How Do You Degrow an Economy, Without Causing Chaos?

16 05 2017

An article written by a Facebook friend of mine, Jonathan Rutherford, who is Coordinator of the New International Bookshop and a ‘Simpler Way’ activist. Originally published at the Resillience website.  The real challenge for those in charge is not ‘jobs and growth’, it is how to best manage the looming contraction……

‘Houston, we have a problem’. On the one hand, there is growing acceptance among environmentally conscious people that rich nations and affluent regions of the global economy must dramatically reduce overall resource and energy consumption levels – that is, undergo a process of ‘degrowth’ – if humanity is to bring about a sustainable world order. On the other hand, we have a growth economy that cannot go two steps in this direction without causing huge economic and social problems.

If you doubt the first part of this statement (i.e. the need for ‘degrowth’), consider just one metric – the material footprint (MF) indicator. This measures consumption of all natural resources (biomass, fossil fuels, metal ores and minerals) extracted from the environment. Humanity’s current MF is about 70 billion tonnes – a figure that has more than trebled since the 1970s. As we know, already this rate of consumption is generating waste, pollution and land-use change that are driving environmental problems such as global warming and species extinction. But now consider the fact that the per capita rich nation (i.e OECD) MF is about 30 tonnes. If the 9+ billion humans expected to be living on earth by 2050 rose to this level, we would need 270 billion tonnes per annum – that is, four times the present rate, which is unsustainable. Using similar figures in the 1990s Friedrich Schmidt Bleek estimated that rich nations need to make ‘factor 10’ reductions in overall resource use (renewable and non-renewable), if we are to move down to a globally fair share and at sustainable levels. And that estimate, it should be noted, does not factor in the likely increase in MF that, recent history suggests, will inevitably result from the continuous pursuit of economic growth by all nations, included the wealthiest.

Many people hope that we can make ‘factor 10’ reductions via technological advance and efficiency gains alone, without having to make cut overall rates of production, consumption (i.e. GDP). But, as argued in a recent peer reviewed article by Giorgos Kallis there are strong reasons to think that this will not be viable. Few want to admit it, but the kind of radical reductions we need to make will require GDP contraction i.e. de-growth.

But if we in the rich world need to degrow the economy, as it appears we do, how is that done without causing utter social chaos and breakdown?  The problem was recently illustrated in a series of articles run by the ABC. The first article highlighted the trend among some young Australians to adopt relatively frugal lifestyles of reduced income expenditure and increased savings. A follow up article, however, asked: what would happen to the economy if everyone did this? The answers were revealing, and implicitly revealed fundamental flaws in our existing economic system.

The article cited data which suggest every year Australians spend $955 billion on all forms of consumption. Of this about $416 billion (44%) is made up items such as ‘food, clothing, housing, utilities, health, transport, insurance’ which the article defined as ‘necessities’ (note: one, of course, may question whether i.e. all clothes consumption are truly ‘necessities’!). The other $523 billion was made up what the article defined as discretionary items. Economist, Saul Eslake pointed out that, even if we exclude from this discretionary figure the $100+ billion worth of imported goods & services, if  all Australian households ceased all the remaining discretionary spending, GDP would be immediately reduced by 25 per cent. But, as Eslake pointed out, the impact on the economy would eventually be far greater than this, due to knock-on effects. The reduced spending, for example, would result in firm bankruptcy and thus laid off workers which, in turn, would further reduce aggregate demand in a cycle of downward depression familiar to students of economic history.

But while all this is entirely correct, reducing societal consumption – degrowing the economy – need not necessarily result in chaotic economic breakdown, as the ABC article implicitly assumed. This is indeed an inevitable outcome within our present economic system, but possibly not others.

Our present system – both in Australia and now most of the world – is, of course, the capitalist market economy. This 500-year-old system has certain defining features that mark it out as unique compared to other economic systems humans have devised.  It is a system in which a) most (if not all) the major means of production are privately (these days corporately) owned by a small minority of the population; and b) where the fundamental economic problems (what, how, and for whom to produce) are solved “automatically”, through the price mechanism, rather than through conscious social decisions.

Importantly, for this discussion, the system is characterised by a growth compulsion. Due to competition, all firms – particularly large shareholder firms – are under constant pressure to invest in new techniques, methods of production and products, to improve competitiveness and their sales figures. If they fail to do this, they not only risk profits margins but also eventually being taken-over by other firms, or made bankrupt. Since no firm wants to perish, and since all must expand if they want to continue to exist, a general growth compulsion arises, not just for individual firms, but for the macro economy as whole. So, while almost everyone wants growth, it is also true that the system needs growth for its basic functioning.

In fact, the system cannot possibly tolerate even a slow-down in the rate of growth, let alone a contraction. Richard Smith points out that even when capitalism approaches a ‘steady state’ of zero GDP growth, such as what happened in the USA in the wake of the GFC, the outcome for society at large is ugly. The situation is characterised by “capital destruction, mass unemployment, devastated communities, growing poverty, foreclosures, homelessness and environmental considerations shunted aside in the all-out effort to restore growth.” Obviously, nobody wants this, including advocates of degrowth.

What then would be required to contract the economy, in an orderly and fair way? The influential ‘Steady-State’ theorist Herman Daly argues that we can do so, while retaining a basically capitalist system, on the condition that the state steps in to play a far more active regulatory role than at present. Among other policy suggestions, Daly proposes that the state impose escalating resource depletion quotes, that can be traded in a market, while retaining private enterprise and the market system.

An emerging school of eco-socialists argue, however, that this will not work. Saral Sarkar points out three flaws with Daly’s plan.

“1) The contraction of the economies of the world must occur in an orderly way. Otherwise there will be unbearable breakdowns of whole societies. An orderly contraction can only take place in a planned economy, not in a capitalist market economy. 2) Only a socialist political order can achieve, by means of egalitarian distribution of the costs and benefits, a broad acceptance of the necessary contraction, 3) Only in a planned socialist economy can the problem of unemployment be solved, which would otherwise become more and more acute in a contracting economy. To this end, a planned economy can consciously use labor-intensive technologies and methods, which, in addition, result in less use of resources.” (Sarkar, 2012, 325)

Let me just briefly elaborate on the first reason given by Sarkar (for greater detail see Sarkar 1999) – the idea that contracting the economy within a capitalist market system would result in chaotic breakdown. Sarkar points out that the famed ‘efficiency’ of the market system only works well (if at all) when there is a buyers’ market, leading to strong competition between suppliers to meet customer demand. But in a contractionary scenario, most markets would be ‘suppliers’ markets, as there would be, in general, a shortage of supply relative to demand. This would mean even poorly run, high cost firms would be able to survive. And, as with any market economy, you would still have a situation where increasingly scarce resources were tended to be allocated to meeting the money backed demands of the already wealthy, rather than to meeting the vital needs for all – a recipe for social chaos in a context of heightened scarcity.

For these reasons, and as unfashionable as it is today, Sarkar argues that a socialist economic framework will be necessary if we are to contract the economy in an orderly, peaceful and socially just way. This would involve a process in which the state nationalises and/or shuts down most large-scale firms in the economy and actively plans the process of contraction via mechanisms such as quantitative controls, price controls, a quota system etc. But what about smaller firms and co-ops, operating at the local level? Here, it is plausible that a quasi-market economy – albeit operating within a very different no-growth culture and firmly under social control –  would be viable. Another eco-socialist Richard Smith elaborates:

“In arguing for large-scale industrial planning, I’m not saying that we should nationalize family farms, farmers’ markets, artisans, groceries, bakeries, local restaurants, repair shops, workers’ cooperatives, and so on. Small producers aren’t destroying the world. But large-scale corporations are. If we want to save the planet, the corporations would have to be nationalized, socialized, and completely reorganized. Many will need to be closed down, others scaled back, others repurposed. But I don’t see any reason why small-scale, local, independent producers cannot carry on more or less as they are, within the framework of a larger planned economy.”

Eventually the goal will be to move to a situation in which most (if not all) people live and work within highly localised economies, using local resources to meet local needs. As Ted Trainer argues, this is not optional if we want to reduce our ecological footprint to sustainable one planet levels that all can share. Gladly, there is a case that the quality of life could be very high within such communities.

But herein lies a problem for the eco-socialist, and wider degrowth movement. Trainer points out that these new local communities will not work well unless they are based on the active participation and cooperation of most, if not all, ordinary citizens in the locality. This will be necessary to ensure that all are provided for and the economy works within local eco-system limits. Active and inclusive participation by all (or at least most), Trainer argues, is ‘the crucial prerequisite… that will be needed if ordinary citizens are to eventually run highly self-sufficient local communities well.’ Widespread civic participation and cooperation simply cannot be imposed ‘top-down’ via states, even if they wanted to. In any case, Trainer argues, only if movements for localism and simpler living emerge first, is there any chance of building the eventual political will that will make a process of societal degrowth at the national and global levels possible.

For this reason, we ‘Simpler Way’ advocates tend to see the eco-socialist state directed process described above as ‘only’ a final, albeit necessary, step in a long multi phased transition towards sustainability. The first (and hardest) phase of the revolution happens when ordinary citizens, not states or corporations, take it upon themselves to start building today, even in small ways, the new self-reliant economies in the towns and suburbs where they live.

Having said that, the above sets a parallel challenge for participants within existing localist movements such as Transition Towns, eco-village, permaculture, simpler living etc. For it is equally true that we will not make a successful transition to sustainability – and the new local communities and economies will not function well – unless participants within these movements become aware of, and begin advocating for, the eventual need for an orderly process of ‘de-growth’ – a process that, for reasons mentioned briefly above, is only likely to go well within an eco-socialist framework. Ultimately, unless both these local and national-global processors occur, will not make a successful transition to a sustainable society.

Of course, today, across the world we are miles away from the necessary political and cultural awareness needed for such a transition. It is likely that the coming oil crunch and global financial contraction will aid our cause and encourage more people to see the sense in localism and de-growth – but, until then, activists must doggedly go on raising awareness wherever they can. Even if it does not feel like it, every conversation counts!

Reference:

Saral Sarkar, Eco-Socialism or Eco-Capitalism? – A Critical Analysis of Humanity’s Fundamental Choices. London: Zed Books. 1999.





Limits to growth: policies to steer the economy away from disaster

14 09 2016

Samuel Alexander, University of Melbourne

Samuel Alexander

If the rich nations in the world keep growing their economies by 2% each year and by 2050 the poorest nations catch up, the global economy of more than 9 billion people will be around 15 times larger than it is now, in terms of gross domestic product (GDP). If the global economy then grows by 3% to the end of the century, it will be 60 times larger than now.

The existing economy is already environmentally unsustainable. It is utterly implausible to think we can “decouple” economic growth from environmental impact so significantly, especially since recent decades of extraordinary technological advancement have only increased our impacts on the planet, not reduced them.

Moreover, if you asked politicians whether they’d rather have 4% growth than 3%, they’d all say yes. This makes the growth trajectory outlined above all the more absurd.

Others have shown why limitless growth is a recipe for disaster. I’ve argued that living in a degrowth economy would actually increase well-being, both socially and environmentally. But what would it take to get there?

In a new paper published by the Melbourne Sustainable Society Institute, I look at government policies that could facilitate a planned transition beyond growth – and I reflect on the huge obstacles lying in the way.

Measuring progress

First, we need to know what we’re aiming for.

It is now widely recognised that GDP – the monetary value of all goods and services produced in an economy – is a deeply flawed measure of progress.

GDP can be growing while our environment is being degraded, inequality is worsening, and social well-being is stagnant or falling. Better indicators of progress include the Genuine Progress Indicator (GPI), which accounts for a wide range of social, economic and environmental factors.

Cap resources and energy

Environmental impact is driven by demand for resources and energy. It is now clear that the planet cannot possibly support current or bigger populations if developing nations used the same amount of resources and energy as developed nations.

Demand can be reduced through efficiency gains (doing more with less), but these gains tend to be reinvested in more growth and consumption, rather than reducing impacts.

A post-growth economy would therefore need diminishing “resource caps” to achieve sustainability. These would aim to limit a nation’s consumption to a “fair share” of available resources. This in turn would stimulate efficiency, technological innovation and recycling, thereby minimising waste.

This means that a post-growth economy will need to produce and consume in far less resource-intensive ways, which will almost certainly mean reduced GDP. There will of course be scope to progress in other ways, such as increased leisure time and community engagement.

Work less, live more

Growth in GDP is often defended on the grounds that it is required to keep unemployment at manageable levels. So jobs will have to maintained in other ways.

Even though GDP has been growing quite consistently in recent decades, many Westerners, including Australians, still seem to be locked into a culture of overwork.

By reducing the average working week to 28 hours, a post-growth economy would share the available work among the working population. This would minimise or eliminate unemployment even in a non-growing or contracting economy.

Lower income would mean we would have less stuff, reducing environmental impact, but we would receive more freedom in exchange. Planned degrowth is therefore very different to unplanned recession.

Redirect public spending

Governments are the most significant player in any economy and have the most spending power. Taking limits to growth seriously will require a fundamental rethink of how public funds are invested and spent.

Among other things, this would include a swift divestment from the fossil fuel economy and reinvestment in renewable energy systems. But just as important is investing in efficiency and reducing energy demand through behaviour change. Obviously, it will be much easier to transition to 100% renewable energy if energy demand is a fraction of what it is today.

We could fund this transition by redirecting funds from military spending (climate change is, after all, a security threat), cutting fossil fuel subsidies and putting an adequate price on carbon.

Reform banking and finance

Banking and finance systems essentially have a “growth imperative” built into their structures. Money is loaned into existence by private banks as interest-bearing debt. Paying back the debt plus the interest requires an expansion of the monetary supply.

There is so much public and private debt today that the only way it could be paid back is via decades of continued growth.

So we need deep reform of banking and finance systems. We’d also need to cancel debt in some circumstances, especially in developing nations that are being suffocated by interest payments to rich world lenders.

The population question

Then there’s population. Many people assume that population growth will slow when the developing world gets rich, but to globalise affluence would be environmentally catastrophic. It is absolutely imperative therefore that nations around the world unite to confront the population challenge directly.

Population policies will inevitably be controversial but the world needs bold and equitable leadership on this issue, because current trends suggest we are heading for 11 billion by the end of this century.

Anyone who casually dismisses the idea that there is a limit to how many people Earth can support should be given a Petri dish with a swab of bacteria. Watch as the colony grows until it consumes all of the available nutrients or is poisoned by its own waste.

The first thing needed is a global fund that focuses on providing the education, empowerment and contraception required to minimise the estimated 87 million unintended pregnancies worldwide every year.

Eliminating poverty

The conventional path to poverty alleviation is the strategy of GDP growth, on the assumption that “a rising tide will lift all boats”. But, as I’ve argued, a rising tide will sink all boats.

Poverty alleviation must be achieved more directly, via redistribution of wealth and power, both nationally and internationally. In other words (and to change the metaphor), a post-growth economy would eliminate poverty not by baking an ever-larger pie (which isn’t working) but by sharing it differently.

The richest 62 people on the planet own more than the poorest half of humanity. Dwell on that for a moment, and then dare to tell me that redistribution is not an imperative of justice.

So what’s stopping us?

Despite these post-growth policy proposals seeming coherent, they face at least four huge obstacles – which may be insurmountable.

First, the paradigm of growth is deeply embedded in national governments, especially in the developed world. At the cultural level, the expectation of ever-increasing affluence is as strong as ever. I am not so deluded as to think otherwise.

Second, these policies would directly undermine the economic interests of the most powerful corporations and institutions in society, so fierce resistance should be expected.

Third, and perhaps most challenging, is that in a globalised world these policies would likely trigger either capital flight or economic collapse, or both. For example, how would the stock markets react to this policy agenda?

Finally, there is also a geopolitical risk in being first to adopt these policies. Reduced military spending, for instance, would reduce a nation’s relative power.

So if these “top-down” policies are unlikely to work, it would seem to follow that if a post-growth economy is to emerge, it may have to be driven into existence from below, with communities coming together to build the new economy at the grassroots level.

And if we face a future where the growth economy grows itself to death, which seems to be the most likely scenario, then building up local resilience and self-sufficiency now will prove to be time and energy well spent.

In the end, it is likely that only when a deep crisis arrives will an ethics of sufficiency come to inform our economic thinking and practice more broadly.

The Conversation

Samuel Alexander, Research fellow, Melbourne Sustainable Society Institute, University of Melbourne

This article was originally published on The Conversation. Read the original article.





The Extreme Implausibility of Ecomodernism.

20 07 2016

Another essay by Ted Trainer.

tedtrainer

Ted Trainer

16.3.2016

Abstract: “Ecomodernism” is a recently coined term for that central element in mainstream Enlightenment culture previously well-described as “Tech-fix faith”. The largely taken for granted assumption has been that by accelerating modern technologies high living standards can be achieved for all, while resolving resource and ecological problems.  The following argument is that ecomodernism falls far short of having a substantial, persuasive or convincing case in its support. It stands as a contradiction of the now voluminous “limits to growth” literature, but it does not attempt to offer a case against the limits thesis. Elements in the limits case will be referred to below but the main line of argument will be to do with the reasons why achievement of the reductions and “decouplings” assumed by ecomodernism is extremely implausible. The conservative social and political implications are noted before briefly arguing that the solution to global problems must be sought via The Simpler Way.

What is ecomodernism?.

The 32 page Ecomodernist Manifesto (2015), by 18 authors, is a clear and emphatic restatement of the common belief that technical advance within the existing social structure can or will solve global problems, and there is therefore no need for radical change in directions, systems, values or lifestyles. Thus the fundamental commitment to ever more affluent “living standards”, capital intensive systems, technical sophistication and constantly rising levels of consumption and GDP is sound, and indeed necessary as it is the only way to enable the future technical advance that it is believed will solve global problems. This will enable human demands to be met while resource and ecological impacts on nature are reduced, thus making it possible to set more of nature aside to thrive. Modern agriculture for instance will producer more from less land, enabling more to be returned to nature and freeing Third World people from backbreaking work while moving into urban living.  Thus the fundamental assumption frequently asserted is that economic growth can be “decoupled” from the environment.

These kinds of visions would obviously require vastly increased quantities of energy but renewable sources are judged not to be capable of providing these, so it is no surprise to find late in the document that it is being assumed that nuclear reactors are going to do the job, nor that the pro-nuclear Breakthrough Institute champions the Manifesto.

Unfortunately the Manifesto is little more than a claim.  It provides almost no supporting case apart from giving some examples where technical advance has improved human welfare at reduced resource or ecological impact. It does not deal with the many reasons for thinking that technical advance cannot do what the ecomodernists are assuming it can do.  Above all it does not provide grounds for thinking that that resource demand and ecological damage can be sufficiently decoupled from economic growth. When one of the authors was asked for the supporting case reference was made to the 106 page document Nature Unbounded by Blomqvist, Nordhaus and Shellenberger, (2015.) However this document too is essentially a statement of claims and faith and can hardly be said to present a case that those claims can be realized.

The following discussion is mainly intended to show how implausible and unsubstantiated the general “tech-fix” and decoupling claims are, and that they are contrary to existing evidence.  Most if not all critical discussions of ecomodernism and of left modernization theorists such as Phillips (2015), e.g., by Hopkins (2015), Caradonna et al., 2015, Crist, (2015) and Smaje, (2015a, 2015b), have been impressionistic and “philosophical”. In contrast, the following analysis focuses on numerical considerations which establish the enormity of the ecomodernist claims. When estimates and actual numbers to do with resource demands, resource bases, and ecological impacts are attended to it becomes clear that the task for technical advance set by the ecomodernists is implausible in the extreme.

The basic limits to growth thesis.

The “limits to growth” thesis is that with respect to many factors crucial to planetary sustainability affluent-industrial-consumer society is grossly unsustainable. It has already greatly exceeded important limits. Levels of production and consumption are far beyond those that could be kept up for long or extended to all people.  Present consumption levels are achieved because resource and ecological “stocks” are being depleted much faster than they can regenerate.

But the unsustainable present levels of production, consumption, resource use and environmental impact only begin to define of the problem.  What is overwhelmingly crucial is the universal obsession with continual, never ending economic growth, i.e., with increasing production and consumption, incomes and GDP as much as possible and without limit.  The most important criticism of the ecomodernist position is its failure to grasp the magnitude of the task it confronts when the present overshoot is combined with the commitment to growth.  The main concern in the following discussion is with quantities and multiples, to show how huge and implausible ecomodernist achievements and decouplings would have to be.

The magnitude of the task.

It is the extent of the overshoot that is crucial and not generally appreciated. This is the issue which the ecomodernists fail to deal with and it only takes a glance at the numbers to see how implausible their pronouncements are in relation to the task they set themselves. Their main literature makes no attempt to carry out quantitative examinations of crucial resources and ecological issues with a view to showing that the apparent limits can be overcome.

Let us look at the overall picture revealed when some simple numerical aggregates and estimates are combined.  The normal expectation is for around 3% p.a. growth in GDP, meaning that by 2050 the total amount of producing and consuming going on in the world would be about three times as great as at present. World population is expected to be around 10 billion by 2050.  At present world  $GDP per capita is around $13,000, and the US figure is around $55,000. Thus if we take the ecomodernist vision to imply that by 2050 all people will be living as Americans will be living then, total world output would have to be around 3 x 10/7 x 55,000/13,000 = 18 times as great as it is now.  If the assumptions are extended to 2100 the multiple would be in the region of 80.

However, even the present global level of producing and consuming has an unsustainable level of impact.  The world Wildlife Fund’s “Footprint” measure (2015) indicates that the general overshoot is around 1.5 times a sustainable rate.  (For some factors, notably greenhouse gas emissions, the multiple is far higher.) This indicates that the target for the ecomodernist has to be to reduce overall resource use and ecological impact per unit of output by a factor of around 27 by 2050, and in the region of 120 by 2100. In other words, by 2050 technical advance will have to have reduced the resource demand and environmental impact per unit of output to under 4% of their present levels.

The consideration of required multiples shows the inadequacy of the earlier pronouncements and expectations of the well-known tech-fix optimist Amory Lovins who enthused about the possibility of “Factor Four” or better reductions in materials and energy uses per unit of GDP.  (Von Weisacker and Lovins, 1997, and Hawken, Lovins and Lovins, 1999).If there is a commitment to constant, limitless increase in economic output then the reductions in resource use and environmental damage that can be achieved by such technical advance are soon likely to be overwhelmed.  For instance if use and impact rates per unit of GDP were cut by one-third, but 3% p.a. growth in total output continued, then in about 17 years the resource demands and impacts would be back up to as high as they were before the cuts, and would be twice as great in another 23 years.

This issue of multiples is at the core of the limits and decoupling issues. If ecomodernists wish to be taken seriously they must provide a numerical case showing that in all the relevant domains the degree of decoupling that can be achieved is likely to be of the magnitude that would be required.  There appears to be no ecomodernist text which even attempts to do this.  At best their case refers to a few instances where impressive decoupling has taken place.

Note also the importance here of the Leibig “law of the minimum.” It does not matter how spectacular various technical gains can be if there remains one crucial area where they can’t be made on the required scale.  Plants for instance might have available all the nutrients they need except for one required in minute quantities but if it is not available there will be little or no growth.  High-tech systems often depend heavily on tiny quantities of “mineral vitamins”, notably rare earths which are extremely scarce.

The typically faulty national accounting.

An easily overlooked factor is that in general measures and indices of rich world resource and ecological performance greatly misrepresent and underestimate the seriousness of the situation, because they do not include the large volumes of energy, materials and ecological impact embodied in imported goods.  Rich countries now do not carry out much manufacturing but import most of the goods they consume from Third World plantations and factories.  The implications for resource depletion and ecological impact have only recently begun to be studied. (Weidmann, et al., 2014, 2015, Lenzen, et al., 2012, Wiebe, et al,

2012, Dittrich, et al., 2014, Schütz, et al., 2004.)

An example is given by the conventional measure of CO2 emissions. Australia’s 550 MtCO2e/y equates to a per capita rate of around 25 t/y, which is about the highest in the world. But this does not include the emissions in Third World countries generated by the production of goods imported into Australia.  For Australia and for the UK this amount is actually about as great as the emissions within the country.  (Clark, 2011, Australian Government Climate Change Authority, 2013.)

In addition Australia’s “prosperity” is largely achieved by exporting coal, oil and gas and these contain about three times as much carbon as all the energy used within Australia.  It could be argued therefore that the country’s contribution to the greenhouse gas problem more or less corresponds to five times the official and usually quoted 25 t/pp/y.  The IPCC estimates that by 2050 global emissions must be cut to about 0.3 t/pp/y. (IPCC, 2014.)  This is around one-three hundredth of the amount Australia is now responsible for. Again the centrality of the above magnitude point is evident; how aware are tech-fix optimists of the need for reductions of such proportions?

Assessing the validity of the general “tech-fix” thesis.

Firstly attention will be given to some overall numerical considerations which show the extreme implausibility of the general tech-fix claim, such as the gulf between current “decoupling” achievements and the far higher levels that ecomodernism would require. But that does not take into account the fact that it is going to take increasing effort just to maintain current achievements, for instance as ore grades deteriorate. This what the limits to growth analysis makes clear.  The added significance of this will be discussed later via brief examination of some domains such as energy scarcity, declining ore grades, and deteriorating ecological conditions.

How impressive have the overall gains been?

It is commonly assumed that in general rapid, large or continuous technical gains are being routinely made in crucial areas such as energy efficiency, and will continue if not accelerate.  As a generalisation this belief is quite challengeable. Ayres (2009) notes that for many decades there have been plateaus for the efficiency of production of electricity and fuels, electric motors, ammonia and iron and steel production. His Fig. 4.21a shows no increase in the overall energy efficiency of the US economy since 1960.  He reports that the efficiency of electrical devices in general has actually changed little in a century (2009) “…the energy efficiency of transportation probably peaked around 1960.” This has been partly due to greater use of accessories since then. Ayres notes that reports tend to publicise selected isolated spectacular technical advances and this is misleading regarding long term average trends across whole industries or economies. Mackay (2008) reports that little gain can be expected for air transport.  Huebner’s historical study (2005) found that the rate at which major technical advances have been made (per capita of world population) is declining.  He says that for the US the peak was actually in 1916.

Decoupling can be regarded as much the same as productivity growth and this has been in long term decline since the 1970s. Even the advent of computerisation has had a surprisingly small effect, a phenomenon now labelled the “Productivity Paradox.”

The historical record suggests that at best productivity gains have been modest. It is important not to focus on national measures such as “Domestic Materials Consumption” as these do not take into account materials in imported goods.  Thus the OECD (2015) claims that materials used within its countries has fallen 45% per dollar of GDP, but this figure does not take into account materials embodied in imported goods. When they are included rich countries typically show very low or worsening ratios. The commonly available global GDP (deflated) and energy use figures between 1980 and 2008 reveals only a 0.4% p.a. rise in GDP per unit of energy consumed.   Hattfield-Dodds et al. (2015) say that the efficiency of materials use has been improving at c. 1.5% p.a., but they give no evidence for this and other sources indicate that the figure is too high. Weidmann et al. (2014) show that when materials embodied in imports are taken into account rich countries have not improved their resource productivity in recent years. They say “…for the past two decades global amounts of iron ore and bauxite extractions have risen faster than global GDP.” “… resource productivity…has fallen in developed nations.” “There has been no improvement whatsoever with respect to improving the economic efficiency of metal ore use.”

The fact that the “energy intensity” of rich world economies, i.e., ratio of GDP to gross energy used within the country has declined is often seen as evidence of decoupling but this is misleading. It does not take into account the above issue of failure to include energy embodied in imports. Possibly more important is the long term process of “fuel switching”, i.e., moving to forms of energy which are of “higher quality” and enable more work per unit. For instance a unit of energy in the form of gas enables more value to be created than a unit in the form of coal, because gas is more easily transported, switched on and off, or converted from one function to another, etc. (Stern and Cleveland, 2004, p. 33, Cleveland et al., 1984, Kaufmann, 2004,  Office of Technology Assessments, 1990, Berndt, 1990, Schurr and Netschurt, 1960.)

Giljum et al. (2014, p. 324) report only a 0.9% p.a. improvement in the dollar value extracted from the use of each unit of minerals between 1980 and 2009, and that over the 10 years before the GFC there was no improvement. “…not even a relative decoupling was achieved on the global level.” They note that the figures would have been worse had the production of much rich world consumption not been outsourced to the Third World. Their Fig. 2, shows that over the period 1980 to 2009 the rate at which the world decoupled materials use from GDP growth was only one third of that which would have achieved an “absolute” decoupling, i.e., growth of GDP without any increase in materials use.

Diederan’s account (2009) of the productivity of minerals discovery effort is even more pessimistic. Between 1980 and 2008 the annual major deposit discovery rate fell from 13 to less than 1, while discovery expenditure went from about $1.5 billion p.a. to $7 billion p.a., meaning the productivity expenditure fell by a factor in the vicinity of around 100, which is an annual decline of around 40% p.a. Recent petroleum figures are similar; in the last decade or so discovery expenditure more or less trebled but the discovery rate has not increased.

A recent paper in Nature by a group of 18 scientists at the high-prestige Australian CSIRO (Hatfield-Dodds et al., 2015) argued that decoupling could eliminate any need to worry about limits to growth at least to 2050. The article contained no support for the assumption that the required rate of decoupling was achievable and when it was sought (through personal communication) reference was made to the paper by Schandl et al. (2015.)  However that paper contained the following surprising statements, “ … there is a very high coupling of energy use to economic growth, meaning that an increase in GDP drives a proportional increase in energy use.”  (They say the EIA, 2012, agrees.) “Our results show that while relative decoupling can be achieved in some scenarios, none would lead to an absolute reduction in energy or materials footprint.” In all three of their scenarios “…energy use continues to be strongly coupled with economic activity…”

The Australian Bureau of Agricultural Economics (ABARE, 2008) reports that the energy efficiency of energy-intensive industries is likely to improve by only 0.5% p.a. in future, and of non-energy-intensive industries by 0.2% p.a. In other words it would take 140 years for the energy efficiency of the intensive industries to double the amount of value they derive from a unit of energy.

Alexander (2014) concludes his review of decoupling by saying, ”… decades of extraordinary technological development have resulted in increased, not reduced, environmental impacts.”  Smil (2014) concludes that even in the richest countries absolute dematerialization is not taking place. Alvarez found that for Europe, Spain and the US GDP increased 74% in 20 years, but materials use actually increased 85%. (Latouche, 2014.) Similar conclusions re stagnant or declining materials use productivity etc. are arrived at by Aadrianse, 1997, Dettrich et al., (2014), Schutz, Bringezu and Moll, (2004), Warr, (2004), Berndt, (undated), and Victor (2008, pp. 55-56).

These sources and figures indicate the lack of support for the ecomodernists’ optimism. It was seen above that they are assuming that in 35 years time there can be massive absolute decoupling, i.e., that energy, materials and ecological demand associated with $1 of GDP can be reduced by a factor of around 27. But even if the 1.5% p.a. rate Hattfield-Dodds et al. say has been the recent achievement for materials use could be maintained the reduction would only be around a factor of 1.7, and various sources noted above say that their assumed rate is incorrect. There appears to be no ecomodernist literature that even attempts to provide good reason to think a general absolute decoupling is possible, let alone on the required scale.

The overlooked role of energy in productivity growth and decoupling.

Discussions of technical advance and economic growth have generally failed to focus on the significance of increased energy use. Previously productivity has been analysed only in terms of labour and capital “factors of production”, but it is now being recognized that in general greater output etc. has been achieved primarily through increased use of energy (and switching to fuels of higher “quality”, such as from coal and gas to electricity.)  Agriculture is a realm where technical advance has been predominantly a matter of increased energy use. Over the last half century productivity measured in terms of yields per ha or per worker have risen dramatically, but these have been mostly due to even greater increases in the amount of energy being poured into agriculture, on the farm, in the production of machinery, in the transport, pesticide, fertilizer, irrigation, packaging and marketing sectors, and in getting the food from the supermarket to the front door, and then dealing with the waste food and packaging. Less than 2% of the US workforce is now on farms, but agriculture accounts for around 17% of all energy used (not including several of the factors listed above.) Similarly the “Green Revolution” has depended largely on ways that involve greater energy use.

Ayres, et al., (2013), Ayres, Ayres and Warr (2002) and Ayres and Vouroudis (2013) are among those beginning to stress the significance of energy in productivity, and pointing to the likelihood of increased energy problems in future and thus declining productivity. Murillo-Zamorano, (2005, p. 72) says  “…our results show a clear relationship between energy consumption and productivity growth.” Berndt (1990) finds that technical advance accounts for only half the efficiency gains in US electricity generation. These findings caution against undue optimism regarding what pure technical advance can achieve independently from increased energy inputs; in general its significance for productivity gains appears not to have been as great as has been commonly assumed.

The productivity trend associated with this centrally important factor, energy, is itself in serious decline, evident in long term data on EROI ratios. Several decades ago the expenditure of the energy in one barrel of oil could produce 30 barrels of oil, but now the ratio is around 18 and falling. The ratio of petroleum energy discovered to energy required has fallen from 1000/1 in 1919 to 5/1 in 2006. (Murphy, 2010.) Murphy and others suspect  that an industrialised society cannot be maintained on a general energy ratio under about 10. (Hall, Lambert and Balough, 2014.)

The changing components of GDP.

Over recent decades there has been a marked increase in the proportion of rich nation GDP that is made up of “financial” services. These stand for “production” that takes the form of key strokes moving electrons around.  A great deal of it is wild speculation, making risky loans and making computer driven micro-second switches “investments”. These operations deliver massive increases in income to banks and managers, and these have significantly contributed to GDP figures. It could be argued that this domain should not be included in estimates of productivity because it misleadingly inflates the numerator in the output/labour ratio.

When output per worker in the production of “real” goods and services such as food and vehicles, or aged care is considered very different impressions can be gained.  For instance Kowalski (2011) reports that between 1960 and 2010 world cereal production increased 250%, but nitrogen fertilizer use in cereal production increased 750%, and land area used increased 40%. This aligns with the above evidence on steeply falling productivity of various inputs for ores and energy. It is therefore desirable to avoid analysing productivity, the “energy intensity” of an economy, and decoupling achievements in relation to the GDP measure.

Factors limiting the benefits from a technical advance.

There are several factors which typically determine the gains a technical advance actually enables are well below those that seem possible at first.  Engineers and economists make the following distinctions.

“Technical potential”  refers to what could be achieved if the technology could be fully applied with no regard to cost or other problems.

Economic (or ecological) potential”.  This is usually much less than the technical potential because to achieve all the gains that are technically possible would cost too much.  For instance some The Worldwide Fund for Nature quotes Smeets and Faiij (2007) as finding that it would be technically possible for the world’s forests to produce another 64 EJ/y of biomass energy p.a., but they say that the ecologically tolerable potential is only 8 EJ/y.

What are the net gains?  Enthusiastic claims about a technical advance typically focus on the gains and not the costs which should be subtracted to give a net value.  For instance the energy needed to keep buildings warm can be reduced markedly, but it costs a considerable amount of energy to do this, in the electricity needed to run the air-conditioning and heat pumps, and in the energy embodied in the insulation and triple glazing. There are also knock-on effects.  The Green Revolution doubled food yields, but only by introducing crops that required high energy inputs in the form of expensive fertlilzer, seeds and irrigation, and created social costs to do with the disruption of peasant communities.

  • What is socially/politically possible?  There are limits set by what people will accept.  It would be technically possible for many more people in any city to get to work by public transport, but large numbers would not give up the convenience of their cars even if they saved money doing so.
  • The Jeavons or “rebound” effect.  There is a strong tendency for savings made possible by a technical advance to be spent on consuming more of the thing saved, or something else.

Thus it is important to recognise that initial claims usually refer to “technical potential”, but significantly lower savings etc. are likely in the real world.

Now add the worsening limits.

The discussion so far has only dealt with decoupling achievements to date, but the difficulties involved in those achievements are in general likely to have been much less severe than those ahead, as there is continued deterioration in ore grades, forests, soils, chemical pollution, water supplies etc.  It is important now to consider briefly some of these domains, to see how they will make the task for the ecomodernist increasingly difficult.

Before looking at some specific areas the general “low hanging fruit” effect should be mentioned.  When effort is put into dealing with problems, recycling, conserving, increasing efficiency etc. the early achievements might be spectacular but as the easiest options are used up progress typically becomes more difficult and slow. This is so even when there are no problems of dwindling resource availability.

                        Minerals.

The grades of several ores being mined are falling and production costs have increased considerably since 1985. Topp (2008) reports that the productivity for Australian mining has declined 24% between 2000 and 2007. While reserve estimates can be misleading as they only state quantities miners have found to date, and they often increase over time, there is considerable concern about the depletion rate.

Dierderen (2009) says that continuation of current consumption rates will mean that we will have much less than 50 years left of cheap and abundant access to metal minerals, and that it will take exponentially more energy and minerals input to grow or even sustain the current extraction rate of metal minerals. He expects copper, nickel, molybdenum and cobalt to peak before 2035. Deideren’s conclusion is indeed, as his title says, sobering; “The peak in primary production of most metals may be reached no later than halfway through the 2020s.” (p. 23.) “Without timely implementation of mitigation strategies, the world will soon run out of all kinds of affordable mass products and services.”  Such as… “cheap mass-produced consumer electronics like mobile phones, flat screen TVs and personal computers, for lack of various scarce metals (amongst others indium and tantalum). Also, large-scale conversion towards more sustainable forms of energy production, energy conversion and energy storage would be slowed down by a lack of sufficient platinum-group metals, rare-earth metals and scarce metals like gallium. This includes large-scale application of high-efficiency solar cells and fuel cells and large-scale electrification of land-based transport.” Deideren points out that Gallium, Germanium, Indium and Tellurium are crucial for renewable technologies but are by-products currently available in low quantity from the mining of other minerals.  If the latter peak so will the availability of the former.

Scarcities in one domain often have knock-on and negative feedback effects in others.  Diederan says, “The most striking (and perhaps ironic) consequence of a shortage of metal elements is its disastrous effect on global mining and primary production of fossil fuels and minerals: these activities require huge amounts of main and ancillary equipment and consumables (e.g. barium for barite based drilling mud)”. (p. 9.)

The ecomodernist’s response must be to advocate mining poorer grade ores, but this means dealing with marked increases in energy and environmental costs.

  • The quantity of rock that has to be dug up increases. For ores at half the initial grade the quantity doubles, and so does the energy needed to dig, transport and crush it.
  • Poorer ores require finer grinding and more chemical reagents to release mineral components, meaning greater energy demand and waste treatment.
  • Meanwhile the easiest deposits to access are being depleted so it takes more energy to find, get to, and work the newer ones. They tend to be further away, deeper, and smaller.
  • Processing rich ores can be chemically quite different to processing poor ores. Only a very small proportion of any mineral existing in the earth’s crust has been concentrated by natural processes into ore deposits, between .001% and .01%, and the rest exists in common rock, mostly in silicates which are more energy-intensive to process than oxides and sulphides.  To extract a metal from its richest occurrence in common rock would take 10 to 100 times as much energy as to extract if from the poorest ore deposit. To extract a unit of copper from the richest common rocks would require about 1000 times as much energy per kg as is required to process ores used today.

Now consider the minerals situation in relation to the multiples issue. At present only a few countries are using most of the planet’s minerals production.  For instance the per capita consumption of iron ore for the ten top consuming countries is actually around 90 times the figure for all other countries combined. (Weidmann et al., 2013.) How long would mineral supply hold up, at what cost, if 9 – 10 people billion were to try to rise to rich world “living standards”? How likely is it that in view of current ore grade depletion rates and the miniscule decoupling achievement for minerals, the global amount of producing and consuming could multiply by 27, or 120, while the absolute amount of minerals consumed declined markedly?

The ecomodernist cannot hope to deal with the minerals problem without assuming very large scale adoption of nuclear energy, which they are willing to do.

Climate.

Most climate scientists now seem to accept the approach put forward by Meinshausen et al., (2009), and followed by the IPCC (2013) in analyzing in terms of a budget, an amount of carbon release that must not be exceeded if the 2 degree target is to be met.  They estimate that to have a 67% chance of keeping global temperature rise below this the amount of CO2e that can be released between 2000 and 2050 is 1,700 billion tonnes. By 2012 emissions accounted for 36% of this amount, meaning that if the present emission rate is kept up the budget would have been used up by 2033.  Given the seriousness of the possible consequences many regard a 67% chance as being too low and a2 degree rise as too high. (Anderson and Bows, 2008, and Hansen, 2008.)  For an 80% chance the budget limit would be 1,370 billion tonnes.

Few would say there is any possibility of eliminating emissions by 2033. Many emissions come from sources that would be difficult to control or reduce, such as carbon electrodes in the electric production of steel and aluminium. Only about 40% of US emissions come from power generation. Thus power station Carbon Capture and Storage technology cannot solve the problem.

Even the IPCC’s most optimistic emissions reduction scenario, RCP 2.6, could be achieved only if as yet non-existent technology will be able to take 1 billion tonnes of carbon out of the atmosphere every year through the last few decades of this century. (IPCC, 2014.)

Ecomodernists mostly regard the climate problem as solvable by the intensive adoption of nuclear energy. However even the most rapid build conceivable could not achieve the Meinschausen et al. target.

Urbanisation.

About half the world’s people now live in cities, and the ecomodernist strongly advocates increasing this markedly, on the grounds that intensification of settlement will enable freeing more space for nature.  This is an area where knock-on effects are significant. Urban living involves many high resource and ecological costs, including having to move in vast amounts of energy, goods, services and workers, to maintain elaborate infrastructures including those to lift water and people living in high-rise apartments, having to move out all “wastes”, having to provide artificial light, heating, cooling, air purification, having to build freeways, bridges, railways, airports, container terminals, and having to staff complex systems with expensive highly trained professionals and specialists.  Little or none of this dollar, energy, resource or ecological cost has to be met when people live in villages (See on Simpler Way settlements below).

The frequent superficiality and invalidity of the Manifesto’s case is illustrated by the following statement. “Cities occupy just 1 to 3 percent of the Earth’s surface, yet are home to nearly 4 billion people. As such, cities both drive and symbolize the decoupling of humanity from nature, performing far better than rural economies in providing efficiently for material needs…” This statement overlooks the vast areas needed to produce and transport food etc. into the relatively small urban areas. If four billion were to live as San Franciscans do now, with a footprint over 7 ha per person, the total global footprint would be almost 30 billion ha, 200% of the Earth’s surface, not 1- 3%. (WWF, 2014.) Urbanisation does not  “decouple humanity from nature”.

Biological resources and impacts.

Perhaps the most worrying limits being encountered are not to do with minerals or energy but involve the deterioration of biological resources and environmental systems. The life support systems of the planet, the natural resources and processes on which all life on earth depends, are being so seriously damaged that the World Wildlife Fund claims there has been a 30% deterioration since about 1970. Steffen et al., (2015) state much the same situation. A brief reference to a number of impacts is appropriate here to again indicate the magnitude of present problems and their rate of growth.

Biodiversity loss.

Species are being driven to extinction at such an increasing rate that it is claimed the sixth holocaust of biodiversity loss has begun. The rate has been estimated at 114 times the natural background rate. (Ceballos, et al., 2015, Kolbert, 2014.) The numbers or mass of big animals has declined dramatically. “… vertebrate species populations across the globe are, on average, about half the size they were 40 years ago.” (Carrington, 2014.) The mass of big animals in the sea is only 10% of what it was some decades ago. The biomass of corals on the Great Barrier Reef is only half what it was about three decade ago. By the end of the 20th century half the wetlands and one third of coral reefs had been lost. (Washington, 2014.)

Disruption of the nitrogen cycle.

Humans are releasing about as much nitrogen via artificial production, especially for agriculture, as nature releases. This has been identified as one of the nine most serious threats to the biosphere by the Planetary Boundaries Project. (Rockstrom and Raeworth, 2014.)

The increasing toxicity of the environment.

Large volumes of artificially produced chemicals are entering ecosystems disrupting and poisoning them.  This includes the plastics concentrating in the oceans and killing marine life.

Water.

Serious water shortages are impacting in about 80 countries. More than half the world’s people live in countries where water tables are falling. Over 175 million Indians and 130 million Chinese are fed by crops watered by pumps running at unsustainable rates. (Brown, 2011, p. 58.) Access to water will probably be the major source of conflict in the world in coming years. About 480 million people are fed by food produced from water pumped from underground. The water tables are falling fast and the petrol to run the pumps might not be available soon. In Australia overuse of water has led to serious problems, such as salinity in the Murray-Darling system. By 2050 the volume of water in these rivers might be cut to half the present amount, as the greenhouse problem impacts.

Fish.

Nearly all fisheries are being over-fished and the global fish catch is likely to go down from here on.  The mass of big fish in the oceans, such as shark and tuna, is now only 10% of what it was some decades ago. Ecomodernists assume that aquaculture will solve the fish supply problem. It is not clear what they think the farmed fish will be fed on.

Oceans.

Among the most worrying effects is the increasing acidification of the seas, dissolving the shells of many ocean animals, including the krill which are at the base of major ocean food chains.  This effect plus the heating of the oceans is seriously damaging corals.  The coral life on the Great Barrier Reef is down 30% on its original level, and there is a good chance the whole reef will be lost in forty years. (Hoegh-Guldberg, 2015.)

Food, land, agriculture.

Food supply will have to double to provide for the expected 2050 world population, and it is increasingly unlikely that this can be done. Food production increase trends are only around 60% of the rate of increase needed. (Ray, et al., 2013.) Food prices and shortages are already serious problems, causing riots in some countries.  If all people we will soon have on earth had an American diet we would need 5 billion ha of cropland, but there are only 1.4 billion ha on the planet and that area is likely to reduce as ecosystems deteriorate, water supply declines, salinity and erosion continue, population numbers and pressures to produce increase, land is used for new settlements and to produce more meat and bio-fuels, and as global warming has a number of negative effects on food production.

Burn, (2015) and Vidal (2010) both report the rate of food producing land loss at 30 million ha p.a. Vidal says, “…the implications are terrifying”, and he believes major food shortages are threatening. Pimentel says one third of all cropland has been lost in the last 40 years. China might be the worse case, losing 600 square miles p.a. in the 1950 – 1970 period, but by 2000 the rate had risen to 1,400 square miles p.a.  For 50 years about 500 villages have had to be abandoned every year due to incoming sand from the expanding deserts. If the estimates by Burn and Vidal are correct then more than 1 billion ha of cropland will have been lost by 2050, which is two-thirds of all cropland in use today.

The Ecomodernist Manifesto devotes considerable attention to the issue of future food production, using it as an example of the wonders technical advance can bring, including liberating peasants from backbreaking work. It is claimed that advances in modern agriculture will enable production of far more food on far less land, enabling much land to go back to nature. There is no recognition of the fact that modern agriculture is grossly unsustainable, on many dimensions.  It is extremely energy intensive, involving large scale machinery, international transport, energy-intensive inputs of fertilizer and pesticides, packaging, warehousing, freezing, dumping of less than perfect fruit and vegetables, serious soil damage through acidification and compaction, carbon loss and erosion, the energy-costly throwing away of nutrients in animal manures, the destruction of small scale farming and rural communities, the loss of the precious heritage that is genetic diversity … and the loss of food nutrient and taste quality (most evident in the plastic tomato.)

On all these dimensions peasant and home gardening and other elements in local agriculture such as ”edible landscapes”, community gardens and commons are superior. The one area where modern agriculture scores better is to do with labour costs, but that is due to the use of all that energy-intensive machinery. Ecomodernists do not seem to realize what a fundamental challenge is set for them by the well-established “inverse productivity relationship”, i.e., the fact that small scale food producers achieve higher yields per ha. (Smaje, 2015a, 2015b.) They are able to almost completely avoid food packaging, advertising and transport costs, to recycle all nutrients to local soils, benefit from overlaps and multiple functions (e.g., geese weed orchards, ducks eat snails, kitchen scraps feed poultry…) Possibly most importantly, local food production systems maximize the provision of livelihoods and are fundamental elements in resilient and sustainable communities.

Again a daunting challenge is set for the ecomodernist. Presumably the far higher yields from far less land will involve energy intensive high-rise greenhouses, water desalinisation, aquaculture, near 100% phosphorus and other nutrient recycling, elimination of nitrogen run-off, restoration of soil carbon levels, synthetic meat, and extensive global transport and packaging systems. Again numerical analyses aimed at showing what the energy, materials  and dollar budgets would be, or that the goals can be met, are not offered. In addition a glance at the tech fix vision for future food supply reveals the many knock on effects that would multiply problems in many other areas, most obviously energy, infrastructure and water provision and the associated demand for materials.

A glance at the energy implications for beef production should again establish the magnitude point. To produce one kg of beef take can take 20,000 litres of water, and it can take 4 kWh to desalinize 1 liter of water. Again it is evident that there would have to be very large scale commitment to nuclear energy.

            Summarising the biological resource situation.

The environmental problem is essentially due to the huge and unsustainable volumes of producing and consuming taking place.  Vast quantities of resources are being extracted from nature and vast quantities of wastes are being dumped back into nature. Present flows are grossly unsustainable but the ecomodernist believes the basic commitment to ever-increasing “living standards” that is creating the problems can and should continue, while population multiplies by 1.5, resources dwindle, and consumption multiplies perhaps by eight by 2100.

The energy implications.

In all the fields discussed it is evident that the ecomodernist vision would have to involve a very large increase in energy production and consumption, including for processing lower grade ores, producing much more food from much less land, desalinisation of water, dealing with greatly increased amounts of industrial waste (especially mining waste), and constructing urban infrastructures. The “no-limits-to-growth” scenario for Australia 2050 put forward by Hattfield-Dodds et al. concludes that present energy use would have to multiply by 2.7, more than most if not all other projections, and their scenarios do not take into account the energy needed to deal with any of the knock-on effects discussed above. (And their conclusion is based on a highly implausible rate of decoupling materials use from GDP growth, i.e., up to 4.5% p.a.)

If 9 billion people were to live on the per capita amount of energy Americans now average, world energy consumption in 2050 would be around x5 (for the US to world average ratio) x10/7 (for population growth) times the present 550 EJ p.a., i.e., around 3,930 EJ. Let us assume it is all to come from nuclear reactors, that technical advance cuts one-third off the energy needed to do everything, but that moving to poorer ores, desalinisation etc. and converting to (inefficient) hydrogen supply for many storage and transport functions counterbalance that gain.  The nuclear generating capacity needed would be around 450 times as great as at present.

Conclusions re the significance of the limits to growth.

This brief reference to themes within the general “limits to growth” account makes it clear that the baseline on which ecomodernist visions must build is not given by presentconditions. As Steffen et al. (2015) stress the baseline is one of not just deteriorating conditions, but accelerating deterioration. It is as if the ecomodernists are claiming that their A380 can be got to climb at a 60 degree angle, which is far steeper than it has ever done before, but at present it is in an alarming and accelerating decline with just about all its systems in trouble and some apparently beyond repair. The problem is the wild party on board, passengers and crew dancing around a bonfire and throwing bottles at the instruments, getting more drunk by the minute. A few passengers are saying the party should stop, but no one is listening, not even the pilots. The ecomodernist’s problem is not just about producing far more metals, it is about producing far more as grades decline, it is not just about producing much more food, it is about producing much more despite the fact that problems to do with water availability, soils, the nitrogen cycle, acidification, and carbon loss are getting worse.  It can be argued that on many separate fronts halting the deteriorating trends is now unlikely to be achieved. Yet the ecomodernist wants us to believe that the curves can be made to cease falling and to rise dramatically, without abandoning the quests for affluence and growth which are responsible for their deterioration.  Stopping the party is not thought to warrant consideration.

            The implications for centralisation, control and power.

The ecomodernist vision would have to involve vast, technically sophisticated, expert-run, bureaucratized and centralized global systems, most obviously for the control of the nuclear sector, e.g., to prevent access to weapons grade material. Both corporate and governmental agencies would have to be very large in scale, and relations between the corporate sector and top levels of government would set problems to do with openness, public accountability, democratic control, and corruption. Most production would be from a relatively few gigantic and automated mines, factories, feed lots, mega-greenhouses and plantations compressed into the relatively few best sites.  How this would provide jobs and livelihoods to perhaps 6 billion Third world poor would need to be explained. The provision of large amounts of capital would probably become much more centralised and problematic than it has been in the GFC era.

A “development” model focused on these massive, centralized, expert-dependent and capital intensive systems is not obviously going to improve the already severe problem of global inequality. Mega corporations will run the automated vertical farms and desal plants, assisted by governments who in the past have had no difficulty legislating to clear the locals out of the way, as when Third World governments enable GDP-raising palm oil plantations, logging, big dams and aquaculture. Thus Smaje regards ecomodernism as a new enclosure movement.

Morgan (2012) and Korrowicz (2012) provide disturbing accounts of the fragility and lack of resilience of highly integrated and complex systems. Tainter, (1988), draws attention to the way increasing system complexity leads towards negative synergisms and breakdown. For instance where two roads cross in a village no infrastructure might be needed but in a city multi-million dollar flyovers can be required. As Rome’s road system grew the effort needed just to maintain them grew towards taking up all road building capacity. Among the chief virtues of the small and local path are its robustness, redundancy and resilience, the capacity for simple repairs to simple systems, as well as its capacity to provide livelihoods to large numbers of people.

Above all the ecomodernist vision stands for the rejection of any suggestion that the economy needs altering, let alone scrapping, or that rampant-consumer culture needs to be replaced.  The problems are defined as purely technical. If minerals are becoming scare the solution is not to reduce use of them but to increase production of them. Thus there is no need to think about giving up consumerism, economic growth, the market system or the capitalist system. Radical thought and action need not be considered. Smaje describes it as “neoliberalism with a green veneer.” These messages are as consoling to the present working class and the precariat as they are to the capitalist class.

The mistaken “uni-dimensional” assumption.

Frequently evident in ecomodernist thinking is the way that development, emancipation, technology, progress, comfort, the elimination of disease and hunger are seen to lie along the one path that runs from primitive through peasant worlds to the present and the future.  At the modern end of the dimension there is material abundance, science and high technology, the market economy, freedom from backbreaking work, complex civilization with high educational standards and sophisticated culture. It is taken for granted that your choice is only about where you are on that dimension. Third World “development” can only be about moving up the dimension to greater capital investment, involvement in the global market, trade, GDP and consumer society. Thus they see localism and small is beautiful as “going back”, and condemning billions to continued hardship and deprivation.  Opposition to their advocacy of more modernism is met with, “…well, what period in history do you want to go back to?”

This world-view fails to grasp several things.  The first is the possibility that there might be more than one path; the Zapatista’s do not want to follow our path.  Another is that we  might opt for other end points than the one modernization is taking us to.  A third is that we might deliberately select desirable development goals rather than just accept where modernization takes us, and on some dimensions we might choose not to develop any further.  Ecomodernism has no concept of sufficiency or good enough; Smaje sees how it endorses being incessantly driven to strive for bigger and better, and he notes the spiritual costs. Many ecovillages are developed enough.

Possibly most important, it is conceivable that we could opt for a combination of elements from different points on the path. For instance there is no reason why we cannot have both sophisticated modern medicine and the kind of supportive community that humans have enjoyed for millennia, and have both technically astounding aircraft along with small, cheap, humble, fireproof, home made and beautiful mud brick houses, and have modern genetics along with neighbourhood poultry co-ops. Long ago humans had worked out how to make excellent and quite good enough houses, strawberries, dinners and friendships. We could opt for stable, relaxed, convivial and sufficient ways in some domains while exploring better ways in others, but ecomodernists see only two options; going forward or backward. They seem to have no interest in which elements in modernism are worthwhile and which of them should be dumped. The Frankfurt School saw some of them leading to Auschwitz and Hiroshima.

The inability to think in other than uni-dimensional terms is most tragic with respect to Third World “development”.  Conventional-capitalist development theory can only promise a “growth and trickle down” path, which if it continues would take many decades to lift all to tolerable conditions while the rich rise to the stratosphere, but which cannot continue if the limits to growth analysis of the global situation is correct. Yet The Simpler Way might quickly lift all to satisfactory conditions using mostly traditional technologies and negligible capital. (Trainer, 2012, 2013a, 2013b, Leahy, 2009.)

In his critique of Phillips (2014) Smaje (2015b) sees the Faustian bargain here, the readiness to suffer, indeed embrace, the relentless discontent, struggle, disruption and insecurity that modernism involves, without realizing that we might opt to take the benefits of modernism while dumping the disadvantages and designing ways of life that provide security, stability, a relaxed pace and a high quality of life for all.

A radically alternative vision; The Simpler Way.

Until the last decade or so there was no alternative to the dominant implicit ecomodernist world view, but now significant challenges have emerged, most evidently in the overlapping Eco-village, Degrowth, Transition Towns and localism movements. The fundamental beginning point for these is acceptance of the “limits to growth” case that levels of production, consumption, resource use and ecological impact are extremely unsustainable and that the resulting global problems cannot be solved unless there are dramatic reductions.  The core Simpler Way vision claim is that these reductions can be made while significantly improving the quality of life, even in the richest countries, but not without radical change in systems and lifestyles.  Following is a brief indication of some of the main elements in this vision. (For the detailed account see Trainer, 2011.)

The basic settlement form is the small scale town or suburb, restructured to be a highly self-sufficient local economy running mostly on local resources and requiring a minimal amount of resources and goods to be imported from further afield.  State and national governments would still exist but with relatively few functions. There would be extensive development of local commons such as community watersheds, forests, edible landscapes, workshops and windmills etc. and cooperatives would provide many goods and services. Extensive use could be made of high tech systems but mostly relatively low technologies would be used in small firms and farms, especially earth building, hand tool craft production, Permaculture, community gardening and commons. Leisure committees would maintain leisure rich communities, and other committees would manage orchards, woodlots, agricultural research, and the welfare of disabled, teenage, aged and other groups. Local economies would dramatically reduce the need for vehicles and transport, enabling conversion of many roads to community food production.

These settlements would have to be self-governing via thoroughly participatory procedures, including town meetings and referenda. Citizens are the only ones who can understand local conditions, problems and needs, and they would have to work out the best policies for the town and to own the decisions arrived at. Centralised states could not govern them at all effectively, especially given the much diminished resources that will be available to states.  More importantly the town would not meet its own needs well unless its citizens had a strong sense of empowerment and control and responsibility for their own affairs.

Systems, procedures and the overriding ethos would have to be predominantly cooperative and collective, given the recognition that individual welfare would depend heavily on how well the town was functioning. It would not be likely to thrive unless there was an atmosphere of inclusion and care, solidarity and responsibility.

An entirely new kind of economy would be needed, one that did not grow, rationally geared productive capacity to social need, had per capita levels of production, consumption, resource use and GDP far below current levels, was under public control, and was not driven by market forces, profit or competition. However, there might also be a large sector made up of privately owned small firms and farms, producing to sell in local markets, but operating under careful guidelines set by the town to ensure optimum benefit for the town. The transition period would essentially be about slowly establishing those enterprises, infrastructures, cooperatives, commons and institutions (Economy B) whereby the town developed its capacity to make sure that what needs doing is done, within the exiting mainly fee enterprise system (Economy A.) Over time experience would indicate the best balance between the two, and whether there was any need for the market sector.

There would be many free” goods from the commons, a large non-cash sector involving sharing, giving, helping and voluntary working bees, and almost no finance sector. Small public banks with elected boards would hold savings and arrange loans for maintenance or restructuring.  Some people might pay all their tax by extra contributions to the community working bees. Communities would ensure that there was no unemployment or poverty, no isolation or exclusion, all felt secure, and that all had a livelihood, a worthwhile and valued contribution to make to the town. Because the goal would be material lifestyles that were frugal but sufficient, involving for instance small and very low cost earth built houses, on average people might need to work for money only two days a week. It can be argued that the quality of life would be higher than it is for most people in rich countries today. Lest these ideas seem fanciful, they describe the ways many thousands now live in ecovillages and Transition Towns.

Beyond the town or suburban level there would be regional and national economies, and larger cities containing universities, steel works, and large scale production, e.g., of railway equipment, but their activities would be greatly reduced, and re oriented to provisioning the local economies. There would be little international trade or travel. The termination of the present vast expenditure on wasteful production would enable the amount spent on socially useful R and to be significantly increased.

A detailed analysis of an Australian suburban geography (Trainer, 2016) concludes that technically it would be relatively easy to carry out the very large reductions and restructurings indicated, possibly cutting in energy and dollar costs by around 90%.

It is obvious that the Simpler Way vision could not be realised unless there was enormous “cultural” change, especially away from competitive, acquisitive, maximising individualism and towards frugality, collectivism, sufficiency and responsible citizenship. Fortunately there is now increasing recognition that pursuing ever greater material wealth and GDP is not a promising path to greater human welfare. In a zero-growth settlement there could be no concern with the accumulation of wealth; all would have to be content with stable and secure circumstances, to enjoy non-material life satisfactions, and to be aware that their “welfare” depended not on their individual monetary wealth but on public wealth, i.e., on their town’s infrastructures, systems, edible landscapes, free concerts, working bees, committees, leisure resources, solidarity and morale.

Thus from The Simpler Way perspective the solution to global problems is not a technical issue; it is a value issue. We have all the technology we need to create admirable societies and idyllic lives. But this can’t be done if growth and affluence remain the overriding goals.

At present there would seem to be little chance that a transition to The Simpler Way will be achieved, but that is not central here; the issue is whether this vision or that of the ecomodernist makes more sense.

————-

Aadrianse, A., (1997), Resource Flows, Washington, World Resources Institute.

Australian Bureau of Agricultural and Resource Economics,(ABARE), (2008),  Energy in Australia, Canberra.

Alexander, S., (2014), A Critique of Techno-Optimism: Efficiency Without Sufficiency is Lost, Post Carbon Pathways, Working Papers.

Anderson, K. and A. Bows, (2008), “Reframing the climate change challenge in the light of post 2000 emission trends”, Philosophical Transactions of the Royal Society, 266, 3863 – 3882.

Asafu-Adjaye, J., et al., (2015) An Ecomodernist Manifesto, April, http://www.ecomodernism.org

Australian Government Climate Change Authority, (2013), Targets and Progress Review.

http://climatechangeauthority.gov.au/reviews/targets-and-progress-review/part/chapter-3-global-emissions-budget-2-degrees-or-less]

Ayres, R. U., L. W. Ayres and B. Warr, (2002), Is the US Economy Dematerialising? Main Indicators and Drivers, Center for the Management of Environmental Resources INSEAD, Fontainebleau, France, June.

Ayres, R. U., and B. Warr, (2009), The Economic Growth Engine: How Energy and Work Drive Material Prosperity, Cheltenham, UK and Northampton, Massachusetts, Edward Elgar.

Ayres, R. U., et al., (2013), ”The underestimated contribution of energy to economic growth”, Structural Change and Economic Dynamics, 27, 79 – 88.

Ayres, R. and V. Vouroudis, (2013), “The economic growth enigma; Capital, labour and useful energy?”, Energy Policy, 64 (2014) 16–28.

Berndt, E. R., (1990), “Energy use, technical progress and productivity growth: a survey of economic issues”, The Journal of Productivity Analysis, 2, pp.  67-83.

Blomqvist, L., T. Nordhaus and M. Shellenbeger, (2015), Nature Unbound; Decoupling for Conservation, Breakthrough Institute.

Brown, L., (2011), “The new geopolitics of food”, Foreign Policy, May.

Carradonna, J., et al., (2015), “A Call to Look Past An Ecomodernist Manifesto: A Degrowth Critique”, Resilience.org  | May 6.

Carrington, D., (2014), “Earth has lost half its wildlife in forty years, says WWF,” The Guardian, Oct. 1.

Ceballos, G., et al., (2015), “Accelerated modern human induced species loss. Entering the sixth mass extinction”. Sci. Adv., 9, 16.

Clark, D., (2011), “New data on imports and exports turns map of carbon emissions on its head,” The Guardian, 4th May.

Cleveland, C. J., R. Costanza, C. A. S. Hall, and R. K. Kaufmann, (1984), “Energy and the U.S. economy: A biophysical perspective”, Science, 225, pp., 890-897.

Crist, E., (2015), “The Reaches of Freedom: A Response to An Ecomodernist Manifesto”, Environmental Humanities, 7, pp. 245-254.

Diederen, A. M., (2009), Metal minerals scarcity: A call for managed austerity and the elements of hope, TNO Defence, Security and Safety, P.O. Box 45, 2280 AA Rijswijk, TheNetherlands.

Dittrich, M., S. Giljum, S. Bringezu, C. Polzin, and S. Lutter, (2011), Resource Use and Resource Productivity in Emerging Economies: Trends over the Past 20 Years, SERI Report No. 12, Sustainable Europe Research Institute (SERI), Vienna, Austria.

Giljum, S., M. Dittrich, M. Lieber, and S. Lutter, (2014), “Global Patterns of Material Flows and their Socio-Economic and Environmental Implications: A MFA Study on All Countries World-Wide from 1980 to 2009”, Resources, 3, 319-339.

Hall, C. A. S., J. G. Lambert and S. B. Balough, (2014), “EROI of different fuels and the implications for society”, Energy Policy64, January, 141–152.

Hansen, J., et al., (2008), “Target atmospheric CO2; Where Should humanity aim?”, The Open Atmospheric Science Journal, 2, 217 – 231.

Hattfield-Dodds, S., et al., (2015), “Australia is ‘free to choose’ economic growth and falling environmental pressures”, Nature, 527, 5 Nov., 49 –

Hoegh-Guldberg, (2015), “Coal and climate change: a death sentence for the Great Barrier Reef”, The Conversation, 20th May.

Huebner, J., (2005), “A possible declining trend for worldwide innovation”, Technological Forecasting and Social Change, 72, 980-986.

Hawken, P., A. B. Lovins, and H. Lovins, (1999), Natural Capital, London, Little Brown.

Hopkins, R., (2015) Book Review: Austerity Ecology & the Collapse-Porn Addicts by Leigh Phillips.  Transition Network, 24th Nov.

IPCC, (2014), Summary for Policymakers.  Climate Change 2014: Mitigation of Climate Change, Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Kaufmann, R. K., (2004), “A biophysical analysis of the energy/real GDP ratio: implications for substitution and technical change”, Ecological Economics , 6: pp. 35-56.

Kolbert,. E., (2014), The Sixth Extinction, Henry Holt and Co., New York.

Korowicz, D., (2012), Trade Off; Financial System Supply Chain Cross Contamination; A Study in Global Systemic Collapse, Mettis Risk Consulting and Feasta.

Latouche, S., (2014), Essays on Frugal Abundance; Essay 3. Simplicity Institute Report, 14c. simpicityinstitute.org

Leahy, T., (2009), Permaculture Strategy for the South African Villages, Permaculture InternationaI Productions, Palmwoods, Queensland. www.gifteconomy.org.au

Lenzen, et al., (2012) “Biodiversity: Remote responsibility”, Nature, 486, 36–37, (07 June 2012), doi:10.1038/486036a

Mackay, D., (2008), Energy – without the Hot Air. http://www.withouthotair.com/download.html

Meinshausen, M., N. Meinshausen, W. Hare, S. C. B. Raper, K. Frieler, R. Knuitti, D. J. Frame, and M. R. Allen, (2009), “Greenhouse gas emission targets for limiting global warming to 2 degrees C”, Nature, 458, 30th April, 1158 -1162.

Morgan, T., (2012), Perfect Storm: Energy, Finance and the End of Growth, Tullet Prebon.

Morillo-Zamorano, L., (2005), “The role of energy in productivity growth: A controversial issue?”, The Energy Journal, 26,2, 69-88.

Murphy, D., (2010), “What is the minimum EROI for a sustainable energy?”, The Oil Drum, 24th March.

Office of Technology Assessment, (1990), Energy Use and the U.S. Economy, US Congress, OTA-BP-E-57, U.S. Government Printing Office, Washington DC.

Phillips, L., (2014), Austerity Ecology and the Collapse-Porn Addicts; A Defence of Growth, Progress, Industry and Stuff, Zero Books, Winchester UK.

Ray D. K., Mueller N. D., West P. C., Foley J.A., (2013), “Yield Trends Are Insufficient to Double Global Crop Production by 2050.” PLOS ONE 8(6): e66428.doi:10.1371/journal.pone.0066428

Rockstrom, and K. Raeworth, (2014), Planetary Boundaries and Human Prosperity, Stockholm Resilience Centre, Stockholm.

Schandl, H., et al., (2015), ”Decoupling global environmental pressure and economic growth; scenarios for energy use, materials use and carbon emissions”, Journal of Cleaner Production, http://dx.doi.org/10.1016/j.jclepro.2015.06.100

Schurr, S., and B. Netschert, (1960), Energy and the American Economy, 1850-1975, Baltimore, Johns Hopkins University Press.

Schütz, H., S. Bringezu, S. Moll, (2004), Globalisation and the Shifting Environmental Burden. Material Trade Flows of the European Union, Wuppertal Institute, Wuppertal, Germany.

Smaje, C., (2015a), “Dark Thoughts on Ecomodernism”, Dark Mountain Blog, 12th August.

Smaje, C., (2015b), “Promethean porn and Malthusian mistakes: a letter to Leigh Phillips”, Small Farm Future, 12th Nov.

Smeets, E., and A. Faaij, (2007), “Bioenergy potentials from forestry in 2050 —  An assessment of the drivers that determine the potentials”, Climatic Change, 8, 353 – 390.

Sorrell, S., (2010), “Energy, economic growth and environmental sustainability; Five propositions”, Sustainability, 2, 1784 – 1809.

Steffen, W., W. Broadgate, L. Deutsch, O. Gaffney and C. Ludwig, (2015), “The Trajectory of the Anthropocene: The Great Acceleration.” The Anthropocene Review, 2, 1 81-98.

Stern, D. and C. J. Cleveland, (2004), “Energy and Economic Growth”, in C. J. Cleveland (ed.), Encyclopedia of Energy. San Diego: Academic Press.

Topp, V., L. Soames, D. Parham, and H. Block, (2008), Productivity in the Mining Industry: Measurement and Interpretation, Productivity Commission Staff Working PaperDecember , Australian Government Productivity Commission.

Tainter, J. A.,  (1988), The Collapse of Complex Societies, Cambridge University Press.

Trainer, T., (2011), The Simpler Way; The Alternative Society. http://thesimplerway.info/THEALTSOCLong.htm

Trainer, T., (2012), Third World Development; Conventional/capitalist way vs The Simpler way.

Trainer, T., (2013a), Chikukwa; An Alternative Development Model in Zimbabwe.

Trainer, T., (2013b), The Catalan Integral Coperative Movement.

Trainer, T., (2016), Remaking settlements; The Potential Cost Reductions Enabled by The Simpler Way. http://thesimplerway.info/RemakingSettlements.htm

Victor, P., (2008), Managing without growth: Slower by design, not disaster. Cheltenham, Edward Elgar Publishing.

Vidal, J., (2010), “Soil erosion threatens to leave earth hungry”, The Guardian, 14th Dec.

Vitousec, P. M., H. A. Mooney, J. Lubchenki, and J. M. Mellilo, (1997), “Human domination of earth’s ecosystems”, Science, July, 277, 445-499.

Von Weizacker, E., and A. B. Lovins, (1997), Factor Four: Doubling Wealth – Halving Resource Use : A New Report to the Club of Rome, St Leondards, Allen and Unwin.

Warr, B.,  (2004), Is the US economy dematerializing? Main indicators and drivers, Economics of Industrial Ecology: Materials, Structural Change and Spatial Scales. MIT Press, Cambridge, MA.

Washington, H., (2014), Addicted to Growth, Fenner Conference on the Environment, Canberra, 2 – 3 October.

West, J., (2013) Personal communication reported in Weidman et al., 2014, from CSIRO Ecosystem Sciences.

Wiebe, C., M. Bruckner, S. Giljum, C. Lutz, and C. Polzin, (2012), “Carbon and materials embodied in the international trade of emerging economies: A multi-regional input-output assessment of trends between 1995 and 2005”, J. Ind. Ecol., 16, 636–646.

Weidmann, T. O., H. Shandl, and D. Moran, (2014), “The footprint of using metals; The new metrics of consumption and productivity,” Environ. Econ. Policy Stud.,  DOI 10.1007/s10018-014-0085-y

Wiedmann, T. O., H. Schandl, M. Lenzen, D. Moran, S. Suh, J. West, and K. Kanemoto, (2015), “The material footprint of nations”, PNAS, 6272 -6276.

Word Wide Fund for Nature, (2014), Living Planet Report,  WWF International, Switzerland.





DECOUPLING: The issue, and collected evidence.

12 07 2016

tedtrainer

Ted Trainer

Interesting article from Ted Trainer…….

The issue.

The “Tech-fix” faith is widely held, i.e., that technical advances will enable continual economic growth without unsustainable increase demand for inputs, especially energy, materials and environmental “services”.  This is known as the “decoupling” claim; i.e., that economic growth can be separated from growth in inputs to the economy, thereby enabling continued increase in production, consumption, economic turnover and “living standards” without running into serious resource and environmental problems.

The term “relative decoupling” refers to growth in need for inputs that is less or slower than growth in GDP but still positive, while “absolute decoupling” means growth of GDP with no increase in inputs, or a fall.

The essential points here are,

  • If the big global problems are to be solved there must be enormous absolute decoupling, because if resource demands are to be brought down to sustainable levels they must fall a great deal from present levels, and,
  • The following about thirty pieces of evidence on past and present trends makes clear that this claim is, to be polite, extremely implausible…to be less polite, so utterly unlikely as to be ridiculous. All the evidence found here contradicts it and none has been found to support it.

The most elaborate statement of the Tech-Fix case is given by the Ecomodernists. It contains several examples of past and potential technical advances, and “might be” arguments, but gives an extremely weak overall case, and does not deal with the decoupling evidence. Their main statement is,

Ecomodernism: Nature Unbound, http://thebreakthrough.org/index.php/issues/decoupling/nature-unbound   Brief critical comment on this position is included in thesimplerway.info/TECHFIX.htm)

Another preliminary is that some indices, such as the common “national energy intensity” figures are misleading because,

  • They do not take into account the large and increasing amounts of energy and materials imported into a country in the form of produced goods as manufacturing is shifted to the Third World.  They only refer to “Domestic Materials (or energy) Consumption” whereas what matters is the “Material Footprint” of the nation, which recent studies have begun to analyse.
  • There has been considerable “fuel switching”, i.e., moving to forms of energy which are of “higher quality” and enable more work per unit. For instance a unit of energy in the form of gas enables more value to be created than a unit in the form of coal, because gas is more easily transported, switched on and off, or converted from one function to another, etc. (Cleveland et al., 1984, Kaufmann, 2004.)

The record, the evidence on decoupling achievements.

The historical record suggests that with respect to the crucial issue of materials use productivity or decoupling gains have at best been minor at best.  Consider the following notes on about thirty studies and reports.

Hattfield-Dodds et al. (2015) say that the efficiency of materials use has been improving at c. 1.5% p.a., but they give no evidence for this figure and other sources quoted below indicate that it is too high.

The OECD (2015) claims that materials used within its countries has fallen 45% per dollar of GDP, but this figure does not include materials embodied in the large volume of goods these countries import. When they are tallied rich countries typically show very low or worsening ratios.

Wiedmann et al. (2014) show that when materials embodied in imports are taken into account rich countries have not improved their resource productivity in recent years. They say “…for the past two decades global amounts of iron ore and bauxite extractions have risen faster than global GDP.” “… resource productivity…has fallen in developed nations.” “There has been no improvement whatsoever with respect to improving the economic efficiency of metal ore use.”

In another study Wiedmann et al. (2015) report on an input-output study of 186 nations.  They find that a 10% increase in GDP is accompanied by a 6% increase in materials use. The study takes into account “upstream” materials use, i.e., in production and transport and infrastructures needed to produce materials. This use is large… 40% of global raw materials extracted goes into producing goods to be exported. i.e., far more than the 10 Gt of goods traded.

Their main finding is that, “No decoupling has taken place over the past two decades for this group of developed countries.”  “…pressure on natural resources does not relent as most of the human population becomes wealthier.”

Giljum et al. (2014, p. 324) report only a 0.9% p.a. improvement in the dollar value extracted from the world use of each unit of minerals between 1980 and 2009, and no improvement over the 10 years before the GFC. “…not even a relative decoupling was achieved on the global level.” They note that the figures would have been worse had the production of much rich world consumption not been outsourced to the Third World. Their Fig. 2, shows that over the period 1980 to 2009 the rate at which the world decoupled materials use from GDP growth was only one third of that which would have achieved an “absolute” decoupling, i.e., growth of GDP without any increase in materials use.

Diederan’s account (2009) of the productivity of minerals discovery effort is even more pessimistic. Between 1980 and 2008 the annual major deposit discovery rate fell from 13 to less than 1, while discovery expenditure went from about $1.5 billion p.a. to $7 billion p.a., meaning the productivity of expenditure fell by a factor in the vicinity of around 100, which is an annual decline of around 40% p.a. Recent petroleum figures are similar; in the last decade or so discovery expenditure more or less trebled but the discovery rate has not increased.

A paper in Nature by a group of 18 scientists at the high-prestige Australian CSIRO (Hatfield-Dodds et al., 2015) argued that decoupling could eliminate any need to worry about limits to growth at least to 2050. The article contained no support for the assumption that the required rate of decoupling was achievable and when it was sought (through personal communication) it was said to be given in the paper by Schandl et al. (2015.)  However that paper contained the following surprising statements, “ … there is a very high coupling of energy use to economic growth, meaning that an increase in GDP drives a proportional increase in energy use.”  (They say the EIA, 2012, agrees.) “Our results show that while relative decoupling can be achieved in some scenarios, none would lead to an absolute reduction in energy or materials footprint.” In all three of their scenarios “…energy use continues to be strongly coupled with economic activity…”

The Australian Bureau of Agricultural Economics (ABARE, 2008) reports that the energy efficiency of the nation’s energy-intensive industries is likely to improve by only 0.5% p.a. in future, and of non-energy-intensive industries by 0.2% p.a. This means they expect that it would take 140 years for the energy efficiency of the intensive industries to double the amount of value they derive from a unit of energy.

Alexander (2014) concludes his review of decoupling with respect to environmental impacts by saying, ”… decades of extraordinary technological development have resulted in increased, not reduced, environmental impacts.”

Smil (2014) concludes that even in the richest countries absolute dematerialization is not taking place.

Beigler (2016) reports that efficiency improvements, which averaged 0.9% per year between 1990 and 2005, are about half those seen in previous decades. An analysis of 99 countries over 40 years showed no general decoupling. (It is not clear whether imports were included.)

Two cases where decoupling has been negative, i.e., growth has been accompanied by disproportionate increase in inputs… Cereal production since 1960 has multiplied by 3.4, but nitrogen application multiplied by 8.3 (FAOSTAT Database, Undated, Fig 2.9), and Alvarez found that for Europe, Spain and the US GDP increased 74% in 20 years, but materials use actually increased 85%. (Latouche, 2014.)

The IEA reports relative decouplings for per capita energy use in US, Canada, OECD. Fig 2.6.  Final energy use in the industry sector of the IEA21 increased by only 5% while output rose 39%, between 1990 and 2005. (p. 28), ( … but this was in a period when much heavy industry was moving overseas)

The IEA (2008) finds that there was little change for cement production (p 34.) The index for paper improved from 80 to 92. (Fig 3.5 p. 32, and aluminium went from c.16 kWh/kg to 15 over the period, but the future potential is limited. There was little improvement for cars, and slow improvement for electricity production.

Tverberg’s (2015) plot for the growth of energy and GWP shows parallel paths, with  energy a little lower. That is, energy does not fall away much from the GDP growth line.

Tverberg says, “In recent years, we have heard statements indicating that it is possible to decouple GDP growth from energy growth. I have been looking at the relationship between world GDP and world energy use and am becoming increasingly skeptical that such a decoupling is really possible.”

“Prior to 2000, world real GDP (based on USDA Economic Research Institute data) was indeed growing faster than energy use, as measured by BP Statistical Data. Between 1980 and 2000, world real GDP growth averaged a little under 3% per year, and world energy growth averaged a little under 2% per year, so GDP growth increased about 1% more per year than energy use. Since 2000, energy use has grown approximately as fast as world real GDP–increases for both have averaged about 2.5% per year growth.

Figure 10a for energy intensities for the world, shows little improvement since 1980. Fig 11 shows a drop from index 258 to 225 …and flat since 2000.”

Tverberg (2011) says the main cause for optimistic national claims would seem to have been outsourcing of heavy manufacturing.

During the last century the global material supply has grown somewhat slower than primary energy supply.

The material and energy intensity of the global economy continuously declined towards 30% (materials) and 50% (energy) of its value calculated for 1900.

Krausmann et al. (2009) say that most of the reduction in material intensity was due to the declining intensity of biomass use, while the intensity of minerals use actually increased.

Energy intensity declined by 0.68% per year, and materialintensity even by 1% per year. (p. 10.) That is, energy needed per unit of GDP would take 106 years to halve.

Cloete (2015) says, “Some time ago, I plotted the fraction of the US economy comprised of manufacturing against energy intensity to find an almost perfect correlation (see below). It therefore appears as if the outsourcing of energy intensive labour to developing nations (and buying back the goods with dollars created out of thin air) is the primary cause of US energy intensity reductions.”

Australian petroleum products consumption increased from 27,902 million litres in 1970 to 52,095 Ml in 2010,an approximately 1.75% p.a. exponential rate of growth.  In the same period GDP increased at 2.5%-3% p.a.  (Again around the 0.6 multiple above.) So at this rate by 2050 petroleum consumption would be about 87% higher than now.

World Steel Association, (2016), reports that the energy needed to produce 1 kg of steel in the US fell 13% between 2000 and 2014, i.e., at an average 0.325% p.a., meaning that it would take more than 200 years to halve.

 

Similar conclusions re stagnant or declining materials use productivity etc. are arrived at by Aadrianse, 1997, Dettrich et al., (2014), Schutz, Bringezu and Moll, (2004), Warr, (2004), Berndt, (1990), Schandl and West, (2012), and Victor (2008, pp. 55-56).

—————-

The significance of EROI.

This is probably the most important issue relevant to the tech-fix and decoupling claims. The Energy Return On Invested energy for overall energy production/supply is falling. The world EROI for the production of oil and gas has declined from 30:1 in 1995 to about 18:1 in 2006. (Hall, Lambert, and Balogh, 2014. See also Nafez, 2016, Murphy, 2010.), Values for the new fossil fuel sources such as via fracking are low; for tar sands and oil shale it is around 4 and 7. Values for renewables are also low; wind is best with an estimate around 18, biomass ethanol is c. 4 and biomass diesel about 2. PV is controversial, usually claimed to be 8 but some argue 2-3. These figures represent a “negative decoupling” for energy over time, i.e., technical advance has not been able to prevent the amount of energy produced per unit of effort from decreasing.

————

To summarise:

This evidence indicates that the best estimated decoupling rates indicate that as GDP rises 1% materials or energy used rise .6%.  This would mean that by 2050 normal 3% p.a. GDP growth would have multiplied it by 4, and that materials use would be 2.4 times as big as it is now. This is obviously far from keeping materials demand from increasing as GDP increases, let alone dramatically reducing it as is needed.

None of this evidence provides any support for the general tech fix faith with respect to demand for energy, materials or environmental impact.Ecomodernist claims assume very large increases in output can be achieved while resource demands are kept down to sustainable levels, but all the evidence found in this review shows that this is flatly contradicted by previous and present technical advance. It is very likely that normal economic growth will continue to be accompanied by marked increases in demand for materials and energy. Yet present demands are grossly unsustainable, and if all were to live as rich nations expect to resource demands are likely to be tens of times greater than they are now. (See the first two pages in Sustainability: The Simpler Way Perspective.

This constitutes a powerful case that technical advance isn’t capable of solving the big global problems and that for transition to some kind of Simpler Way is the only path to a just and sustainable world.

            Appendix: Would renewable energy make a difference?

The transition to renewable energy also seems likely to significantly increase energy needed to build the energy sector.  For wind to equal the output of a coal-fired power station, about 2,000 turbines of 1.5 MW capacity would be needed, and these might weigh 400,000 tonnes, (possibly 700,000+ tonnes) and most of this would be energy intensive steel, plastic and cement. The embodied energy might be 12 PJ. The power station might weigh only 10,000 tonnes, (?) Certainly supplying the perhaps 120 million tonnes of coal to the power station over a 40 year lifetime favours wind on the materials demand account.  However the energy needed to supply that amount of coal (if EROI = 46) might take 1/46 x 120M x 24 GJ, = only 4.26 PJ. So on the energy account transition to a renewable system would seem to greatly worsen the situation, not decouple.

Aadrianse, A., (1997), Resource Flows, Washington, World Resources Institute.

ABARE, (2008), Australian Energy Projections to 2029-30.  http://www.abare.gov.au/publications_html/energy/energy_10/energy_proj.pdf

Alexander, S., (2014), A Critique of Techno-Optimism: Efficiency Without Sufficiency is Lost, Post Carbon Pathways, Working Papers.

Asafu-Adjaye, J., et al., (2015) An Ecomodernist Manifesto, April, http://www.ecomodernism.org

Australian Government Climate Change Authority, (2013), Targets and Progress Review.

http://climatechangeauthority.gov.au/reviews/targets-and-progress-review/part/chapter-3-global-emissions-budget-2-degrees-or-less]

Ayres, R. U., and B. Warr, (2009), The Economic Growth Engine: How Energy and Work Drive Material Prosperity, Cheltenham, UK and Northampton, Massachusetts, Edward Elgar.

Berndt, E. R., (1990), “Energy use, technical progress and productivity growth: a survey of economic issues”, The Journal of Productivity Analysis, 2, pp.  67-83.

Blomqvist, L., T. Nordhaus and M. Shellenbeger, (2015), Nature Unbound; Decoupling for Conservation, Breakthrough Institute.

Cleveland, C. J., R. Costanza, C. A. S. Hall, and R. K. Kaufmann, (1984), “Energy and the U.S. economy: A biophysical perspective”, Science, 225, pp., 890-897.

Cloete, S., (2015), comment on Cutler Cleveland., “The Decoupling of Energy, Carbon, and GDP in the United States”, March 20.

Diederen, A. M., (2009), Metal minerals scarcity: A call for managed austerity and the elements of hope, TNO Defence, Security and Safety, P.O. Box 45, 2280 AARijswijk, The Netherlands.

Dittrich, M., S. Giljum, S. Bringezu, C. Polzin, and S. Lutter, (2011), Resource Use and Resource Productivity in Emerging Economies: Trends over the Past 20 Years, SERI Report No. 12, Sustainable Europe Research Institute (SERI), Vienna, Austria.

FAOSTAT Database, (Undated), Food and Agriculture Organisation of the United Nations, http//:geodata.grid/unep.ch

Giljum, S., M. Dittrich, M. Lieber, and S. Lutter, (2014), “Global Patterns of Material Flows and their Socio-Economic and Environmental Implications: A MFA Study on All Countries World-Wide from 1980 to 2009”, Resources, 3, 319-339.

Hall, C. A. S., Balogh, S. Murphy, D.J.R., 2009.  What is the minimum EROI that a sustainable society must have? Energies, 2, 25–47.

Hattfield-Dodds, S., et al., (2015), “Australia is ‘free to choose’ economic growth and falling environmental pressures”, Nature, 527, 5 Nov., 49 –

Huebner, J., (2005), “A possible declining trend for worldwide innovation”, Technological Forecasting and Social Change, 72, 980-986.

IEA, (2008), Worldwide Trends in Energy Use and Efficiency; Key Insights from IEA Indicator Analysis.

IPCC, 2014.  Climate Change 2014: Mitigation of Climate Change.  Working Group 3 Report.     WMO and UNEP, Geneva.

Kaufmann, R. K., (2004), “A biophysical analysis of the energy/real GDP ratio: implications for substitution and technical change”, Ecological Economics , 6: pp. 35-56.

Krausmann,F., S. Gingrich, N. Eisenmenger, K. Erb, Haberl, H., and M. Fischer-Kowalski, “ Growth in global materials use, GDP and population during the 20th century”, Ecological Economics, 68 (2009) 2696–2705.

Latouche, S., (2014), Essays on Frugal Abundance; Essay 3. Simplicity Institute Report, 14c. simpicityinstitute.org

Lenzen, et al., (2012) “Biodiversity: Remote responsibility”, Nature, 486, 36–37, (07 June 2012), doi:10.1038/486036a

Murphy, D., (2010), What is the minimum EROI that a sustainable society must have? Part 2; The economic cost of energy, EROI and surplus energy. The Oil Drum, 24th March.

Nafeez, A., (2016), “We Could Be Witnessing the Death of the Fossil Fuel Industry—Will It Take the Rest of the Economy Down With It?, Resilience, April, 26.

OECD, (2015), Material Resources, Productivity and the Environment, Paris.

Phillips, L., (2014), Austerity Ecology and the Collapse-Porn Addicts; A Defence of Growth, Progress, Industry and Stuff, Zero Books, Winchester UK.

Schandl, H., et al., (2015), ”Decoupling global environmental pressure and economic growth; scenarios for energy use, materials use and carbon emissions”, Journal of Cleaner Production, http://dx.doi.org/10.1016/j.jclepro.2015.06.100

Schandl, H., and J. West, (2012), Material Flows and Material Productivity in China, Australia, and Japan, Journal of Industrial Ecology 06/2012; 16(3):352-364. DOI: 10.1111/j.1530-9290.2011.00420.x

Schütz, H., S. Bringezu, S. Moll, (2004), Globalisation and the Shifting Environmental Burden. Material Trade Flows of the European Union, Wuppertal Institute, Wuppertal, Germany.

Smil, V., (2014), Making the Modern World, Chichester, Wiley.

Steffen, W., W. Broadgate, L. Deutsch, O. Gaffney and C. Ludwig, (2015), “The Trajectory of the Anthropocene: The Great Acceleration.” The Anthropocene Review,2, 1 81-98.

Tverberg, G., (2011),  “Is it really possible to decouple GDP Growth from Energy Growth?”, Our Finite World, November 15.

Tverberg, G., (2015), We are at Peak Oil now; we need very low-cost energy to fix it”, Our Finite World, December 21.

https://ourfiniteworld.com/2015/12/21/we-are-at-peak-oil-now-we-need-very-low-cost-energy-to-fix-it/

Victor, P., (2008), Managing without growth: Slower by design, not disaster. Cheltenham, Edward Elgar Publishing.

Warr, B.,  (2004), Is the US economy dematerializing? Main indicators and drivers, Economics of Industrial Ecology: Materials, Structural Change and Spatial Scales. MIT Press, Cambridge, MA.

Wiebe, C., M. Bruckner, S. Giljum, C. Lutz, and C. Polzin, (2012), “Carbon and materials embodied in the international trade of emerging economies: A multi-regional input-output assessment of trends between 1995 and 2005”, J. Ind. Ecol., 16, 636–646.

Weidmann, T. O., H. Shandl, and D. Moran, (2014), “The footprint of using metals; The new metrics of consumption and productivity,” Environ. Econ. Policy Stud.,  DOI 10.1007/s10018-014-0085-y

Wiedmann, T. O., H. Schandl, M. Lenzen, D. Moran, S. Suh, J. West, and K. Kanemoto, (2015), “The material footprint of nations”, PNAS, 6272 -6276.

Word Wide Fund for Nature, (2014), Living Planet Report,  WWF International, Switzerland.

World Steel Association, (2016), “Energy in the Steel Industry”, World Steel Fact Sheet.

 

The Simpler Way: Analyses of global problems (environment, limits to growth, Third World, war, social breakdown…)
and the sustainable alternative society (…simpler lifestyles, self-sufficient and cooperative communities,
and a new, zero-growth economy.)  Organised by Ted Trainer.   Website, thesimplerway.info





Limits to growth: policies to steer the economy away from disaster

21 04 2016

Samuel Alexander, University of Melbourne

If the rich nations in the world keep growing their economies by 2% each year and by 2050 the poorest nations catch up, the global economy of more than 9 billion people will be around 15 times larger than it is now, in terms of gross domestic product (GDP). If the global economy then grows by 3% to the end of the century, it will be 60 times larger than now.

The existing economy is already environmentally unsustainable. It is utterly implausible to think we can “decouple” economic growth from environmental impact so significantly, especially since recent decades of extraordinary technological advancement have only increased our impacts on the planet, not reduced them.

Moreover, if you asked politicians whether they’d rather have 4% growth than 3%, they’d all say yes. This makes the growth trajectory outlined above all the more absurd.

Others have shown why limitless growth is a recipe for disaster. I’ve argued that living in a degrowth economy would actually increase well-being, both socially and environmentally. But what would it take to get there?

In a new paper published by the Melbourne Sustainable Society Institute, I look at government policies that could facilitate a planned transition beyond growth – and I reflect on the huge obstacles lying in the way.

Measuring progress

First, we need to know what we’re aiming for.

It is now widely recognised that GDP – the monetary value of all goods and services produced in an economy – is a deeply flawed measure of progress.

GDP can be growing while our environment is being degraded, inequality is worsening, and social well-being is stagnant or falling. Better indicators of progress include the Genuine Progress Indicator (GPI), which accounts for a wide range of social, economic and environmental factors.

Cap resources and energy

Environmental impact is driven by demand for resources and energy. It is now clear that the planet cannot possibly support current or bigger populations if developing nations used the same amount of resources and energy as developed nations.

Demand can be reduced through efficiency gains (doing more with less), but these gains tend to be reinvested in more growth and consumption, rather than reducing impacts.

A post-growth economy would therefore need diminishing “resource caps” to achieve sustainability. These would aim to limit a nation’s consumption to a “fair share” of available resources. This in turn would stimulate efficiency, technological innovation and recycling, thereby minimising waste.

This means that a post-growth economy will need to produce and consume in far less resource-intensive ways, which will almost certainly mean reduced GDP. There will of course be scope to progress in other ways, such as increased leisure time and community engagement.

Work less, live more

Growth in GDP is often defended on the grounds that it is required to keep unemployment at manageable levels. So jobs will have to maintained in other ways.

Even though GDP has been growing quite consistently in recent decades, many Westerners, including Australians, still seem to be locked into a culture of overwork.

By reducing the average working week to 28 hours, a post-growth economy would share the available work among the working population. This would minimise or eliminate unemployment even in a non-growing or contracting economy.

Lower income would mean we would have less stuff, reducing environmental impact, but we would receive more freedom in exchange. Planned degrowth is therefore very different to unplanned recession.

Redirect public spending

Governments are the most significant player in any economy and have the most spending power. Taking limits to growth seriously will require a fundamental rethink of how public funds are invested and spent.

Among other things, this would include a swift divestment from the fossil fuel economy and reinvestment in renewable energy systems. But just as important is investing in efficiency and reducing energy demand through behaviour change. Obviously, it will be much easier to transition to 100% renewable energy if energy demand is a fraction of what it is today.

We could fund this transition by redirecting funds from military spending (climate change is, after all, a security threat), cutting fossil fuel subsidies and putting an adequate price on carbon.

Reform banking and finance

Banking and finance systems essentially have a “growth imperative” built into their structures. Money is loaned into existence by private banks as interest-bearing debt. Paying back the debt plus the interest requires an expansion of the monetary supply.

There is so much public and private debt today that the only way it could be paid back is via decades of continued growth.

So we need deep reform of banking and finance systems. We’d also need to cancel debt in some circumstances, especially in developing nations that are being suffocated by interest payments to rich world lenders.

The population question

Then there’s population. Many people assume that population growth will slow when the developing world gets rich, but to globalise affluence would be environmentally catastrophic. It is absolutely imperative therefore that nations around the world unite to confront the population challenge directly.

Population policies will inevitably be controversial but the world needs bold and equitable leadership on this issue, because current trends suggest we are heading for 11 billion by the end of this century.

Anyone who casually dismisses the idea that there is a limit to how many people Earth can support should be given a Petri dish with a swab of bacteria. Watch as the colony grows until it consumes all of the available nutrients or is poisoned by its own waste.

The first thing needed is a global fund that focuses on providing the education, empowerment and contraception required to minimise the estimated 87 million unintended pregnancies worldwide every year.

Eliminating poverty

The conventional path to poverty alleviation is the strategy of GDP growth, on the assumption that “a rising tide will lift all boats”. But, as I’ve argued, a rising tide will sink all boats.

Poverty alleviation must be achieved more directly, via redistribution of wealth and power, both nationally and internationally. In other words (and to change the metaphor), a post-growth economy would eliminate poverty not by baking an ever-larger pie (which isn’t working) but by sharing it differently.

The richest 62 people on the planet own more than the poorest half of humanity. Dwell on that for a moment, and then dare to tell me that redistribution is not an imperative of justice.

So what’s stopping us?

Despite these post-growth policy proposals seeming coherent, they face at least four huge obstacles – which may be insurmountable.

First, the paradigm of growth is deeply embedded in national governments, especially in the developed world. At the cultural level, the expectation of ever-increasing affluence is as strong as ever. I am not so deluded as to think otherwise.

Second, these policies would directly undermine the economic interests of the most powerful corporations and institutions in society, so fierce resistance should be expected.

Third, and perhaps most challenging, is that in a globalised world these policies would likely trigger either capital flight or economic collapse, or both. For example, how would the stock markets react to this policy agenda?

Finally, there is also a geopolitical risk in being first to adopt these policies. Reduced military spending, for instance, would reduce a nation’s relative power.

So if these “top-down” policies are unlikely to work, it would seem to follow that if a post-growth economy is to emerge, it may have to be driven into existence from below, with communities coming together to build the new economy at the grassroots level.

And if we face a future where the growth economy grows itself to death, which seems to be the most likely scenario, then building up local resilience and self-sufficiency now will prove to be time and energy well spent.

In the end, it is likely that only when a deep crisis arrives will an ethics of sufficiency come to inform our economic thinking and practice more broadly.

The Conversation

Samuel Alexander, Research fellow, Melbourne Sustainable Society Institute, University of Melbourne

This article was originally published on The Conversation. Read the original article.





This is the big one……

11 02 2016

This article from The Great Recession Blog just arrived in my news feed, straight from Nicole Foss no less…… written by David Haggith, it’s an amazing read, and you better hang onto your seat, we’re in for a pretty wild ride.

 

 

DavidHaggith-269x300

David Haggith

Only a couple of weeks ago, I said we were entering the jaws of the Epocalypse. Now we are sliding rapidly down the great beast’s throat toward its cavernous belly. The biggest economic collapse the world has ever seen is consuming everything — all commodities, all industries, all national economies, all monetary systems, and eventually all peace and stability. This is the mother of all recessions.

That’s a big statement to swallow, especially when many don’t see the beast because we’re already inside of it. You need to look down from 100,000 feet up in order to observe the scale of this monster that is rising up out of the sea and to see how rapidly it is enveloping the globe and how the world’s collapse into its throat is accelerating. The belly of this leviathan is a swirling black hole, composed of all the word’s debts, that is large enough to swallow every economy on earth.

Mexican retail billionaire Hugo Salinas Price has looked long into the stomach of this mammoth, and this is what he has seen:

 

[Global] debt [as a percentage of GDP] peaked in August of 2014. I’ve been watching this for 20 years, and I have never seen anything like it. It was always growing, and now something has changed. A big change of this sort is an enormous event. I think it portends a new trend, and that trend will be to get out of debt. Deleverage and pay down debt. That is, of course, a contraction. Contraction means depression. The world is going into a depression. It’s going to get very nasty. (USAWatchdog)

 

So, let’s step back and look at the big picture in order to see how immense this thing is: (One thing that you’ll notice is common in the statements of many sources below is comparisons to 2008, when we first entered the Great Recession. You hear that comparison every day now, which says many people feel that, after piling on trillions of dollars and trillions of euros and trillions of ___ in debt to save ourselves, we are right back where we started … but exhausted from the effort.)

 


Killing the Host: How Financial Parasites and Debt Bondage Destroy the Global Economy


 

Toxic debt flush heard round the world

 

As Hugo Salinas Price warns, toxic debt may have hit a ceiling where it has stopped going up because individuals, industries, and now nations have reached real debt limits they cannot support. According to the New York Times, toxic loans around the world are weighing heavily on global growth:

 

Beneath the surface of the global financial system lurks a multitrillion-dollar problem that could sap the strength of large economies for years to come. The problem is the giant, stagnant pool of loans that companies and people around the world are struggling to pay back. Bad debts have been a drag on economic activity ever since the financial crisis of 2008, but in recent months, the threat posed by an overhang of bad loans appears to be rising.

 

The Times lists China as leading the world for personal and industrial bad debt at $5 trillion, which in terms of its economy is half of China’s GDP. As a result of hitting this ceiling, Chinese banks reeled in lending in the last month of 2015.

And this is just bad debt. It does not include debts that are being properly paid or China’s national debts. These are the loans already failing. Likewise with the global debt problem The Times is writing about. Bad loans in Europe, for example, total about $1 trillion. Again, that’s just the loans that are already falling into the abyss.

Many national debts are more than the entire annual GDP of the nation, including the enormous US national debt, which will reach $20,000,000,000,000 by the time the next president takes office. (You can’t even see wide enough to focus on that many zeroes at the same time. The “2” gets lost in your peripheral vision.) And many places like Greece and Brazil and Puerto Rico are defaulting on their debts.

The United State’s debt alone is only payable so long as interest rates stay near zero; but rates are now rising, and the number of financiers has greatly retreated. The only thing to save the US from its toppling debt problem in the short term may be that people all over the world run to the shelter of US bonds when everything else is caving into the black hole.

 


Between Debt and the Devil: Money, Credit, and Fixing Global Finance. One of Financial Times Best Economics Books of 2015. “A devastating critique of the banking system. Most credit is not needed for economic growth — but it drives real estate booms and busts and leads to financial crisis and depression.”


 

Bulls become bears

 

The first sign that this global change is now consuming the US is in how many of the market’s permabulls are becoming neobears and which sizable institutions are making the switch quickly. Citi has been bullish over the years, but now they have stepped out of the back half of the bull suit and put on a toothy bear suit, expecting oil to drop to the mid-twenties and geopolitical change that “is maybe unprecedented for the last decades”:

 

The global economy seems trapped in a “death spiral” that could lead to further weakness in oil prices, recession and a serious equity bear market, Citi … strategists have warned…. “The stakes are high, perhaps higher than they have ever been in the post-World War II era.”(Yahoo)

 

Here’s a 100,000-foot-high look at the US stock market that is now swirling down the throat of the beast: Last year, the number of stock dividend reductions surpassed 2008. In fact, 2015’s number of cuts — now that the year is barely past — was 35% higher than the number of cuts going into the Great Recession. That gives you some sense of the scale of corporate pain that is just starting to be felt. Companies cut dividends when they have less profit to share with their owners. Bloomberg referred to it as “equity investors … suffered death by 394 cuts.”

Another high-view snapshot of corporate collapse can be see everywhere in US retail: Walmart, Macy’s, J.C. Penny’s, K-Mart, The Gap and many smaller retailers have all announced a large number of store closures and layoffs to come.

US Corporate earnings across all industries are on track for their third quarter in a row of year-on-year declines. That is an ominous signal because back-to-back periods of decline for just two quarters are always followed by a decline of, at least, 20% (a bear market) in the S&P 500.

 

This weakness in overall corporate earnings growth could bode badly for the broader stock market, as it represents the actual impact of geopolitical concerns, the slowdown in China, the weakness in oil prices and productivity, said Karyn Cavanaugh, senior market strategiest at Voya Investment Management. “Earnings discount all the noise…. It’s the best unbiased view of what’s going on in the global economy.” (MarketWatch)

 

As earnings fall, the much watched price-earnings ratio gets more top-heavy, putting pressure on stocks to fall. Thus, on Friday:

 

The willingness of U.S. stock investors to abide price-earnings ratios stretching into three and four digits all but ended Friday as the Nasdaq Composite Index fell to its lowest since October 2014. The … tumble in American equities turned into a full-blown selloff in stocks with the highest valuation. The Nasdaq Internet Index sank 5.2 percent, as Facebook Inc. lost 5.8 percent. (NewsMax)

 

The most significant part of this picture is that tech stocks have finally started making the big drop with the few that have been holding the stock market’s average up being the ones now taking the biggest plunge. Facebook, Amazon, Apple, and Microsoft are all falling fast. LinkedIn is getting “destroyed.” The time at the top is over, which leaves the market with zero levitation. Therefore, it’s no surprise that we saw another major sell-off on Monday.

Said USA Today, Bye, Bye Internet Bubble 2.0,” calling this “the worst start of a year for technology stocks since the Great Recession.

 

Collapse of the petrodollar opening sink holes everywhere

 

It’s no secret that Russia has outlawed trading oil in dollars among its satellite nations and that China and Russia trade in yuan now, not dollars, but Iran is the latest to stick it to the US, announcing that it will no longer trade oil in US dollars either but will sell its oil only for euros. So, we have the gargantyuan and the petroeuro, taking major bites out of the petrodollar now. China and Russia have also been divesting from US treasuries for some time and investing in gold, something I started point out here a few years ago.

All of this means that the US dollar is rapidly ceasing to be the trade currency of the world, and that prized status is the only thing that has made the US national debt manageable over the years, as the high demand for trade dollars guarantees low interest on the most colossal debt in the world because national treasuries and businesses sop up US bonds as a safe way to store trade dollars. The Federal Reserve has become the buyer of last resort for US debt; but it has maxed out.

The move away from the petrodollar is momentous. Losing its status as the reserve currency of the world will take a massive bite out of US superpower status, and that, of course, is exactly what Russia, China and Iran are counting on. With so many countries now trading oil exclusively in non-dollar currencies, one has to wonder how much longer overstretched Saudi Arabia can hold out as an oil supplier that trades oil only in dollars. Most likely they will feel a lot of economic pressure to start trading in other currencies, especially now that US support of Saudi Arabia appears to have weakened.

Iran’s announcement may be why the dollar dropped drastically in value last week. The high value of the dollar makes oil very expensive to other nations, who have to convert their low-valued currency to dollars to buy oil. This is surely another reason the price of oil has been falling, though almost no one talks about it … almost as if the economic geniuses of the world can’t figure this simple relationship out. As nations compete to lower the value of their currency with zero interest policies and quantitative easing, they are burying the petrodollar.

In nations with currencies priced very low compared to the dollar, oil is like an American export — too expensive for people in that nation to afford, causing demand to fall off and, thus, further increasing the problem of oversupply and lowering the price of oil. This creates another big reason for many nations to want to stop trading oil in dollars.

I’ve been reporting on this site for a few years now on this global campaign to kill the petrodollar, and that campaign is finally nearing maturity. For the US, it will mark a horrible transformation in the world, as it will hugely erode US superpower status because it will become much more difficult to finance a massive military machine.

 

The banks that are too-big-to-fail are falling FAST!

 

Deutsch Bank‘s derivative bonds (the kind that caused the Great Recession) are pealing away. The top-tier bonds of Germany’s largest bank have lost about 20% since the start of the year. Investors are fleeing as tumbling profits cause them to doubt the issuer’s ability to support the coupon payments on the bonds. InvestmentWatch reports that “Deutsche Bank is shaking to its foundations” and asks “is a new banking crisis around the corner?” DB stock has fallen off its high last July by 50%.

By how much is Deutsch Bank too big to fall? DB’s exposure to derivatives is over 55-trillion euros. That’s five times more than the GDP of the entire Eurozone or three times the amount of debt the United States has accumulated since it was founded. Its CEO says publicly he’d rather be somewhere else. Looking up at a leaning tower like that, I imagine so.

As DB bleeds red ink from its throat, its cries to the European Central Bank are burbled in blood. DB has warned the central bank that zero-interest-rate policies and quantitative easing are now killing bank stocks, but that didn’t stop giddy ECB president, Murio Draghi, from announcing a lot more easing to come … as much as it takes. As much as it takes to what? Kill all of Europe’s banks now that stimulus is working in reverse with negative interest making new money in reserves expensive to hang on to?

Is the ECB waging war on it major banks, or is it just too dumb to realize that QE is far beyond the high point on the bell curve of diminishing returns to where it is now killing stock values while doing nothing to boost the economy? (Hence, the move to negative interest rates to go to the ultimate extreme of easing because you have to push the accelerator through the floor when returns are diminishing that fast). As ZeroHedge has said, we are now entering a “monetary twilight zone”where …

 

Europe’s largest bank is openly defying central bank policy and demanding an end to easy money. Alas, since tighter monetary policy assures just as much if not more pain, one can’t help but wonder just how the central banks get themselves out of this particular trap they set up for themselves.

 

Credit Suisse reported a loss of 6.4 billion Swiss francs for the fourth quarter of 2015, suffering from its exposure to leveraged loans and bad acquisitions.

 

DoubleLine Capital’s Jeffrey Gundlach said it’s “frightening” to see major financial stocks trading at prices below their financial crisis levels…. “Do you know that Credit Suisse, which is a powerhouse bank, their stock price is lower than it was in the depths of the financial crisis in 2009?” (NewMax)

 

Credit Suisse has announced it will cut 4,000 jobs after posting its first quarterly loss since 2008. The Stoxx Europe 600 Banks Index has also posted its longest string of weekly losses since 2008, having posted six straight weeks of decline. The European Central Bank’s calculus says banks in Europe should be benefiting from QE, but it’s clearly lost all of its mojo or is now  actually more detrimental than good like a megadose of potent medicine. Negative interest rates are particularly taking a toll because banks have to pay interest on their reserves, instead of making interest.

Banks have rapidly become so troubled that NewsMax ran the following headline “Bank Selloffs Replacing Oil Rout as Stock Market Pressure Point.”  In other words, bank stocks are not just falling; they are falling at a rate that is causing fear contagion to other stocks. It’s not easy these days to beat out oil as a cause of further sell-offs in the stock market.

How quickly we moved from a world of commodity collapse to what now appears to be morphing into a banking collapse like we saw in 2008. Financial stocks overall have lost $350 billion just since 2016 began. Volatility in bank shares has spiked to levels not seen since … well, once again, 2008.

Consider how big the derivatives market is — that new investment vehicle that turned into such a pernicious demon in 2007 and 2008 because they are so complicated almost no one understands what they are buying and because they mix a little toxic debt throughout, like reducing the cancer in one part of the body by spreading its cells evenly everywhere. Instead of learning from the first crash into the Great Recession, we have run full speed into expanding this market. Estimates of the value of derivatives in the market range half a quadrillion dollars to one-and-a-half quadrillion dollars (depending on what you count and whether you go by how much was invested into them or their face value). Either way, that’s a behemoth number of derivatives floating around the world, many of them carrying their own little attachment of metastasizing toxins! (That’s, at least, a thousand trillions! More than ten times the entire GDP of the world.)

Still think 2016 isn’t the Year of the Epocalypse? Well, if you do, the rest of the ride will convince you soon enough. If I were the Fed, I’d be really, really worried that my star-spangled recovery plan was starting to look more like Mothra in flames.

 

The oil spillover

 

But don’t think oil is loosing its shine as a market killer. Another bearish prediction by Citi, now that it has change suits, is to expect “Oilmegeddon.” (Hmm, sounds like something that would be found in an epocalypse to me.)

 

“It seems reasonable to assume that another year of extreme moves in U.S. dollar (higher) and oil/commodity prices (lower) would likely continue to drive this negative feedback loop and make it very difficult for policy makers in emerging markets and developing markets to fight disinflationary forces and intercept downside risks,” the analysts add. “Corporate profits and equity markets would also likely suffer further downside risk in this scenario of Oilmageddon….We should all fear Oilmageddon,” Citi concludes. “Global recession, as we define it, would leave nowhere to hide in equities. Cash wins.” (NewsMax)

 

In the first months of the crash in oil prices, most analysts felt that the only companies that would be seriously hurt would be marginal fracking companies — the speculative little guys jumping into the oil shale. Now that fourth-quarter results are coming in from the world’s largest refineries, we find that isn’t true:

 

British Petroleum kicked off the European oil and gas reporting season with an ugly set of fourth-quarter results. The company reported a sharp drop in earnings for the fourth quarter. It’s own measure of underlying profit dropped 91%.… All of this is a recipe for two things — more cost cutting and more job cuts… What’s worrying for investors is that the first quarter, so far, doesn’t look much better. (MarketWatch)

 

That’s massive. BP has already announced the elimination of 7,000 jobs. Chevron and Shell also saw profit declines. Royal Dutch Shell has announced it will be making 10,000 job cuts.

If that’s how bad things got during the fourth quarter of 2015, imagine how bad they will get this quarter now that oil prices have gone down a lot more. Hence, the talk of “Oilmageddon.”

As if the industry wasn’t already burning up, President Obama is trying to impose a $10 carbon tax on each barrel of oil. At today’s oil prices, that is a 30% tax. At tomorrow’s prices, it may be a 50% tax! One has to wonder how far out of touch economically, a president can get in order to propose a hefty tax like that at a time like this.

Naturally, oil magnate T. Boone Pickens calls it “the dumbest idea ever.” While I have a general hatred for gigantic oil companies, especially since gasoline prices in my area have not dropped much, I have to agree that a $10/barrel carbon tax could cinch the noose around the neck of an already strangle industry.

Maybe that’s the plan. While the tax would hit the end user more, no tax helps an industry thrive.

 

The Epocalypse swallows everything whole

 

The reason the Epocalypse is going to be a far worse bloodbath than the first plunge into the Great Recession is that all of the central banks of the world have, by their own admission now, “exhausted their ammunition” to fight back against another recession. Back at the start of the Fed’s Goliath recovery plan, I posited that we would be falling back into the abyss right at the time when all central banks had exhausted their strength and when all nations had maxed their debt.

Here we are.

Many central banks are already doing negative interest; yet, their economies are still sinking. It appears that more negative interest could actually sink them faster by eroding their banks with internal ulcers. It will certainly require going cashless in order for those banks to start handing the negative interest down to their customers. They have to absorb the cost of negative interest if they cannot loan out their funds fast enough. That’s why some banks are now pleading with their government’s for a cashless solution … so they can prevent their customers from switching to the cash-under-the-mattress exit plan.

The world faces a tsunami of epochal defaults. William White, former economist for the International Bank of Settlements, says,

 

Debts have continued to build up over the last eight years and they have reached such levels in every part of the world that they have become a potent cause for mischief…. It was always dangerous to rely on central banks to sort out a solvency problem … It is a recipe for disorder, and now we are hitting the limit… It will become obvious in the next recession that many of these debts will never be serviced or repaid, and this will be uncomfortable for a lot of people who think they own assets that are worth something. (The Telegraph)

 

We have finally reached that time in our decades of astronomical debt-based economic expansion where it is time to pay the piper. We traveled blithely along many decades on currency cushions filled with hot air. In an article titled, “Debt, defaults, and devaluations: why this market crash is like nothing we’ve seen before,” The Telegraph says,

 

A pernicious cycle of collapsing commodities, corporate defaults, and currency wars loom over the global economy. Can anything stop it from unravelling…? Commodity prices have crashed by two thirds since their peaks in 2014…. China, the emerging world, and financial markets – are all brewing to create a perfect storm in a global economy that has barely come to terms with the Great Recession…. “We are in a very unusual situation where market sentiment is of a different nature to anything we’ve seen before.”

 

Yes, this is the big one. The times we now face are the reason I started writing this blog four+ years ago. The Federal Reserve’s Goliath recovery plan was cloned all over the world for seven years, and for seven years all nations have done nothing to rethink their debt-based economic structures that are now cracking and groaning and falling into … the Epocalypse.





Global Economic Red Alert

9 07 2015

I knew it.  Just as we are on the cusp of selling Mon Abri, bloggers everywhere, and some economists, are warning that we are in for a shock or major correction, this year.  Ever since I started Damn the Matrix, but especially since the 2008 GFC, I have been predicting such an event, even though such forecasts are fraught with possibilities of getting it wrong…..

Red-Alert-Button-460x306Based on information that I am bombarded with daily, I have come to the conclusion that a major financial collapse is imminent.  Therefore, I am reluctantly joining the blogosphere by issuing a RED ALERT for the last six months of 2015.

When I say ‘imminent’ I don’t mean that it will occur in the next couple of days…..  And I am in no way saying that our predicaments will be ‘over’ once we get to the end of 2015.  In fact, this correction will only be the beginning of worse things to come as we enter 2016.

Let’s start with some discussion about the U.S. economy.  Most of the time, when I say ‘economic collapse’ I actually mean ‘financial collapse’.  And that’s because the entire economy has been hijacked by the financial sector over the past 20 or so years, with the job almost finished.  Just because the stock markets have recently been hitting all-time record highs does not mean that the overall economy has been doing well.  The stock market is not the economy.  I contend that we are in the middle of a long-term economic collapse, and it has been ongoing for many years, and is happening right now as you read this article; the difference now is that will accelerate over the coming months.

I have already published info about the velocity of money.  When an economy is healthy, money circulates fairly rapidly.  I buy something from you, then you take that money and buy something from someone else, etc.  In a stable, healthy, and growing economy, people generally feel good about things and they are not afraid to spend.  They have confidence in the Matrix.  But during hard times, the exact opposite happens, which is why the velocity of money almost always slows down during a recession.  The chart below demonstrates how the velocity of money has indeed gone pear shaped during every recession since 1960.  Once a recession is over, the velocity of money goes back up.  But a funny thing happened after the last recession ‘ended’ (it never actually ended…).  The velocity of money continued to go down, and it has now hit an all-time record low…

Velocity Of Money M2

This is the kind of chart that you would expect from a very sick economy.  And without a doubt, the US economy is very sick.  Official government numbers paint a picture of an economy that is deeply troubled.  Corporate profits have declined for two quarters in a row, U.S. exports drpped by 7.6 percent during the first quarter of 2015, U.S. GDP shrunk by 0.7 percent during the first quarter, and manufacturing has declined year on year for six months in a row.  How long before Australia joins the club?

Were the stock market connected to reality, it too would be going down the gurgler.  But instead, it just keeps going up.  And up.  A classic case of an irrational financial bubble.  Of course, where else would any greedy capitalist invest when banks pay near zero interest?  Just about every pattern that has popped up prior to previous stock markets crashes is happening right now.

Without a doubt, financial markets are primed for a crash.

Only twice before has the S&P 500 been up by more than 200% over a six year time frame.

The first was in 1929, and the stock market subsequently crashed.

The second was in 2000, right before the dotcom bubble burst.

And by just about any measure that you care to imagine, stocks are hugely overvalued at present.

For instance, just check out the chart below.  It comes from Doug Short, and it shows that the ratio of corporate equity prices to GDP has only been higher once since 1950.  That was in 2000 just before the dotcom bubble burst…

The Buffett Indicator from Doug Short

Now look at this chart.  This one comes from Phoenix Capital Research; it shows that the CAPE ratio (cyclically adjusted price-to-earnings ratio) has rarely been higher.  The only times that it has been higher, we have seen stock market crashes immediately afterwards…..

CAPE - Phoenix Capital Research

Yale economics professor Robert Shiller is also deeply concerned about the CAPE ratio

I think that compared with history, US stocks are overvalued. One way to assess this is by looking at the CAPE (cyclically adjusted P/E) ratio that I created with John Campbell, now at Harvard, 25 years ago. The ratio is defined as the real stock price (using the S&P Composite Stock Price Index deflated by the CPI) divided by the ten-year average of real earnings per share. We have found this ratio to be a good predictor of subsequent stock market returns, especially over the long run. The CAPE ratio has recently been around 27, which is quite high by US historical standards. The only other times it has been that high or higher were in 1929, 2000, and 2007—all moments before market crashes.

But the CAPE ratio is not the only metric I watch. In my book Irrational Exuberance (3rd Ed., Princeton 2015) I discuss several metrics that help judge what’s going on in the market. These include my stock market confidence indices. One of the indicators in that series is based on a single question that I have asked individual and institutional investors over the years along the lines of, “Do you think the stock market is overvalued, undervalued, or about right?” Lately, what I call “valuation confidence” captured by this question has been on a downward trend, and for individual investors recently reached its lowest point since the stock market peak in 2000.

This next chart is another one from Doug Short.  It shows the average of four of his favorite valuation indicators.  There is only one other time when stocks have been more overvalued than they are today according to the average of his four favorite indicators, and that was just before the stock market crashed when the dotcom bubble burst…

Four Valuation Indicators - Doug Short

Another one of the things that points to a financial bubble is the level of margin debt.  This is no doubt caused by the fact the whole world now runs on nothing but debt….  Whenever margin debt has gone over 2.25% of GDP a stock market crash has always followed.  As I write, it is far above that level.  From the chart below, it can be seen that there have been three major peaks in margin debt in modern U.S. history.  The first one just before the dotcom bubble burst, the next just before the financial crisis of 2008, and the third is happening right now…

Margin Debt - Doug Short

Something else that we would expect to see just before a major financial crisis is the decoupling of high yield debt and stocks.  This happened just prior to the 2008 stock market crash, and it is happening again, right now.  The following chart comes from Zero Hedge, which demonstrates this brilliantly…

SP-500-HY-Credit-460x495

Are you starting to get the picture?

‘The smart money’ is beginning to pull their investments out of stocks while they still can.  According to USA Today, mutual fund investors have pulled more money out of stocks than they have put into stocks for 16 weeks in a row

In a sign of stock market nervousness on Main Street, mutual fund investors have yanked more money out of U.S. stock funds than they put in for 16 straight weeks.

The last time domestic stock funds had positive net cash inflows was in the week ending Feb. 25, according to data from the Investment Company Institute, a mutual fund trade group.

In the week ended June 17, the most recent data available, mutual funds that invest in U.S. stocks suffered net outflows of $3.45 billion, according to the ICI.

Since late February, U.S. stock funds have suffered estimated outflows of nearly $55 billion. Those net withdrawals come despite the fact the benchmark Standard & Poor’s 500 hit a fresh record high of 2130.82 on May 21 and the Dow Jones industrial average notched a fresh record on May 19.

But it’s not just stocks that are going to crash during the next financial crisis.  Bonds are going to crash as well.   But the real elephant in the room are derivatives.

Derivatives are going to play a starring role in the next major financial crisis.  This form of legalised gambling is going to destroy “too big to fail” banks everywhere, including Australia, during the coming downturn.  The “too big to fail” banks in the U.S. alone have 278 trillion dollars of total exposure to derivatives, but they only have 9.8 trillion dollars in total assets.  Globally, they add up to 500 trillion dollars.

For much more on the coming derivatives crisis read “Warren Buffett: Derivatives Are Still Weapons Of Mass Destruction And ‘Are Likely To Cause Big Trouble’“.

Where do I get all this info from?  The list is long…….

Ron Paul has just released a new video in which he warned all of us to “prepare for a bear market in bonds“.

Carl Icahn says that financial markets are “extremely overheated—especially high-yield bonds“.

Martin Armstrong says that his Economic Confidence Model predicts that the “Big Bang” is coming in “2015.75“.

Jeff Berwick of the Dollar Vigilante says that “we’re getting very, very close to the next crisis collapse” and he has specifically pointed to the month of September.

James Howard Kunstler has predicted that stocks are going to “crater in Q3 as faith in paper and pixels erodes“.  Of course, JHK has got it wrong before……

Lindsey Williams recently sent out an email alert in which he warned that his elite friend has told him that “they have a World Wide Financial Collapse scheduled between September and the end of December 2015“.

Gerald Celente has warned about “the Great Panic of 2015“, though at times I’ve regretted publishing Gerald’s dire warnings when he’s got things wrong too….

Bill Fleckenstein has said that 2015 could be the year of the “big accident“.

Ray Gano has stated that we will see a financial collapse “probably starting in the third quarter of 2015″.

Legendary investor Jim Rogers recently said that he believes that “we will see some kind of major, major problems in the world financial markets” within the next year or two.

And then we have Greece…….  where that will lead Europe, nobody knows.

The Chinese stock market is tanking big time too.  And I doubt China’s too worried about Greece, something far bigger is happening in the far East…..  now all I have to do is worry about where to park our money from selling Mon Abri.