It’s simple. If we can’t change our economic system, our number’s up

30 04 2017

I occasionally publish articles by George monbiot. At times I have labelled them ‘Monbiot at his best’, even if I disagreed with bits of it….. but this time, he utterly nails it. There’s very little regulars to this site will learn from this, but it is a good piece of writing, and it needs to be shared far and wide, because we truly need this revolution. It’s two years old, but even more relevant now than when he wrote it.

Found on the Guardian’s website…..

'The mother narrative to all this is carbon-fuelled expansion. Our ideologies are mere subplots.'
‘The mother narrative to all this is carbon-fuelled expansion. Our ideologies are mere subplots.’ Photograph: Alamy

Let us imagine that in 3030BC the total possessions of the people of Egypt filled one cubic metre. Let us propose that these possessions grew by 4.5% a year. How big would that stash have been by the Battle of Actium in 30BC? This is the calculation performed by the investment banker Jeremy Grantham.

Go on, take a guess. Ten times the size of the pyramids? All the sand in the Sahara? The Atlantic ocean? The volume of the planet? A little more? It’s 2.5 billion billion solar systems. It does not take you long, pondering this outcome, to reach the paradoxical position that salvation lies in collapse.

To succeed is to destroy ourselves. To fail is to destroy ourselves. That is the bind we have created. Ignore if you must climate change, biodiversity collapse, the depletion of water, soil, minerals, oil; even if all these issues miraculously vanished, the mathematics of compound growth make continuity impossible.

Economic growth is an artefact of the use of fossil fuels. Before large amounts of coal were extracted, every upswing in industrial production would be met with a downswing in agricultural production, as the charcoal or horse power required by industry reduced the land available for growing food. Every prior industrial revolution collapsed, as growth could not be sustained. But coal broke this cycle and enabled – for a few hundred years – the phenomenon we now call sustained growth.

It was neither capitalism nor communism that made possible the progress and pathologies (total war, the unprecedented concentration of global wealth, planetary destruction) of the modern age. It was coal, followed by oil and gas. The meta-trend, the mother narrative, is carbon-fuelled expansion. Our ideologies are mere subplots. Now, with the accessible reserves exhausted, we must ransack the hidden corners of the planet to sustain our impossible proposition.

On Friday, a few days after scientists announced that the collapse of the west Antarctic ice sheet is now inevitable, the Ecuadorean government decided toallow oil drilling in the heart of the Yasuni national park. It had made an offer to other governments: if they gave it half the value of the oil in that part of the park, it would leave the stuff in the ground. You could see this as either blackmail or fair trade. Ecuador is poor, its oil deposits are rich. Why, the government argued, should it leave them untouched without compensation when everyone else is drilling down to the inner circle of hell? It asked for $3.6bn and received $13m. The result is that Petroamazonas, a company with a colourful record of destruction and spills, will now enter one of the most biodiverse places on the planet, in which a hectare of rainforest is said to contain more species than exist in the entire continent of North America.

Almost 45% of the Yasuni national park is overlapped by oil concessions.
Yasuni national park. Murray Cooper/Minden Pictures/Corbis

The UK oil firm Soco is now hoping to penetrate Africa’s oldest national park, Virunga, in the Democratic Republic of Congo; one of the last strongholds of the mountain gorilla and the okapi, of chimpanzees and forest elephants. In Britain, where a possible 4.4 billion barrels of shale oil has just been identified in the south-east, the government fantasises about turning the leafy suburbs into a new Niger delta. To this end it’s changing the trespass laws to enable drilling without consent and offering lavish bribes to local people. These new reserves solve nothing. They do not end our hunger for resources; they exacerbate it.

Look at the lives of the super-rich, who set the pace for global consumption. Are their yachts getting smaller? Their houses? Their artworks? Their purchase of rare woods, rare fish, rare stone? Those with the means buy ever bigger houses to store the growing stash of stuff they will not live long enough to use. By unremarked accretions, ever more of the surface of the planet is used to extract, manufacture and store things we don’t need. Perhaps it’s unsurprising that fantasies about colonising space – which tell us we can export our problems instead of solving them – have resurfaced.

As the philosopher Michael Rowan points out, the inevitabilities of compound growth mean that if last year’s predicted global growth rate for 2014 (3.1%) is sustained, even if we miraculously reduced the consumption of raw materials by 90%, we delay the inevitable by just 75 years. Efficiency solves nothing while growth continues.

The inescapable failure of a society built upon growth and its destruction of the Earth’s living systems are the overwhelming facts of our existence. As a result, they are mentioned almost nowhere. They are the 21st century’s great taboo, the subjects guaranteed to alienate your friends and neighbours. We live as if trapped inside a Sunday supplement: obsessed with fame, fashion and the three dreary staples of middle-class conversation: recipes, renovations and resorts. Anything but the topic that demands our attention.

Statements of the bleeding obvious, the outcomes of basic arithmetic, are treated as exotic and unpardonable distractions, while the impossible proposition by which we live is regarded as so sane and normal and unremarkable that it isn’t worthy of mention. That’s how you measure the depth of this problem: by our inability even to discuss it.





The Real Reason behind the Oil Price Collapse

14 03 2015

This article originally appeared at TomDispatch.com. To stay on top of important articles like these, sign up to receive the latest updates from TomDispatch.com.

Michael T. Klare on Energy Policy and Sustainability

Michael T Klare

By Michael T Klare

Many reasons have been provided for the dramatic plunge in the price of oil to about $60 per barrel (nearly half of what it was a year ago): slowing demand due to global economic stagnation; overproduction at shale fields in the United States; the decision of the Saudis and other Middle Eastern OPEC producers to maintain output at current levels (presumably to punish higher-cost producers in the US and elsewhere); and the increased value of the dollar relative to other currencies. There is, however, one reason that’s not being discussed, and yet it could be the most important of all: the complete collapse of Big Oil’s production-maximizing business model.

Until last fall, when the price decline gathered momentum, the oil giants were operating at full throttle, pumping out more petroleum every day. They did so, of course, in part to profit from the high prices. For most of the previous six years, Brent crude, the international benchmark for crude oil, had been selling at $100 or higher. But Big Oil was also operating according to a business model that assumed an ever-increasing demand for its products, however costly they might be to produce and refine. This meant that no fossil fuel reserves, no potential source of supply—no matter how remote or hard to reach, how far offshore or deeply buried, how encased in rock—was deemed untouchable in the mad scramble to increase output and profits.

In recent years, this output-maximizing strategy had, in turn, generated historic wealth for the giant oil companies. Exxon, the largest US-based oil firm, earned an eye-popping $32.6 billion in 2013 alone, more than any other American company except for Apple. Chevron, the second biggest oil firm, posted earnings of $21.4 billion that same year. State-owned companies like Saudi Aramco and Russia’s Rosneft also reaped mammoth profits.

How things have changed in a matter of mere months. With demand stagnant and excess production the story of the moment, the very strategy that had generated record-breaking profits has suddenly become hopelessly dysfunctional.

To fully appreciate the nature of the energy industry’s predicament, it’s necessary to go back a decade to 2005, when the production-maximizing strategy was first adopted. At that time, Big Oil faced a critical juncture. On the one hand, many existing oil fields were being depleted at a torrid pace, leading experts to predict an imminent “peak” in global oil production, followed by an irreversible decline; on the other, rapid economic growth in China, India and other developing nations was pushing demand for fossil fuels into the stratosphere. In those same years, concern over climate change was also beginning to gather momentum, threatening the future of Big Oil and generating pressures to invest in alternative forms of energy.

A “Brave New World” of Tough Oil

No one better captured that moment than David O’Reilly, the chairman and CEO of Chevron. “Our industry is at a strategic inflection point, a unique place in our history,” he told a gathering of oil executives that February. “The most visible element of this new equation,” he explained in what some observers dubbed his “Brave New World” address, “is that relative to demand, oil is no longer in plentiful supply.” Even though China was sucking up oil, coal and natural gas supplies at a staggering rate, he had a message for that country and the world: “The era of easy access to energy is over.”

To prosper in such an environment, O’Reilly explained, the oil industry would have to adopt a new strategy. It would have to look beyond the easy-to-reach sources that had powered it in the past and make massive investments in the extraction of what the industry calls “unconventional oil” and what I labeled at the time “tough oil“: resources located far offshore, in the threatening environments of the far north, in politically dangerous places like Iraq, or in unyielding rock formations like shale. “Increasingly,” O’Reilly insisted, “future supplies will have to be found in ultradeep water and other remote areas, development projects that will ultimately require new technology and trillions of dollars of investment in new infrastructure.”

For top industry officials like O’Reilly, it seemed evident that Big Oil had no choice in the matter. It would have to invest those needed trillions in tough-oil projects or lose ground to other sources of energy, drying up its stream of profits. True, the cost of extracting unconventional oil would be much greater than from easier-to-reach conventional reserves (not to mention more environmentally hazardous), but that would be the world’s problem, not theirs. “Collectively, we are stepping up to this challenge,” O’Reilly declared. “The industry is making significant investments to build additional capacity for future production.”

On this basis, Chevron, Exxon, Royal Dutch Shell and other major firms indeed invested enormous amounts of money and resources in a growing unconventional oil and gas race, an extraordinary saga I described in my book The Race for What’s Left. Some, including Chevron and Shell, started drilling in the deep waters of the Gulf of Mexico; others, including Exxon, commenced operations in the Arctic and eastern Siberia. Virtually every one of them began exploiting US shale reserves via hydro-fracking.

Only one top executive questioned this drill-baby-drill approach: John Browne, then the chief executive of BP. Claiming that the science of climate change had become too convincing to deny, Browne argued that Big Energy would have to look “beyond petroleum” and put major resources into alternative sources of supply. “Climate change is an issue which raises fundamental questions about the relationship between companies and society as a whole, and between one generation and the next,” he had declared as early as 2002. For BP, he indicated, that meant developing wind power, solar power and biofuels.

Browne, however, was eased out of BP in 2007 just as Big Oil’s output-maximizing business model was taking off, and his successor, Tony Hayward, quickly abandoned the “beyond petroleum” approach. “Some may question whether so much of the [world’s energy] growth needs to come from fossil fuels,” he said in 2009. “But here it is vital that we face up to the harsh reality [of energy availability].” Despite the growing emphasis on renewables, “we still foresee 80% of energy coming from fossil fuels in 2030.”

Under Hayward’s leadership, BP largely discontinued its research into alternative forms of energy and reaffirmed its commitment to the production of oil and gas, the tougher the better. Following in the footsteps of other giant firms, BP hustled into the Arctic, the deep water of the Gulf of Mexico, and Canadian tar sands, a particularly carbon-dirty and messy-to-produce form of energy. In its drive to become the leading producer in the Gulf, BP rushed the exploration of a deep offshore field it called Macondo, triggeringthe Deepwater Horizon blow-out of April 2010 and the devastating oil spill of monumental proportions that followed.

Over the Cliff

By the end of the first decade of this century, Big Oil was united in its embrace of its new production-maximizing, drill-baby-drill approach. It made the necessary investments, perfected new technology for extracting tough oil, and did indeed triumph over the decline of existing, “easy oil” deposits. In those years, it managed to ramp up production in remarkable ways, bringing ever more hard-to-reach oil reservoirs online.

According to the Energy Information Administration (EIA) of the US Department of Energy, world oil production rose from 85.1 million barrels per day in 2005 to 92.9 million in 2014, despite the continuing decline of many legacy fields in North America and the Middle East. Claiming that industry investments in new drilling technologies had vanquished the specter of oil scarcity, BP’s latest CEO, Bob Dudley, assured the world only a year ago that Big Oil was going places and the only thing that had “peaked” was “the theory of peak oil.”

That, of course, was just before oil prices took their leap off the cliff, bringing instantly into question the wisdom of continuing to pump out record levels of petroleum. The production-maximizing strategy crafted by O’Reilly and his fellow CEOs rested on three fundamental assumptions: that, year after year, demand would keep climbing; that such rising demand would ensure prices high enough to justify costly investments in unconventional oil; and that concern over climate change would in no significant way alter the equation. Today, none of these assumptions holds true.

Demand will continue to rise—that’s undeniable, given expected growth in world income and population—but not at the pace to which Big Oil has become accustomed. Consider this: in 2005, when many of the major investments in unconventional oil were getting under way, the EIA projected that global oil demand would reach 103.2 million barrels per day in 2015; now, it’s lowered that figure for this year to only 93.1 million barrels. Those 10 million “lost” barrels per day in expected consumption may not seem like a lot, given the total figure, but keep in mind that Big Oil’s multibillion-dollar investments in tough energy were predicated on all that added demand materializing, thereby generating the kind of high prices needed to offset the increasing costs of extraction. With so much anticipated demand vanishing, however, prices were bound to collapse.

Current indications suggest that consumption will continue to fall short of expectations in the years to come. In an assessment of future trends released last month, the EIA reported that, thanks to deteriorating global economic conditions, many countries will experience either a slower rate of growth or an actual reduction in consumption. While still inching up, Chinese consumption, for instance, is expected to grow by only 0.3 million barrels per day this year and next—a far cry from the 0.5 million barrel increase it posted in 2011 and 2012 and its one million barrel increase in 2010. In Europe and Japan, meanwhile, consumption is actually expected to fall over the next two years.

And this slowdown in demand is likely to persist well beyond 2016, suggests the International Energy Agency (IEA), an arm of the Organization for Economic Cooperation and Development (the club of rich industrialized nations). While lower gasoline prices may spur increased consumption in the United States and a few other nations, it predicted, most countries will experience no such lift and so “the recent price decline is expected to have only a marginal impact on global demand growth for the remainder of the decade.”

This being the case, the IEA believes that oil prices will only average about $55 per barrel in 2015 and not reach $73 again until 2020. Such figures fall far below what would be needed to justify continued investment in and exploitation of tough-oil options like Canadian tar sands, Arctic oil and many shale projects. Indeed, the financial press is now full of reports on stalled or cancelled mega-energy projects. Shell, for example, announced in January that it had abandoned plans for a $6.5 billion petrochemical plant in Qatar, citing “the current economic climate prevailing in the energy industry.” At the same time, Chevron shelved its plan to drill in the Arctic waters of the Beaufort Sea, while Norway’s Statoil turned its back on drilling in Greenland.

There is, as well, another factor that threatens the wellbeing of Big Oil: climate change can no longer be discounted in any future energy business model. The pressures to deal with a phenomenon that could quite literally destroy human civilization are growing. Although Big Oil has spent massive amounts of money over the years in a campaign to raise doubts about the science of climate change, more and more people globally are starting toworry about its effects—extreme weather patterns, extreme storms, extreme drought, rising sea levels and the like—and demanding that governments take action to reduce the magnitude of the threat.

Europe has already adopted plans to lower carbon emissions by 20% from 1990 levels by 2020 and to achieve even greater reductions in the following decades. China, while still increasing its reliance on fossil fuels, has at least finally pledged to cap the growth of its carbon emissions by 2030 and to increase renewable energy sources to 20% of total energy use by then. In the United States, increasingly stringent automobile fuel-efficiency standards will require that cars sold in 2025 achieve an average of 54.5 miles per gallon, reducing US oil demand by 2.2 million barrels per day. (Of course, the Republican-controlled Congress—heavily subsidized by Big Oil—will do everything it can to eradicate curbs on fossil fuel consumption.)

Still, however inadequate the response to the dangers of climate change thus far, the issue is on the energy map and its influence on policy globally can only increase. Whether Big Oil is ready to admit it or not, alternative energy is now on the planetary agenda and there’s no turning back from that. “It is a different world than it was the last time we saw an oil-price plunge,” said IEA executive director Maria van der Hoeven in February, referring to the 2008 economic meltdown. “Emerging economies, notably China, have entered less oil-intensive stages of development.… On top of this, concerns about climate change are influencing energy policies [and so] renewables are increasingly pervasive.”

The oil industry is, of course, hoping that the current price plunge will soon reverse itself and that its now-crumbling maximizing-output model will make a comeback along with $100-per-barrel price levels. But these hopes for the return of “normality” are likely energy pipe dreams. As van der Hoeven suggests, the world has changed in significant ways, in the process obliterating the very foundations on which Big Oil’s production-maximizing strategy rested. The oil giants will either have to adapt to new circumstances, while scaling back their operations, or face takeover challenges from more nimble and aggressive firms.





Bakken Sweet Spots are Petering Out

23 11 2014

Ron Patterson

Reblogged from Ron Patterson’s Peak Oil Barrel site Posted on

I’m so glad there are people out there who have access to the data and know how to interpret it so plebs like us can understand what is really happening in the world of Peak Oil…..

The Bakken, as well as other shale oil areas, is not one homogeneous area where equal amounts of can be found. David Hughes in DRILLING DEEPER puts it this way, though here he is talking about gas wells, the same applies to oil wells:

All shale gas plays invariably have “core” areas or “sweet spots”, where individual well production is highest and hence the economics are best. Sweet spots are targeted and drilled off early in a play’s lifecycle, leaving lesser quality rock to be drilled as the play matures (requiring higher gas prices to be economic); thus the number of wells required to offset field decline inevitably increases with time.

However the Bakken, at least through the September North Dakota Industrial Commission  production report, has given no real indication that the Bakken is even close to peaking. But a closer look at the data makes me believe that is all about to change.

The NDIC issues a Daily Activity Report where they list permits issued as well as wells completed and wells released from the tight hole confidential list. These reports usually, but not always, also give the number of barrels of oil per day and barrels of water per day for the first 24 hours of production.  I have gone through every day, back to November 1st, 2013 and collected the data on every well listed that gives production numbers and copied that data to Excel. In that one year and three weeks I have gathered the data form every one of the 2,171 wells that give production numbers. Sorting these wells by well number, which is the original permit number, gives some startling results.

ND 200 Well Avg

To smooth the chart I created a 200 well average of barrels per day per well. The first point on the chart is therefore the average to the 200th well, #23890 and the last point is the 200 well average to the 2171st well, #28971. As you can see there has been a continuous, though erratic, decline in first 24 hour production as the well numbers increase.

ND Prod per 1000

Breaking this down according to well numbers we see production peaked with the 2400s and have steady decline since. Every group of well numbers do not contain the same number of wells.

Well Numbers BOPD       Number of Wells in Sample
18s – 22s              1,235                81
23000s                1,362               134
24000s                 1,497               285
25000s                 1,320              676
26000s                 1,198              591
27000s                 1,016              361
28000s                   841                40

ND Barrels per Well

The above chart is monthly first 24 hour production per well and first 24 hour percent water per well of all wells that the NDIC listed production numbers. The November 2014 numbers are only through November 21st.

Note: The first 24 hours of production is far from being the average first years production. And though all wells are different I am relatively sure there is an average conversion rate but I have no idea what it is. I would guess it is somewhere between one quarter to one third of the first 24 hours of production. But if anyone has any idea what the average conversion factor is, if one exists, please email me at DarwinianOne at Gmail.com, or post it in the comments section of this post.

North Dakota issues drilling permits in sequential order. But those permits are not drilled in sequence. Drillers will often sit on a permit for two to three years, renewing then as the law requires.

A list of all active drilling rigs, the well number they are working on and the date they started can be found at the NDIC’s Current Active Drilling Rig List They are listed according to their API number but the list can be copied and pasted into Excel and sorted according to your wishes.

Well List

Of the 191 rigs working, 39 or 20% are working well numbers below 28000. 76 or 40% of rigs are working well numbers in the 28000s. And 76 or 40% are working well numbers in the 29000s. Permit #28000 was issued on March 26. 2014. So 80% of all rigs are working on recently issued permits.

As of November 21st, the highest well number completed was #28971. The highest number well currently being drilled is #29908. The highest permit number issued is #30076.

Will enhanced oil recovery keep the Bakken going into the future. A simple one word answer is “no”, as this article explains.

Enhanced oil recovery techniques limited in shale

Energy companies currently leave about 95 percent of the crude in the ground at today’s unconventional oil wells, but they face major technological challenges in boosting recovery rates, a Schlumberger scientist said Tuesday…

“Our entire spectrum of secondary recovery methods don’t work,” Kleinberg said, in a sobering talk at the Energy Information Administration’s annual summit in the nation’s capital.

Water flooding — where water can be swept from separate injection and producer wells — isn’t an option because the tight oil formations are too dense to permit those water flows.

And while carbon dioxide can be used to pressure up a conventional oil well, there’s currently a limit on the amount of that gas that is available to pump underground. “The oil industry would like to have more CO2, which is a great way to get more oil out of the ground, but there are limits on affordable, accessible supplies of CO2,” Kleinberg said, quipping: “The oil industry lives in a CO2 constrained world; it is only the oil industry that thinks there is not enough carbon dioxide.”

In conclusion, first 24 hour production per well, when measured by well number, has dropped by 40 percent since peaking in the 24000s. This, to me anyway, clearly indicates that the sweet spots are playing out and companies are now drilling on less productive acreage. I now believe that North Dakota production will peak no later than 2015 with a high probability that 2014 will prove to be the peak year.

Note: I send an email notice when I publish a new post. If you would like to receive that notice then email me at DarwinianOne at Gmail.com.

 





Confessions of a CSG Drill Rig worker (22nd April 2014)

27 06 2014

[This article did the rounds on the interweb yesterday, but seems to have been pulled from the source site. We’ll retain the anonymity of the author and the source site – but you MUST read this one!]

 

I contacted the Gasfield Community Support group after hearing Laurence Springborg saying on the radio that no workers in the CSG industry had become sick, and the air and water tests were good quality.

I started in the industry in 2008, and worked for 3-½ years on a mobile drill rig. Initially I was employed by Mitchell drilling who were taken over by AJ Lucas. With the exception of one well, at all other times Mitchell drilling /AJ Lucas were contracted to Santos. I was employed as the “offsider” initially, graduating to senior drillers assistant.

One of the tasks was mixing chemicals into the mud pits to pump down the drill string. There were different polymers used. They pumped “mud” down the drill string. (Salt water, KCL and polymer JK261, (a lubricant)). On an average lease, if they were not taking losses, you would use an average of 12 tons of KCL and 15 pallets (720 drums /10,800kg of polymer) to keep the viscosity up and lubricate the drill bit. The polymer was mixed in the pits through a hopper. The polymer had to be sprinkled into the hopper and it was blowing in the face, in the eyes; we were constantly breathing it in. This happened for hours at a time. We had masks, with a diaphragm sometimes, otherwise paper.

The masks were also used when mixing the cement for the casing if Halliburton did not come in and we were doing the cement job ourselves.

When drilling down, going through the Permian or Jurassic riverbeds which were very permeable, sometimes the drilling muds would disappear.

They could take huge losses We took core samples when Santos told us to. They took core samples on every drill hole, usually about 600 metres in depth. 80% of the time they got pretty good returns – getting most of the returns back up the drill into the pits. But 20% of the time, especially in Fairview, east of Injune, they couldn’t stop the losses.

They could use approximately 20 tons of KCL (semi-trailer loads full) with water. There was 50,000 litres of water in each of three pits. On one rig, in a 12 hour shift we used 27tons of KCL along with 100,000 litres of water and multiple other chemicals.

The next 12 hour shift would then come on and this could go on for days doing exactly the same thing until the losses were stopped. They would use 9.4 heavy – saturation point- lots of KCL, JK261, CR650-polymer. The KCL was to “weigh down” the gas bubble. When they were taking losses they would use ‘frac seal fine’, composed of silver paper, coarse saw dust, trying to fill the hole, to block it.

They tried to stop the loss by plugging the hole. They would use maybe 10 different chemicals including bentonite, they would keep pumping down, trying to fill the losses. If the muds were going disappearing) gases could be coming in; they had to try and block it off with a different medium, and keep pumping it down the drill string to seal the hole. They tried to weigh down the gas bubble. They were worried about gases coming back in and the risk of explosion; it was a very dangerous time and happened often (maybe 20% of the time)

In the Gunnedah basin south of Coonabarrabin, they drilled a hole and hit the fresh water aquifer.

Fresh water was pouring out of the hole, diluting the salt content. They had to bring trucks in to take the water away; they put the casing in and tried sealing it off with cement on the outside of the drill string. There were problems in the Gunnedah basin because the aquifers were close to the surface, they had to get through the aquifers and keep drilling to get to the coal seam. They got a drill string stuck in one particular hole. They brought in black stuff in a 1000 litre container, called “pipe free”. I’m not sure how it worked. I think they pumped it down the drill string to try to free up the soil and recover the expensive equipment from the hole. It stunk to high heaven. It was very smelly, dangerous: we were told not to get any on our skin. It happened in a hole in Fairview; Santos owned the property near Injune.

On every fifth hole or so they got stuck but could get the tool free without major problems apart from patience and time. But if the tool sheared off they fished for the tool or cemented the hole up and moved on a couple metres, cutting their losses and started drilling again. (This happened about three times when I was there but there was only one time they used “pipe free”.) It is a big problem for them and expensive if they lose tools down the hole.

Weatherfords did the logging. They used radiation sources. I heard that they had lost tools down the hole, but not at the time I was there.

At times there were problems with the end plug with gas bubbling through the cement, they couldn’t stop it. There were bubbles coming up through the water that was sitting over the cement in the cellar. I saw it three or four times.

On Fairview, there were lots of drill holes, it was like a porcupine. Drill holes could be as little as 150 metres apart at times, at other places kilometres apart. There are now a lot of production wells there.

I started getting sick, with nose bleeds on a regular basis in 2011. I had never had a nose bleed in my life before. My work schedule was– out for 18 days, home for 9 with 2 days travelling out of it. (I am an organic farmer, totally self-sufficient and solar powered, and I was trying to set myself-up for older life. I was working out there for the money. I was cautious about saying anything- I had lost a job before for speaking out). I was better when got home on days off; when I went back out, again there was blood dripping from my nose. I had nose bleeds in the shower.

We broke up earlier than expected at the end of 2011 because of wet weather. I was coughing and couldn’t clear my chest. I went to the doctor in late November/ early December. He listened to my lungs and sent me for a CXR.

I had a terrible feeling of anxiety and just felt terrible. The anxiety was there all day from the minute I woke up to when I went to bed. I was sent for a CT scan and told I had moderate emphysema. I had only smoked for a couple of years, age 19 and 20, not since. I looked up the internet and seen Dr Roger Allen near the Wesley. I did a test lasting 6 hours and had a lung biopsy. I was told I had inflammation, lung infection, bronchitis. I wanted compensation, adamant that the cause was what I had been using at work. Dr Allen wouldn’t commit to what was causing it. I had sickness benefit for a couple of months – I was off for a couple of months then they told me I was fit to work. I wouldn’t go back to mixing chemicals; they told me there was nothing else for me – got nothing for me. They wiped their hands of me.

Now I am back on the farm. I am not coughing as much. I still haven’t 100% capacity in my lungs. I have cough and phlegm and loss of lung function. When I was working on the rigs I would have spasm of my hands. I would grab a set of stilsons to do up a drill joint, when trying to let go I couldn’t open my hand. I had to use the other hand to open the knuckles back up.

There was lead based grease, real thick grease, used on the drill joints, also a zinc based grease called ZN50. The young fellows I was working with here getting it all over themselves. It is carcinogenic.

They were using 20kg buckets in a 10 day period. The other driller, age 27, had bad skin. It looked like dermatitis. He had red skin around his eyes and hairline. It would look better each time he came back from break. We lost contact.

A lot of people are out of work, with a downturn in the industry. It was a 24 hour rig, 12 hour shift, 4 on crew, driller, and senior offsider, 2 junior offsiders. There was always a crew on break. Apart from the people you work with you don’t know other people.

There were big camps. We lived in camps or hotel accommodation, up to 80% of the time in camps.

People complained about the water at times. The truck just didn’t look hygienic. The water was next to the septic tank which overflowed several times. People were getting stomach bugs. I am unsure if the drinking water was bore water.

Santos took the drinking water away a couple of times because of complaints.

The water in the mud pits was recycled to the next lease for drilling. The drill cuttings went back into the pits. When in the Gunnedah basin they started lining the pits with big plastic liners. They didn’t tend to line them in Queensland. There were hundreds of tons of cuttings. It was a problem. I’m not sure what happened to the pits, or the plastic or the cuttings.

When we were out there, if there was 4 inches of rain the salt water in the pits started flowing over.

If they knew the rain was coming, they would try and pump the mud out and dump it somewhere else like in new pits Santos planted fodder trees, not Australian natives. I think they planted them to get rid of coal seam gas water by using it for irrigation. There were maybe 10,000acres that Santos planted. That then became a problem. Now seeds have washed out and are growing on the sides of the road, in waterways. They have become a pest now.

The industry took off very quickly; it went from a controlled Australian industry with a few different Australian companies and rigs, to overnight rigs coming in from Canada, Mexico, everywhere.

Whatever controls they went through in the past seemed to have disappeared over night.

When I worked in the Gunnedah basin, there was lots of protest by the locals, and road blocks to go through. There were also open cut coal mines being licenced to overseas buyers (particularly the Chinese) who were buying the land up. The farmers didn’t like it. Because of the protest our image had to be squeaky clean and there was a lot more control on the industry than in Queensland. Problems with farmers were not such a problem in Western Queensland. There was an occasional well on their property, maybe up to 10 wells on big properties. Santos was building a big airport. I didn’t see any protest by farmers in Queensland. It was not a problem on big properties. Santos and Origin own some big properties.

Arcadia Valley, north of Injune is a magic pristine country of big aboriginal significance. It is a rift valley, with a huge escarpment and caves. It shouldn’t have been touched, it should be heritage listed.

AJ Lucas had one rig in the Arcadia valley and disturbed sacred aboriginal sites. There were maybe six holes. There was no more or no less care than in Fairview. I think it was a shame. The wastage was immense. In a 12 hour shift 2000 litres of diesel was used just for an exploration rig. (For the production rig to get the gas out of the ground, the fuel usage would be astronomical.) In addition to the drilling there were air conditioners and generators running all the time. There were 100’s of rigs in the area. There were diesel spills and leaks.

Other waste, Industrial bins full of plastic drums were emptied twice a week; there was a huge amount of food wasted.





Finally…..

28 05 2014

monbiotIt’s simple. If we can’t change our economic system, our number’s up

I’m probably breaking every copyright law under the Sun, but I could not let this article by George Monbiot go.  On the whole, I like George.  Maybe now he has finally seen the light, he may forego his love affair with nuclear power.  Time will tell……..  I like to think any regular reader of DTM won’t learn anything here, but this is surely Monbiot at his best.  Finally.

'The mother narrative to all this is carbon-fuelled expansion. Our ideologies are mere subplots.'

‘The mother narrative to all this is carbon-fuelled expansion. Our ideologies are mere subplots.’ Photograph: Alamy

Let us imagine that in 3030BC the total possessions of the people of Egypt filled one cubic metre. Let us propose that these possessions grew by 4.5% a year. How big would that stash have been by the Battle of Actium in 30BC? This is the calculation performed by the investment banker Jeremy Grantham.

Go on, take a guess. Ten times the size of the pyramids? All the sand in the Sahara? The Atlantic ocean? The volume of the planet? A little more? It’s 2.5 billion billion solar systems. It does not take you long, pondering this outcome, to reach the paradoxical position that salvation lies in collapse.

To succeed is to destroy ourselves. To fail is to destroy ourselves. That is the bind we have created. Ignore if you must climate change, biodiversity collapse, the depletion of water, soil, minerals, oil; even if all these issues miraculously vanished, the mathematics of compound growth make continuity impossible.

Economic growth is an artefact of the use of fossil fuels. Before large amounts of coal were extracted, every upswing in industrial production would be met with a downswing in agricultural production, as the charcoal or horse power required by industry reduced the land available for growing food. Every prior industrial revolution collapsed, as growth could not be sustained. But coal broke this cycle and enabled – for a few hundred years – the phenomenon we now call sustained growth.

It was neither capitalism nor communism that made possible the progress and pathologies (total war, the unprecedented concentration of global wealth, planetary destruction) of the modern age. It was coal, followed by oil and gas. The meta-trend, the mother narrative, is carbon-fuelled expansion. Our ideologies are mere subplots. Now, with the accessible reserves exhausted, we must ransack the hidden corners of the planet to sustain our impossible proposition.

On Friday, a few days after scientists announced that the collapse of the west Antarctic ice sheet is now inevitable, the Ecuadorean government decided to allow oil drilling in the heart of the Yasuni national park. It had made an offer to other governments: if they gave it half the value of the oil in that part of the park, it would leave the stuff in the ground. You could see this as either blackmail or fair trade. Ecuador is poor, its oil deposits are rich. Why, the government argued, should it leave them untouched without compensation when everyone else is drilling down to the inner circle of hell? It asked for $3.6bn and received $13m. The result is that Petroamazonas, a company with a colourful record of destruction and spills, will now enter one of the most biodiverse places on the planet, in which a hectare of rainforest is said to contain more species than exist in the entire continent of North America.

Almost 45% of the Yasuni national park is overlapped by oil concessions. Yasuni national park. Murray Cooper/Minden Pictures/Corbis The UK oil firm Soco is now hoping to penetrate Africa’s oldest national park, Virunga, in the Democratic Republic of Congo; one of the last strongholds of the mountain gorilla and the okapi, of chimpanzees and forest elephants. In Britain, where a possible 4.4 billion barrels of shale oil has just been identified in the south-east, the government fantasises about turning the leafy suburbs into a new Niger delta. To this end it’s changing the trespass laws to enable drilling without consent and offering lavish bribes to local people. These new reserves solve nothing. They do not end our hunger for resources; they exacerbate it.

The trajectory of compound growth shows that the scouring of the planet has only just begun. As the volume of the global economy expands, everywhere that contains something concentrated, unusual, precious, will be sought out and exploited, its resources extracted and dispersed, the world’s diverse and differentiated marvels reduced to the same grey stubble.

Some people try to solve the impossible equation with the myth of dematerialisation: the claim that as processes become more efficient and gadgets are miniaturised, we use, in aggregate, fewer materials. There is no sign that this is happening. Iron ore production has risen 180% in 10 years. The trade body Forest Industries tells us that “global paper consumption is at a record high level and it will continue to grow”. If, in the digital age, we won’t reduce even our consumption of paper, what hope is there for other commodities?

Look at the lives of the super-rich, who set the pace for global consumption. Are their yachts getting smaller? Their houses? Their artworks? Their purchase of rare woods, rare fish, rare stone? Those with the means buy ever bigger houses to store the growing stash of stuff they will not live long enough to use. By unremarked accretions, ever more of the surface of the planet is used to extract, manufacture and store things we don’t need. Perhaps it’s unsurprising that fantasies about colonising space – which tell us we can export our problems instead of solving them – have resurfaced.

As the philosopher Michael Rowan points out, the inevitabilities of compound growth mean that if last year’sthe predicted global growth rate for 2014 (3.1%) is sustained, even if we miraculously reduced the consumption of raw materials by 90%, we delay the inevitable by just 75 years. Efficiency solves nothing while growth continues.

The inescapable failure of a society built upon growth and its destruction of the Earth’s living systems are the overwhelming facts of our existence. As a result, they are mentioned almost nowhere. They are the 21st century’s great taboo, the subjects guaranteed to alienate your friends and neighbours. We live as if trapped inside a Sunday supplement: obsessed with fame, fashion and the three dreary staples of middle-class conversation: recipes, renovations and resorts. Anything but the topic that demands our attention.

Statements of the bleeding obvious, the outcomes of basic arithmetic, are treated as exotic and unpardonable distractions, while the impossible proposition by which we live is regarded as so sane and normal and unremarkable that it isn’t worthy of mention. That’s how you measure the depth of this problem: by our inability even to discuss it.