I told you so………

15 03 2018

At this rate, it’s going to take nearly 400 years to transform the energy system

Here are the real reasons we’re not building clean energy anywhere near fast enough.

“Is it possible to accelerate by a factor of 20?” he asks. “Yeah, but I don’t think people understand what that is, in terms of steel and glass and cement.” 

by James Temple  Originally published at Technology Review

windhelicopter

Fifteen years ago, Ken Caldeira, a senior scientist at the Carnegie Institution, calculated that the world would need to add about a nuclear power plant’s worth of clean-energy capacity every day between 2000 and 2050 to avoid catastrophic climate change. Recently, he did a quick calculation to see how we’re doing.

Not well. Instead of the roughly 1,100 megawatts of carbon-free energy per day likely needed to prevent temperatures from rising more than 2 ˚C, as the 2003 Science paper by Caldeira and his colleagues found, we are adding around 151 megawatts. That’s only enough to power roughly 125,000 homes.

At that rate, substantially transforming the energy system would take, not the next three decades, but nearly the next four centuries. In the meantime, temperatures would soar, melting ice caps, sinking cities, and unleashing devastating heat waves around the globe (see “The year climate change began to spin out of control”).

Caldeira stresses that other factors are likely to significantly shorten that time frame (in particular, electrifying heat production, which accounts for a more than half of global energy consumption, will significantly alter demand). But he says it’s clear we’re overhauling the energy system about an order of magnitude too slowly, underscoring a point that few truly appreciate: It’s not that we aren’t building clean energy fast enough to address the challenge of climate change. It’s that—even after decades of warnings, policy debates, and clean-energy campaigns—the world has barely even begun to confront the problem.

The UN’s climate change body asserts that the world needs to cut as much as 70 percent of greenhouse-gas emissions by midcentury to have any chance of avoiding 2 ˚C of warming. But carbon pollution has continued to rise, ticking up 2 percent last year.

So what’s the holdup?

Beyond the vexing combination of economic, political, and technical challenges is the basic problem of overwhelming scale. There is a massive amount that needs to be built, which will suck up an immense quantity of manpower, money, and materials.

For starters, global energy consumption is likely to soar by around 30 percent in the next few decades as developing economies expand. (China alone needs to add the equivalent of the entire US power sector by 2040, according to the International Energy Agency.) To cut emissions fast enough and keep up with growth, the world will need to develop 10 to 30 terawatts of clean-energy capacity by 2050. On the high end that would mean constructing the equivalent of around 30,000 nuclear power plants—or producing and installing 120 billion 250-watt solar panels.

Energy overhaul
What we should be doing* What we’re actually doing
Megawatts per day 1,100 151
Megawatts per year 401,500 55,115
Megawatts in fifty years 20,075,000 2,755,750
Years to add 20 Terrawatts 50 363
Sources: Carnegie Institution, Science, BP *If we had started at this rate in 2000 Actual average rate of carbon-free added per day from 2006-2015

There’s simply little financial incentive for the energy industry to build at that scale and speed while it has tens of trillions of dollars of sunk costs in the existing system.

“If you pay a billion dollars for a gigawatt of coal, you’re not going to be happy if you have to retire it in 10 years,” says Steven Davis, an associate professor in the Department of Earth System Science at the University of California, Irvine.

It’s somewhere between difficult and impossible to see how any of that will change until there are strong enough government policies or big enough technology breakthroughs to override the economics.

A quantum leap

In late February, I sat in Daniel Schrag’s office at the Harvard University Center for the Environment. His big yellow Chinook, Mickey, lay down next to my feet.

Schrag was one of President Barack Obama’s top climate advisors. As a geologist who has closely studied climate variability and warming periods in the ancient past, he has a special appreciation for how dramatically things can change.

Sitting next to me with his laptop, he opened a report he had recently coauthored assessing the risks of climate change. It highlights the many technical strides that will be required to overhaul the energy system, including better carbon capture, biofuels, and storage.

The study also notes that the United States adds roughly 10 gigawatts of new energy generation capacity per year. That includes all types, natural gas as well as solar and wind. But even at that rate, it would take more than 100 years to rebuild the existing electricity grid, to say nothing of the far larger one required in the decades to come.

“Is it possible to accelerate by a factor of 20?” he asks. “Yeah, but I don’t think people understand what that is, in terms of steel and glass and cement.”

Climate observers and commentators have used various historical parallels to illustrate the scale of the task, including the Manhattan Project and the moon mission. But for Schrag, the analogy that really speaks to the dimensions and urgency of the problem is World War II, when the United States nationalized parts of the steel, coal, and railroad industries. The government forced automakers to halt car production in order to churn out airplanes, tanks, and jeeps.

The good news here is that if you direct an entire economy at a task, big things can happen fast. But how do you inspire a war mentality in peacetime, when the enemy is invisible and moving in slow motion?

“It’s a quantum leap from where we are today,” Schrag says.

The time delay

The fact that the really devastating consequences of climate change won’t come for decades complicates the issue in important ways. Even for people who care about the problem in the abstract, it doesn’t rate high among their immediate concerns. As a consequence, they aren’t inclined to pay much, or change their lifestyle, to actually address it. In recent years, Americans were willing to increase their electricity bill by a median amount of only $5 a month even if that “solved,” not eased, global warming, down from $10 15 years earlier, according to a series of surveys by MIT and Harvard.

It’s conceivable that climate change will someday alter that mind-set as the mounting toll of wildfires, hurricanes, droughts, extinctions, and sea-level rise finally forces the world to grapple with the problem.

But that will be too late. Carbon dioxide works on a time delay. It takes about 10 years to achieve its full warming effect, and it stays in the atmosphere for thousands of years. After we’ve tipped into the danger zone, eliminating carbon dioxide emissions doesn’t decrease the effects; it can only prevent them from getting worse. Whatever level of climate change we allow to unfold is locked in for millennia, unless we develop technologies to remove greenhouse gases from the atmosphere on a massive scale (or try our luck with geoengineering).

This also means there’s likely to be a huge trade-off between what we would have to pay to fix the energy system and what it would cost to deal with the resulting disasters if we don’t. Various estimates find that cutting emissions will shrink the global economy by a few percentage points a year, but unmitigated warming could slash worldwide GDP more than 20 percent by the end of the century, if not far more.

In the money

Arguably the most crucial step to accelerate energy development is enacting strong government policies. Many economists believe the most powerful tool would be a price on carbon, imposed through either a direct tax or a cap-and-trade program. As the price of producing energy from fossil fuels grows, this would create bigger incentives to replace those plants with clean energy (see “Surge of carbon pricing proposals coming in the new year”).

“If we’re going to make any progress on greenhouse gases, we’ll have to either pay the implicit or explicit costs of carbon,” says Severin Borenstein, an energy economist at the University of California, Berkeley.

But it has to be a big price, far higher than the $15 per ton it cost to acquire allowances in California’s cap-and-trade program late last year. Borenstein says a carbon fee approaching $40 a ton “just blows coal out of the market entirely and starts to put wind and solar very much into the money,” at least when you average costs across the lifetime of the plants.

Others think the price should be higher still. But it’s very hard to see how any tax even approaching that figure could pass in the United States, or many other nations, anytime soon.

The other major policy option would be caps that force utilities and companies to keep greenhouse emissions below a certain level, ideally one that decreases over time. This regulations-based approach is not considered as economically efficient as a carbon price, but it has the benefit of being much more politically palatable. American voters hate taxes but are perfectly comfortable with air pollution rules, says Stephen Ansolabehere, a professor of government at Harvard University.

Fundamental technical limitations will also increase the cost and complexity of shifting to clean energy. Our fastest-growing carbon-free sources, solar and wind farms, don’t supply power when the sun isn’t shining or the wind isn’t blowing. So as they provide a larger portion of the grid’s electricity, we’ll also need long-range transmission lines that can balance out peaks and valleys across states, or massive amounts of very expensive energy storage, or both (see “Relying on renewables alone significantly inflates the cost of overhauling energy”).

Million tonnes oil equivalentA renewables revolution?Despite the wide optimism surrounding renewables like wind and solar, they still only represent atiny and slow growing fraction of global energy.NuclearHydroAll RenewablesCoalNatural GasOil2000200120022003200420052006200720082009201020112012201320142015201605k10k15kSource: World consumption of primary energy consumption by source. BP

The upshot is that we’re eventually going to need to either supplement wind and solar with many more nuclear reactors, fossil-fuel plants with carbon capture and other low-emissions sources, or pay far more to build out a much larger system of transmission, storage and renewable generation, says Jesse Jenkins, a researcher with the MIT Energy Initiative. In all cases, we’re still likely to need significant technical advances that drive down costs.

All of this, by the way, only addresses the challenge of overhauling the electricity sector, which currently represents less than 20 percent of total energy consumption. It will provide a far greater portion as we electrify things like vehicles and heating, which means we’ll eventually need to develop an electrical system several times larger than today’s.

But that still leaves the “really difficult parts of the global energy system” to deal with, says Davis of UC Irvine. That includes aviation, long-distance hauling, and the cement and steel industries, which produce carbon dioxide in the manufacturing process itself. To clean up these huge sectors of the economy, we’re going to need better carbon capture and storage tools, as well as cheaper biofuels or energy storage, he says.

These kinds of big technical achievements tend to require significant and sustained government support. But much like carbon taxes or emissions caps, a huge increase in federal research and development funding is highly unlikely in the current political climate.

Give up?

So should we just give up?

There is no magic bullet or obvious path here. All we can do is pull hard on the levers that seem to work best.

Environmental and clean-energy interest groups need to make climate change a higher priority, tying it to practical issues that citizens and politicians do care about, like clean air, security, and jobs. Investors or philanthropists need to be willing to make longer-term bets on early-stage energy technologies. Scientists and technologists need to focus their efforts on the most badly needed tools. And lawmakers need to push through policy changes to provide incentives, or mandates, for energy companies to change.

The hard reality, however, is that the world very likely won’t be able to accomplish what’s called for by midcentury. Schrag says that keeping temperature increases below 2 ˚C is already “a pipe dream,” adding that we’ll be lucky to prevent 4 ˚C of warming this century.

That means we’re likely to pay a very steep toll in lost lives, suffering, and environmental devastation (see “Hot and violent”).

But the imperative doesn’t end if warming tips past 2 ˚C. It only makes it more urgent to do everything we can to contain the looming threats, limit the damage, and shift to a sustainable system as fast as possible.

“If you miss 2050,” Schrag says, “you still have 2060, 2070, and 2080.”

Advertisements




Another year, and getting closer to D Day (D for doom of course..!)

1 01 2018

entering 2018New years may be human constructs, but they sort of force us to think about what happens next. I personally don’t do new year’s resolutions, because frankly, it’s just asking for trouble, stressing out about underachieving and so forth… and a lot of people could be underachieving this year, and the next, and the next….

I’ll be happy if our house is up out of the ground in any shape or form… because the weather down here is not exactly co-operating, swinging from heatwaves to cold rainy and windy.  Summer is just not meant to be like this, but I of all people should not be surprised when it comes to climate chaos.

Having said that, I just had to share this latest bit of info that landed in my newsfeed on New Year’s Day.  You know it’s all happening when even the IEA finally acknowledges Peak Oil.

Oil Shortage Feared by 2020 as Discoveries Fall to Record Low

Yes, you read that right. In the Wall Street Journal no less….  maybe that will finally shut all those deniers down once and for all.

In 2016, oil discoveries amounted to just 2.4 billion barrels of potential oil, the lowest since the IEA’s records began in 1950. That is down from 6.4 billion barrels of discoveries in 2013, when oil prices were consistently above $100 a barrel and 16.3 billion barrels in 2010, the IEA said.

The global oil industry greenlighted projects amounting to over 4.8 billion barrels of oil in 2016, down from 21.2 billion barrels in 2014.

Offshore drilling, which accounts for a third of global production, is still seeing activity decline. Last year, only 13% of conventional project approvals were offshore, compared with an average of 40% between 2000 and 2015, according to the IEA. In the U.K., spending on offshore drilling is now only slightly higher than spending on offshore wind projects, it said.

Oil Shortage Feared by 2020 as Discoveries Fall to Record Low

The Organization of the Petroleum Exporting Countries has also sounded the alarm over the potential for a looming supply gap in the long term. Saudi energy minister Khalid al-Falih told a London energy conference last year that “there will be a period of shortage of supply.”

So there you have it, I wasn’t making all this up. After banging on about Peak Oil for at emptyEVleast 17 years, and predicting crunch time to be around 2020, give or take, that crunch time seems all too close these days, especially as absolutely NOBODY has done a thing about getting ready for it. The results will be interesting. Virtually no one has any idea of what the future holds, and boy are they in for a shock.  Even we, let’s face it, who follow all this crazy stuff may well be shocked by what happens next.

And not least the EV buyers…… who may not get access to all that electricity. No one escapes the collapse.

That WSJ articles further states…..

According to estimates from The Rapidan Group, a Washington-based energy policy advisory firm, oil prices could hit $100 a barrel in 2022, squeezed by supply constraints and stronger-than-expected demand growth.

Now if that doesn’t bring on a recession/depression, combined with the debt bubble, I don’t know what will.

Mind you, as I’ve said all along, it’s just what we need to ‘save us’ from climate change, so I personally won’t mind. Check out this chart showing emissions growth on an annual basis..:

whyweneedadepression

The only time emissions actually fell was because of the GFC…..  don’t know about you, but there’s a story in there somewhere……..  that chart came from a National Observer article that you might all find interesting.

The same BP data illustrates fossil fuels’ share of all global energy. Turning point? What turning point…..?

What this chart says to me is that fossil fuels continue to absolutely dominate global energy consumption. Even a quarter century of global efforts to transition to safer energy sources was unable to make any meaningful dent in the dominance of fossil fuels.

Then we have this from SRSRocco…..

While the U.S. Shale Energy Industry continues to borrow money to produce uneconomical oil and gas, there is another important phenomenon that is not understood by the analyst community.  The critical factor overlooked by the media is the fact that the U.S. shale industry is swindling and stealing energy from other areas to stay alive.  Let me explain.

First, let’s take a look at some interesting graphs done by the Bloomberg Gadfly.  The first chart below shows how the U.S. shale industry continues to burn through investor cash regardless of $100 or $50 oil prices:

 

The chart above shows the negative free cash flow for 33 shale-weighted E&P companies.  Even at $100 oil prices in 2012 and 2013, these companies spent more money producing shale energy in the top four U.S. shale fields than they made from operations.  While costs to produce shale oil and gas came down in 2015 and 2016 (due to lower energy input prices), these companies still spent more money than they made.  As we can see, the Permian basin (in black) gets the first place award for losing the most money in the group.

Now, burning through investor money to produce low-quality, subpar oil is only part of the story.  The shale energy companies utilized another tactic to bring in additional funds from the POOR SLOBS in the retail investment community… it’s called equity issuance.  This next chart reveals the annual equity issuance by the U.S. E&P companies:

 

According to the information in the chart, the U.S. E&P companies will have raised over $100 billion between 2012 and 2017 by issuing new stock to investors.  If we add up the funds borrowed by the U.S. E&P companies (negative free cash flow), plus the stock issuance, we have the following chart:

 

Thus, the U.S. E&P companies tapped into an additional $212 billion worth of funding over the last six years to produce uneconomical shale oil and gas.  Now, this chart is an approximation based on the negative free cash flow (RED color) from the four top U.S. shale fields and the shale equity issuance (OLIVE color).  So, how much money would these U.S. E&P companies need to make to pay back these funds?

Good question.  If we assume that the U.S. shale oil companies will be able to produce another 10 billion barrels of oil, they would need to make $21 a barrel profit to pay back that $212 billion.  However, they haven’t made any profits in at least the past six years, so why would they make any profits in the next six years?

2018 is going to be interesting, without a doubt.

Happy New Year (!) to all my readers……





Why I am a double atheist

28 11 2017

For years and years – at least 15 – I argued with Dave Kimble over his notion that solar energy production was growing far too fast to be sustainable, let alone reduce greenhouse emissions.  I eventually had to relent and agree with him, he had a keener eye for numbers than me, and he was way better with spreadsheets!

The whole green technology thing has become a religion. I know, I used to have the faith too….. but now, as you might know if you’ve been ‘here’ long enough, I neither believe in god nor green tech!

This article – to which you will have to go to for the references – landed in my newsfeed…….  and lo and behold, it says exactly the same thing Dave was saying all those years ago…….:

How Sustainable is PV solar power?

How sustainable is pv solar power

Picture: Jonathan Potts.

It’s generally assumed that it only takes a few years before solar panels have generated as much energy as it took to make them, resulting in very low greenhouse gas emissions compared to conventional grid electricity.

However, a more critical analysis shows that the cumulative energy and CO2 balance of the industry is negative, meaning that solar PV has actually increased energy use and greenhouse gas emissions instead of lowering them.

The problem is that we use and produce solar panels in the wrong places. By carefully selecting the location of both manufacturing and installation, the potential of solar power could be huge.

There’s nothing but good news about solar energy these days. The average global price of PV panels has plummeted by more than 75% since 2008, and this trend is expected to continue in the coming years, though at a lower rate. [1-2] According to the 2015 solar outlook by investment bank Deutsche Bank, solar systems will be at grid parity in up to 80% of the global market by the end of 2017, meaning that PV electricity will be cost-effective compared to electricity from the grid. [3-4]

Lower costs have spurred an increase in solar PV installments. According to the Renewables 2014 Global Status Report, a record of more than 39 gigawatt (GW) of solar PV capacity was added in 2013, which brings total (peak) capacity worldwide to 139 GW at the end of 2013. While this is not even enough to generate 1% of global electricity demand, the growth is impressive. Almost half of all PV capacity in operation today was added in the past two years (2012-2013). [5] In 2014, an estimated 45 GW was added, bringing the total to 184 GW. [6] [4].

Solar PV total global capacitySolar PV total global capacity, 2004-2013. Source: Renewables 2014 Global Status Report.

Meanwhile, solar cells are becoming more energy efficient, and the same goes for the technology used to manufacture them. For example, the polysilicon content in solar cells — the most energy-intensive component — has come down to 5.5-6.0 grams per watt peak (g/wp), a number that will further decrease to 4.5-5.0 g/wp in 2017. [2] Both trends have a positive effect on the sustainability of solar PV systems. According to the latest life cycle analyses, which measure the environmental impact of solar panels from production to decommission, greenhouse gas emissions have come down to around 30 grams of CO2-equivalents per kilwatt-hour of electricity generated (gCO2e/kWh), compared to 40-50 grams of CO2-equivalents ten years ago. [7-11] [12]

According to these numbers, electricity generated by photovoltaic systems is 15 times less carbon-intensive than electricity generated by a natural gas plant (450 gCO2e/kWh), and at least 30 times less carbon-intensive than electricity generated by a coal plant (+1,000 gCO2e/kWh). The most-cited energy payback times (EPBT) for solar PV systems are between one and two years. It seems that photovoltaic power, around since the 1970s, is finally ready to take over the role of fossil fuels.

BUT the bit that caught my eye was this…..:

A life cycle analysis that takes into account the growth rate of solar PV is called a “dynamic” life cycle analysis, as opposed to a “static” LCA, which looks only at an individual solar PV system. The two factors that determine the outcome of a dynamic life cycle analysis are the growth rate on the one hand, and the embodied energy and carbon of the PV system on the other hand. If the growth rate or the embodied energy or carbon increases, so does the “erosion” or “cannibalization” of the energy and CO2 savings made due to the production of newly installed capacity. [16]

For the deployment of solar PV systems to grow while remaining net greenhouse gas mitigators, they must grow at a rate slower than the inverse of their CO2 payback time. [19] For example, if the average energy and CO2 payback times of a solar PV system are four years and the industry grows at a rate of 25%, no net energy is produced and no greenhouse gas emissions are offset. [19] If the growth rate is higher than 25%, the aggregate of solar PV systems actually becomes a net CO2 and energy sink. In this scenario, the industry expands so fast that the energy savings and GHG emissions prevented by solar PV systems are negated to fabricate the next wave of solar PV systems. [20]

Which is precisely what Dave Kimble was saying more than ten years ago.  To see his charts and download his spreadsheet, go to this post.

His conclusions are that “We have been living in an era of expanding energy availability, but Peak Oil and the constraints of Global Warming mean we are entering a new era of energy scarcity. In the past, you could always get the energy you wanted by simply paying for it. From here on, we are going to have to be very careful about how we allocate energy, because not only is it going to be very expensive, it will mean that someone else will have to do without. For the first time, ERoEI is going to be critically important to what we choose to do. If this factor is ignored, we will end up spending our fossil energy on making solar energy, which only makes Global Warming worse in the short to medium term.”

 





Three Things We Don’t Understand About Climate Change

3 09 2017

ANOTHER great article from Ahmed Nafeez’ new Medium website…….  Please support his magnificent efforts.

This is the most honest item on Climate Change I hace seen in quite a while. It almost goes as far as saying what I’ve now concluded, we must de-industrialise. Almost.

Go to the profile of Aarne Granlund
Aarne GranlundFollow

 

 

Thinking about climate change is not something that comes natural to humans — or ‘consumers’ as we have been called for decades. It is not only emotionally unpleasant, but analytically extremely challenging.

I argue that most of us do not grasp how immediate this situation has become, how fast it is progressing and what the scale of change needed is to reach the stabilisation targets of the Paris Agreement.

I also argue that after individuals, nations and corporations understand the urgency and the rate, they should be honest about the scale of action needed in order to avoid collapse of the biosphere and thus civilisation.

North America on 29th of August 2017. Tundra and forest fires in the Arctic + British Columbia and Hurricane Harvey off the coast of South Texas (Terra / MODIS @ Nasa WorldView).

Human society is deeply and permanently coupled to the Earth System. In the geological epoch we have entered called the Anthropocene, that system is undergoing immediate, massive disruption. The previous epoch of Holocene gave us agriculture and settled living arrangements.

Since the onset of industrial production at an accelerating rate and scale, human society has had deep and far ranging influence on natural processes which it depends on. Climate change is only one of the manifestations — there are multiple large-scale indicators of our presence on this planet from erosion to nitrogen runoff, species extinction to uncontrolled population growth.

1. Urgency

The first misunderstanding about climate change is related to how we perceive its impacts in the temporal space. It is not (only) a future issue, not a polar bear issue and certainly not an issue which only affects a few remote parts of the world.

Situation has become dangerous during the last three years of 2014, 2015, 2016 and now continuing into 2017. Certain parts of the world see less immediate danger but systematic changes affect us all.

NASA GISS dataset on land and ocean temperature anomalies (2017).

How is it possible that the Earth System has taken up our presence on the surface so lightly even when we have changed the chemistry of the atmosphere and the ocean with our carbon pollution?

Ocean heat uptake has doubled since 1997 (Gleckler et al, 2016).

Most of the energy (heat) human carbon pollution creates ends up warming the world ocean, some 93% of our pyromania ends up there. Every passing year we pump 41 gigatons (that is a very big number) of carbon dioxide into the Earth System, where roughly half of it is absorbed by natural sink capabilities of the ocean and the land biosphere. Rest of it ends up in the atmosphere with all the other gases we put up, including aerosols and certain novel entities that have never occured in the natural state of the Earth System.

The fact that increasing greenhouse gas loading from human sources in the carbon cycle is cumulative makes this an extremely vicious political, economic and social problem. The increment which ends up in the atmosphere can only be drawn down by the natural climate system on time scales extending to tens or hundreds of thousands of years.

The Global Carbon Budget from GCP, 2017.

One component of urgency is that when surface temperatures increase after being buffered by the ocean — without the world ocean we would already be 36°C hotter on the surface of continents from the increased atmospheric forcing — they can do so in a non-linear fashion.

This creates immediate impacts. Single exceptional extreme weather events are not caused by climate change but happen in a distinctively new climate. Hotter atmosphere holds more moisture which increases precipitation. Extreme heatwaves become more common. Ice in all its forms melts.

Right now there are multiple imminent disasters occuring in various parts of the planet. Global fire situation has been exceptional in Siberia, Greenland, Canada and in other parts of North America. Tundra burns, forests burn, people suffer. Europe has been under severe heat waves and there have been mass casualties from forest fires in Portugal.

There is extreme flooding in South Asia, impacting multiple cities and the country of Bangladesh of which one third is currently under water. Hurricane Harvey just hit South Texas at Category 4 strength and produced record precipitation totals for many locations, including but not limited to the City of Houston. Tens of millions suffer from these impacts — right now.

Arctic climate change is proceeding at fast pace (AMAP SWIPA, 2017 http://www.amap.no/swipa2017).

2. Rate and Scale of Change

The Arctic, area located on the top of the planet from 66°N north, is a prime example of systematic exponential change. It is warming at least twice as fast as the rest of the planet. There is less inertia in the Arctic than there is in the general climate system.

But even the general climate system is being pushed in ways which have no previous analogue in natural climate changes going back tens of millions of years. It is about the rate of carbon dioxide and other greenhouse gases added. There have been periods in the deep geological past of Earth when greenhouse gas concentrations have been much, much higher than they are today but increases have never occured this rapidly.

Proxy measurements of carbon dioxide from ice cores (NOAA @ NASA Climate Change https://climate.nasa.gov/vital-signs/carbon-dioxide/).

Earth is a fluid, non-linear system capable of abrupt and total change. Earth System has been in a hothouse state and for a while was mostly covered by ice. At current pathways we are literally going to lose very large portions of both continental polar ice sheets, possibly in their entirety. This will take centuries but when we commit, the result will be permanent. Permafrost is thawing, threathening both the carbon cycle and our settled living arrangements in the Arctic.

When climate scientists project future climate change up to and beyond 2050 and 2100 they refer to scenarios. They are used in policy making to set stabilisation targets.

Tipping elements in the climate system (Schellnhuber et al, 2015).

What is worrying is that humanity is currently putting in place an atmospheric forcing comparable to something between the RCP4.5 and 8.5 (watts per square meter) end results. The choice between the Paris Agreement ‘well below 2°C’ framing and higher, 3–4°C level of warming is the choice of having a civilisation with global governance capability or losing it.

At any pathway we choose to follow, in order for the climate to stabilise at a higher level of change, emissions need to be zero. If new carbon pollution enters the climate system, temperatures will go up. This also applies to 2.5°C emissions budgets as well as 3°C budgets.

3. Stabilisation

What is to be done? Multiple actions are under way. Our energy system is changing with global energy demand growth continuing to rise due to industrialisation of developing nations, but new added electricity capacity in the form of solar and wind power only appear to offset some of the added growth. Electricity is only a portion of our energy use profile.

The massive use of fossil fuels is the prime driver of human-caused climate change. The fraction of low-carbon energy is the same now that it was a few decades ago. Fossil fuels absolutely dominate our energy system at >80% share in total final energy consumption. Deforestation and other land-use change also contribute significantly, but our profligate use of fossil energy commits us to possibly catastrophic breakdowns of the climate system.

For a reasonable chance of keeping warming under 2℃ we can emit a further 865 billion tonnes of carbon dioxide (CO2). The climate commitments to reduce greenhouse gas emissions to 2030 are a first step, but recent analyses show they are not enough (Canadell and Smith, 2017 http://bit.ly/2jRNjIK).

The trouble with negative emissions (Peters and Anderson, 2016 http://science.sciencemag.org/content/354/6309/182).

The carbon budget framing might seem like a radical socio-political construct but it is in fact the best depiction of the physical reality of climate change. Cumulative emissions dictate the mitigation outcome — there is absolutely no doubt about this as the Intergovernmental Panel on Climate Change has shown.

The relationship between temperature change and cumulative CO2 emissions (in GtCO2) from 1870 to the year 2100. (IPCC 2014 Synthesis Report).

It is indeed the fact that many applications of fossil energy are growing exponentially that is the problem for climate stabilisationAir travel, road freight, shipping. Exponential global growth. Based on sound understanding of the physical reality, their fossil carbon use should be declining exponentially.

Three years to safeguard our climate (Figueres at al, 2017 http://go.nature.com/2t1gwUD).

All of this is sadly true and supremely distressing. Emissions from fossil fuels and land use change are 60% higher than they were in 1990 when scientists established most of what has been shown above with high certainty. Only the resolution of understanding has increased along with worsening climate impacts.

F/ Honesty

Finding out the reality of this situation is a profound experience. It is a state shift in human cognition, comparable to expansion of internet and global connectivity.

What I argue as citizen is to stop lying to ourselves. We have to obey the ancient laws of nature. No amount of economic growth, green shift, denial or activism can negotiate with physical constraints of the Earth System.

Our energy system will never be able to transform fast enough to meet the Paris Agreement stabilisation target without mad assumptions of building a carbon draw down device on this planet three times the size of the current oil industry, capable of sequestering greenhouse gases from ambient air on the order of what the natural sinks like the world ocean and the land biosphere are currently doing.

Roughly 10% of us generate almost as much greenhouse gas emissions from our lifestyle as the rest of the people on this planet. Finnish household consumption added to territorial emissions at >15 tons CO2 equivalent per capita will breach the global carbon budget for lower stabilisation targets within a decade. This is a pragmatic, but also a moral issue. Nobody can escape it, no matter how much one tries.

Finnish emissions reductions and negative emissions to meet Paris Agreement framing (Climate Analytics, 2016.)

We have to transform our diets, mobility systems, energy production and conspicuous consumption within a decade to limit risks of profound magnitude. The first decade should cut all of our carbon pollution in half. The next one should halve the portion left and so on. We have to put in policies which enchance natural sinks and research artificial new sinks.

This is not an obligation just to protect future generations, poor people or animals anymore. It is a threat to huge amounts of people living in the present moment on this finite planet in our vast universe.

We have to push through this mentally, keeping focus on what there is to be done with resolute purpose against nearly impossible odds. We have to be honest to ourselves, respectful of others and lead by example in everything we do.

Everybody can enter this space with relatively little sacrifice. It might be very painful in the beginning but truth is, after all, one of the most precious things this world has to offer.

Do what comes naturally, but always remember three things: how immediate this is, what kind of rates it is progressing at and what the scale of change needed must be in order to limit risk.





How Unsustainable is PV Solar Power?

27 10 2015

Hot on the heels of yesterday’s post about renewables being unable to even keep up with the growth of the internet’s energy consumption, along come a couple of other articles I just had to share…..

From Low Tech Magazine yet again is an article about the mushy numbers used to ‘prove’ PVs are the way to go in the future. Most followers of this blog will already know how I feel about this, however, this item has some interesting factoids I was not aware of that make a most interesting point.

Lower costs have spurred an increase in solar PV installments. According to the Renewables 2014 Global Status Report, a record of more than 39 gigawatt (GW) of solar PV capacity was added in 2013, which brings total (peak) capacity worldwide to 139 GW at the end of 2013. While this is not even enough to generate 1% of global electricity demand, the growth is impressive. Almost half of all PV capacity in operation today was added in the past two years (2012-2013). In 2014, an estimated 45 GW was added, bringing the total to 184 GW.

Solar PV total global capacitySolar PV total global capacity, 2004-2013. Source: Renewables 2014 Global Status Report.

According to these numbers, electricity generated by photovoltaic systems is 15 times less carbon-intensive than electricity generated by a natural gas plant (450 gCO2e/kWh), and at least 30 times less carbon-intensive than electricity generated by a coal plant (+1,000 gCO2e/kWh). The most-cited energy payback times (EPBT) for solar PV systems are between one and two years. It seems that photovoltaic power, around since the 1970s, is finally ready to take over the role of fossil fuels.

But, as the article goes to great lengths to explain, manufacturing has moved to China, and as was recently revealed, the biggest eighteen ships produce as much CO2 as all the cars in the world……… so shipping those panels (and inverters) from China to Australia, Europe, and the Americas is unbelievably polluting.

Less than 10 years ago, almost all solar panels were produced in Europe, Japan, and the USA. In 2013, Asia accounted for 87% of global production (up from 85% in 2012), with China producing 67% of the world total (62% in 2012). Europe’s share continued to fall, to 9% in 2013 (11% in 2012), while Japan’s share remained at 5% and the US share was only 2.6%.

Price of silicon solar cells wikipedia

Compared to Europe, Japan and the USA, the electric grid in China is about twice as carbon-intensive and about 50% less energy efficient. Because the manufacture of solar PV cells relies heavily on the use of electricity (for more than 95%) this means that in spite of the lower prices and the increasing efficiency, the production of solar cells has become more energy-intensive, resulting in longer energy payback times and higher greenhouse gas emissions. The geographical shift in manufacturing has made almost all life cycle analyses of solar PV panels obsolete, because they are based on a scenario of domestic manufacturing, either in Europe or in the United States.

Compared to the original manufacturing scenarios of Germany, Japan, Spain, and the USA, the carbon footprint and the energy payback time of Chinese PVs are almost doubled in the asian manufacturing scenario. The carbon footprint of the modules made in Spain (which has a cleaner grid than the average in Europe) is 37.3 and 31.8 gCO2e/kWh for mono-Si and multi-Si, respectively, while the energy payback times are 1.9 and 1.6 years. However, for the modules made in China, the carbon footprint is 72.2 and 69.2 gCO2e/kWh for mono-Si and multi-Si, respectively, while the energy payback times are 2.4 and 2.3 years.

Carbon footprints solar cells produced in china and europe

At least as important as the place of manufacturing is the place of installation. Considering that at the end of 2014, Germany had more solar PV installed than all Southern European nations combined, and twice as much as the entire United States, this number is not a worst-case scenario. It reflects the carbon intensity of most solar PV systems installed between 2009 and 2014. More critical researchers had already anticipated these results. A 2010 study refers to the 2008 consensus figure of 50 gCO2e/kWh mentioned above, and adds that “in less sunny locations, or in carbon-intensive economies, these emissions can be up to 2-4 times higher”. Taking the more recent figure of 30 gCO2e/kWh as a starting point, which reflects improvements in solar cell and manufacturing efficiency, this would be 60-120 gCO2e/kWh, which corresponds neatly with the numbers of the 2014 study.

Solar insolation in europe

Solar insolation in north america

Solar insolation in Europe and the USA. Source: SolarGIS.

So far, I expect most DTM readers already knew this….. but now for the clincher, and it’s growth, yet again totally unsustainable. The author calls this Energy cannibalism, a term I just love!

Solar PV electricity remains less carbon-intensive than conventional grid electricity, even when solar cells are manufactured in China and installed in countries with relatively low solar insolation. This seems to suggest that solar PV remains a good choice no matter where the panels are produced or installed. However, if we take into account the growth of the industry, the energy and carbon balance can quickly turn negative. That’s because at high growth rates, the energy and CO2 savings made by the cumulative installed capacity of solar PV systems can be cancelled out by the energy use and CO2 emissions from the production of new installed capacity.

For the deployment of solar PV systems to grow while remaining net greenhouse gas mitigators, they must grow at a rate slower than the inverse of their CO2 payback time. For example, if the average energy and CO2 payback times of a solar PV system are four years and the industry grows at a rate of 25%, no net energy is produced and no greenhouse gas emissions are offset. If the growth rate is higher than 25%, the aggregate of solar PV systems actually becomes a net CO2 and energy sink. In this scenario, the industry expands so fast that the energy savings and GHG emissions prevented by solar PV systems are negated to fabricate the next wave of solar PV systems.

Several studies have undertaken a dynamic life cycle analysis of renewable energy technologies. The results — which are valid for the period between 1998 and 2008 — are very sobering for those that have put their hopes on the carbon mitigation potential of solar PV power. A 2009 paper, which takes into account the geographical distribution of global solar PV installations, sets the maximum sustainable annual growth rate at 23%, while the actual average annual growth rate of solar PV between 1998 and 2008 was 40%. [16] [21]

This means that the net CO2 balance of solar PV was negative for the period 1998-2008. Solar PV power was growing too fast to be sustainable, and the aggregate of solar panels actually increased GHG emissions and energy use. According to the paper, the net CO2 emissions of the solar PV industry during those 10 years accounted to 800,000 tonnes of CO2.

Which totally puts paid to the hopes of ‘green people’ wanting a quick transition from coal to PVs. The faster it happens, the worse greenhouse emissions are…… Is this the ultimate limit to growth? I find the irony almost too much to bear. I heartily recommend reading the article at its original source where all the facts and figures are referenced. It makes for sobering reading……..

But wait there’s more. Just last night on TV I saw an item on 7:30 on ABC TV showing some guy who built a modern mansion with all the bells and whistles, 300m from the grid. he claims it was going to cost $200,000 to connect to the grid (seems rather excessive to me…) so decided to go off the grid. The TV item was about how we will all go off the grid within ten years, and look at this guy’s amazing green bling…… four inverters no less! Anyone with four inverters is using four times too much power (and hence energy), and he proudly claimed to have batteries capable of backing the whole lot for…. three days. I can guarantee he will soon be disappointed. Anything less than a week would not suit me, I’d opt for ten days. But then again, I don’t need four inverters, we’ll only have one. Watch it here.

Why am I so certain he will be disappointed? Well Giles Parkinson and Sophie Vorrath are, like me, not convinced your average electricity consumer understands any of the dilemmas they face.

So for those of us left, and interested in battery storage as a means of saving money, how do the numbers stack up?

Before tackling those numbers, it is worth noting that the numbers for battery storage are more complex than they may first appear.

Making the economics work will depend on how much your household consumes and when, the size of your solar array, if any, and the local tariff structure. Then you have to consider how you will use that battery, and how the grid might use it to.

Because batteries are left lying around doing nothing much of the time, ‘the sweet spot’ for consumers lies in the range of 3.5to 5.0 kWh/day. Or less, I would add. And that, my friends, leaves out 90% of the electricity consumers as they stand right now. That Adelaide guy in the 7:30 show is well out of his league, and when he’ll have to replace his underworked Li ion batteries after just 10 years, if he can still get some, he will be wondering why his green bling is so expensive to keep running… and to top it all off, the article raves about what will happen way out to 2030, assuming that business as usual will continue forever, and that there will still be a grid to hook up to, unlike Gail Tverberg, the optimist!





To Collapse or Not To Collapse

21 02 2015

This is a great debate from the Sustainable Living Festival featuring David Holmgren, George Monbiot, Nicole Foss, Philip Sutton, and a couple of others I don’t know like Jess Moore and George Marshall…..

The SLF Great Debate presents

To Collapse or Not To Collapse, or Sucking Beer Out Of The Carpet according to Nicole Foss!

Pushing for economic ruin or building a great transition





Musings on the sustainability of meat and dairy

13 11 2014

In ‘my circles’, I know a lot of vegetarians and vegans.  Vegans, in particular, are the most zealous about their ideal, and I often clash with them for reasons I will tease out in this article.  Make no mistake, I find the entire industrial animal husbandry system totally abhorrent.  It is only possible because we still have relatively cheap fossil fuels, and because farming has left the hands of the many into the hands of the few who can only produce enough food for everyone by using hundreds if not thousands of fossil fuel slaves.  The Matrix is making it so easy to ‘work’ in its grip, and spend the returns shopping for food so cheap that what else are you to do?  I could never sell the food I produce, it takes me far too long (but what else have I got to do!?) and I would never get the financial return it merits, yet the satisfaction and the quality I get is worth my while…..

Simon Fairley

Recently, SBS TV here in Australia aired a fascinating doco featuring Michael Mosley titled “The Truth About Meat” (which Expires on 24 November 2014, 8:40pm).  I was already aware of the disturbing practices in the meat industry, but this film left me nonetheless gobsmacked.  The cruelty exercised on some of the animals depicted beggars belief.  Greed rules in the Matrix.  I have to say I was uplifted by the ending where Mosley meets Simon Fairley, an old fashioned dairy farmer who among other things milks his cows by hand.  The farmer explains how nothing else but grass would grow on his farm, and as we can’t eat grass, it makes sense to use cows to convert it into something we can use.  Interestingly, for someone who makes his livelihood from selling milk, he espouses that we should all use meat and dairy less.  A lot less.  Half, or maybe even less…..  I never thought I’d see the day a dairy farmer draws an exponential curve, but this one did!  As we hit the Limits to Growth wall, this will happen anyway.  Plus, if you want to continue eating meat and dairy post crash, you will have to source it locally, or grow your own.

In another doco titled “Should I Eat Meat” (which expires on 17 November ’14 – so be quick!), Mosley searches for whether or not eating meat is good or bad for you.  Many vegetarians take great pleasure in telling me meat eating causes cancer or some other terrifying life ending diseases.  Mosley’s doco actually concludes this too as he yet again experiments with his own body to discover ‘the truth’.  His cholesterol went up while bingeing on meat.  It’s actually debatable whether high cholesterol is bad for you, the jury’s still out on that one; and besides, we’re all different…  I eat a lot of cheese, and I have my share of meat too, yet my cholesterol is very low (3.0 last time it was checked, and it was 2.8 for thirty years before that!) while Glenda, who’s on the same diet (she actually eats way less cheese than me) has hers at a level that worries the doctor…  What to make of this, I do not know.  As far as meat causing cancer goes, eat non organic meat poisoned with hormones, antibiotics, and pesticides at your own peril methinks……

So, can we raise our own animals ethically and sustainably?  The ethical part of it is easily dealt with as far as I am concerned.  We care for our animals,

Zeb, our British Alpine buck, saved from the knackery at one day of age, hand/bottle raised, a real sweety

Zeb, our British Alpine buck, saved from the knackery at one day of age, hand/bottle raised, a real sweety

and those we kill (like the recent four ducks that were born in our incubator) had a great life roaming around the orchard, only locked up at night for their own security and released again at sunrise.  I’ve become an expert at dispatching chickens and ducks painlessly (for both them and me..) and with virtually zero stress on the animal.  Killing a stressed animal simply gives you bad meat tainted with adrenaline.  When we raised the only two pigs we’ve ever kept here, the mobile butcher came with his .22 rifle to do the dispatching for me.  We put some food on the ground a few metres apart for the pair of them, and when he shot the first one at point blank range killing it immediately, the second pig did not even flinch, so quiet and stress free was the whole affair.  The second pig never knew what him either.  The butcher said the animals were of the very best condition, something he can tell immediately by just looking at their livers.  He’d worked in abattoirs and said that after seeing what went on there and how bad the meat quality was, he never buys supermarket meat, and he raises his own meat too.

In the end, the resulting pork meat cost us just the same as buying organic free range pork from the shop (if you can even find some), but we knew where they’d been and what they were fed, and the meat was outstanding……  in fact the quality of the chicken and duck meat we raise leaves supermarket produce for dead (pardon the pun).

Yellow coloured grass fed free range chicken

Yellow coloured grass fed free range chicken

We don’t feed any grains to our chickens at all, instead giving them loads of organic food scraps we are lucky enough to have access to (it was the food we also fed the pigs). We also make sure our chooks eat a lot of grass.  The Muscovy ducks do this naturally, it’s their preferred staple.  A couple of years ago, I saw Hugh Fearnley-Whittingstall expose the British chicken industry for what it was really worth, and showed how grass fed free range chickens have twenty times the Omega3 fatty acids of ordinary birds.  The way to tell if a bird is grass fed and truly free range is by the colour of its skin and fat, bright yellow….  you won’t find those on supermarket shelves.

I realise that there is nowhere near enough waste food around for everyone to do this, but it has occurred to me we could easily grow wheat here, as it self seeds easily whenever grain is spilled on the ground, and we’ve had moderate success with sunflowers, which I must plant again soon.  Our biggest concern here for doing all this is that we run the whole show on tank water, and really, we need at least one more tank.  This requires money and resources, and that’s where the sustainability side of things kicks in for me.  Nothing we do is sustainable, really…..

But think about this.  If we did not have the goats, I would have to mow 3/4 of an acre.  I can’t do the maths on that, but there must surely be some greenhouse tradeoff.  Besides, because we recycle all the animals’ manures and turn them into compost, we don’t buy fertilisers made and packaged with fossil fuels.  That alone must save at least as much greenhouse emissions are the goats’ belching….

In the end, there are no silver bullets.  Too many people, wanting too many meals made up of protein is the real problem, and I see no answer to that curly problem.  The Matrix must simply wind down, that’s all there is to it.