The Third Industrial Revolution

21 08 2018

I belong to a degrowth group on facebook. The owner of this group posted a link to a youtube video titled “The Third Industrial Revolution: A Radical New Sharing Economy”. I downloaded it sight unseen so that I could watch it on my TV while it’s Jeremy_Rifkinpissing down with rain outside and I frankly have nothing else better to do……. luckily for those up North in terrible drought, we’ll be sending some your way next weekend. I’ve never liked Jeremy Rifkin’s crazy ideas, and had I realised he was the star attraction of this film, I probably would not have downloaded it in the first place, but having done so, and under the abovemnetioned weather conditions, I went ahead anyway……

The first half hour was for me the best part, because he clearly explains – with some crucial left out items – why we’re in deep shit. What really leaves me flumoxed is how someone who clearly understands thermodynamics and entropy cannot come to grips with their repercussions.

A ‘Third Industrial Revolution’ Would Seal Our Fate — Why Jeremy Rifkin is Dead Wrong

For me, it was extraordinarily hard to find where to start my criticism — not because of the lack of strength of his arguments, but simply because it is just plain hard to even know where to start! Explaining in the face of such universal ignorance of simple ecological limits and boundaries, and for such a long (1 3/4 hours) presentation, I fear I may ramble a bit during this difficult essay.

While I hope this post won’t offend anyone, I just think that some of us have to speak up to show him and his admirers that our generation blindly following his progressivist ideas  – at least not in its entirety – is almost as dumb as doing nothing at all…..

His ideas are not ‘radically new’. they are just a new version of the same old ‘more is better’ paradigm — more technology, more energy, more people, more jobs, more work, more impact, more control. He is after all a business man, and his main problem is that he simply doesn’t get the growth problem…. Maybe we have to try something that really is completely new:

Small is better. Simple is better. Local is better. Independent is better.

Less technology, less pollution, fewer cars (to be fair, he does say we’ll reduce the number of cars by 85%), fewer airplanes,  highways, fewer shopping malls, less noise, less trade, less work, less destruction, less disruption, less control, less worries… This doesn’t sound so bad after all, does it? But it is the complete opposite of what Rifkin has in mind for this world……

He makes it quite clear that in his ‘radically’ new economy, everything is smart. Smart phones, smart vehicles, smart roads and smart houses…..  he talks of retrofitting houses, which I know from experience does not work. Once you’ve built a lemon, a lemon it remains. That’s why I’m going through all the hassles of building my own…

There are serious concerns, expressed many times in this very blog, about the environmental impact that such changes would bring about. As far as we know it is highly unlikely that we have sufficient reserves of resources for producing so called “green/clean” technologies, on a global scale, good enough to replace the current, all-encompassing, fossil fuel-based system……

From what I saw in the video, there will be markets, corporations, stocks, products, consumers, factories, roads, cars, drones, workers, bosses, currency, more debts, taxes, laws — which all seems an awful lot like the system we currently have…. A truly ‘radical’ new economy would, surely, not see the exact same elements as its predecessor?

Rifkin forgets that there already was a “sharing economy”, usually referred to as ‘gift economy’ by anthropologists, and that this original sharing economy lasted for over 95% of our species’ two-hundred-thousand-years existence here on Earth. Ironically, this ancient economic system happens to be the closest to a sustainable form of economy that we have ever known. No resource was overexploited, no ecosystem disrupted and absolutely no pollution resulted….  and most of that was the result of infinitesimally smaller population numbers.

While it’s obvious Rifkin has some understanding of science, he remains an economist after all! Here are some of his failings as I see them…..

Chemistry

Chemistry matters because when we look at the periodic table of elements, we see all there is in our world. In the whole Universe actually… There are only 118 elements available to us. And we will never find replacements for those elements, they simply do not exist…… Of increasing interest are 17 different Rare Earth Elements (REE’s), elements 57–71 (the lanthanides) and scandium and yttrium, most of which are used to create solar panels, batteries, magnets, displays and touchscreens, hardware and other advanced technological appliances.

Figure 1. Slide by Alicia Valero showing that almost the entire periodic table of elements is used for computers.

To obtain them we have to rape and pillage the biosphere. This puts us into a predicament that Rifkin fails to address.  Those elements are used because of their unique and desirable qualities, such as the ability to absorb certain wavelengths (particularly efficient in the case of solar panels), produce strong magnets for the massive generators used in wind turbines, and colorful lights for the displays of our mobile phones, computers and TV’s.

Of the 17 REE’s, the only one that is not found in smartphones is the radioactive promethium! I guess the line is drawn at putting radioactive stuff to one’s ear….. Modern smartphones contain almost three quarters of all the elements in the periodic table, and all of them are essential for those devices to function. It is chemically not possible to create something like a smartphone without certain elements; and it is impossible to obtain those elements without destroying vast swaths of the already battered environment.

Geology

From a geological point of view Rifkin’s plans are highly unlikely. We simply don’t have enough resources left to do any of his proposed ‘revolutions’ in the realms of energy and communication.

Biology

Overshoot is what happens when a species follows simple biological laws: if you increase the food availability of any species, its population will increase, period. This is what we humans have done for the past 10,000 years, since the widespread adoption of agriculture. As a result of the food surplus that industrial agriculture creates (as opposed to the “just-enough” food quantity obtained by foragers), human population exploded. The biggest increase in human population was directly caused by the “Green” Revolution, when fossil fuelled chemical fertilizers, pesticides and herbicides were first used on a continental scale. It was like agriculture on steroids…..

I didn’t realise Rifkin was a vegetarian/vegan activist until watching this. He yet again displays his ignorance of the difference between industrial animal husbandry and regenerative agriculture, which, in my not so humble opinion, will be the third revolution…. Maybe someone needs to invent smart cows! Just kidding…….

The fact that Rifkin fails to adequately address overpopulation is reason enough for me to question his competence.

Ecology

Ecosystems function best and are at their most stable, resilient and effective when all components stay within their naturally imposed limits. From an ecological view, anthropocentrism has no foundation whatsoever. Instead of controlling our environment, we would have to let go of all control and hand the reins back to Mother Nature…… Ecosystems are networks (Rifkin, fond of technological and digital metaphors, would probably call them an ‘Internet’!) that seem resilient even when they suffer severe damage. But once a ‘tipping point’ is reached, like human overshoot, collapse is rapid and ruthless. The first of those tipping points might be reached as soon as the 2020’s mark, with increasingly extreme weather events threatening breadbasket regions around the world. Rifkin’s assertion that we have forty years to fix the mess just blew me away…..

Like it or not, we are inevitably a part of the ecosystem surrounding us, whether we act like it or not. Everything we do – and nothing we do is sustainable – has a direct impact on our immediate environment. Thanks to globalization, ecosystems are now impacted on a global scale.

The extraction and processing of REM’s needed to produce all our technology is directlysamarco connected to the destruction of ecosystems all around the globe. Several major ecological catastrophes were directly caused by the mining and extraction of REE’s, such as the Samarco tailings dam collapse (2015) in Brazil or the silicon tetrachloride spill by a solar energy company in Henan province, China (2008). As implied by  recent, peer reviewed study (paywall) in the prestigious journal Nature, there is no reason to believe that this risk is going to decrease if global demand rises as predicted by all involved scholars and institutions.

Green Clean Smart technology

It should be obvious by now, especially to all followers of this blog, that neither solar panels, wind turbines, hydroelectric facilities, and electric cars, nor smartphones, computers and other high-tech gadgets come even close to being what might be termed “green” or “clean”. But what Rifkin proposes is nothing short of megalomania.

Smartphones (smart vehicles, smart roads, smart houses, smart toilets and any other ‘smart’ gadget), computers, televisions, electric cars, wind turbines, solar panels, lasers, camera lenses, missiles and numerous other technologies all contain a broad spectrum of rare earth elements (REE’s), without which the production of those gadgets would be utterly impossible (strictly chemically speaking). The production and use of ‘screens’ technology alone, according to Jancovici, consumes one third of all the electricity produced worldwide….. The growth of renewables cannot even keep up with the growth of the internet.

Rifkin makes much ado about a meeting he had with Angela Merkel – herself a scientist – and the amount of renewable energy deployed in Germany, claiming Germany gets 30% of its electricity from these technologies. This isn’t even true…. it might be correct on paper, and on perfect days even more might be generated, but his hopium filled rhetoric would have you believe his dream is already happening…..  it isn’t. The recent demolition of a historic church to clear the way for the expansion of an open-cast brown coal mine has outraged locals in western Germany and environmentalists, as politicians moot giving up their own clean energy targets…….

Many of the minerals needed to produce smartphones and electric vehicles are considered ‘conflict minerals’ and are mined under slave-like conditions in Congo and other ‘undeveloped’ countries. The most common conflict minerals, cassiterite (a byproduct of tin mining), wolframite (extracted from tungsten), coltan (extracted from tantalum), cobalt, and gold ore, are all mined in eastern Congo. There is ample evidence to assume that Western corporations have a high economic interest in the region remaining unstable, since they get much better prices for the minerals desperately needed for the production of mobile phones, laptops, and other digital technology

It is impossible to produce even a single smartphone without causing enormous damage to the biosphere in the process. As the graphic above shows (click on it for a larger view), the materials and compounds come from all corners of the world and have to be transported conveniently and cheaply for the industry to continue to function properly and profitably. Container vessels are the backbone of the global economy, and without them nothing would function. They can’t be replaced with anything “renewable”, since no electric engine has as yet been invented that can move such masses over distances longer than 80km!!  The 16 biggest container ships (out of a total of about 100,000 vessels) produce as much pollution as all the cars in the world….

In case you’ve never heard this before, the shipping lobby works hard to hide and downplay their impact on climate breakdown from the public.  The UN body that polices the world’s shipping business, the International Maritime Organization (IMO), has been absent without leave when it comes to avoiding or even addressing pollution caused by those ships.  By international law, nobody is allowed to burn the thick, sulphur-laden fuel  called bunker oil,  yet the shipping industry does not have to comply with that law. And sulphur is far from being the only pollutant. Every year it is estimated that container vessels belch out one billion tons of CO2 , as much as the entire aviation industry……. click on image for larger view.

Deindustrialise or perish

When we take a careful look at our species’ short history, it becomes obvious in which direction we must go. We got along quite well before people started thinking that they were better than other creatures, and better than their fellow men, the new mindset that emerged after the Agricultural Revolution……..entropy

If we want to stop pathological behavior, pollution, destruction, violence, chronic depression and mental health problems, discontent, and exploitation, if we want to share real things, communicate meaningfully, live in harmony with the biosphere, and nurture the world around us, we have to recognize our true Nature:  The Nature within us, the Wilderness that still lays deep in our heart, and the Nature and the Wilderness that are still around us, the biosphere, at the edges of the wastelands we’ve created and in between the cracks in the asphalt and the concrete we’ve coated the living Earth with, and that they are actually the same.

Advertisements




Solving secondary problems first

10 08 2018

Can you run a self-driving car on a desert island?

Of course not: There are no roads; and there is no fuel for the car.

Why do I mention this?  Because the received narrative around climate change and so-called “peak oil demand” is that new technologies like electric self-driving cars are going to ride to our rescue in the near future.  This is a nice fantasy; but I would draw your attention to the fact that while we still have roads, along with much of our infrastructure they are falling apart through neglect.  Without the enabling infrastructure, the proposed new technologies are going nowhere.

Energy, meanwhile, is a far greater problem.  Globally (remember most of the food we eat and the goods we buy are imported) 86 percent of our energy comes from fossil fuels – down just one percent from 1995.  Renewable energy accounts for nearly 10 percent; but most of this is from hydroelectric dams and wood burning.  The modern renewables – solar, wind, geothermal, wave, tidal, and ocean energy – that so many people imagine are going to save the day account for just 1.5 percent of the energy we use.

Modern renewables are a kind of Schrodinger’s energy because they are simultaneously replacements for (some of) the fossil fuel that we are currently using and the additional energy to power all of the new technologies that are going to save the day.  And rather like the benighted feline in Schrodinger’s experiment, so long as nobody actually looks at the evidence, they can continue to fulfil both roles.

Given the potentially catastrophic consequences of not having sufficient energy to continue growing our economy, it is psychologically discomforting even to ask why energy costs are spiralling upward around the world, and why formerly energy independent countries are resorting to difficult, expensive and environmentally toxic fuel sources like hydraulically fractured shale or strip mined bitumen sands.  This, perhaps, explains why so many people focus their attention on solving second order problems – something psychologists refer to as a “displacement activity.”

An example of this appeared in today’s news in the shape of an Australian attempt to revive hydrogen-powered cars.  In theory, hydrogen (which only exists in compounds in nature) is superior to (far less abundant) lithium ion batteries as a store of energy to power electric vehicles.  Crucially, unlike battery-powered electric vehicles, hydrogen cell electric vehicles do not need to be recharged, but can be refuelled in roughly the same time as it takes to refuel a petroleum vehicle.  And, of course, hydrogen vehicles do not require tax payers and energy consumers to foot the bill for the upgrade of the electricity grid needed for battery-powered cars.

hydrogen car

The drawback with hydrogen is that it is difficult to store.  Because hydrogen is the smallest atom, it can gradually corrode and seep out of any container; especially if it is compressed into liquid form.  It is this problem that the Australian researchers appear to have solved.  Using a new technology, they have been able to store hydrogen as ammonia, and then convert it back to hydrogen to fuel their cars.  As Lexy Hamilton-Smith at ABC News reports:

“For the past decade, researchers have worked on producing ultra-high purity hydrogen using a unique membrane technology.

“The membrane breakthrough will allow hydrogen to be safely transported and used as a mass production energy source.”

Unlike batteries, which have only succeeded imperfectly at replacing lightweight vehicles, hydrogen is already used around the world to power much heavier vehicles:

“Hydrogen powered vehicles, including buses, trucks, trains, forklifts as well as passenger cars are being manufactured by leading automotive companies and deployed worldwide as part of their efforts to decarbonise the transport sector.”

Step back for a moment and you will see that this is, indeed, a displacement activity.  Insofar as humans are currently imagining a far more electrified world, then there is a competition to be won on the best form of energy storage.  And there are good reasons for believing that hydrogen is a more versatile battery than lithium ion (which also has a tendency to burst into flames if not stored properly).  However, this competition is predicated on the highly unlikely possibility of our having a large volume of excess energy in future.

Currently, almost all of the hydrogen we use is obtained by chemically separating it out of natural gas.  Using electrolysis to separate hydrogen out of water is simply too expensive by comparison.  But gas reserves are shrinking (which is why fracking is being promoted) and are already required for agriculture, chemicals, for heating and cooking, and for generating much of the electricity that used to come from coal.  Given the Herculean efforts that were required to install the modern renewables that generate just 1.5 percent of our energy, the idea that these are about to deliver enough excess capacity to allow the production of hydrogen from water is fanciful at best.

And that’s the problem.  Until we can secure a growing energy supply both hydrogen and lithium ion cars are going to end up on a global desert island.  One where there is insufficient power and unrepaired infrastructure.  To make matters worse, climate change dictates that the additional power we need in future cannot come from the fuels that currently provide us with 86 percent of our energy.  And, of course, whatever we end up substituting for fossil fuels will have to provide sufficiently cheap energy that the population doesn’t rise up and produce something a great deal worse than Brexit or Donald Trump.





Climate ‘doom’ is already here

2 08 2018

nafeez

Nafeez Ahmed

The extreme weather events of the summer of 2018 are not just symptoms of climate breakdown. They are early stage warnings of a protracted process of civilisational collapse as industrial societies face some of the opening symptoms of having already breached the limits of a safe climate. These events are a taste of things to come on a business-as-usual trajectory. They elicit a sense of how industrial civilisational systems are vulnerable to collapse due to escalating climate impacts. And they highlight the urgent necessity of communities everywhere undertaking steps to achieve a systemic civilisational transition toward post-capitalist systems which can survive and prosper after fossil fuels.

Climate ‘doom’ is already here

This summer’s extreme weather has hit home some stark realities.

Climate disaster is not slated to happen in some far-flung theoretical future.

It’s here, and now.

Droughts threatening food supplies, floods in Japan, extreme rainfall in the eastern US, wildfires in California, Sweden and Greece.

In the UK, holiday-makers trying to cross the Channel tunnel to France faced massive queues when air conditioning facilities on trains failed due to the heatwave. Thousands of people were stranded for five hours in the 30C heat without water.

In southern Laos, heavy rains led to a dam collapse, rendering thousands of people homeless and flooding several villages.

The stories came in thick and fast, from all over the world.

Most of the traditional media did not report these incidents as symptoms of an evolving climate crisis.

Some commentators did point out that the events might be linked to climate change.

None at all acknowledged that these extreme weather events might be related to the fact that since 2015, we have essentially inhabited a planet that is already around 1C warmer than the pre-industrial average: and that therefore, we are already, based on the best available science, inhabiting a dangerous climate.

The breaching of the 1C tipping point — which former NASA climate science chief James Hansen pinpointed as the upper limit to retain a safe climate — was followed this March by atmospheric carbon concentrations reaching, for the first time since records began, 400 ppm (parts per million).

Once again, the safe upper limit highlighted by Hansen and colleagues — 350 ppm — has already been breached.

Yet these critical climate milestones have been breached consecutively with barely a murmur from either the traditional and alternative media.

The recent spate of catastrophic events are not mere anomalies. They are the latest signifiers of a climate system that is increasingly out of balance — a system that was already fatally struck off balance through industrial overexploitation of natural resources centuries ago.

Our sense-making apparatus is broken

But for the most part, the sense-making apparatus by which we understand what is happening in the world — the Global Media-Industrial Complex (a network of media communications portals comprised of both traditional corporate and alternative outlets) — has failed to convey these stark realities to the vast majority of the human population.

We are largely unaware that 19th and early 20th century climate change induced by industrial fossil fuel burning has already had devastating impacts on the regional climate of Sub-Saharan Africa; just as it now continues to have escalating devastating impacts on weather systems all over the world.

The reality which we are not being told is this: these are the grave consequences of inhabiting a planet where global average temperatures are roughly 1C higher than the pre-industrial norm.

Sadly, instead of confronting this fundamentally existential threat to the human species — one which in its fatal potential implications point to the bankruptcy of the prevailing paradigms of social, political and economic organisation (along with the ideology and value-systems associated with them) — the preoccupation of the Global Media-Industrial Complex is at worst to focus human mind and behaviour on consumerist trivialities.

At best, its focus is to pull us into useless, polarising left-right dichotomies and forms of impotent outrage that tend to distract us from taking transformative systemic action, internally (within and through our own selves, behaviours psychologies, beliefs, values, consciousness and spirit) and externally (in our relationships as well as our structural-institutional and socio-cultural contexts).

Collapse happens when the system is overwhelmed

These are the ingredients for the beginning of civilisational collapse processes. In each of these cases, we see how extreme weather events induced by climate change creates unanticipated conditions for which international, national and local institutions are woefully unprepared.

In order to respond, massive new expenditures are involved, including emergency mobilisations as well as new spending to try to build more robust adaptations that might be better prepared ‘next time’.

But the reality is that we are already failing to avert an ongoing trajectory of global temperatures rising to not merely a dangerous 2C (imagine a doubling intensity of the sorts of events we’ve seen this summer happening year on year); but, potentially, as high as 8C (the catastrophic impacts of which would render much of the planet uninhabitable).

In these contexts, we can begin to see how a protracted collapse process might unfold. Such a collapse process does not in itself guarantee the ‘end of the world’, or even simply the disappearance of civilisation.

What it does imply is that specific political, economic, social, military and other institutional systems are likely to become increasingly overwhelmed due to rising costs of responding to unpredictable and unanticipated climate wild cards.

It should be noted that as those costs are rising, we are simultaneously facing diminishing economic returns from our constant overexploitation of planetary resources, in terms of fossil fuels and other natural resourcs.

In other words, in coming decades, business-as-usual implies a future of tepid if not declining economic growth, amidst escalating costs of fossil fuel consumption, compounded by exponentially accelerating costs of intensifying climate impacts as they begin to erode and then pummel and then destroy the habitable infrastructure of industrial civilisation as we know it.

Collapse does not arrive in this scenario as a singular point of terminal completion. Rather, collapse occurs as a a series of discrete but consecutive and interconnected amplifying feedback processes by which these dynamics interact and worsen one another.

Earth System Disruption (ESD) — the biophysical processes of climate, energy and ecological breakdown — increasingly lead to Human System Destabilisation (HSD). HSD in turn inhibits our capacity to meaningfully respond and adapt to the conditions of ESD. ESD, meanwhile, simply worsens. This, eventually, leads to further HSD. The cycle continues as a self-reinforcing amplifying feedback loop, and each time round the cycle comprises a process of collapse.

This model, which I developed in my Springer Energy Briefs study Failing States, Collapse Systems, demonstrates that the type of collapse we are likely to see occurring in coming years is a protracted, cyclical process that worsens with each round. It is not a final process, and it is not set-in-stone. At each point, the possibility of intervening at critical points to mitigate, ameliorate, adapt, or subvert still exists. But it gets harder and harder to do so effectively the deeper into the collapse cycle we go.

Insanity

One primary sympton of the collapse process is that as it deepens, the capacity of the prevailing civilisational configuration to understand what is happening becomes increasingly diminished.

Far from waking up and taking action, we see that the human species is becoming increasingly mired in obsessing over geopolitical and economic competition, self-defeating acts of ‘self’-preservation (where the ‘self’ is completely misidentified), and focused entirely on projecting problems onto the ‘Other’.

A key signifier of how insidious this is, is in yourself. Look to see how your critical preoccupations are not with yourself or those with which you identify; but that and those whom you oppose and consider to be ‘wrong.’

At core, the critical precondition for effective action at this point is for each of us to radically subvert and challenge these processes through a combination of internal introspection and outward action.

In ourselves, the task ahead is for each of us to become the seeds of that new, potential civilisational form — ‘another world’ which is waiting to be birthed not through some far-flung ‘revolution’ in the future, but here and now through the transformations we undertake in ourselves and in our contexts.

We first wake up. We wake up to the reality of what is happening in the world. We then wake up to our own complicity in that reality and truly face up to the intricate acts of self-deception we routinely undertake to conceal ourselves from this complicity. We then look to mobilise ourselves anew to undo these threads of complicity where feasible, and to create new patterns of work and play that connect us back with the Earth and the Cosmos. And we work to connect our own re-patterning with the re-patterning work of others, with a view to plant the seed-networks of the next system — a system which is not so much ‘next’, but here and now, emergent in the fresh choices we make everyday.

So… welcome. Welcome to a 1C planet. Welcome to the fight to save ourselves from ourselves.

This story was 100% reader-funded. Please support our independent journalism and share widely.





The Receding Horizons of Renewable Energy

15 07 2018

Another excellent article by Nicole Foss…  also known as Stoneleigh.

Renewable energy is best used in situ, adjacent to demand. It is best used in conjunction with a storage component which would insulate consumers from supply disruption, but FIT programmes typically prohibit this explicitly. Generators are expected to sell all their production to the grid and buy back their own demand. This leaves them every bit as vulnerable to supply disruption as anyone who does not have their own generation capacity. This turns renewable generation into a personal money generating machine with critical vulnerabilities. It is no longer about the energy, which should be the focus of any publicly funded energy programme.

nicolefoss

Nicole Foss

Stoneleigh: Renewable energy has become a topic of increasing interest in recent years, as fossil fuel prices have been volatile and the focus on climate change has sharpened. Governments in many jurisdictions have been instituting policies to increase the installation of renewable energy capacity, as the techologies involved are not generally able to compete on price with conventional generation.

The reason this is necessary, as we have pointed out before, is that the inherent fossil-fuel dependence of renewable generation leads to a case of receding horizons. We do not make wind turbines with wind power or solar panels with solar power. As the cost of fossil fuel rises, the production cost of renewable energy infrastructure also rises, so that renewables remain just out of reach.

Renewable energy is most often in the form of electricity, hence subsidies have typically been provided through the power system. Capital grants are available in some locations, but it is more common for generators to be offered a higher than market price for the electricity they produce over the life of the project. Some jurisdictions have introduced a bidding system for a set amount of capacity, where the quantity requested is fixed (RFP) and the lowest bids chosen.

Others have introduced Feed-In Tariff (FIT) programmes, where a long-term fixed price is offered essentially to any project willing to accept it. Tariffs vary with technology and project size (and sometimes inversely with resource intensity) with the intention of providing the same rate of return to all projects. FIT programmes have been much more successful in bringing capacity online, especially small-scale capacity, as the rate of return is higher and the participation process much less burdensome than the RFP alternative. Under an RFP system accepted bids often do not lead to construction as the margin is too low.

The FIT approach has been quite widely adopted in Europe and elsewhere over the last decade, and has led to a great deal of capacity construction in early-adopter countries such as Germany, Spain and Denmark. In Canada, Ontario was the first north American jurisdiction to introduce a similar programme in 2009. (I was involved in negotiating its parameters at the time.)

Renewable energy subsidies are becoming increasingly controversial, however, especially where they are very large. The most controversial are those for solar photovoltaics, which are typically very much higher than for any other technology. In a number of countries, solar tariffs are high enough to have produced a bubble, with a great deal of investment being poured into infrastructure production and capacity installation. Many of the countries that had introduced FIT regimes are now backing away from them for fear of the cost the subsidies could add to power prices if large amounts of capacity are added.

As Tara Patel wrote recently for Bloomberg:

EDF’s Solar ‘Time Bomb’ Will Tick On After France Pops Bubble:

To end what it has called a “speculative bubble,” France on Dec. 10 imposed a three-month freeze on solar projects to devise rules that could include caps on development and lowering the so-called feed-in tariffs that pay the higher rate for renewable power. The tariffs were cut twice in 2010. “We just didn’t see it coming,” French lawmaker Francois- Michel Gonnot said of the boom. “What’s in the pipeline this year is unimaginable. Farmers were being told they could put panels on hangars and get rid of their cows.”…. ….EDF received 3,000 applications a day to connect panels to the grid at the end of last year, compared with about 7,100 connections in all of 2008, according to the government and EDF.

Stoneleigh: The policy of generous FIT subsidies seems to be coming to an end, with cuts proposed in many places, including where the programmes had been most successful. The optimism that FIT programmes would drive a wholesale conversion to renewable energy is taking a significant hit in many places, leaving the future of renewable energy penetration in doubt in the new era of austerity:

Germany:

Half of the 13 billion euro ($17.54 billion) reallocation charges pursuant to Germany’s renewable energy act was put into solar PV last year. The sector produced about 7 GW of electricity, surpassing the 5-GW estimate. The government deemed the industry boom as counterproductive, pushing it to reduce subsidies and narrow the market.

The Czech Republic:

In an attempt to get hold of what could be a runaway solar subsidy market, the Senate approved an amendment April 21 that will allow the Energy Regulatory Office (ERÚ) to lower solar energy prices well below the current annual limit of 5 percent cuts. At the start of 2011, the state will now be able to decrease solar energy prices up to 25 percent – if President Klaus signs the amendment into law. Even with a quarter cut, the government’s subsidies for feed-in tariffs remain so high that solar energy remains an attractive investment.

France:

The Ministry of Sustainable Development is expected to cut the country’s generous feed-in tariffs by 12 percent beginning September 1 in an effort to rein in demand and curb spending, according to analysts and news reports from France.

Italy:

Incentives for big photovoltaic (PV) installations with a capacity of more than 5 megawatts (MW) will be slashed every four months by a total of up to 30 percent next year, said Gianni Chianetta, chairman of the Assosolare industry body. Incentives for smaller PV installations will be gradually cut by up to 20 percent next year. One-off 6 percent annual cuts are set for 2012 and 2013 under the new plan, the industry source said.

The UK:

The U.K. government signaled it may cut the prices paid for electricity from renewable energy sources, saying it began a “comprehensive review” of feed-in tariffs introduced last year. Evidence that larger-scale solar farms may “soak up” money meant for roof-top solar panels, small wind turbines and smaller hydropower facilities prompted the study, the Department of Energy and Climate Change said today in an statement. A review was originally planned to start next year.

The move will allow the government to change the above- market prices paid for wind and solar electricity by more than already planned when the new prices come into force in April 2012. The department said it will speed up an analysis of solar projects bigger than 50 kilowatts and that new tariffs may be mandated “as soon as practical.” “This is going to put the jitters into some market segments,” Dave Sowden, chief executive officer of the Solihull, England-based trade group Micropower Council, said today in a phone interview.

Portugal:

The Portuguese government has announced that it will review the existing feed-in tariff mechanism following calls that the subsidies are excessive and contribute to the increase of electricity prices to final consumers.

Ontario

Initial enthusiasm among ratepayers for the scheme is flagging in the wake of perceived links between the FiT and increased energy prices. The FiT passed into law in May 2009 as part of the Green Energy Act, which aims to promote the development of wind and solar generation in the province. With provincial elections slated for 6 October next year, the opposition Progressive Conservative Party is threatening to substantially revise and possibly even scrap the FiT should it win. Even if it the subsidy scheme were to be revoked, the legal implications of rescinding the over 1500MW in existing FiT contracts would be highly problematic.

Stoneleigh: Spain is the example everyone wishes to avoid. The rapid growth in the renewable energy sector paralleled the bubble-era growth of the rest of Spain’s economy. The tariffs offered under their FIT programme now come under the heading of ‘promises that cannot be kept’, like so many other government commitments made in an era of unbridled optimism. Those tariffs are now being cut, and not just for new projects, but for older ones with an existing contract. People typically believe that promises already made are sacrosanct, and that legal committments will not be broken, but we are moving into a time when rules can, and will, be changed retroactively when the money runs out. Legal niceties will have little meaning when reality dictates a new paradigm.

Spain:

Spain’s struggling solar-power sector has announced it will sue the government over two royal decrees that will reduce tariffs retroactively, claiming they will cause huge losses for the industry. In a statement, leading trade body ASIF said its 500 members endorsed filing the suit before the Spanish high court and the European Commission. They will allege that royal decrees 156/10 and RD-L 14/10 run against Spanish and European law. The former prevents solar producers from receiving subsidized tariffs after a project’s 28th year while the latter slashes the entire industry’s subsidized tariffs by 10% and 30% for existing projects until 2014. Both bills are “retroactive, discriminatory and very damaging” to the sector. They will dent the profits of those companies that invested under the previous Spanish regulatory framework, ASIF argued.

Austerity bites:

The government announced soon after that it would introduce retroactive cuts in the feed-in tariff program for the photovoltaic (PV) industry in the context of the austerity measures the country is currently undergoing. According to this plan, existing photovoltaic plants would have their subsidies cut by 30%, a figure that would go up to 45% for any new large scale plants. Smaller scale roof installations would lose 25% of their existing subsidy, while installations with a generating capacity of less than 20 KW would have 5% taken from their tariff.

Spain is too big to fail and too big to bail out:

Spain has been forced to cut back on solar subsidies because of the impact on ratepayers. But Spain’s overall economy is in much worse shape and the subsidies for feed in tariff are threatening to push the country into bailout territory or, at lease, worsen the situation should a bailout be needed.

FIT and Debt:

The strain on government revenue is in part due to the way Spain has designed its feed-in tariff system. Usually, this type of subsidy is paid for by utilities charging more for the electricity they sell to consumers, to cover the cost of buying renewable energy at above-market prices. Therefore no money is actually paid out of government revenues: consumers bear the cost directly by paying higher electricity bills.

In Spain, however, the price of electricity has been kept artificially low since 2000. The burden has been shouldered by utilities, which have been operating at a loss on the basis of a government guarantee to eventually pay them back. The sum of this so-called ‘tariff deficit’ has accumulated to over €16 billion (US$ 20 billion) since 2000. For comparison, Spain’s deficit in 2009 was around €90 billion (US$ 116 billion) in 2009 and its accumulated debt around €508 billion (US$ 653 billion).

Stoneleigh: Ontario threatens to take the Spanish route by instituting retroactive measures after the next election. For a province with a long history of political interference in energy markets, further regulatory uncertainty constitutes a major risk of frightening off any kind of investment in the energy sector. Considering that 85% of Ontario’s generation capacity reaches the end of its design life within 15 years, and that Ontario has a huge public debt problem, alienating investment is arguably a risky decision. FIT programmes clearly sow the seeds of their own destruction. They are an artifact of good economic times that do not transition to hard times when promises are broken.

Ontario

The outcome of an autumn election in Ontario could stunt a budding renewable energy industry in the Canadian province just as it is becoming one of the world’s hot investment destinations. If the opposition Progressive Conservatives win power on Oct. 6, the party has promised to scrap generous rates for renewable energy producers just two years after their launch by the Liberal government. That could threaten a program that has lured billions of dollars in investment and created thousands of jobs.

The Conservatives, who are leading in the polls, have yet to release an official energy manifesto. Even so, the industry is privately voicing concern, especially after the party said it would scrutinize contracts already awarded under Ontario’s feed-in tariff (FIT) program. “They are going to go through the economic viability of the energies and review all of the past contracts … I think that is going to cause a lot of delays, a lot of problems and a lot of risk to Ontario,” said Marin Katusa, chief energy analyst at Casey Research, an investor research service.

George Monbiot, writing for The Guardian in the UK, provides an insightful critique of FIT programmes in general:

The real net cost of the solar PV installed in Germany between 2000 and 2008 was €35bn. The paper estimates a further real cost of €18bn in 2009 and 2010: a total of €53bn in ten years. These investments make wonderful sense for the lucky householders who could afford to install the panels, as lucrative returns are guaranteed by taxing the rest of Germany’s electricity users. But what has this astonishing spending achieved? By 2008 solar PV was producing a grand total of 0.6% of Germany’s electricity. 0.6% for €35bn. Hands up all those who think this is a good investment…. .

As for stimulating innovation, which is the main argument Jeremy [Leggett] makes in their favour, the report shows that Germany’s feed-in tariffs have done just the opposite. Like the UK’s scheme, Germany’s is degressive – it goes down in steps over time. What this means is that the earlier you adopt the technology, the higher the tariff you receive. If you waited until 2009 to install your solar panel, you’ll be paid 43c/kWh (or its inflation-proofed equivalent) for 20 years, rather than the 51c you get if you installed in 2000.

This encourages people to buy existing technology and deploy it right away, rather than to hold out for something better. In fact, the paper shows the scheme has stimulated massive demand for old, clunky solar cells at the expense of better models beginning to come onto the market. It argues that a far swifter means of stimulating innovation is for governments to invest in research and development. But the money has gone in the wrong direction: while Germany has spent some €53bn on deploying old technologies over ten years, in 2007 the government spent only €211m on renewables R&D.

In principle, tens of thousands of jobs have been created in the German PV industry, but this is gross jobs, not net jobs: had the money been used for other purposes, it could have employed far more people. The paper estimates that the subsidy for every solar PV job in Germany is €175,000: in other words the subsidy is far higher than the money the workers are likely to earn. This is a wildly perverse outcome. Moreover, most of these people are medium or highly skilled workers, who are in short supply there. They have simply been drawn out of other industries.

Stoneleigh: Widespread installed renewable electricity capacity would be a very good resource to have available in an era of financial austerity at the peak of global oil production, but the mechanisms that have been chosen to achieve this are clearly problematic. They plug into, and depend on, a growth model that no longer functions. If we are going to work towards a future with greater reliance on renewable energy, there are a number of factors we must consider. These are not typically addressed in the simplistic subsidy programmes that are now running into trouble worldwide.

We have power systems built on a central station model, which assumes that we should build large power station distant from demand, on the grounds of economic efficiency, which favours large-scale installations. This really does not fit with the potential that renewable power offers. The central station model introduces a grid-dependence that renewable power should be able to avoid, revealing an often acute disparity between resource intensity, demand and grid capacity. Renewable power (used in the small-scale decentralized manner it is best suited for) should decrease grid dependence, but we employ it in such a way as to increase our vulnerability to socioeconomic complexity.

Renewable energy is best used in situ, adjacent to demand. It is best used in conjunction with a storage component which would insulate consumers from supply disruption, but FIT programmes typically prohibit this explicitly. Generators are expected to sell all their production to the grid and buy back their own demand. This leaves them every bit as vulnerable to supply disruption as anyone who does not have their own generation capacity. This turns renewable generation into a personal money generating machine with critical vulnerabilities. It is no longer about the energy, which should be the focus of any publicly funded energy programme.

FIT programmes typically remunerate a wealthy few who install renewables in private applications for their own benefit, and who may well have done so in the absence of public subsidies. If renewables are to do anything at all to help run our societies in the future, we need to move from publicly-funded private applications towards public applications benefitting the collective. We do not have an established model for this at present, and we do not have time to waste. Maximizing renewable energy penetration takes a lot of time and a lot of money, both of which will be in short supply in the near future. The inevitable global austerity measures are not going to make this task any easier.

We also need to consider counter-cyclical investment. In Ontario, for instance, power prices have been falling on falling demand and increased conventional supply, and are now very low. In fact, the pool price for power is often negative at night, as demand is less than baseload capacity. Under such circumstances it is difficult to develop a political mandate for constructing additional generation, when the spending commitment would have to be born by the current regime and the political benefits would accrue to another, due to the long construction time for large plants.

Politicians are allergic to situations like that, but if they do not make investments in additional generation capacity soon, most of Ontario’s capacity could end up being retired unreplaced. Large, non-intermittent, plants capable of load following are necessary to run a modern power system. These cannot be built overnight.

Many jurisdictions are going to have to build capacity (in the face of falling prices in an era of deflation) if they are to avoid a supply crunch down the line. Given how dependent our societies are on our electrified life-support systems, this could be a make or break decision. The risk is that we wait too long, lose all freedom of action and are then forced to take a much larger step backwards than might other wise have been the case.

Europe’s existing installed renewable capacity should stand it in good stead when push comes to shove, even though it was bought at a high price. Other locations, such as Ontario, really came too late to the party for their FIT initiatives to do any good. Those who have not built replacement capacity, especially load-following plants and renewables with no fuel cost going forward, could be very vulnerable in the future. They will be buffeted first by financial crisis and then by energy crisis, and there may be precious little they can do about either one.





Eating for a Better World

15 07 2018

Many thanks to Jacqueline who found this excellent “must read” piece on our farming predicaments….. Since buying a farm myself, I am totally convinced everything written here is accurate, and that until people wake up to themselves about this, we will continue on our road to the edge of the cliff with everyone arguing about how much faster we should be going….

Lifted from this excellent website….

“The banality of evil transmutes into the banality of sentimentality. The world is nothing but a problem to be solved by enthusiasm.”
—Teju Cole

It is not surprising that there are growing numbers of vegans and vegetarians worldwide who are becoming dogmatic about their food choices. Many aspects of the hyper-synthetic cityscapes we inhabit are disorienting to mammals such as ourselves. Over the last hundred years, our food systems have undergone drastic change. Food — that basic, life-igniting, community-building element — has become completely outsourced, processed, industrialized, and bland. Worse, animals are distorted and abused beyond recognition to produce it.

The meat we come across in cities looks less and less like a part of the animal it came from, and more like another factory product packaged in layers of thick plastic. We have become detached from the mutualistic relationships we have formed with animals over thousands of years. We are conceptually isolated from trophic cascades. Eating animals in this context surely feels like cheating, since the only models we have for our relationships with them are our relationships with other people.

One by one, city dwellers awaken to the fact that their chicken no longer tastes or looks like chicken and that their bodies are dulled by the meat of the crippled, hormone- and antibiotic-stuffed animals we breed. They begin to feel a visceral, intellectual, and moral repulsion towards the animal products that everyone eats so flippantly.

The slaughtering of animals used to take place within a relationship. There was little room for cowardice, since the act of killing was personal. The hunter looked into the eyes of the deer and was changed by that gaze. The farmer lived in close proximity with her cattle and understood that her own well-being depended on that of her animals. The cook knew how to calm her chicken before she twisted its neck, and let no part of the animal go to waste. The shepherd risked his life to defend his herd. Everyone who ate was intimate with the cycles that brought food to the plate. Ritual mediated relationships, providing for a way for people to both honor and eat the world around them.

Now we are divorced from these processes. Veganism is another reaction to this isolation, and indeed could have only emerged within it.

An urbanite looking for alternatives easily comes across veganism, a mainstream option made attractive through popular books and films and charming cafes in every major city. When continuing to eat feedlot meat and eggs from enslaved chickens becomes impossible, veganism beckons with a practicable solution. But subjective health claims and moral appeals that harness the disgust response too often blind vegans to the many nuances that determine our food culture. It can also blind them to more exciting, systemic antidotes to the plethora of fatal faults in our food systems.

Agriculture that is running off a cliff

Industrial agriculture has wrought many miracles. It has allowed developed countries to produce more food on less land and with fewer people. But it has achieved this wonder by making fertilizer and pesticides out of fossil fuels, eroding topsoil, and reducing the variety of plants in our diet. In other words, we are paying for our cheap food and our disconnection from the land with degraded landscapes and monotony.

Most plants for human consumption today are grown in monocultures. The first step to making a monoculture is to strip a plot of land of its community of plants and animals. This rich web of life is replaced by a single species — a high-yield crop — and every other organism is policed out of the perimeter by chemical and mechanical aggression. The soil, shorn of its cover, languishes and the microorganisms and fungi within it perish. The carbon formerly contained in the soil is released into the atmosphere. To make this impoverished medium keep producing, farmers are obliged to inject it with massive amounts of synthetic nitrogen, a fertilizer that is manufactured from natural gas. So much gas now escapes from fracking sites that it makes ruminants’ emissions pale into insignificance.

The fertilizer then runs off the beaten land into waterways and oceans, where it destabilizes natural ecosystems, rendering them practically barren. Our planet’s oceans are pockmarked by 146 of these dead zones where marine life has been completely choked out.

Photo credit: Wageningen University

Harnessing the genius of nature

But there is another way of doing agriculture, one that turns organic waste into fertilizer and builds soil rather than eroding it. It goes by many names, but we like to call it regenerative agriculture, because it is a way of eliciting food from the land while simultaneously enhancing its ability to produce food for us in the future. It requires fewer inputs but more intelligence. In this sort of system, the farmer is not an industrial conqueror, forcing food from the land until it gives up in exhaustion. Instead, the farmer observes nature and the tendencies of the land. With this knowledge, she leverages its genius, tilting natural ecosystems this way or that to both make them richer and ensure that they produce yields that humans can eat.

These yields are more nutrient dense and often more delicious than their conventional counterparts, coming as they do from vibrant communities of plants and animals expressing their nature in concert. These production systems, when properly managed, regenerate the soil, endowing it with higher quantities of minerals such as magnesium and calcium, which are then transported by fruits, vegetables, and meat into our bodies.

This portrait of food production may sound fantastical, but it is in fact in the mould of nature, which has no trouble making something from nothing, and where thriving ecosystems become more verdant and diverse over time. However, if we want to stick around for the feast on this warming planet, we need to find ways to produce our food that are as generative and enduring. Were it implemented widely, regenerative farming could capture more carbon dioxide than we emit, as demonstrated by the Rodale Institute. So in addition to providing food for human consumption, agriculture plays a central role in addressing climate change.

As it happens, animals are essential to many — if not all — of the cleverest systems that humans have devised for deriving food from landscapes while preserving them. Just as animals are keystones in the rainforest and the wild grasslands, they vitalize agricultural processes as well.

On farms that produce crops, it makes a lot of sense to keep animals that can convert vegetable waste into protein-dense food. In turn, their manure fertilizes crops and their pecking can aid pest control, reducing the need for industrial inputs. Animals raised in this manner have the opportunity to graze on good pastures, enjoy social lives, breathe fresh air, and bathe in the light provided by our star, all while making agriculture more sustainable.

In some geographies, the best way to support the richness of the land and produce food is not by imposing crops, but by properly managed grazing. If the land is water-restricted, the most sensible way to make food is often to use ruminants to convert grass — which humans cannot eat — into nutrient-dense food. This leaves more water in the rivers and aquifers and stimulates the growth of grasses that not only feed cattle but store carbon in the ground.

Photo credit: Phillip Capper

Shades of green

If you are a vegan who only eats plants that come from regenerative, polycropped, organic food systems, it’s certain that your diet has a claim to higher moral ground than the average diet. If you eat this way and also occasionally buy local animal products from food production systems that caringly integrate animals into regenerative landscapes, your claim is much stronger. But if you are not paying careful attention to where your plants come from, how they’ve been processed, or how far they have traveled, it’s likely that for all your efforts you are not improving the lot of animals overall, and neither are you saving the world.

Even if you are persuaded by the environmental arguments, you may have a problem with the idea of killing animals. But if you think deeply, you might find that the immoral thing is not necessarily to deliberately take life. The immoral thing is to live in a way that destroys nature, which industrial agriculture does. In this context, the focus on the welfare of individual domesticated animals might be an extension of the modernist tendency to simplify and discriminate. The morality of living, eating, and dying is more complex than two-word slogans can prescribe. If we care about animals — wild or domesticated — we have to think in terms of entire ecosystems.

If you’re a vegan who eats food from monoculture fields where farm workers are routinely poisoned by synthetic inputs; if you eat food that comes packaged in layers of plastic that choke marine life after they are discarded into the ocean; if your nuts and quinoa are flown in from Brazil on the wings of fossil fuels — then are you really more moral or are you simply disconnected?

Eating to support life

Veganism is perhaps the gateway-par-excellence into conscious eating. In fact, people often feel better when they switch to a vegan diet, especially if it marks the first time they are thinking deliberately about what they are putting into their bodies. But it’s not clear whether the initial benefits that are sometimes felt come from being plant-exclusive or from the elimination of certain toxic foods that were formerly in the diet. It’s also been extensively documented that fasting from particular foods and nutrients for a period of time has health benefits, so long as those periods punctate a diet that is on the whole well-balanced.

There is reason to believe that animal protein—besides having played a leading role in human evolution—is necessary for excellent health. Even so, the debate about whether perfect human health can be achieved without animal products is unsettled. But what is certain is that our croplands and grasslands yearn for the reintegration of animals, and we’re past the point in ecological history where we can afford to not use every good method we’ve got to restore land and habitats. Providing a market for the right kind of animal products is a way to finance the good farmers doing the hard work of regeneration. We can channel our ancestral, vivid appetites into economies that support life.

Veganism is insufficient to maintaining a world where animals of every stripe have space and opportunity to flourish. To build that world, we have to stop cooking the planet by burning fossil fuels to fly out-of-season food around the globe. We have to put more carbon in the ground where it can support life instead of threatening it. We have to stop buying food that comes wrapped in plastic, which later ends up in landfills and oceans. We have to stop poisoning landscapes and people with synthetic pesticides and fertilizers. We have to stop tearing down ecosystems to install monocultures. We have to stop destroying living soil and start creating more of it. Lovingly incorporating animals into regenerative food landscapes is a powerful way to do this, a means of creating a world where life can thrive.

People who reject factory farmed meat are already awake to the damage being caused by industrial farming — and what is more, they are willing to change their lifestyles to unplug from destructive systems. But there are solutions that go deeper and ultimately make a lot more sense, ones that produce good instead of simply abstaining from harm. They offer a way of eating that is active, delicious, and embedded. If we take a good hard look at our relationships with our ecosystems and eat accordingly, we might actually be able to save the world, as the vegan slogan goes.

If you care about people, animals, and the environment, we invite you to steep in these questions for a bit:

  • Is my food in season?
  • How is my food processed?
  • How is the food I buy packaged and where does the packaging go after I discard it?
  • How far has my food traveled?
  • Is the water used in its production sourced and managed in an ecologically sensible way?
  • Is the soil that produced the food languishing or becoming more fecund?
  • Does the landscape it was produced on provide habitats for a variety of wildlife?
  • How are the people involved in the production, transportation, and sale of my food living? Are they treated fairly?

It’s likely that the only way to know the answers will be to get out of the city and meet some farmers. This takes more time that most modern humans are accustomed to dedicating to food provision, but a trip out into the countryside might also ease your alienation.

Either way, we hope you enjoy your food and your place in the trophic cascade of life and death.

Instagram:

Follow us @trophictales

Learn more:

Silvopasture — Project Drawdown

Managed Grazing — Project Drawdown

Regenerative Agriculture — Project Drawdown

Livestock and the transition to sustainable agriculture — FAO

Save our soils: Why dirt matters — University of Melbourne

Don’t abstain from meat, buy good meat — Ariel Greenwood

Permaculture, all grown up — Chris Newman

Levels of Regenerative Agriculture — Terra Genesis

An Animal’s Place — Michael Pollan

The Omnivore’s Dilemma — Michael Pollan

The Third Plate — Dan Barber

Farms we love:

Milkwood Farm — Koanga InstituteRodale InstituteNew Forest Farm — Freestone Ranch — Stone Barns Center FarmPolyface FarmPasturebirdKul Kul FarmRoebuck FarmLa Pateria de Sousa — Zaytuna Farms — Whole Systems Design —Labranto — Proyecto Deveras





The physics of energy and resulting effects on economics

10 07 2018

Hat tip to one of the many commenters on DTM for pointing me to this excellent video…. I have featured Jean-Marc Jancovici’s work here before, but this one’s shorter, and even though it’s in French, English subtitles are available from the settings section on the toutube screen. Speaking of screens, one of the outstanding statements made in this video is that all electronics in the world that use screens in one way or another consume one third of the world’s electricity…….. Remember how the growth in renewables could not even keep up with the Internet’s growth?

If this doesn’t convince viewers that we have to change the way we do EVERYTHING, then nothing will….. and seeing as he’s presenting to politicians, let’s hope at least some of them will come out of this better informed……

Jean-Marc Jancovici, a French engineer schools politicians with a sobering lecture on the physics of energy and the effects on economics and climate change





Earth Battery

2 07 2018

I don’t know how this podcast ever flew under the radar, but it’s ‘must listen to’ material….. two of my favourite peakniks, Chris Martenson and Tom Murphy, discuss our predicaments in the clearest possible way.

The standout for me was Tom calling our fossil fuels sources a gigantic solar battery in which millions of years of solar energy was stored, only to be virtually short circuited to be discharged in what is the blink of an eyelid in geological terms……