricity so expensive?”

Image result for grid renewables

There are clearly merits to this question.  The spiralling cost of electricity played a major role in the recent Australian election.  In Britain, even the neoliberal Tory government has been obliged to introduce legislation to cap energy prices; while the Labour opposition threatens to dispense with the private energy market altogether.  Across the USA prices are spiralling ever upward, making Trump’s pro-fossil fuel stance popular for large numbers of Americans:

“Over the last year, the media have published story after story after story about the declining price of solar panels and wind turbines.  People who read these stories are understandably left with the impression that the more solar and wind energy we produce, the lower electricity prices will become.

“And yet that’s not what’s happening. In fact, it’s the opposite.

“Between 2009 and 2017, the price of solar per watt declined by 75 percent while the price of wind declined by 50 percent.  And yet — during the same period — the price of electricity in places that deployed significant quantities of renewables increased dramatically.”

According to Shellenberger, countries and states that have led the green energy charge have also led the charge to higher electricity prices.  Denmark has seen a 100 percent price increase, Germany 51 percent and California 24 percent.  At face value, these electricity price increases flatly contradict the narrative that we – and especially our governments – have been sold: that ever cheaper renewable energy technologies are the solution to our energy security and climate change problems.

Since the price of coal and gas has also fallen, we cannot point to fossil fuels as the cause of increasing energy prices.  That is, rushing to replace “dirty” fossil fuel power stations with even more “cheap” wind turbines and solar panels is unlikely to halt the rise in energy prices.

This brings us back to the apparently cheap renewables.  Could there be something about them that has caused prices to rise?

Once again, challenging the narrative helps expose the problem.  As with the term “renewable” itself, the problem is with our failure to examine the whole picture.  While to all intents and purposes, sunlight and wind are inexhaustible sources of energy, the technologies that harness and convert that energy into useful electrical energy are not – both are highly dependent on oil-based global supply chains.  In the same way, while the cost of manufacturing and deploying wind turbines and solar panels has dropped sharply in the past 20 years, the opposite is true of the deliverable electricity they generate.

For all the talk about this or that organisation, city or country generating 100 percent of its electricity from renewables, the reality is that the majority of their (and our) electricity is generated from gas together with smaller volumes of nuclear and coal.  Just because a company like Apple or Google pays extra for us to pretendthat it doesn’t use fossil fuels does not change the reality that without fossil fuels those companies would be out of business.  And that isn’t going to change unless someone can find a way of making the sun shine at night and the wind to blow 24/7/365.

The economic problem that Shellenberger points to is simply that the value of renewable electricity is in inverse proportion to its availability.  That is, when the wind isn’t blowing and the sun isn’t shining, additional electricity is at a premium.  When the sun is blazing and the wind is blowing on the other hand, there is often more electricity than is needed.  The result is that the value of that electricity falls.  In both circumstances, however, the monetary costs fall on the fossil fuel and nuclear generators that provide baseload and back-up capacity.  When there is insufficient renewable electricity, they have to be paid more to increase their output.  When there is too much renewable electricity, they have to be paid more to curtail their output.  Those additional monetary costs are then added to the energy bills of their consumers.

In these circumstances, the falling cost of the renewable electricity technology is almost irrelevant.  According to Shellenberger:

“Part of the problem is that many reporters don’t understand electricity. They think of electricity as a commodity when it is, in fact, a service — like eating at a restaurant.

“The price we pay for the luxury of eating out isn’t just the cost of the ingredients most of which, like solar panels and wind turbines, has declined for decades.

“Rather, the price of services like eating out and electricity reflect the cost not only of a few ingredients but also their preparation and delivery.”

Even if the price of renewable technologies fell to zero, the cost of supplying electricity to end users would continue to rise.  Indeed, paradoxically, if the cost fell to zero, the price would spiral out of control precisely because of the impact on the wider system required to move that renewable electricity from where it is generated to where and when it is required.  In short, and in the absence of cheap and reliable storage and back-up technologies that have yet to be invented, the more renewable electricity generating technologies we deploy, the higher our electricity bills are going to rise.

This may, of course, be considered (at least among the affluent liberal classes) to be a price worth paying to reduce our carbon emissions (although there is little evidence that this is happening).  But it has potentially explosive political consequences.  As the UK government’s energy policy reviewer, Dieter Helm pointed out:

“It is not particularly difficult to set out what an efficient energy system might look like which meets the twin objectives of the climate change targets and security of supply. There would, however, remain a binding constraint: the willingness and ability to pay for it. There have to be sufficient resources available, and there has in a democracy to be a majority who are both willing to pay and willing to force the population as a whole to pay. This constraint featured prominently in the last three general elections, and it has not gone away.” (My emphasis)

Energy poverty and discontent is a growing phenomenon across Western states, as stagnating real wages leave millions of families struggling to cover the cost of basics like food and energy that have risen in price far faster than official inflation.  This has already translated into the disruptive politics of Brexit, Donald Trump and the rise of the European far right and far left parties.  In acknowledging this constraint, Helm points to the true depths of our current trilemma – we have simultaneous crises in our environment, our energy and resource base and our economy.

Thus far, “solutions” put forward to address any one arm of the trilemma – economic growth, renewable energy, hydraulic fracturing – impact negatively on the other arms; ultimately rendering the policy undeliverable.  Until we can drop our illusory narratives, grasp the full implications of the trilemma, and begin to develop policy accordingly, like the rising price of supposedly cheaper renewable electricity, things can only go from bad to worse.

Less than the sum of its parts: Rethinking “all of the above” clean energy

6 06 2015

Well, this is different.  If you needed more proof of why I think going 100% renewables is pure fantasy, this new way of parsing the facts using Capacity Factor should convince you.  Sometimes, even the obvious takes time to become obvious!  Mind you, I can’t agree with “build wind not solar”, because some places have no wind and loads of solar (and vice versa).  In the end, renewables are best in standalone systems, and even then, will only ‘solve’ our energy problems for only as long as we have fossil fuels to work the system, and we can’t afford to burn any more.  We can’t even afford the financial system to pay for it, and certainly not the nuclear grid these guys at Brave New Climate believe in……

Originally published over at Brave New Climate.

Guest Post by John Morgan. John is Chief Scientist at a Sydney startup developing smart grid and grid scale energy storage technologies.  You can follow John on twitter at @JohnDPMorgan.

The fastest path to decarbonization would seem to be combining every kind of low carbon energy available – the so-called “all of the above” camp of clean energy advocacy.  The argument runs that different kinds of clean energy are complementary and we should build as much of each as we can manage.  This is not in fact the case, and I’ll show that a mix of wind and solar significantly decreases the total share of energy that all renewables can capture.  The “all of the above” approach to emissions reduction needs to be reconsidered.

In a recent essay Breakthrough Institute writers Jesse Jenkins and Alex Trembath have described a simple limit on the maximum contribution of wind and solar energy: it is increasingly difficult for the market share of variable renewable energy [VRE] sources to exceed their capacity factor.  For instance, if wind has a capacity factor of 35%, this says it is very difficult to increase wind to more than 35% of electrical energy.  Lets look at why this is so, and extend the principle to a mix of renewables.

The capacity factor (CF) is the fraction of ‘nameplate capacity’ (maximum output) a wind turbine or solar generator produces over time, due to variation in wind, or sunlight.  Wind might typically have a CF of 35%, solar a CF of 15% (and I’ll use these nominal values throughout).

Jesse and Alex’s “CF% = market share” rule arises because it marks the point in the build out of variable renewables at which the occasional full output of wind and solar generators exceeds the total demand on the grid.

At this point it gets very hard to add additional wind or solar.  If output exceeds demand, production must be curtailed, energy stored, or consumers incentivized to use the excess energy.  Curtailment is a direct economic loss to the generators. So is raising demand by lowering prices.  Energy storage is very expensive and for practical purposes technically unachievable at the scale required.  It also degrades the EROEI of these generators to unworkable levels.

Jesse and Alex make this argument in detail, backed up with real world data for fully connected grids (i.e. not limited by State boundaries), with necessary qualifications, and I urge you to read their essay.

The “CF% = market share” boundary is a real limit on growth of wind and solar.  Its not impossible to exceed it, just very difficult and expensive. Its an inflexion point; bit like peak oil, its where the easy growth ends.  And the difficulties are felt well before the threshold is crossed.  I’ve referred to this limit elsewhere as the “event horizon” of renewable energy.

So if wind is limited to say 35% of energy, and solar to 15%, can we add them together and achieve 50% share?  The Breakthrough authors seem to think so, writing that “this threshold indicates that wind and solar may be able to supply anywhere from a third to a half of all electricity needs”.  That would be a very considerable addition of low carbon energy.  But unfortunately this is not the case.

Here’s the problem with adding solar: it produces about half as much energy as wind for the same capacity.  And the capacity factor rule sets a limit on total variable renewable capacity.  So at the limit solar capacity is not additive to wind, it displaces wind, while producing less energy.  Any amount of solar lowers the share of energy that wind and solar together can acquire, and the optimal mix for decarbonization is all wind and no solar.

This is a general corollary to the capacity factor rule – adding lower capacity factor generation to the mix reduces the potential share of variable renewable energy.  It is the energy equivalent of Gresham’s Law – “Bad energy drives out good”.  Far from targeting a “mix of renewables”, we are better off targeting just the one with the highest capacity factor.  We should build wind and not solar.

You can see this dynamic in the following figure, which plots the limiting share of wind and solar energy (VRE) in the grid as a function of solar’s share of wind and solar capacity.  Adding solar capacity cannibalizes wind capacity, and reduces the total amount of low carbon energy that these sources can ultimately provide.  Solar is not additive to wind; its subtractive.

The situation becomes even clearer if we shift focus from installed capacity to energy delivered.  In the plot below, the x-axis now shows the fraction of wind and solar energy that is produced by solar.

Introducing solar energy into the mix causes a rapid drop in the maximum grid penetration of all variable renewable energy.  Wind alone could potentially achieve 35% of grid energy share.  But with 50% solar, the maximum share that wind and solar together can achieve is just 21%.

In other words, building out solar effectively robs us of a whole climate stabilization “wedge”.

It should be remarked that this capacity factor rule sets too optimistic a limit.  The Breakthrough writers cite estimates that only 55%-60% of grid energy could be replaced by variable sources, due to stability requirements.  This means VRE share will struggle to exceed 60% of capacity factor, and the limits described above will be reduced by that factor.  So while wind alone could achieve up to about 21% of all electricity, a 50-50 mix of solar and wind is practically limited to only 12%.

This is a lot to give away.

So long as we only have a small amount of solar and wind we can build as much of either as we like.  The limit only becomes apparent at higher penetration.  But this happens much more quickly if there’s a lot of solar in the mix.

There may be good reasons to build solar in the early stages of a clean energy expansion.  The rate of emissions reduction matters, and while supply chains are developing, building both solar and wind might help.  But if this trajectory is to continue we will need to shift resources to wind fairly early on, and allow solar capacity to decline.

This should prompt a rethink of the simplistic “all of the above” response to emissions reduction, and the popular notion that there should be a mix of renewables.  If it doesn’t even work for wind and solar, does it work anywhere at all?  Its time to pick some winners, and support for renewable energy at scale should increasingly favour wind over solar.

And we should also think about how to decarbonise the remaining eighty percent of the grid that variable renewables can’t touch.

Wind Blowing Nowhere

24 01 2015

I’ve just found this amazing post on Euan Mears’ excellent Energy Matters blog that clearly demonstrates, with real data, that anyone who believes renewables can run Business as Usual are just plain dreaming.

In much of Europe energy policy is being formulated by policymakers who assume that combining wind generation over large areas will flatten out the spikes and fill in the troughs and thereby allow wind to be “harnessed to provide reliable electricity” as the European Wind Energy Association tells them it will:

The wind does not blow continuously, yet there is little overall impact if the wind stops blowing somewhere – it is always blowing somewhere else. Thus, wind can be harnessed to provide reliable electricity even though the wind is not available 100% of the time at one particular site.

Here we will review whether this assumption is valid. We will do so by progressively combining hourly wind generation data for 2013 for nine countries in Western Europe downloaded from the excellent data base compiled by Paul-Frederik Bach, paying special attention to periods when “the wind stops blowing somewhere”. The nine countries are Belgium, the Czech Republic, Denmark, Finland, France, Ireland, Germany, Spain and the UK, which together cover a land area of 2.3 million square kilometers and extend over distances of 2,000 kilometers east-west and 4,000 kilometers north-south:

Figure 1:  The nine countries

We begin with Spain, Europe’s largest producer of wind power in 2013. Here is Spain’s hourly wind generation for the year. Four periods of low wind output are numbered for reference:

Figure 2:  Hourly wind generation, Spain, 2013

Now we will add Germany, Europe’s second-largest wind power producer in 2013. We find that Spanish low wind output period 4 was more than offset by a coincident German wind spike. Spanish low wind periods 1, 2 and 3, however, were not.

Figure 3:  Hourly wind generation, Spain + Germany, 2013

Now we add UK, the third largest producer in 2013. Wind generation in UK during periods 1, 2 and 3 was also minimal:

Figure 4:  Hourly wind generation, Spain + Germany + UK, 2013

As it was in France, the fourth largest producer:

Figure 5:  Hourly wind generation, Spain + Germany + UK + France, 2013

And also in the other five countries, which I’ve combined for convenience:

Figure 6:  Hourly wind generation, nine countries combined, 2013

Figure 7 is a blowup of the period between February 2 and 15, which covers low wind period 2. According to these results the wind died to a whisper all over Western Europe in the early hours of February 8th:

Figure 7: Wind generation, nine countries combined, February 2013

These results are, however, potentially misleading because of the large differences in output between the different countries. The wind could have been blowing in Finland and the Czech Republic but we wouldn’t see it in Figure 7 because the output from these countries is still swamped by the larger producers. To level the playing field I normalized the data by setting maximum 2013 wind generation to 100% and the minimum to 0% in each country, so that Germany, for example, scores 100% with 26,000MW output and 50% with 13,000MW while Finland scores 100% with only 222MW and 50% with only 111MW. Expressing generation as a percentage of maximum output gives us a reasonably good proxy for wind speed.

Replotting Figure 7 using these percentages yields the results shown in Figure 8 (the maximum theoretical output for the nine countries combined is 900%, incidentally). We find that the wind was in fact still blowing in Ireland during the low-wind period on February 8th, but usually at less than 50% of maximum.

Figure 8:  Percent of maximum wind generation, February 2013

But even Ireland was not blessed with much in the way of wind at the time of minimum output, which occurred at 5 am. Figure 10 plots the percentage-of-maximum values for the individual countries at 5 am on the map of Europe. If we assume that less than 5% signifies “no wind” there was at this time no wind over an area up to 1,000 km wide extending from Gibraltar at least to the northern tip of Denmark and probably as far north as the White Sea:

Figure 9:  Map of percent of maximum wind generation, February 2013

During this period the wind was clearly not blowing “somewhere else”, and there are other periods like it.

Combining wind generation from the nine countries has also not smoothed out the spikes. The final product looks just as spiky as the data from Spain we began with; the spikes have just shifted position:

Figure 10: Spain wind generation vs. combined generation in all nine countries, 2013 (scales adjusted for visual similarity)

Obviously combining wind generation in Western Europe is not going to provide the “reliable electricity” its backers claim it will. Integrating European wind into a European grid will in fact pose just as many problems as integrating UK wind into the UK grid or Scottish wind into the Scottish grid, but on a larger scale. We will take a brief look at this issue before concluding.

Integrating the combined wind output from the nine countries into a European grid  would not have posed any insurmountable difficulties in 2013 because wind was still a minor player, supplying only 8.8% of demand:

Figure 11: Wind generation vs. demand, nine countries combined

But integration becomes progressively more problematic at higher levels of wind penetration. I simulated higher levels by factoring up 2013 wind generation with the results shown on Figure 12, which plots the percentage of demand supplied by wind in the nine countries in each hourly period. Twenty percent wind penetration looks as if it might be achievable; forty percent doesn’t.

Figure 12:  Percent of hourly demand supplied by wind at different levels of wind penetration using 2013 data

Finally, many thanks to Hubert Flocard, who recently performed a parallel study and graciously gave Energy Matters permission to re-invent the wheel, plus a hat tip to Hugh Sharman for bringing Hubert’s work to our attention.

Where is the electric grid headed?

19 11 2014

Followers of this blog will know my enthusiasm for solar power as a silver bullet for our future energy predicaments has waned, and in particular, my love affair with grid tied solar is over.  I have also been doubting for quite some time that the future of the electric grid is secure, and have on occasions discussed stand alone solar power as a possibility for those of us who are aware of the coming dilemmas to stretch their energy horizon a little further and make the inevitable energy descent less painful.  Well, it seems, this theme is catching on, even making it to what I consider to be mainstream internet sources.

Recently, on the Climate Spectator website (an arm of Alan Kohler’s straight as a die Business Spectator financial website), an article titled “Solar wins! Zombie-grid a dead man walking” began with this paragraph:

The grid financial model will collapse within 10 years, as millions of Australian households flee for the new, disruptive and cheaper alternative. This change will be as big as the conversion from horse and cart to motor vehicle, film to digital camera and the typewriter to the laptop.

I nearly fell off my chair…… because let’s face it, if the collapse of the grid financial model is not soon followed by total collapse, I would eat my hat.  The reasons the author – Matthew Wright CEO of Beyond Zero Emissions – gives for this prediction are:

Modeling by Zero Emissions Australia shows that an ordinary, but all-electric, household using off-the-shelf efficient electric appliances could be off the grid for between $30,000-$40,000 today and $12,000-$20,000 in 2024.

This is based on the following representative example of electricity demand charted below for an all-electric five-person household in Melbourne.

Example: One year of average monthly demand for all electric household in Melbourne (5 occupants).



Source: Powershop, Zero Emissions Australia

Households can install and size their off-grid solar system now and change their redundant gas appliances (stove top, gas hot water and gas heating) over later. Or, given that the price is going to be right to leave sometime in the next 10 years, they can start their electric conversion journey now. Ditching gas and the power grid starts by installing an oversized solar system (11-15kW) on the north, east, west and possibly even flat-racked. Indeed you can place it on the south face which captures diffuse light when its cloudy – which contributes over half of all generation during the middle of winter (more on that in another article).

10kW PV System

10kW PV System

I’m frankly AGHAST!  I wonder if Matthew has even ever seen a 10kW PV system (let alone a 15 kW one…)  One of my neighbours has such a large system on his roof, installed before Energex put their foot down and limited grid tied systems to 5kW, and it looks like the photo opposite.  Bear in mind this house was designed for solar to begin with, faces true North, built with a skillion roof, and is bigger than our place by some margin at 250m².  And yet, its roof is completely covered….  Try that on a standard McMansion hipped roof….

Consumption is consumption, whether it’s PVs or whatever, and at least KC exports 90% or more of what power his system produces, he doesn’t actually need it to run his house!  Any household that needs 11 to 15kW of solar has a serious efficiency problem that needs to be solved before spending “$30,000-$40,000“, and if Matthew believes such schemes are ways of dealing with Carbon emissions, he is seriously mistaken.

Then, he pushes heat pumps for water heating rather than solar……  I thought the title of this piece was “solar wins!”?  Why buy an electricity consuming gadget, even if very efficient, when there are alternatives that do not?  Matthew doesn’t even seem to understand the physics of energy with the statement “achieves Coefficient of Performance (COP) of ~4.0 or (400% efficient, yes that is possible)”  NO Matthew, 400% efficiency is NOT possible, COP is not efficiency…..  And you wonder why I have so many doubts about BZE’s green wet dream of 100% renewables for Australia?

But back to our grid problems.

“Industrialized countries face a future of increasingly severe blackouts, a new study warns, due to the proliferation of extreme weather events, the transition to unconventional fossil fuels, and fragile national grids that cannot keep up with rocketing energy demand” says Motherboard….

The paper published this September in Routledge’s Journal of Urban Technology points out that 50 major power outages have afflicted 26 countries in the last decade alone, driven by rapid population growth in concentrated urban areas and a rampant “addiction” to high-consumption lifestyles dependent on electric appliances.

Study authors Hugh Byrd and Prof Steve Matthewman of Auckland University, a sociologist of disaster risk, argue that this escalating demand is occurring precisely “as our resources become constrained due to the depletion of fossil fuel, a lack of renewable energy sources, peak oil and climate change.”

Blackouts, they warn, are “dress rehearsals for the future in which they will appear with greater frequency and severity,” they find. “We predict increasing numbers of blackouts due to growing uncertainties in supply and growing certainties in demand.”

The relentless growth in demand, 1300 percent from 1940 to 2001 in the US (and likely much the same here), is the obvious culprit with aircon requirements at the forefront.  And let’s not forget the coming new fad…..

Adding further pressure to future electricity demand is the rise of the electric vehicle, driven by efforts to mitigate climate change. Byrd and Matthewman note that in higher-income regions, switching entirely to electric cars would increase electricity demand by 15-40 percent. Even if we replaced all our petrol-guzzling cars with “highly efficient” electric cars, the new models would still consume about “twice as much electricity as residential and commercial air-conditioning combined.”

And as climate change brings warmer Summers and more intense rains to regions of North America and Australia, people resort to more and more air-conditioning to stay cool, another climate positive feedback loop maybe?

Worldwide, overall energy demand for air-conditioning “is projected to rise rapidly to 2100,” to as much as 40 times greater than it was in 2000. New York alone will need 40 percent more power in the next 15 years partly because the city will contain a million more people, aided of course by electrical appliances, elevators, and air-conditioning.

Yeah right….  like that‘s going to happen, with a failing grid model….?  The article even goes further saying “But in a slow-growth global economy hell-bent on austerity, the prospects for large government investments in grid resilience look slim. According to the global insurance company Allianz in an extensive report on blackout risks in the US and Europe, “privatization and liberalization” have contributed to “missing incentives to invest in reliable, and therefore well maintained, infrastructures.””

A new report by the French multinational technology firm CapGemini warns of a heightened risk of blackouts across Europe this winter due to the shut-down of gas-fired plants, competition from cheap US coal, and the big shift to wind and solar. Ironically, electricity surpluses from renewables have led to a fall in power prices and crippled fossil fuel utilities, which in turn has reduced the “electricity system’s margin to meet peak demand in specific conditions such as cold, dark and windless days,” according to the report.

So it seems the grid’s financial model in Europe is in just as deep a hole as Australia’s.  The more I think of the terminology ‘disruptive’ used to describe renewables, the more I think it’s accurate!  The increasing shift to renewable energy sources has, it appears, exacerbated the blackout risk not because they are bad at generating power, but because of the difficulty in integrating volatile, decentralized energy sources into old power grids designed half a century ago around the old fossil fuel model.  Something the BZE people just don’t seem to understand.

Take this for example:  Our friend Matthew Wright is at it again with “Imagine 1000 gigafactories – that’s what’s coming”

No doubt you have all heard of El on Musk, the CEO of Tesla, the electric car company.  “Tesla is everyone’s favourite motor car company, a darling of investors large and small. Rev heads who have driven a Tesla give it the nod” writes Matthew.  Well of course they’d give it the nod…. just like anyone who drives a brand new Range Rover would give that car the nod; after all, after driving our old bombs around, I’m sure I would be mighty impressed with a car worth some $70,000 too……

Musk’s gigafactories will be the world’s largest lithium-ion battery factory, and is expected to generate as much renewable energy as it needs to operate — and then some.  But is that thin line at the bottom right of the photo a road, or a mighty big cable going to Bolivia’s Lithium mines…?

Here’s the first problem with celebratory headlines over renewables: record renewable energy growth hasn’t stopped record fossil fuel burning, including record levels of coal burning. Coal use is growing so fast that the International Energy Authority expects it to surpass oil as the world’s top energy source by 2017.  And building gigafactories is only worsening the problem.

Mabe, the 1,500 gigawatts of electricity produced from renewables worldwide have prevented a further 1,500 gigawatts of fossil fuel power stations? Who can tell?  It’s just as possible that renewables have simply added 1,500 gigawatts of electricity to the global economy, fuelling economic growth and ever-greater industrial resource use. That being the case, far from limiting carbon dioxide emissions worldwide, renewables may simply have increased them because, as I’ve written many times before, no form of large-scale energy is carbon neutral.

And no one mentions the looming economic crisis having an effect on the grid’s reliability.  The future is taboo.  Watch this space…

The Electricity Industry’s Death Spiral revisited

10 07 2014

I know I only wrote about The Electricity Industry’s Death Spiral just a couple of days ago, but the speed at which things are now moving is almost bewildering.  The subject of disconnecting from the grid and moving to battery storage actually made it to the evening news last night……  I wish I could post a link to this video clip, but it looks like the ABC isn’t playing ball.  In truth, the owner of the system did such a bad job explaining how it works I doubt installers will be rushed off their feet just yet.

This from The Examiner, a Tasmanian online news outlet….

Energy specialist Lucy Carter of the Grattan Institute outlined the horror scenario for suppliers while launching a new report to be released on Monday about why we are paying too much for power.

She says network charges account for most of the increase in electricity prices. The carbon tax is small by comparison.  [the Carbon tax repeal act has just been knocked back in the Senate as I type this…  The motion was defeated 37 votes to 35.]

”The risk for the companies is that when people get the option of putting solar panels on their roofs and installing batteries and cutting the cord, demand will fall sharply. The people who end up left on the network will be the only ones left paying.” They will be stuck with extremely high network charges, forcing even more people off the network, pushing network charges higher still. It is what Ms Carter calls ”your death spiral scenario”.

She says it is not upon us yet, but if battery storage improves and network costs keep rising, it will be.

Part of Ms Carter’s proposed solution is for power companies to charge for network costs differently. At the moment customers who put very little strain on the network [like us…] pay the same fixed charge and the same amount per kilowatt as those whose peak usage necessitates extra spending on high-grade wires and substations.

Those peak users account for about one-third of the extra spending on infrastructure over the past five years, Ms Carter says.

She wants to charge users for the pressure they put on the network rather than for being part of it. Someone who comes home to a McMansion and whacks on all the airconditioners or heaters puts far more pressure on the network than someone who is at home all day using the same amount of power more steadily.

It can properly happen only with smart meters that report usage to retailers. Victoria has them and could adopt the proposal immediately. In other states such as NSW, Ms Carter says, the ability to levy variable charges could build a business case for suppliers paying to install smart meters.

Her other solution is even bolder: a peak usage warning to be delivered by SMS or broadcast on TV the day before extreme peak demand due to events such as heatwaves. In France it is done using a red, white and blue colour code. ‘’Red’’ means the next day is facing an extreme peak and that for that day only electricity will be more expensive. Throughout the rest of the year users will be given rebates to make sure they are not charged more overall.

The system would apply only in locations where the network was under pressure and the alternative was new infrastructure.

If it was in operation over the past five years, the Grattan Institute believes it would have saved $7.8 billion of the $17.6 billion spent on new infrastructure.

Data on household electricity use provided by the Victorian government suggests the change would be unlikely to affect disadvantaged families.

And now this from REneweconomy…

Wholesale electricity prices this week in Queensland have fallen below $30/MWh – see graph below – far below the levels of other states as mild weather and sunny condition reduced demand and generated a large amount of solar electricity.  [that’s 3c/kWh….. or 10% of the new retail price..]

aemo qld prices

The Energex network, which operates in the south-east corner and Brisbane, added another 13.7MW of rooftop solar in June, to take their total installed in the Energex network to 843MW on 261,500 homes and businesses.

Another 3,563 homes added solar in the south east corner in June, despite the fact that they would only get paid 8c/kWh for electricity they export back into the grid.

From Tuesday, that payment by the network ceases and falls to retailers. But the payment is voluntary, and has to be negotiated between the customer and the retailer. More than 59,000 houses – with some 200MW of rooftop solar – now find themselves in this situation.

Whats more, new rules have been introduced which allow the network operator to require that no exports can be made back to the grid for new rooftop solar systems. Ergon Energy explained its reasoning here, saying it wanted to prevent “reverse flows” and encourage more solar and energy storage on its network.

So if people in Qld lose what paltry feed in tariff they were getting, what incentive is there to stay connected?  Watch this space….

The 5 key elements of sustainable transport

13 04 2014

The 5 key elements of sustainable transport, or rather ‘so called’ sustainable transport makes for interesting reading.  Some of this info doesn’t really make much sense to me…. like the C intensity of different flights (business and economy, short and long) as a function of emissions per kilometre.

Interestingly, the difference between a ‘small car’ (a car that can only do 35MPG is NOT a small car!  But then, this is written in/for the USA….) and a grid charged electric car is only 15g CO2e/km, or just 9%.  By that measure, the Suzuki Alto I drove in Tasmania emits far less than an electric car, unless that car is 100% solar recharged.  And then I’m doubtful, because since we now know solar has a shockingly low ERoEI, it might be even closer than we think.  I’m also surprised cycling’s numbers are as high as they are shown here.  Does a cyclist really consume a whole lot more food than a motorist?

The article also states “People who live in cities have lower transport emissions.  Fuel economy may be lower in city traffic but that is more than made up for by the fact that city dwellers drive far less.”  Well that depends……  since moving from the city to the country, I’ve actually halved how much I drive!  Then it continues with “In 1950 less than 30% of the world’s population lived in cites, by 2010 that figure was over 50%, and by 2030 it is expected to surpass 60%. This natural trend to urbanization is a huge opportunity to for lowering both distance travelled per person and the carbon intensity of that travel.”  Whoever wrote this has obviously no idea cities will eventually be abandoned for being too far from their food sources, and due to the fact that when grids go down, none of the lifts will work!  Nor the sewerage……..

Shrink That Footprint


Transport is responsible for around a seventh of greenhouse gas emissions globally. Of these emissions almost two thirds are the result of passenger travel while the rest is due to freight.

So passenger travel is a big deal for climate.

In the chart above, which comes from our new eBook Emit This, we compare carbon intensity of different types of passenger transport on a per passenger kilometre basis.  Using it we can explain some elements important to the development of a sustainable transport system.

1) Fuel Economy

Our chart today compares the carbon intensity of different transport modes, per passenger kilometre.  The better fuel economy gets the lower emissions go.  If you just look at the cars you’ll see the large car (15 MPG) has emissions almost three times that of the hybrid car (45 MPG).

By improving fuel economy we can get the same mileage while generating fewer emissions.  Something that is achieved by making engines more efficient, vehicles lighter and bodies more aerodynamic.  But even then combustion engines remain relatively inefficient and produce emissions at the tailpipe, so improving them is really just a stop-gap en-route to sustainable transport.

2) Occupancy

The cheapest and simplest way to lower the carbon intensity of a passenger kilometre is to stick more people in the vehicle.  In each of the figures above car occupancy is assumed to be an average of 1.6 passengers (including the driver).  But most cars are designed for 5 people.

If you take a look at the bus examples the importance of occupancy becomes even more stark.  The local bus example has emissions seven times higher than the school bus.  While there routes may vary a little they are both diesel buses.  The main difference is that the school bus has very high occupancy.

With notable exception of flying public transport tends to have quite low carbon emissions, due largely to having relatively high occupancy.

3) Electrification

In the absence of breakthroughs in second generation biofuels electrification is the most important pathway to low carbon transport.

Electric cars using low carbon power have footprints less than half that of the best hybrid, even after you account for their larger manufacturing footprint.  Right down the bottom of our chart is the high-speed EuroStar rail which used low carbon French electricity. Though not on our chart the lowest carbon transport on earth is probably electrified public transport in a place like Norway where electricity generation is almost carbon free.

While there is a natural tendency to obsess about the electrification of cars, there are lots of interesting innovations occurring in the electrification  of rail, motorbikes, scooters and bikes.

4) Pedal power

They may be a bit low tech for some, but when it comes to carbon emissions bicycles are pretty cutting edge.  Even when you account for the foodprint of excess energy used when cycling, the humble bike is incredibly low carbon.

Bikes have obvious limitations around speed and distance, but for short trips in places with good infrastructure they are hard to beat in terms of carbon. They also have a great synergy with public transport systems like intercity rail.

5) Urbanization

Each of the first four elements we have described above refers to improving the carbon intensity of transport.  But emissions are a function of both how we travel and how far we travel.  One thing that tackles both of these issues is the trend towards urbanization.

People who live in cities have lower transport emissions.  Fuel economy may be lower in city traffic but that is more than made up for by the fact that city dwellers drive far less.  Electrification of public transport is more economic and practical in cities.  Occupancy on public transport systems is much higher.  And access to infrastructure for both cycling and walking is often better.

In 1950 less than 30% of the world’s population lived in cites, by 2010 that figure was over 50%, and by 2030 it is expected to surpass 60%. This natural trend to urbanization is a huge opportunity to for lowering both distance travelled per person and the carbon intensity of that travel.

Those are our five elements of sustainable transport: fuel economy, occupancy, electrification, pedal power and urbanization.

Check out our free new eBook Emit This for more ideas on getting more life out of less carbon.

Source: Shrink That Footprint. Reproduced with permission.