EV transition…. what EV transition…?

15 08 2017

It’s raining again, and all work outside has been temporarily suspended. Well that’s my excuse for hitting the keyboard again. And the more I delve into the future of this supposed transition to EVs techno utopians continually go on about, the less I believe it will occur. No one gets limits to growth, and therein lies the problem. I also found this neat document my readers might like to download. If you’ve been hanging out on this blog for some time. you probably already know what’s in it, but there are a lot of newbies joining DTM these days, this is for you…

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~`

I have already exposed how limits to Lithium and Cobalt and other resources needed to implement a transition away from oil powered happy motoring is going to give manufacurers (and share holders) headaches in the future; but obviously the fans of electric motoring do not understand the disruptive effects of such an industry nor how it will decimate the oil industry, which itself will kill off the EV sector….

At first glance, getting rid of polluting cars sounds like a great idea.  The billions of such vehicles around the world that pump out noxious gases and CO2 are, we know, are major contributors to climate change.  Banning them at the earliest opportunity, then, must surely be a good idea. But, there’s always a but………

If the world is going to make the switch to electric vehicles, we are going to need a massive infrastructure spend to create the fast charging systems without which the country is going to grind to a halt.

For most journeys – those of less than 10km – charging up at home overnight will do the trick.  But, Australia in particular.  is a nation of commuters who average around 1500km a month.  I know people who commute even further from where we used to live in Queensland….. Anyone driving more than about 70km to get to work is going to need somewhere to charge up before going home; and anyone driving more than 160km is going to need a fast charging station somewhere along their commute.  On the few times a year that many of us make far longer journeys (such as on long weekends) we would have to be able to stop several times to recharge – Australia is a big country. It’s either that, or we won’t be going away…..

And all of those other holiday drivers will all want to use the same “fast” (they currently take 20-30 minutes) chargers. I see melting circuit breakers…….

Add to this the fact that new oil discoveries have been plummeting and, without prices north of $200 per barrel, unlikely to bounce back, and it tells us one highly unpleasant thing… petrol and diesel prices are going to bounce back a few years from now, once the current glut is over.

That is great news if you work for an oil company or if you are a government that depends upon the taxes from oil exports to pay your debts.  But if you are a country whose oil industry is in terminal decline – like Australia that will have almost certainly totally run out of oil by 2020 – then you are about to find yourself competing for dwindling oil supplies against far richer countries like the USA and China.

Back in the real world, coal plants are shutting down, nuclear companies are going bust, the so-called ‘shale revolution’ is teetering on the cliff edge of collapse, and there is simply no way given the current state of technology for renewables to take up the slack.  What we are facing today is figuring out how to maintain the current supply of electricity, and the last thing anyone needs is the massive increase in demand that will inevitably accompany the mass consumption electric cars.

Electricity shortages may, however, prove to be the least of our worries.  Too many electric cars could trigger a global economic collapse.

Few pundits now doubt the benefits to consumers of electric cars compared to petrol (gasoline) powered ones.  A recent article in The Economist observes:

“Compared with existing vehicles, electric cars are much simpler and have fewer parts; they are more like computers on wheels. That means they need fewer people to assemble them and fewer subsidiary systems from specialist suppliers…

“With less to go wrong, the market for maintenance and spare parts will shrink. While today’s carmakers grapple with their costly legacy of old factories and swollen workforces, new entrants will be unencumbered. Premium brands may be able to stand out through styling and handling, but low-margin, mass-market carmakers will have to compete chiefly on cost.”

Sounds like job losses to me….. and who will buy EVs if they don’t have a job?

What would mass ownership of EVs do to the already struggling global oil industry?

The existential threat posed by electric cars is simply that they might force the price of petrol (gasoline) to zero.

In 2014, the world burned 41,235,000 barrels of petrol (gasoline) every day!  If no one wants the stuff,  and as there is no obvious alternative use for it with maybe the exception of some power tools and hobby engines, cars and light vans are the only place where petrol is consumed, why would the industry make petrol?

“Great,” I hear the greenies shout, “just stop producing the filthy, environment-destroying stuff.”  If only it were that simple.  The trouble is, as Michael Schirber at Live Science reminds us, oil is a chemical potpourri:

“Petroleum is not a single molecule but a mix of thousands of molecules, the most important of which are hydrocarbons. These are chains or rings of carbons atoms surrounded by hydrogen atoms.

“Although gasoline comprises nearly half of all petroleum production in the United States, a wide range of fuels and specialty oils come out of a modern-day oil refinery. The petroleum is first heated in a boiler to separate the smaller hydrocarbons with low boiling points from the larger hydrocarbons with high boiling points.”

Oil refineries can’t simply stop producing petrol (gasoline) without also ceasing production of all of those other far more useful products…. like those used to manufacture tyres, and bitumen roads..!  Both required by the EV revolution…. Lighter gases are used in such things as paints, cleaning agents and as chemical feedstock.  Heavier products include the kerosene that fuels jet aircraft; diesel for our heavy machinery and trucks; lubricating oils and greases for industry; and solids like the aforementioned bitumen.  One assumes that, like the rest of us, the greenwashers would quite like all of these other petroleum products – and the things they do for us – to be available after petrol has gone away.

And therein lies the conundrum; because petrol effectively subsidises the price of all those other products.  Even the pro-electric car Economist article concedes that:

“The internal combustion engine has had a good run—and could still dominate shipping and aviation for decades to come…”

Except of course, the oil industry is on its knees, and once it goes, so does the dream of happy electric car motoring……





Electric Cars and Happy Motoring

6 05 2017

KMO reads a question from Eric Boyd about the transition from fossil fuels to a transportation infrastructure built around solar power from suburban rooftops and autonomous electric cars. John Michael Greer, Dmitry Orlov, Chris Martenson, Frank Morris, Kevin Lynn and James Howard Kunstler all give their reasons for dismissing Eric’s vision as wishful thinking……….





Why I am still anti Lithium and EV

13 04 2017

Originally published at Alice Friedemann’s excellent blog, energyskeptic.com/

[This is by far the best paper explaining lithium reserves, lithium chemistry, recycling, political implications, and more. I’ve left out the charts, graphs, references, and much of the text, to see them go to the original paper in the link below.]

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I personally don’t think that electric cars will ever be viable because battery development is too slow, and given that oil can be hundreds of times more energy dense than a battery of the same weight, the laws of physics will prevent them from ever achieving enough energy density — see my post at Who Killed the Electric Car. (and also my more-up-to-date version and utility-scale energy storage batteries in my book When Trains Stop Running: Energy and the Future of Transportation.  Some excerpts from my book about lithium and energy storage:

Li-ion energy storage batteries are more expensive than PbA or NaS, can be charged and discharged only a discrete number of times, can fail or lose capacity if overheated, and the cost of preventing overheating is expensive. Lithium does not grow on trees. The amount of lithium needed for utility-scale storage is likely to deplete known resources (Vazquez, S., et al. 2010. Energy storage systems for transport and grid applications. IEEE Transactions on Industrial Electronics 57(12): 3884).

To provide enough energy for 1 day of storage for the United states, li-ion batteries would cost $11.9 trillion dollars, take up 345 square miles and weigh 74 million tons (DOE/EPRI. 2013. Electricity storage handbook in collaboration with NRECA. USA: Sandia National Laboratories and Electric Power Research Institute) 

Barnhart et al. (2013) looked at how much materials and energy it would take to make batteries that could store up to 12 hours of average daily world power demand, 25.3 TWh. Eighteen months of world-wide primary energy production would be needed to mine and manufacture these batteries, and material production limits were reached for many minerals even when energy storage devices got all of the world’s production (with zinc, sodium, and sulfur being the exceptions). Annual production by mass would have to double for lead, triple for lithium, and go up by a factor of 10 or more for cobalt and vanadium, driving up prices. The best to worst in terms of material availability are: CAES, NaS, ZnBr, PbA, PHS, Li-ion, and VRB (Barnhart, C., et al. 2013. On the importance of reducing the energetic and material demands of electrical energy storage. Energy Environment Science 2013(6): 1083–1092). ]

Vikström, H., Davidsson, S., Höök, M. 2013. Lithium availability and future production outlooks. Applied Energy, 110(10): 252-266. 28 pages

 

Abstract

Lithium is a highly interesting metal, in part due to the increasing interest in lithium-ion batteries. Several recent studies have used different methods to estimate whether the lithium production can meet an increasing demand, especially from the transport sector, where lithium-ion batteries are the most likely technology for electric cars. The reserve and resource estimates of lithium vary greatly between different studies and the question whether the annual production rates of lithium can meet a growing demand is seldom adequately explained. This study presents a review and compilation of recent estimates of quantities of lithium available for exploitation and discusses the uncertainty and differences between these estimates. Also, mathematical curve fitting models are used to estimate possible future annual production rates. This estimation of possible production rates are compared to a potential increased demand of lithium if the International Energy Agency’s Blue Map Scenarios are fulfilled regarding electrification of the car fleet. We find that the availability of lithium could in fact be a problem for fulfilling this scenario if lithium-ion batteries are to be used. This indicates that other battery technologies might have to be implemented for enabling an electrification of road transports.

Highlights:

  • Review of reserves, resources and key properties of 112 lithium deposits
  • Discussions of widely diverging results from recent lithium supply estimates
  • Forecasting future lithium production by resource-constrained models
  • Exploring implications for future deployment of electric cars

Introduction

Global transportation mainly relies on one single fossil resource, namely petroleum, which supplies 95% of the total energy [1]. In fact, about 62% of all world oil consumption takes place in the transport sector [2]. Oil prices have oscillated dramatically over the last few years, and the price of oil reached $100 per barrel in January 2008, before skyrocketing to nearly $150/barrel in July 2008. A dramatic price collapse followed in late 2008, but oil prices have at present time returned to over $100/barrel. Also, peak oil concerns, resulting in imminent oil production limitations, have been voiced by various studies [3–6].

It has been found that continued oil dependence is environmentally, economically and socially unsustainable [7].

The price uncertainty and decreasing supply might result in severe challenges for different transporters. Nygren et al. [8] showed that even the most optimistic oil production forecasts implied pessimistic futures for the aviation industry. Curtis [9] found that globalization may be undermined by peak oil’s effect on transportation costs and reliability of freight.

Barely 2% of the world electricity is used by transportation [2], where most of this is made up by trains, trams, and trolley buses.

A high future demand of Li for battery applications may arise if society choses to employ Li-ion technologies for a decarbonization of the road transport sector.

Batteries are at present time the second most common use, but are increasing rapidly as the use of li-ion batteries for portable electronics [12], as well as electric and hybrid cars, are becoming more frequent. For example, the lithium consumption for batteries in the U.S increased with 194 % from 2005 to 2010 [12]. Relatively few academic studies have focused on the very abundance of raw materials needed to supply a potential increase in Li demand from transport sector [13]. Lithium demand is growing and it is important to investigate whether this could lead to a shortfall in the future.

 

[My comment: utility scale energy storage batteries in commercial production are lithium, and if this continues, this sector alone would quickly consume all available lithium supplies: see Barnhart, C., et al. 2013. On the importance of reducing the energetic and material demands of electrical energy storage. Energy Environment Science 2013(6): 1083–1092.]

Aim of this study

Recently, a number of studies have investigated future supply prospects for lithium [13–16]. However, these studies reach widely different results in terms of available quantities, possible production trajectories, as well as expected future demand. The most striking difference is perhaps the widely different estimates for available resources and reserves, where different numbers of deposits are included and different types of resources are assessed. It has been suggested that mineral resources will be a future constraint for society [17], but a great deal of this debate is often spent on the concept of geological availability, which can be presented as the size of the tank. What is frequently not reflected upon is that society can only use the quantities that can be extracted at a certain pace and be delivered to consumers by mining operations, which can be described as the tap. The key concept here is that the size of the tank and the size of the tap are two fundamentally different things.

This study attempts to present a comprehensive review of known lithium deposits and their estimated quantities of lithium available for exploitation and discuss the uncertainty and differences among published studies, in order to bring clarity to the subject. The estimated reserves are then used as a constraint in a model of possible future production of lithium and the results of the model are compared to possible future demand from an electrification of the car fleet. The forecasts are based on open, public data and should be used for estimating long term growth and trends. This is not a substitute for economical short-term prognoses, but rather a complementary vision.

Data sources

The United States Geological Survey (USGS) has been particularly useful for obtaining production data series, but also the Swedish Geological Survey (SGU) and the British Geological Survey (BGS) deserves honourable mention for providing useful material. Kushnir and Sandén [18], Tahil [19, 20] along with many other recent lithium works have also been useful. Kesler et al. [21] helped to provide a broad overview of general lithium geology.

Information on individual lithium deposits has been compiled from numerous sources, primarily building on the tables found in [13–16]. In addition, several specialized articles about individual deposits have been used, for instance [22–26]. Public industry reports and annual yearbooks from mining operators and lithium producers, such as SQM [27], Roskill [28] or Talison Lithium [29], also helped to create a holistic data base.

In this study, we collected information on global lithium deposits. Country of occurrence, deposit type, main mineral, and lithium content were gathered as well as published estimates for reserves and resources. Some deposits had detailed data available for all parameters, while others had very little information available. Widely diverging estimates for reserves and resources could sometimes be found for the same deposit, and in such cases the full interval between the minimum and maximum estimates is presented. Deposits without reserve or resource estimates are included in the data set, but do not contribute to the total. Only available data and information that could be found in the public and academic spheres were compiled in this study. It is likely that undisclosed and/or proprietary data could contribute to the world’s lithium volume but due to data availability no conclusions on to which extent could be made.

Geological overview

In order to properly estimate global lithium availability, and a feasible reserve estimate for modelling future production, this section presents an overview of lithium geology. Lithium is named after the Greek word “lithos” meaning “stone”, represented by the symbol Li and has the atomic number 3. Under standard conditions, lithium is the lightest metal and the least dense solid element. Lithium is a soft, silver-white metal that belongs to the alkali group of elements.

As all alkali elements, Li is highly reactive and flammable. For this reason, it never occurs freely in nature and only appears in compounds, usually ionic compounds. The nuclear properties of Li are peculiar since its nuclei verge on instability and two stable isotopes have among the lowest binding energies per nucleon of all stable nuclides. Due to this nuclear instability, lithium is less abundant in the solar system than 25 of the first 32 chemical elements [30].

Resources and reserves

An important frequent shortcoming in the discussion on availability of lithium is the lack of proper terminology and standardized concepts for assessing the available amounts of lithium. Published studies talk about “reserves”, “resources”, “recoverable resources”, “broad-based reserves”, “in-situ resources”, and “reserve base”.

A wide range of reporting systems minerals exist, such as NI 43-101, USGS, Crirsco, SAMREC and the JORC code, and further discussion and references concerning this can be found in Vikström [31]. Definitions and classifications used are often similar, but not always consistent, adding to the confusion when aggregating data. Consistent definitions may be used in individual studies, but frequently figures from different methodologies are combined as there is no universal and standardized framework. In essence, published literature is a jumble of inconsistent figures. If one does not know what the numbers really mean, they are not simply useless – they are worse, since they tend to mislead.

Broadly speaking, resources are generally defined as the geologically assured quantity that is available for exploitation, while reserves are the quantity that is exploitable with current technical and socioeconomic conditions. The reserves are what are important for production, while resources are largely an academic figure with little relevance for real supply. For example, usually less than one tenth of the coal resources are considered economically recoverable [32, 33]. Kesler et al. [21] stress that available resources needs to be converted into reserves before they can be produced and used by society. Still, some analysts seemingly use the terms ‘resources’ and ‘reserves’ synonymously.

It should be noted that the actual reserves are dynamic and vary depending on many factors such as the available technology, economic demand, political issues and social factors. Technological improvements may increase reserves by opening new deposit types for exploitation or by lowering production costs. Deposits that have been mined for some time can increase or decrease their reserves due to difficulties with determining the ore grade and tonnage in advance [34]. Depletion and decreasing concentrations may increase recovery costs, thus lowering reserves. Declining demand and prices may also reduce reserves, while rising prices or demand may increase them. Political decisions, legal issues or environmental policies may prohibit exploitation of certain deposits, despite the fact significant resources may be available.

For lithium, resource/reserve classifications were typically developed for solid ore deposits. However, brine – presently the main lithium source – is a fluid and commonly used definitions can be difficult to apply due to pumping complications and varying concentrations.

Houston et al. [35] describes the problem in detail and suggest a change in NI 43-101 to account for these problems. If better standards were available for brines then estimations could be more reliable and accurate, as discussed in Kushnir and Sandén [18].

Environmental aspects and policy changes can also significantly influence recoverability. Introduction of clean air requirements and public resistance to surface mining in the USA played a major role in the decreasing coal reserves [33].

It is entirely possible that public outcries against surface mining or concerns for the environment in lithium producing will lead to restrictions that affect the reserves. As an example, the water consumption of brine production is very high and Tahil [19] estimates that brine operations consume 65% of the fresh water in the Salar de Atacama region. [ The Atacama only gets 0.6 inches of rain a year ]

Regarding future developments of recoverability, Fasel and Tran [36] monotonously assumes that increasing lithium demand will result in more reserves being found as prices rise. So called cumulative availability curves are sometimes used to estimate how reserves will change with changing prices, displaying the estimated amount of resource against the average unit cost ranked from lowest to highest cost. This method is used by Yaksic and Tilton [14] to address lithium availability. This concept has its merits for describing theoretical availability, but the fact that the concept is based on average cost, not marginal cost, has been described as a major weakness, making cumulative availability curves disregard the real cost structure and has little – if any – relevance for future price and production rate [37].

Production and occurrence of lithium

The high reactivity of lithium makes it geochemistry complex and interesting. Lithium-minerals are generally formed in magmatic processes. The small ionic size makes it difficult for lithium to be included in early stages of mineral crystallization, and resultantly lithium remains in the molten parts where it gets enriched until it can be solidified in the final stages [38].

At present, over 120 lithium-containing minerals are known, but few of them contain high concentrations or are frequently occurring. Lithium can also be found in naturally occurring salt solutions as brines in dry salt lake environments. Compared to the fairly large number of lithium mineral and brine deposits, few of them are of actual or potential commercial value. Many are very small, while others are too low in grade [39]. This chapter will briefly review the properties of those deposits and present a compilation of the known deposits.

Lithium mineral deposits

Lithium extraction from minerals is primarily done with minerals occurring in pegmatite formations. However, pegmatite is rather challenging to exploit due to its hardness in conjunction with generally problematic access to the belt-like deposits they usually occur in. Table 1 describes some typical lithium-bearing minerals and their characteristics. Australia is currently the world’s largest producer of lithium from minerals, mainly from spodumene [39]. Petalite is commonly used for glass manufacture due to its high iron content, while lepidolite was earlier used as a lithium source but presently has lost its importance due to high fluorine content. Exploitation must generally be tailor-made for a certain mineral as they differ quite significantly in chemical composition, hardness and other properties[13]. Table 2 presents some mineral deposits and their properties.

Recovery rates for mining typically range from 60 to 70%, although significant treatment is required for transforming the produced Li into a marketable form. For example, [40, 41] describe how lithium are produced from spodumene. The costs of acid, soda ash, and energy are a very significant part of the total production cost but may be partially alleviated by the market demand for the sodium sulphate by-products.

Lithium brine deposits

Lithium can also be found in salt lake brines that have high concentrations of mineral salts. Such brines can be reachable directly from the surface or deep underground in saline expanses located in very dry regions that allow salts to persist. High concentration lithium brine is mainly found in high altitude locations such as the Andes and south-western China. Chile, the world largest lithium producer, derives most of the production from brines located at the large salt flat of Salar de Atacama.

Lithium has similar ionic properties as magnesium since their ionic size is nearly identical; making is difficult to separate lithium from magnesium. A low Mg/Li ratio in brine means that it is easier, and therefore more economical to extract lithium.

Lithium Market Research SISThe ratio differs significant at currently producing brine deposits and range from less than 1 to over 30 [14]. The lithium concentration in known brine deposits is usually quite low and range from 0.017–0.15% with significant variability among the known deposits in the world (Table 3).

Exploitation of lithium brines starts with the brine being pumped from the ground into evaporation ponds. The actual evaporation is enabled by incoming solar radiation, so it is desirable for the operation to be located in sunny areas with low annual precipitation rate. The net evaporation rate determines the area of the required ponds [42].

It can easily take between one and two years before the final product is ready to be used, and even longer in cold and rainy areas.

The long timescales required for production can make brine deposits ill fit for sudden changes in demand. Table 3. Properties of known brine deposits in the world.

Lithium from sea water

The world’s oceans contain a wide number of metals, such as gold, lithium or uranium, dispersed at low concentrations. The mass of the world’s oceans is approximately 1.35*1012 Mt [47], making vast amounts of theoretical resources seemingly available. Eckhardt [48] and Fasel and Tran [36] announce that more than 2,000,000 Mt lithium is available from the seas, essentially making it an “unlimited” source given its geological abundance. Tahil [20] also notes that oceans have been proclaimed as an unlimited Li-source since the 1970s.

The world’s oceans and some highly saline lakes do in fact contain very large quantities of lithium, but if it will become practical and economical to produce lithium from this source is highly questionable.

For example, consider gold in sea water – in total nearly 7,000,000 Mt. This is an enormous amount compared to the cumulative world production of 0.17 Mt accumulated since the dawn of civilization [49]. There are also several technical options available for gold extraction. However, the average gold concentration range from <0.001 to 0.005 ppb [50]. This means that one km3 of sea water would give only 5.5 kg of gold. The gold is simply too dilute to be viable for commercial extraction and it is not surprising that all attempts to achieve success – including those of the Nobel laureate Fritz Haber – has failed to date.

Average lithium concentration in the oceans has been estimated to 0.17 ppm [14, 36]. Kushnir and Sandén [18] argue that it is theoretically possible to use a wide range of advanced technologies to extract lithium from seawater – just like the case for gold. However, no convincing methods have been demonstrated this far. A small scale Japanese experiment managed to produce 750 g of lithium metal from processing 4,200 m3 water with a recovery efficiency of 19.7% [36]. This approach has been described in more detail by others [51–53].

Grosjean et al. [13] points to the fact that even after decades of improvement, recovery from seawater is still more than 10–30 times more costly than production from pegmatites and brines. It is evident that huge quantities of water would have to be processed to produce any significant amounts of lithium. Bardi [54] presents theoretical calculations on this, stating that a production volume of lithium comparable to present world production (~25 kt annually) would require 1.5*103 TWh of electrical energy for pumping through separation membranes in addition to colossal volumes of seawater. Furthermore, Tahil [20] estimated that a seawater processing flow equivalent to the average discharge of the River Nile – 300,000,000 m3/day or over 22 times the global petroleum industry flow of 85 million barrels per day – would only give 62 tons of lithium per day or roughly 20 kt per year. Furthermore, a significant amount of fresh water and hydrochloric acid will be required to flush out unwanted minerals (Mg, K, etc.) and extract lithium from the adsorption columns [20].

In summary, extraction from seawater appears not feasible and not something that should be considered viable in practice, at least not in the near future.

Estimated lithium availability

From data compilation and analysis of 112 deposits, this study concludes that 15 Mt areImage result for lithium reasonable as a reference case for the global reserves in the near and medium term. 30 Mt is seen as a high case estimate for available lithium reserves and this number is also found in the upper range in literature. These two estimates are used as constraints in the models of future production in this study.

Estimates on world reserves and resources vary significantly among published studies. One main reason for this is likely the fact that different deposits, as well as different number of deposits, are aggregated in different studies. Many studies, such as the ones presented by the USGS, do not give explicitly state the number of deposits included and just presents aggregated figures on a national level. Even when the number and which deposits that have been used are specified, analysts can arrive to wide different estimates (Table 5). It should be noted that a trend towards increasing reserves and resources with time can generally be found, in particularly in USGS assessments. Early reports, such as Evans [56] or USGS [59], excluded several countries from the reserve estimates due to a lack of available information. This was mitigated in USGS [73] when reserves estimates for Argentina, Australia, and Chile have been revised based on new information from governmental and industry sources. However, there are still relatively few assessments on reserves, in particular for Russia, and it is concluded that much future work is required to handle this shortcoming. Gruber et al. [16] noted that 83% of global lithium resources can be found in six brine, two pegmatite and two sedimentary deposits. From our compilation, it can also be found that the distribution of global lithium reserves and resources are very uneven.

Three quarters of everything can typically be found in the ten largest deposits (Figure 1 and 2). USGS [12] pinpoint that 85% of the global reserves are situated in Chile and China (Figure 3) and that Chile and Australia accounted for 70 % of the world production of 28,100 tonnes in 2011 [12]. From Table 2 and 3, one can note a significant spread in estimated reserves and resources for the deposits. This divergence is much smaller for minerals (5.6–8.2 Mt) than for brines (6.5– 29.4 Mt), probably resulting from the difficulty associated with estimating brine accumulations consistently. Evans [75] also points to the problem of using these frameworks on brine deposits, which are fundamentally different from solid ores. Table 5. Comparison of published lithium assessments.

Recycling

One thing that may or may not have a large implication for future production is recycling. The projections presented in the production model of this study describe production of lithium from virgin materials. The total production of lithium could potentially increase significantly if high rates of recycling were implemented of the used lithium, which is mentioned in many studies.

USGS [12] state that recycling of lithium has been insignificant historically, but that it is increasing as the use of lithium for batteries are growing. However, the recycling of lithium from batteries is still more or less non-existent, with a collection rate of used Li-ion batteries of only about 3% [93]. When the Li-ion batteries are in fact recycled, it is usually not the lithium that is recycled, but other more precious metals such as cobalt [18].

If this will change in the future is uncertain and highly dependent on future metal prices, but it is still commonly argued for and assumed that the recycling of lithium will grow significantly, very soon. Goonan [94] claims that recycling rates will increase from vehicle batteries in vehicles since such recycling systems already exist for lead-acid batteries. Kushnir and Sandén [18] argue that large automotive batteries will be technically easier to recycle than smaller batteries and also claims that economies of scale will emerge when the use for batteries for vehicles increase. According to the IEA [95], full recycling systems are projected to be in place sometime between 2020 and 2030. Similar assumptions are made by more or less all studies dealing with future lithium production and use for electric vehicles and Kushnir and Sandén [18] state that it is commonly assumed that recycling will take place, enabling recycled lithium to make up for a big part of the demand but also conclude that the future recycling rate is highly uncertain.

There are several reasons to question the probability of high recycling shares for Li-ion batteries. Kushnir and Sandén [18] state that lithium recycling economy is currently not good and claims that the economic conditions could decrease even more in the future. Sullivan and Gaines [96] argue that the Li-ion battery chemistry is complex and still evolving, thus making it difficult for the industry to develop profitable pathways. Georgi-Maschler [93] highlight that two established recycling processes exist for recycling Li-ion batteries, but one of them lose most of the lithium in the process of recovering the other valuable metals. Ziemann et al. [97] states that lithium recovery from rechargeable batteries is not efficient at present time, mainly due to the low lithium content of around 2% and the rather low price of lithium.

In this study we choose not to include recycling in the projected future supply for several reasons. In a short perspective, looking towards 2015-2020, it cannot be considered likely that any considerable amount of lithium will be recycled from batteries since it is currently not economical to do so and no proven methods to do it on a large scale industrial level appear to exist. If it becomes economical to recycle lithium from batteries it will take time to build the capacity for the recycling to take place. Also, the battery lifetime is often projected to be 10 years or more, and to expect any significant amounts of lithium to be recycled within this period of time is simply not realistic for that reason either.

The recycling capacity is expected to be far from reaching significant levels before 2025 according to Wanger [92]. It is also important to separate the recycling rates of products to the recycled content in new products. Even if a percentage of the product is recycled at the end of the life cycle, this is no guarantee that the use of recycled content in new products will be as high. The use of Li-ion batteries is projected to grow fast. If the growth happens linearly, and high recycling rates are accomplished, recycling could start constituting a large part of the lithium demand, but if the growth happens exponentially, recycling can never keep up with the growth that has occurred during the 10 years lag during the battery lifetime. In a longer time perspective, the inclusion of recycling could be argued for with expected technological refinement, but certainties regarding technology development are highly uncertain. Still, most studies include recycling as a major part of future lithium production, which can have very large implications on the results and conclusions drawn. Kushnir and Sandén [18] suggest that an 80% lithium recovery rate is achievable over a medium time frame. The scenarios in Gruber et al. [16], assumes recycling participation rates of 90 %, 96% and 100%. In their scenario using the highest assumed recycling, the quantities of lithium needed to be mined are decreased to only about 37% of the demand. Wanger [92] looks at a shorter time perspective and estimates that a 40% or 100% recycling rate would reduce the lithium consumption with 10% or 25% respectively by 2030. Mohr et al. [15] assume that the recycling rate starts at 0%, approaching a limit of 80%, resulting in recycled lithium making up significant parts of production, but only several decades into the future. IEA [95] projects that full recycling systems will be in place around 2020–2030.

The impact of assumed recycling rates can indeed be very significant, and the use of this should be handled with care and be well motivated.

Future demand for lithium

To estimate whether the projected future production levels will be sufficient, it isImage result for lithiuminteresting to compare possible production levels with potential future demand. The use of lithium is currently dominated by use for ceramics and glass closely followed by batteries. The current lithium demand for different markets can be seen in Figure 7. USGS [12] state that the lithium use in batteries have grown significantly in recent years as the use of lithium batteries in portable electronics have become increasingly common. Figure 7 (Ceramics and glass 29%, Batteries 27%, Other uses 16%, Lubrication greases 12%, Continuous casting 5%, Air treatment 4%, Polymers 3%, Primary aluminum production 2%, Pharmaceuticals 2%).

Global lithium demand for different end-use markets. Source: USGS [12] USGS [12] state that the total lithium consumption in 2011 was between 22,500 and 24,500 tonnes. This is often projected to grow, especially as the use of Li-ion batteries for electric cars could potentially increase demand significantly. This study presents a simple example of possible future demand of lithium, assuming a constant demand for other uses and demand for electric cars to grow according to a scenario of future sales of

electric cars. The current car fleet consists of about 600 million passenger cars. The sale of new passenger cars in 2011 was about 60 million cars [98]. This existing vehicle park is almost entirely dependent on fossil fuels, primarily gasoline and diesel, but also natural gas to a smaller extent. Increasing oil prices, concerns about a possible peak in oil production and problems with anthropogenic global warming makes it desirable to move away from fossil energy dependence. As a mitigation and pathway to a fossil-fuel free mobility, cars running partially or totally on electrical energy are commonly proposed. This includes electric vehicles (EVs), hybrid vehicles (HEVs) and PHEVs (plug-in hybrid vehicles), all on the verge of large-scale commercialization and implementation. IEA [99] concluded that a total of 1.5 million hybrid and electric vehicles had been sold worldwide between the year 2000 and 2010.

Both the expected number of cars as well as the amount of lithium required per vehicle is important. As can be seen from Table 9, the estimates of lithium demand for PEHV and EVs differ significantly between studies. Also, some studies do not differentiate between different technical options and only gives a single Li-consumption estimate for an “electric vehicle”, for instance the 3 kg/car found by Mohr et al. [15]. The mean values from Table 9 are found to be 4.9 kg for an EV and 1.9 kg for a PHEV.

As the battery size determines the vehicles range, it is likely that the range will continue to increase in the future, which could increase the lithium demand. On the other hand, it is also reasonable to assume that the technology will improve, thus reducing the lithium requirements. In this study a lithium demand of 160 g Li/kWh is assumed, an assumption discussed in detail by Kushnir and Sandén [18]. It is then assumed that typical batteries capacities will be 9 kWh in a PHEV and 25 kWh in an EV. This gives a resulting lithium requirement of 1.4 kg for a PHEV and 4 kg for an EV, which is used as an estimate in this study. Many current electrified cars have a lower capacity than 24 kWh, but to become more attractive to consumers the range of the vehicles will likely have to increase, creating a need for larger batteries [104]. It should be added that the values used are at the lower end compared to other assessments (Table 9) and should most likely not be seen as overestimates future lithium requirements.

Figure 8 shows the span of the different production forecasts up until 2050 made in this study, together with an estimated demand based on the demand staying constant on the high estimate of 2010– 2011, adding an estimated demand created by the electric car projections done by IEA [101]. This is a very simplistic estimation future demand, but compared to the production projections it indicates that lithium availability should not be automatically disregarded as a potential issue for future electric car production. The amount of electric cars could very well be smaller or larger that this scenario, but the scenario used does not assume a complete electrification of the car fleet by 2050 and such scenarios would mean even larger demand of lithium. It is likely that lithium demand for other uses will also grow in the coming decades, why total demand might increase more that indicated here. This study does not attempt to estimate the evolution of demand for other uses, and the demand estimate for other uses can be considered a conservative one. Figure 8. The total lithium demand of a constant current lithium demand combined with growth of electric vehicles according to IEA’s blue map scenario [101] assuming a demand for 1.4 kg of lithium per PHEV and 4.0 kg per EV. The span of forecasted production levels range from the base case Gompertz model

Concluding discussion

Potential future production of lithium was modeled with three different production curves. In a short perspective, until 2015–2020, the three models do not differ much, but in the longer perspective the Richards and Logistic curves show a growth at a vastly higher pace than the Gompertz curve. The Richards model gives the best fit to the historic data, and lies in between the other two and might be the most likely development. A faster growth than the logistic model cannot be ruled out, but should be considered unlikely, since it usually mimics plausible free market exploitation [89]. Other factors, such as decreased lithium concentration in mined material, economics, political and environmental problems could also limit production.

It can be debated whether this kind of forecasting should be used for short term projections, and the actual production in coming years can very well differ from our models, but it does at least indicate that lithium availability could be a potential problem in the coming decades. In a longer time perspective up to 2050, the projected lithium demand for alternative vehicles far exceeds our most optimistic production prognoses.

If 100 million alternative vehicles, as projected in IEA [101] are produced annually using lithium battery technology, the lithium reserves would be exhausted in just a few years, even if the production could be cranked up faster than the models in this study. This indicates that it is important that other battery technologies should be investigated as well.

It should be added that these projections do not consider potential recycling of the lithium, which is discussed further earlier in this paper. On the other hand, it appears it is highly unlikely that recycling will become common as soon as 2020, while total demand appears to potentially rise over maximum production around that date. If, when, and to what extent recycling will take place is hard to predict, although it appears more likely that high recycling rates will take place in electric cars than other uses.

Much could change before 2050. The spread between the different production curves are much larger and it is hard to estimate what happens with technology over such a long time frame. However, the Blue Map Scenario would in fact create a demand of lithium that is higher than the peak production of the logistic curve for the standard case, and close to the peak production in the high URR case.

Improved efficiency can decrease the lithium demand in the batteries, but as Kushnir and Sandén [18] point out, there is a minimum amount of lithium required tied to the cell voltage and chemistry of the battery.

IEA [95] acknowledges that technologies that are not available today must be developed to reach the Blue Map scenarios and that technology development is uncertain. This does not quite coincide with other studies claiming that lithium availability will not be a problem for production of electric cars in the future.

It is also possible that other uses will raise the demand for lithium even further. One industry that in a longer time perspective could potentially increase the demand for lithium is fusion, where lithium is used to breed tritium in the reactors. If fusion were commercialized, which currently seems highly uncertain, it would demand large volumes of lithium [36].

Further problems with the lithium industry are that the production and reserves are situated in a few countries (USGS [12] in Mt: Chile 7.5, China 3.5, Australia 0.97, Argentina 0.85, Other 0.135]. One can also note that most of the lithium is concentrated to a fairly small amount of deposits, nearly 50% of both reserves and resources can be found in Salar de Atacama alone. Kesler et al. [21] note that Argentina, Bolivia, Chile and China hold 70% of the brine deposits. Grosjean et al. [13] even points to the ABC triangle (i.e. Argentina, Bolivia and Chile) and its control of well over 40% of the world resources and raises concern for resource nationalism and monopolistic behavior. Even though Bolivia has large resources, there are many political and technical problems, such as transportation and limited amount of available fresh water, in need of solutions [18].

Regardless of global resource size, the high concentration of reserves and production to very few countries is not something that bode well for future supplies. The world is currently largely dependent on OPEC for oil, and that creates possibilities of political conflicts. The lithium reserves are situated in mainly two countries. It could be considered problematic for countries like the US to be dependent on Bolivia, Chile and Argentina for political reasons [105]. Abell and Oppenheimer [105] discuss the absurdity in switching from dependence to dependence since resources are finite. Also, Kushnir and Sandén [18] discusses the problems with being dependent on a few producers, if a problem unexpectedly occurs at the production site it may not be possible to continue the production and the demand cannot be satisfied.

Final remarks

Although there are quite a few uncertainties with the projected production of lithium and demand for lithium for electric vehicles, this study indicates that the possible lithium production could be a limiting factor for the number of electric vehicles that can be produced, and how fast they can be produced. If large parts of the car fleet will run on electricity and rely on lithium based batteries in the coming decades, it is possible, and maybe even likely, that lithium availability will be a limiting factor.

To decrease the impact of this, as much lithium as possible must be recycled and possibly other battery technologies not relying on lithium needs to be developed. It is not certain how big the recoverable reserves of lithium are in the world and estimations in different studies differ significantly. Especially the estimations for brine need to be further investigated. Some estimates include production from seawater, making the reserves more or less infinitely large. We suggest that it is very unlikely that seawater or lakes will become a practical and economic source of lithium, mainly due to the high Mg/Li ratio and low concentrations if lithium, meaning that large quantities of water would have to be processed. Until otherwise is proved lithium reserves from seawater and lakes should not be included in the reserve estimations. Although the reserve estimates differ, this appears to have marginal impact on resulting projections of production, especially in a shorter time perspective. What are limiting are not the estimated reserves, but likely maximum annual production, which is often missed in similar studies.

If electric vehicles with li-ion batteries will be used to a very high extent, there are other problems to account for. Instead of being dependent on oil we could become dependent on lithium if li-ion batteries, with lithium reserves mainly located in two countries. It is important to plan for this to avoid bottlenecks or unnecessarily high prices. Lithium is a finite resource and the production cannot be infinitely large due to geological, technical and economical restraints. The concentration of lithium metal appears to be decreasing, which could make it more expensive and difficult to extract the lithium in the future. To enable a transition towards a car fleet based on electrical energy, other types of batteries should also be considered and a continued development of battery types using less lithium and/or other metals are encouraged. High recycling rates should also be aimed for if possible and continued investigations of recoverable resources and possible production of lithium are called for. Acknowledgements We would like to thank Steve Mohr for helpful comments and ideas. Sergey Yachenkov has our sincerest appreciation for providing assistance with translation of Russian material.





Germany’s plan for 100% electric cars may actually increase carbon emissions

7 04 2017

Image 20170215 27402 ip046y

Bjoern Wylezich / shutterstock

Dénes Csala, Lancaster University

Germany has ambitious plans for both electric cars and renewable energy. But it can’t deliver both. As things stand, Germany’s well-meaning but contradictory ambitions would actually boost emissions by an amount comparable with the present-day emissions of the entire country of Uruguay or the state of Montana.

In October 2016 the Bundesrat, the country’s upper legislative chamber, called for Germany to support a phase-out of gasoline vehicles by 2030. The resolution isn’t official government policy, but even talk of such a ban sends a strong signal towards the country’s huge car industry. So what if Germany really did go 100% electric by 2030?

To environmentalists, such a change sounds perfect. After all, road transport is responsible for a big chunk of our emissions and replacing regular petrol vehicles with electric cars is a great way to cut the carbon footprint.

But it isn’t that simple. The basic problem is that an electric car running on power generated by dirty coal or gas actually creates more emissions than a car that burns petrol. For such a switch to actually reduce net emissions, the electricity that powers those cars must be renewable. And, unless things change, Germany is unlikely to have enough green energy in time.

After all, news of the potential petrol car ban came just after the chancellor, Angela Merkel, had announced she would slow the expansion in new wind farms as too much intermittent renewable power was making the grid unstable. Meanwhile, after Fukushima, Germany has pledged to retire its entire nuclear reactor fleet by 2022.

Germany’s grid is struggling to cope with all that intermittent power.
Bildagentur Zoonar GmbH / shutterstock

In an analysis published in Nature, my colleague Harry Hoster and I have looked at how Germany’s electricity and transport policies are intertwined. They each serve the noble goal of reducing greenhouse gas emissions. Yet, when combined, they might actually lead to increased emissions.

We investigated what it would take for Germany to keep to its announcements and fully electrify its road transportation – and what that would mean for emissions. Our research shows that you can’t simply erase fossil fuels from both energy and transport in one go, as Germany may be about to find out.

Less energy, more electricity

It’s certainly true that replacing internal combustion vehicles with electric ones would overnight lead to a huge reduction in Germany’s energy needs. This is because electric cars are far more efficient. When petrol is burned, just 30% or less of the energy released is actually used to move the car forwards – the rest goes into exhaust heat, water pumps and other inefficiencies. Electric cars do lose some energy through recharging their batteries, but overall at least 75% goes into actual movement.

Each year, German vehicles burn around 572 terawatt-hour (TWh)‘s worth of liquid fuels. Based on the above efficiency savings, a fully electrified road transport sector would use around 229 TWh. So Germany would use less energy overall (as petrol is a source of energy) but it would need an astonishing amount of new renewable or nuclear generation.

And there is another issue: Germany also plans to phase out its nuclear power plants, ideally by 2022, but 2030 at the latest. This creates a further void of 92TWh to be filled.

Adding up the extra renewable electricity needed to power millions of cars, and that required to replace nuclear plants, gives us a total of 321 TWh of new generation required by 2030. That’s equivalent to dozens of massive new power stations.

Even if renewable energy expands at the maximum rate allowed by Germany’s latest plan, it will still only cover around 63 TWh of what’s required. Hydro, geothermal and biomass don’t suffer from the same intermittency problems as wind or solar, yet the country is already close to its potential in all three.

This therefore means the rest of the gap – an enormous 258 TWh – will have to be filled by coal or natural gas. That is the the current total electricity consumption of Spain, or ten Irelands.

Germany could choose to fill the gap entirely with coal or gas plants. However, relying entirely on coal would lead to further annual emissions of 260 million tonnes of carbon dioxide while gas alone would mean 131m tonnes.

By comparison, German road transport currently emits around 156m tonnes of CO2, largely from car exhausts. Therefore, unless the electricity shortfall is filled almost entirely with new natural gas plants, Germany could switch to 100% electric cars and it would still end up with a net increase in emissions.

The above chart shows a more realistic scenario where half of the necessary electricity for electric cars would come from new gas plants and half from new coal plants. We have assumed both coal and gas would become 25% more efficient. In this relatively likely scenario, the emissions of the road transportation sector actually increase by 20%, or 32 million tonnes of CO2 (comparable to Uruguay or Montana’s annual emissions).

If Germany really does want a substantial reduction in vehicle emissions, its energy and transport policies must work in sync. Instead of capping new solar plants or wind farms, it should delay the nuclear phase-out and focus on getting better at predicting electricity demand and storing renewable energy.

Dénes Csala, Lecturer in Energy Storage Systems Dynamics, Lancaster University

This article was originally published on The Conversation. Read the original article.





Electric vehicle batteries ‘already cheaper than 2020 projections’

25 03 2015

As the cost of everything seems to be plummeting right now, I, who always plays the devil’s advocate and sceptic of the first order, find it hard to not wonder if Nicole Foss’ much vaunted deflationary spiral is not already underway.  Just this morning I found out that the US coal industry is in trouble.  Then, reports of worsening problems are finally surfacing about the oil industry.  As we all know here at DTM, without a profitable fossil fuel industry, absolutely nothing else will eventuate when it comes to the alternatives……..  so what to make of this?  All I can say is, hang onto your hat, because the ride will be interesting.

The US coal market is crashing in what analysts warn is a sign of things to come for other fossil fuel markets.

At least 26 coal producers have gone bankrupt in the last three years, the Carbon Tracker Initiative think-tank found.

Others including Peabody Energy, the world’s largest private coal company, have lost 80% of their share value.

“Cheap gas has knocked coal off its feet, and the need to improve air quality and ever-lower renewables costs has kept coal down for the count,” said report co-author Luke Sussams.

Meanwhile, demand growth from Asia has been slower than expected. China’s coal consumption fell 3% in 2014 as the country sought to tackle increasingly severe air pollution in its cities.

AND….

In the latest week, drillers idled another 41 oil rigs, according to Baker Hughes. Only 825 rigs were still active, down 48.7% from October. In the 23 weeks since, drillers have idled 784 oil rigs, the steepest, deepest cliff-dive in the history of the data:

US-rig-count_1988_2015-03-20=oil

The number of rigs drilling for natural gas dropped by 15 to 242, the lowest rig count since March 1992 and down 85% from its peak in 2008.

By Simon Evans

The cost of electric vehicle battery packs is falling so rapidly they are probably already cheaper than expected for 2020, according to a new study in Nature Climate Change.

Electric vehicles remain more expensive than combustion-engine equivalents, largely because of battery costs. In 2013 the International Energy Agency estimated cost-parity could be reached in 2020, with battery costs reaching $300* per kilowatt-hour of capacity.

But market-leading firms were probably already producing cheaper batteries last year, says today’s new research. It says its figures are “two to four times lower than many recent peer-reviewed papers have suggested”.

High costs, falling

Even though the  EU electric vehicle market grew by 37% year on year in 2014, it still made up less than 1% of total sales. High cost is a major reason why electric vehicles have failed to break through, alongside range and a lack of recharging infrastructure.

The new research is based on a review of 85 cost estimates in peer-reviewed research, agency estimates, consultancy and industry reports, news reports covering the views of industry representatives and experts and finally estimates from leading manufacturers.

It says industry-wide costs have fallen from above $1000 per kilowatt-hour in 2007 down to around $410 in 2014, a 14% annual reduction (blue marks, below). Costs for market-leading firms have fallen by 8% per year, reaching $300 per kilowatt hour in 2014 (green marks).

Figure 1: Cost estimates and future projections for EV battery packs, measured in $US per kilowatt hour of capacity. Each mark on the chart represents a documented estimate reviewed by the study. 

Screen Shot 2015-03-23 At 14.22.10

Source: Nykvist et al. (2015).

For the market-leading firms, shown in green on the chart above, costs last year were already at the bottom end of projections for 2020 (yellow triangles).

The paper estimates prices will fall further to around $230 per kilowatt-hour in 2017-18, “on a par with the most optimistic future estimate among analysts”. The crossover point where electric cars become cheapest depends on electricity costs, vehicle taxes and prices at the pump.

In the US, with current low oil prices, battery packs would need to fall below $250 per kilowatt-hour for electric cars to become competitive, the study says. Behavioural barriers to electric vehicle uptake present additional hurdles to widespread adoption.

The paper says:

“If costs reach as low as $150 per kilowatt-hour this means that electric vehicles will probably move beyond niche applications and begin to penetrate the market more widely, leading to a potential paradigm shift in vehicle technology.”

Learning rate

To reach that level, costs will have to fall further. But a commercial breakthrough for the next generation of lithium batteries “is still distant”, the paper says, and many improvements in cell chemistry have already been realised. This seems to pour cold water on frequent claims of new battery types “transforming” the electric vehicle market.

However, there are still savings to be made in manufacturing improvements, industry learning and economies of scale, which have already brought down costs in recent years. Cumulative global production and sales of electric vehicles are roughly doubling annually, the paper says.

That means the 30% cost reduction expected at Tesla Motors’ planned “Gigafactory” battery plant by 2017 represents a “trajectory close to the trends projected in this paper”. On the other hand Renault-Nissan’s plans to build battery manufacturing capacity for 1.5 million cars by 2016 have hit the buffers as electric car sales have trailed expectations.

There are large uncertainties in the paper’s findings. Despite being the most comprehensive review to date, it relies on “sparse data” and acknowledges that a secretive industry might avoid revealing high costs, or conversely might subsidise battery packs to gain market share.

Overall it is “possible” that economies of scale will push costs down towards $200 kilowatt-hour “in the near future even without further cell chemistry improvements”, the paper concludes. If the paper is right then electric vehicle uptake could exceed expectations. That will be a good thing for the climate – just as long as the electricity that fuels them is not from coal.

*All dollar figures are in USD

Originally published by Carbon Brief.





Where is the electric grid headed?

19 11 2014

Followers of this blog will know my enthusiasm for solar power as a silver bullet for our future energy predicaments has waned, and in particular, my love affair with grid tied solar is over.  I have also been doubting for quite some time that the future of the electric grid is secure, and have on occasions discussed stand alone solar power as a possibility for those of us who are aware of the coming dilemmas to stretch their energy horizon a little further and make the inevitable energy descent less painful.  Well, it seems, this theme is catching on, even making it to what I consider to be mainstream internet sources.

Recently, on the Climate Spectator website (an arm of Alan Kohler’s straight as a die Business Spectator financial website), an article titled “Solar wins! Zombie-grid a dead man walking” began with this paragraph:

The grid financial model will collapse within 10 years, as millions of Australian households flee for the new, disruptive and cheaper alternative. This change will be as big as the conversion from horse and cart to motor vehicle, film to digital camera and the typewriter to the laptop.

I nearly fell off my chair…… because let’s face it, if the collapse of the grid financial model is not soon followed by total collapse, I would eat my hat.  The reasons the author – Matthew Wright CEO of Beyond Zero Emissions – gives for this prediction are:

Modeling by Zero Emissions Australia shows that an ordinary, but all-electric, household using off-the-shelf efficient electric appliances could be off the grid for between $30,000-$40,000 today and $12,000-$20,000 in 2024.

This is based on the following representative example of electricity demand charted below for an all-electric five-person household in Melbourne.

Example: One year of average monthly demand for all electric household in Melbourne (5 occupants).

melbournedemand

 

Source: Powershop, Zero Emissions Australia

Households can install and size their off-grid solar system now and change their redundant gas appliances (stove top, gas hot water and gas heating) over later. Or, given that the price is going to be right to leave sometime in the next 10 years, they can start their electric conversion journey now. Ditching gas and the power grid starts by installing an oversized solar system (11-15kW) on the north, east, west and possibly even flat-racked. Indeed you can place it on the south face which captures diffuse light when its cloudy – which contributes over half of all generation during the middle of winter (more on that in another article).

10kW PV System

10kW PV System

I’m frankly AGHAST!  I wonder if Matthew has even ever seen a 10kW PV system (let alone a 15 kW one…)  One of my neighbours has such a large system on his roof, installed before Energex put their foot down and limited grid tied systems to 5kW, and it looks like the photo opposite.  Bear in mind this house was designed for solar to begin with, faces true North, built with a skillion roof, and is bigger than our place by some margin at 250m².  And yet, its roof is completely covered….  Try that on a standard McMansion hipped roof….

Consumption is consumption, whether it’s PVs or whatever, and at least KC exports 90% or more of what power his system produces, he doesn’t actually need it to run his house!  Any household that needs 11 to 15kW of solar has a serious efficiency problem that needs to be solved before spending “$30,000-$40,000“, and if Matthew believes such schemes are ways of dealing with Carbon emissions, he is seriously mistaken.

Then, he pushes heat pumps for water heating rather than solar……  I thought the title of this piece was “solar wins!”?  Why buy an electricity consuming gadget, even if very efficient, when there are alternatives that do not?  Matthew doesn’t even seem to understand the physics of energy with the statement “achieves Coefficient of Performance (COP) of ~4.0 or (400% efficient, yes that is possible)”  NO Matthew, 400% efficiency is NOT possible, COP is not efficiency…..  And you wonder why I have so many doubts about BZE’s green wet dream of 100% renewables for Australia?

But back to our grid problems.

“Industrialized countries face a future of increasingly severe blackouts, a new study warns, due to the proliferation of extreme weather events, the transition to unconventional fossil fuels, and fragile national grids that cannot keep up with rocketing energy demand” says Motherboard….

The paper published this September in Routledge’s Journal of Urban Technology points out that 50 major power outages have afflicted 26 countries in the last decade alone, driven by rapid population growth in concentrated urban areas and a rampant “addiction” to high-consumption lifestyles dependent on electric appliances.

Study authors Hugh Byrd and Prof Steve Matthewman of Auckland University, a sociologist of disaster risk, argue that this escalating demand is occurring precisely “as our resources become constrained due to the depletion of fossil fuel, a lack of renewable energy sources, peak oil and climate change.”

Blackouts, they warn, are “dress rehearsals for the future in which they will appear with greater frequency and severity,” they find. “We predict increasing numbers of blackouts due to growing uncertainties in supply and growing certainties in demand.”

The relentless growth in demand, 1300 percent from 1940 to 2001 in the US (and likely much the same here), is the obvious culprit with aircon requirements at the forefront.  And let’s not forget the coming new fad…..

Adding further pressure to future electricity demand is the rise of the electric vehicle, driven by efforts to mitigate climate change. Byrd and Matthewman note that in higher-income regions, switching entirely to electric cars would increase electricity demand by 15-40 percent. Even if we replaced all our petrol-guzzling cars with “highly efficient” electric cars, the new models would still consume about “twice as much electricity as residential and commercial air-conditioning combined.”

And as climate change brings warmer Summers and more intense rains to regions of North America and Australia, people resort to more and more air-conditioning to stay cool, another climate positive feedback loop maybe?

Worldwide, overall energy demand for air-conditioning “is projected to rise rapidly to 2100,” to as much as 40 times greater than it was in 2000. New York alone will need 40 percent more power in the next 15 years partly because the city will contain a million more people, aided of course by electrical appliances, elevators, and air-conditioning.

Yeah right….  like that‘s going to happen, with a failing grid model….?  The article even goes further saying “But in a slow-growth global economy hell-bent on austerity, the prospects for large government investments in grid resilience look slim. According to the global insurance company Allianz in an extensive report on blackout risks in the US and Europe, “privatization and liberalization” have contributed to “missing incentives to invest in reliable, and therefore well maintained, infrastructures.””

A new report by the French multinational technology firm CapGemini warns of a heightened risk of blackouts across Europe this winter due to the shut-down of gas-fired plants, competition from cheap US coal, and the big shift to wind and solar. Ironically, electricity surpluses from renewables have led to a fall in power prices and crippled fossil fuel utilities, which in turn has reduced the “electricity system’s margin to meet peak demand in specific conditions such as cold, dark and windless days,” according to the report.

So it seems the grid’s financial model in Europe is in just as deep a hole as Australia’s.  The more I think of the terminology ‘disruptive’ used to describe renewables, the more I think it’s accurate!  The increasing shift to renewable energy sources has, it appears, exacerbated the blackout risk not because they are bad at generating power, but because of the difficulty in integrating volatile, decentralized energy sources into old power grids designed half a century ago around the old fossil fuel model.  Something the BZE people just don’t seem to understand.

Take this for example:  Our friend Matthew Wright is at it again with “Imagine 1000 gigafactories – that’s what’s coming”

No doubt you have all heard of El on Musk, the CEO of Tesla, the electric car company.  “Tesla is everyone’s favourite motor car company, a darling of investors large and small. Rev heads who have driven a Tesla give it the nod” writes Matthew.  Well of course they’d give it the nod…. just like anyone who drives a brand new Range Rover would give that car the nod; after all, after driving our old bombs around, I’m sure I would be mighty impressed with a car worth some $70,000 too……

Musk’s gigafactories will be the world’s largest lithium-ion battery factory, and is expected to generate as much renewable energy as it needs to operate — and then some.  But is that thin line at the bottom right of the photo a road, or a mighty big cable going to Bolivia’s Lithium mines…?

Here’s the first problem with celebratory headlines over renewables: record renewable energy growth hasn’t stopped record fossil fuel burning, including record levels of coal burning. Coal use is growing so fast that the International Energy Authority expects it to surpass oil as the world’s top energy source by 2017.  And building gigafactories is only worsening the problem.

Mabe, the 1,500 gigawatts of electricity produced from renewables worldwide have prevented a further 1,500 gigawatts of fossil fuel power stations? Who can tell?  It’s just as possible that renewables have simply added 1,500 gigawatts of electricity to the global economy, fuelling economic growth and ever-greater industrial resource use. That being the case, far from limiting carbon dioxide emissions worldwide, renewables may simply have increased them because, as I’ve written many times before, no form of large-scale energy is carbon neutral.

And no one mentions the looming economic crisis having an effect on the grid’s reliability.  The future is taboo.  Watch this space…





The False Solutions of Green Energy

13 10 2014

Max Wilbert & Cameron Foley expose the fallacies of “green” technology by tracing the process of industrial production for these technologies and exposing the destruction they cause.

I suggest you download the pdf file that has the slides in it, and watch that while you listen to the youtube video…….

Powerpoint slides available at https://dl.dropboxusercontent.com/u/123254/Long%20Term%20Shares/PIELC%20Talk.pdf