The end of the Middle East

14 03 2017

I have to say, I am seriously chuffed that Nafeez Ahmed is calling it, as I have been for years now…. In a lengthy but well worth reading article in the Middle East Eye, Nafeez explains the convoluted reasons why we have the current turmoil in Iraq, Yemen, and Syria. He doesn’t mention Egypt – yet – but to be fair, the article’s focus in on Mosul and the implications of the disaster unfolding there……

It never ceases to amaze me how Egypt has managed to stay off the news radar. Maybe the populace is too starved to revolt again….

After oil, rice and medicines, sugar has run out in Egypt, as the country has announced a devaluation of 48% of its currency. In Egypt, about 68 million of the total 92 million people receive food subsidized by the State through small consumer stores run by the Ministry of supply and internal trade. After shortages of oil, rice and milk, and even medicines, now sugar scarcity has hit the country. Nearly three quarters of the population completely rely on the government stores for their basic needs.

Egypt produces 2 million tons of sugar a year but has to import 3 million to face domestic demand. However imports have become too expensive.  The country is expected to receive a loan of 12 billion dollars (11 billion euros) from the International monetary Fund (IMF) to tackle its food scarcity. The price for sugar in supermarkets and black markets are skyrocketing as well, with a kilogram costing around 15 pounds. If available, one could get sugar from subsidized government stores for 0.50 euros per kilo.

Nafeez goes into great and interesting detail re the dismaying shenanigans going on in nafeezIraq and Syria at the moment. I’ll leave it to you to go through what he wrote on the Middle East Eye site on those issues, but what struck me as relevant to what this blog is about is how well they correlate with my own thoughts here…..:

Among my findings is that IS was born in the crucible of a long-term process of ecological crisis. Iraq and Syria are both experiencing worsening water scarcity. A string of scientific studies has shown that a decade-long drought cycle in Syria, dramatically intensified by climate change, caused hundreds and thousands of mostly Sunni farmers in the south to lose their livelihoods as crops failed. They moved into the coastal cities, and the capital, dominated by Assad’s Alawite clan. 

Meanwhile, Syrian state revenues were in terminal decline because the country’s conventional oil production peaked in 1996. Net oil exports gradually declined, and with them so did the clout of the Syrian treasury. In the years before the 2011 uprising, Assad slashed domestic subsidies for food and fuel.

While Iraqi oil production has much better prospects, since 2001 production levels have consistently remained well below even the lower-range projections of the industry, mostly because of geopolitical and economic complications. This weakened economic growth, and consequently, weakened the state’s capacity to meet the needs of ordinary Iraqis.

Drought conditions in both Iraq and Syria became entrenched, exacerbating agricultural failures and eroding the living standards of farmers. Sectarian tensions simmered. Globally, a series of climate disasters in major food basket regions drove global price spikes. The combination made life economically intolerable for large swathes of the Iraqi and Syrian populations.

Outside powers – the US, Russia, the Gulf states, Turkey and Iran – all saw the escalating Syrian crisis as a potential opportunity for themselves. As the ensuing Syrian uprising erupted into a full-blown clash between the Assad regime and the people, the interference of these powers radicalised the conflict, hijacked Sunni and Shia groups on the ground, and accelerated the de-facto collapse of Syria as we once knew it.  

AND…..

Meanwhile, across the porous border in Iraq, drought conditions were also worsening. As I write in Failing States, Collapsing Systems, there has been a surprising correlation between the rapid territorial expansion of IS, and the exacerbation of local drought conditions. And these conditions of deepening water scarcity are projected to intensify in coming years and decades.

An Iraqi man walks past a canoe siting on dry, cracked earth in the Chibayish marshes near the southern Iraqi city of Nasiriyah in 2015 (AFP)

The discernable pattern here forms the basis of my model: biophysical processes generate interconnected environmental, energy, economic and food crises – what I call earth system disruption (ESD). ESD, in turn, undermines the capacity of regional states like Iraq and Syria to deliver basic goods and services to their populations. I call this human system destabilisation (HSD).

As states like Iraq and Syria begin to fail as HSD accelerates, those responding – whether they be the Iraqi and Syrian governments, outside powers, militant groups or civil society actors – don’t understand that the breakdowns happening at the levels of state and infrastructure are being driven by deeper systemic ESD processes. Instead, the focus is always on the symptom: and therefore the reaction almost always fails entirely to even begin to address earth system sisruption.

So Bashar al-Assad, rather than recognising the uprising against his regime as a signifier of a deeper systemic shift – symptomatic of a point-of-no-return driven by bigger environmental and energy crises – chose to crackdown on his narrow conception of the problem: angry people.

Even more importantly, Nafeez also agrees with my predictions regarding Saudi Arabia…

The Gulf states are next in line. Collectively, the major oil producers might have far less oil than they claim on their books. Oil analysts at Lux Research estimate that OPEC oil reserves may have been overstated by as much as 70 percent. The upshot is that major producers like Saudi Arabia could begin facing serious challenges in sustaining the high levels of production they are used to within the next decade.

Another clear example of exaggeration is in natural gas reserves. Griffiths argues that “resource abundance is not equivalent to an abundance of exploitable energy”.

While the region holds substantial amounts of natural gas, underinvestment due to subsidies, unattractive investment terms, and “challenging extraction conditions” have meant that Middle East producers are “not only unable to monetise their reserves for export, but more fundamentally unable to utilise their reserves to meet domestic energy demands”. 

Starting to sound familiar..? We are doing the exact same thing here in Australia…. It’s becoming ever more clear that Limits to Growth equates to scraping the bottom of the barrel, and the scraping sounds are getting louder by the day.

And oil depletion is only one dimension of the ESD processes at stake. The other is the environmental consequence of exploiting oil.

Over the next three decades, even if climate change is stabilised at an average rise of 2 degrees Celsius, the Max Planck Institute forecasts that the Middle East and North Africa will still face prolonged heatwaves and dust storms that could render much of the region “uninhabitable”. These processes could destroy much of the region’s agricultural potential.

Nafeez finishes with a somewhat hopeful few paragraphs.

Broken models

While some of these climate processes are locked in, their impacts on human systems are not. The old order in the Middle East is, unmistakably, breaking down. It will never return.

But it is not – yet – too late for East and West to see what is actually happening and act now to transition into the inevitable future after fossil fuels.

The battle for Mosul cannot defeat the insurgency, because it is part of a process of human system destabilisation. That process offers no fundamental way of addressing the processes of earth system disruption chipping away at the ground beneath our feet.

The only way to respond meaningfully is to begin to see the crisis for what it is, to look beyond the dynamics of the symptoms of the crisis – the sectarianism, the insurgency, the fighting – and to address the deeper issues. That requires thinking about the world differently, reorienting our mental models of security and prosperity in a way that captures the way human societies are embedded in environmental systems – and responding accordingly.

At that point, perhaps, we might realise that we’re fighting the wrong war, and that as a result, no one is capable of winning.

The way the current crop of morons in charge is behaving, I feel far less hopeful that someone will see the light. There aren’t even worthwhile alternatives to vote for at the moment…  If anything, they are all getting worse at ‘leading the world’ (I of course use the term loosely..), not better. Nor is the media helping, focusing on politics rather than the biophysical issues discussed here.

 





Peak Airplane Speed

10 03 2017

Having just flown over 5000km (return) to visit my family for my recent retirement milestone, I was attracted to this story… and I have to say that while everyone else in the plane takes the experience for granted, it never ceases to amaze me when it takes off that we are able (still..?) to do this.

Recently, a story surfaced on Facebook that had me in stitches…:

Airbus is looking to a future faster than the speed of sound as it filed another patent intended to help aircraft fly supersonically.

Details have emerged of a (sic) application filed in the US by the pan-European aerospace company for a design of a spaceplane capable of taking off and landing like a normal aircraft but able to fly at supersonic speeds at altitudes “of at least 100 kilometres”.

Even funnier, it was illustrated with the following image……

Image result for patented supersonic airbus

Just look at that thing…….. it doesn’t even look like it can fly, way too fat for its wings, almost a cartoon of an airplane actually. And I doubt any plane manufacturer has ever taken out a patent for an entire plane. Bits of planes, for sure, but a whole plane..? Which goes to show you can’t believe anything you read in the Telegraph, though mind you, it seems quite a few other media outlets were also taken in…… there’s a hilarious video by some unknown Indian man demonstrating how little he knows about aerodynamics there too.

Even if this were serious, it would never fly, because it takes years to develop projects like this, and I doubt that plane manufacturers are not aware of our energy predicaments, even if they son’t say so publicly.

Then along comes this latest article from Ugo Bardi……

So, it is true: planes fly slower nowadays! The video, above, shows that plane trips are today more than 10% longer than they were in the 1960s and 1970s for the same distance. Airlines, it seems, attained their “peak speed” during those decades.

Clearly, airlines have optimized the performance of their planes to minimize costs. But they were surely optimizing their business practices also before the peak and, at that time, the results they obtained must have been different. The change took place when they started using the current oil prices for their models and they found that they had to slow down. You see in the chart below what happened to the oil market after 1970. (Brent oil prices, corrected for inflation, source)

It is remarkable how things change. Do you remember the hype of the 1950s and 1960s? The people who opposed the building of supersonic passenger planes were considered to be against humankind’s manifest destiny. Speed had to increase because it had always been doing so and technology would have provided us with the means to continue moving faster.

Rising oil prices dealt a death blow to that attitude. The supersonic Concorde was a flying mistake that was built nevertheless (a manifestation of French Grandeur). Fortunately, other weird ideas didn’t make it, such as the sub-orbital plane that should have shot passengers from Paris to New York in less than one hour.

If this story tells us something is that, in the fight between technological progress and oil depletion, oil depletion normally wins. Airlines are especially fuel-hungry and they have no alternatives to liquid fuels. So, despite all the best technologies, the only way for them to cope with higher oil prices was to slow down planes, it was as simple as that.

Even slower planes, though, still need liquid fuels that are manufactured from oil. We may go back to propeller planes for even better efficiency, but the problem remains: no oil, no planes, at least not the kind of planes that allow normal people to fly, something that, nowadays, looks like an obvious feature of our life. But, as I said before, things change!

 





More gnashing of teeth

7 02 2017

The Über-Lie

By Richard Heinberg, Post Carbon Institute

heinbergNevertheless, even as political events spiral toward (perhaps intended) chaos, I wish once again, as I’ve done countless times before, to point to a lie even bigger than the ones being served up by the new administration…It is the lie that human society can continue growing its population and consumption levels indefinitely on our finite planet, and never suffer consequences.

This is an excellent article from Richard Heinberg, the writer who sent me on my current life voyage all those years ago. Hot on the heels of my attempt yesterday of explaining where global politics are heading, Richard (whom I met years ago and even had a meal with…) does a better job than I could ever possibly muster.  Enjoy……

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Our new American president is famous for spinning whoppers. Falsehoods, fabrications, distortions, deceptions—they’re all in a day’s work. The result is an increasingly adversarial relationship between the administration and the press, which may in fact be the point of the exercise: as conservative commentators Scott McKay suggests in The American Spectator, “The hacks covering Trump are as lazy as they are partisan, so feeding them . . . manufactured controversies over [the size of] inaugural crowds is a guaranteed way of keeping them occupied while things of real substance are done.”

But are some matters of real substance (such as last week’s ban on entry by residents of seven Muslim-dominated nations) themselves being used to hide even deeper and more significant shifts in power and governance? Steve “I want to bring everything crashing down” Bannon, who has proclaimed himself an enemy of Washington’s political class, is a member of a small cabal (also including Trump, Stephen Miller, Reince Priebus, and Jared Kushner) that appears to be consolidating nearly complete federal governmental power, drafting executive orders, and formulating political strategy—all without paper trail or oversight of any kind. The more outrage and confusion they create, the more effective is their smokescreen for the dismantling of governmental norms and institutions.

There’s no point downplaying the seriousness of what is up. Some commentators are describing it as a coup d’etat in progress; there is definitely the potential for blood in the streets at some point.

Nevertheless, even as political events spiral toward (perhaps intended) chaos, I wish once again, as I’ve done countless times before, to point to a lie even bigger than the ones being served up by the new administration—one that predates the new presidency, but whose deconstruction is essential for understanding the dawning Trumpocene era. I’m referring to a lie that is leading us toward not just political violence but, potentially, much worse. It is an untruth that’s both durable and bipartisan; one that the business community, nearly all professional economists, and politicians around the globe reiterate ceaselessly. It is the lie that human society can continue growing its population and consumption levels indefinitely on our finite planet, and never suffer consequences.

Yes, this lie has been debunked periodically, starting decades ago. A discussion about planetary limits erupted into prominence in the 1970s and faded, yet has never really gone away. But now those limits are becoming less and less theoretical, more and more real. I would argue that the emergence of the Trump administration is a symptom of that shift from forecast to actuality.

Consider population. There were one billion of us on Planet Earth in 1800. Now there are 7.5 billion, all needing jobs, housing, food, and clothing. From time immemorial there were natural population checks—disease and famine. Bad things. But during the last century or so we defeated those population checks. Famines became rare and lots of diseases can now be cured. Modern agriculture grows food in astounding quantities. That’s all good (for people anyway—for ecosystems, not so much). But the result is that human population has grown with unprecedented speed.

Some say this is not a problem, because the rate of population growth is slowing: that rate was two percent per year in the 1960s; now it’s one percent. Yet because one percent of 7.5 billion is more than two percent of 3 billion (which was the world population in 1960), the actual number of people we’re now adding annually is the highest ever: over eighty million—the equivalent of Tokyo, New York, Mexico City, and London added together. Much of that population growth is occurring in countries that are already having a hard time taking care of their people. The result? Failed states, political unrest, and rivers of refugees.

Per capita consumption of just about everything also grew during past decades, and political and economic systems came to depend upon economic growth to provide returns on investments, expanding tax revenues, and positive poll numbers for politicians. Nearly all of that consumption growth depended on fossil fuels to provide energy for raw materials extraction, manufacturing, and transport. But fossil fuels are finite and by now we’ve used the best of them. We are not making the transition to alternative energy sources fast enough to avert crisis (if it is even possible for alternative energy sources to maintain current levels of production and transport). At the same time, we have depleted other essential resources, including topsoil, forests, minerals, and fish. As we extract and use resources, we create pollution—including greenhouse gasses, which cause climate change.

Depletion and pollution eventually act as a brake on further economic growth even in the wealthiest nations. Then, as the engine of the economy slows, workers find their incomes leveling off and declining—a phenomenon also related to the globalization of production, which elites have pursued in order to maximize profits.

Declining wages have resulted in the upwelling of anti-immigrant and anti-globalization sentiments among a large swath of the American populace, and those sentiments have in turn served up Donald Trump. Here we are. It’s perfectly understandable that people are angry and want change. Why not vote for a vain huckster who promises to “Make America Great Again”? However, unless we deal with deeper biophysical problems (population, consumption, depletion, and pollution), as well as the policies that elites have used to forestall the effects of economic contraction for themselves (globalization, financialization, automation, a massive increase in debt, and a resulting spike in economic inequality), America certainly won’t be “great again”; instead, we’ll just proceed through the five stages of collapse helpfully identified by Dmitry Orlov.

Rather than coming to grips with our society’s fundamental biophysical contradictions, we have clung to the convenient lies that markets will always provide, and that there are plenty of resources for as many humans as we can ever possibly want to crowd onto this little planet. And if people are struggling, that must be the fault of [insert preferred boogeyman or group here]. No doubt many people will continue adhering to these lies even as the evidence around us increasingly shows that modern industrial society has already entered a trajectory of decline.

While Trump is a symptom of both the end of economic growth and of the denial of that new reality, events didn’t have to flow in his direction. Liberals could have taken up the issues of declining wages and globalization (as Bernie Sanders did) and even immigration reform. For example, Colin Hines, former head of Greenpeace’s International Economics Unit and author of Localization: A Global Manifesto, has just released a new book, Progressive Protectionism, in which he argues that “We must make the progressive case for controlling our borders, and restricting not just migration but the free movement of goods, services and capital where it threatens environment, wellbeing and social cohesion.”

But instead of well-thought out policies tackling the extremely complex issues of global trade, immigration, and living wages, we have hastily written executive orders that upend the lives of innocents. Two teams (liberal and conservative) are lined up on the national playing field, with positions on all significant issues divvied up between them. As the heat of tempers rises, our options are narrowed to choosing which team to cheer for; there is no time to question our own team’s issues. That’s just one of the downsides of increasing political polarization—which Trump is exacerbating dramatically.

Just as Team Trump covers its actions with a smokescreen of controversial falsehoods, our society hides its biggest lie of all—the lie of guaranteed, unending economic growth—behind a camouflage of political controversies. Even in relatively calm times, the über-lie was watertight: almost no one questioned it. Like all lies, it served to divert attention from an unwanted truth—the truth of our collective vulnerability to depletion, pollution, and the law of diminishing returns. Now that truth is more hidden than ever.

Our new government shows nothing but contempt for environmentalists and it plans to exit Paris climate agreement. Denial reigns! Chaos threatens! So why bother bringing up the obscured reality of limits to growth now, when immediate crises demand instant action? It’s objectively too late to restrain population and consumption growth so as to avert what ecologists of the 1970s called a “hard landing.” Now we’ve fully embarked on the age of consequences, and there are fires to put out. Yes, the times have moved on, but the truth is still the truth, and I would argue that it’s only by understanding the biophysical wellsprings of change that can we successfully adapt, and recognize whatever opportunities come our way as the pace of contraction accelerates to the point that decline can no longer successfully be hidden by the elite’s strategies.

Perhaps Donald Trump succeeded because his promises spoke to what civilizations in decline tend to want to hear. It could be argued that the pluralistic, secular, cosmopolitan, tolerant, constitutional democratic nation state is a political arrangement appropriate for a growing economy buoyed by pervasive optimism. (On a scale much smaller than contemporary America, ancient Greece and Rome during their early expansionary periods provided examples of this kind of political-social arrangement). As societies contract, people turn fearful, angry, and pessimistic—and fear, anger, and pessimism fairly dripped from Trump’s inaugural address. In periods of decline, strongmen tend to arise promising to restore past glories and to defeat domestic and foreign enemies. Repressive kleptocracies are the rule rather than the exception.

If that’s what we see developing around us and we want something different, we will have to propose economic, political, and social forms that are appropriate to the biophysical realities increasingly confronting us—and that embody or promote cultural values that we wish to promote or preserve. Look for good historic examples. Imagine new strategies. What program will speak to people’s actual needs and concerns at this moment in history? Promising a return to an economy and way of life that characterized a past moment is pointless, and it may propel demagogues to power. But there is always a range of possible responses to the reality of the present. What’s needed is a new hard-nosed sort of optimism (based on an honest acknowledgment of previously denied truths) as an alternative to the lies of divisive bullies who take advantage of the elites’ failures in order to promote their own patently greedy interests. What that actually means in concrete terms I hope to propose in more detail in future essays.





The Extreme Implausibility of Ecomodernism.

20 07 2016

Another essay by Ted Trainer.

tedtrainer

Ted Trainer

16.3.2016

Abstract: “Ecomodernism” is a recently coined term for that central element in mainstream Enlightenment culture previously well-described as “Tech-fix faith”. The largely taken for granted assumption has been that by accelerating modern technologies high living standards can be achieved for all, while resolving resource and ecological problems.  The following argument is that ecomodernism falls far short of having a substantial, persuasive or convincing case in its support. It stands as a contradiction of the now voluminous “limits to growth” literature, but it does not attempt to offer a case against the limits thesis. Elements in the limits case will be referred to below but the main line of argument will be to do with the reasons why achievement of the reductions and “decouplings” assumed by ecomodernism is extremely implausible. The conservative social and political implications are noted before briefly arguing that the solution to global problems must be sought via The Simpler Way.

What is ecomodernism?.

The 32 page Ecomodernist Manifesto (2015), by 18 authors, is a clear and emphatic restatement of the common belief that technical advance within the existing social structure can or will solve global problems, and there is therefore no need for radical change in directions, systems, values or lifestyles. Thus the fundamental commitment to ever more affluent “living standards”, capital intensive systems, technical sophistication and constantly rising levels of consumption and GDP is sound, and indeed necessary as it is the only way to enable the future technical advance that it is believed will solve global problems. This will enable human demands to be met while resource and ecological impacts on nature are reduced, thus making it possible to set more of nature aside to thrive. Modern agriculture for instance will producer more from less land, enabling more to be returned to nature and freeing Third World people from backbreaking work while moving into urban living.  Thus the fundamental assumption frequently asserted is that economic growth can be “decoupled” from the environment.

These kinds of visions would obviously require vastly increased quantities of energy but renewable sources are judged not to be capable of providing these, so it is no surprise to find late in the document that it is being assumed that nuclear reactors are going to do the job, nor that the pro-nuclear Breakthrough Institute champions the Manifesto.

Unfortunately the Manifesto is little more than a claim.  It provides almost no supporting case apart from giving some examples where technical advance has improved human welfare at reduced resource or ecological impact. It does not deal with the many reasons for thinking that technical advance cannot do what the ecomodernists are assuming it can do.  Above all it does not provide grounds for thinking that that resource demand and ecological damage can be sufficiently decoupled from economic growth. When one of the authors was asked for the supporting case reference was made to the 106 page document Nature Unbounded by Blomqvist, Nordhaus and Shellenberger, (2015.) However this document too is essentially a statement of claims and faith and can hardly be said to present a case that those claims can be realized.

The following discussion is mainly intended to show how implausible and unsubstantiated the general “tech-fix” and decoupling claims are, and that they are contrary to existing evidence.  Most if not all critical discussions of ecomodernism and of left modernization theorists such as Phillips (2015), e.g., by Hopkins (2015), Caradonna et al., 2015, Crist, (2015) and Smaje, (2015a, 2015b), have been impressionistic and “philosophical”. In contrast, the following analysis focuses on numerical considerations which establish the enormity of the ecomodernist claims. When estimates and actual numbers to do with resource demands, resource bases, and ecological impacts are attended to it becomes clear that the task for technical advance set by the ecomodernists is implausible in the extreme.

The basic limits to growth thesis.

The “limits to growth” thesis is that with respect to many factors crucial to planetary sustainability affluent-industrial-consumer society is grossly unsustainable. It has already greatly exceeded important limits. Levels of production and consumption are far beyond those that could be kept up for long or extended to all people.  Present consumption levels are achieved because resource and ecological “stocks” are being depleted much faster than they can regenerate.

But the unsustainable present levels of production, consumption, resource use and environmental impact only begin to define of the problem.  What is overwhelmingly crucial is the universal obsession with continual, never ending economic growth, i.e., with increasing production and consumption, incomes and GDP as much as possible and without limit.  The most important criticism of the ecomodernist position is its failure to grasp the magnitude of the task it confronts when the present overshoot is combined with the commitment to growth.  The main concern in the following discussion is with quantities and multiples, to show how huge and implausible ecomodernist achievements and decouplings would have to be.

The magnitude of the task.

It is the extent of the overshoot that is crucial and not generally appreciated. This is the issue which the ecomodernists fail to deal with and it only takes a glance at the numbers to see how implausible their pronouncements are in relation to the task they set themselves. Their main literature makes no attempt to carry out quantitative examinations of crucial resources and ecological issues with a view to showing that the apparent limits can be overcome.

Let us look at the overall picture revealed when some simple numerical aggregates and estimates are combined.  The normal expectation is for around 3% p.a. growth in GDP, meaning that by 2050 the total amount of producing and consuming going on in the world would be about three times as great as at present. World population is expected to be around 10 billion by 2050.  At present world  $GDP per capita is around $13,000, and the US figure is around $55,000. Thus if we take the ecomodernist vision to imply that by 2050 all people will be living as Americans will be living then, total world output would have to be around 3 x 10/7 x 55,000/13,000 = 18 times as great as it is now.  If the assumptions are extended to 2100 the multiple would be in the region of 80.

However, even the present global level of producing and consuming has an unsustainable level of impact.  The world Wildlife Fund’s “Footprint” measure (2015) indicates that the general overshoot is around 1.5 times a sustainable rate.  (For some factors, notably greenhouse gas emissions, the multiple is far higher.) This indicates that the target for the ecomodernist has to be to reduce overall resource use and ecological impact per unit of output by a factor of around 27 by 2050, and in the region of 120 by 2100. In other words, by 2050 technical advance will have to have reduced the resource demand and environmental impact per unit of output to under 4% of their present levels.

The consideration of required multiples shows the inadequacy of the earlier pronouncements and expectations of the well-known tech-fix optimist Amory Lovins who enthused about the possibility of “Factor Four” or better reductions in materials and energy uses per unit of GDP.  (Von Weisacker and Lovins, 1997, and Hawken, Lovins and Lovins, 1999).If there is a commitment to constant, limitless increase in economic output then the reductions in resource use and environmental damage that can be achieved by such technical advance are soon likely to be overwhelmed.  For instance if use and impact rates per unit of GDP were cut by one-third, but 3% p.a. growth in total output continued, then in about 17 years the resource demands and impacts would be back up to as high as they were before the cuts, and would be twice as great in another 23 years.

This issue of multiples is at the core of the limits and decoupling issues. If ecomodernists wish to be taken seriously they must provide a numerical case showing that in all the relevant domains the degree of decoupling that can be achieved is likely to be of the magnitude that would be required.  There appears to be no ecomodernist text which even attempts to do this.  At best their case refers to a few instances where impressive decoupling has taken place.

Note also the importance here of the Leibig “law of the minimum.” It does not matter how spectacular various technical gains can be if there remains one crucial area where they can’t be made on the required scale.  Plants for instance might have available all the nutrients they need except for one required in minute quantities but if it is not available there will be little or no growth.  High-tech systems often depend heavily on tiny quantities of “mineral vitamins”, notably rare earths which are extremely scarce.

The typically faulty national accounting.

An easily overlooked factor is that in general measures and indices of rich world resource and ecological performance greatly misrepresent and underestimate the seriousness of the situation, because they do not include the large volumes of energy, materials and ecological impact embodied in imported goods.  Rich countries now do not carry out much manufacturing but import most of the goods they consume from Third World plantations and factories.  The implications for resource depletion and ecological impact have only recently begun to be studied. (Weidmann, et al., 2014, 2015, Lenzen, et al., 2012, Wiebe, et al,

2012, Dittrich, et al., 2014, Schütz, et al., 2004.)

An example is given by the conventional measure of CO2 emissions. Australia’s 550 MtCO2e/y equates to a per capita rate of around 25 t/y, which is about the highest in the world. But this does not include the emissions in Third World countries generated by the production of goods imported into Australia.  For Australia and for the UK this amount is actually about as great as the emissions within the country.  (Clark, 2011, Australian Government Climate Change Authority, 2013.)

In addition Australia’s “prosperity” is largely achieved by exporting coal, oil and gas and these contain about three times as much carbon as all the energy used within Australia.  It could be argued therefore that the country’s contribution to the greenhouse gas problem more or less corresponds to five times the official and usually quoted 25 t/pp/y.  The IPCC estimates that by 2050 global emissions must be cut to about 0.3 t/pp/y. (IPCC, 2014.)  This is around one-three hundredth of the amount Australia is now responsible for. Again the centrality of the above magnitude point is evident; how aware are tech-fix optimists of the need for reductions of such proportions?

Assessing the validity of the general “tech-fix” thesis.

Firstly attention will be given to some overall numerical considerations which show the extreme implausibility of the general tech-fix claim, such as the gulf between current “decoupling” achievements and the far higher levels that ecomodernism would require. But that does not take into account the fact that it is going to take increasing effort just to maintain current achievements, for instance as ore grades deteriorate. This what the limits to growth analysis makes clear.  The added significance of this will be discussed later via brief examination of some domains such as energy scarcity, declining ore grades, and deteriorating ecological conditions.

How impressive have the overall gains been?

It is commonly assumed that in general rapid, large or continuous technical gains are being routinely made in crucial areas such as energy efficiency, and will continue if not accelerate.  As a generalisation this belief is quite challengeable. Ayres (2009) notes that for many decades there have been plateaus for the efficiency of production of electricity and fuels, electric motors, ammonia and iron and steel production. His Fig. 4.21a shows no increase in the overall energy efficiency of the US economy since 1960.  He reports that the efficiency of electrical devices in general has actually changed little in a century (2009) “…the energy efficiency of transportation probably peaked around 1960.” This has been partly due to greater use of accessories since then. Ayres notes that reports tend to publicise selected isolated spectacular technical advances and this is misleading regarding long term average trends across whole industries or economies. Mackay (2008) reports that little gain can be expected for air transport.  Huebner’s historical study (2005) found that the rate at which major technical advances have been made (per capita of world population) is declining.  He says that for the US the peak was actually in 1916.

Decoupling can be regarded as much the same as productivity growth and this has been in long term decline since the 1970s. Even the advent of computerisation has had a surprisingly small effect, a phenomenon now labelled the “Productivity Paradox.”

The historical record suggests that at best productivity gains have been modest. It is important not to focus on national measures such as “Domestic Materials Consumption” as these do not take into account materials in imported goods.  Thus the OECD (2015) claims that materials used within its countries has fallen 45% per dollar of GDP, but this figure does not take into account materials embodied in imported goods. When they are included rich countries typically show very low or worsening ratios. The commonly available global GDP (deflated) and energy use figures between 1980 and 2008 reveals only a 0.4% p.a. rise in GDP per unit of energy consumed.   Hattfield-Dodds et al. (2015) say that the efficiency of materials use has been improving at c. 1.5% p.a., but they give no evidence for this and other sources indicate that the figure is too high. Weidmann et al. (2014) show that when materials embodied in imports are taken into account rich countries have not improved their resource productivity in recent years. They say “…for the past two decades global amounts of iron ore and bauxite extractions have risen faster than global GDP.” “… resource productivity…has fallen in developed nations.” “There has been no improvement whatsoever with respect to improving the economic efficiency of metal ore use.”

The fact that the “energy intensity” of rich world economies, i.e., ratio of GDP to gross energy used within the country has declined is often seen as evidence of decoupling but this is misleading. It does not take into account the above issue of failure to include energy embodied in imports. Possibly more important is the long term process of “fuel switching”, i.e., moving to forms of energy which are of “higher quality” and enable more work per unit. For instance a unit of energy in the form of gas enables more value to be created than a unit in the form of coal, because gas is more easily transported, switched on and off, or converted from one function to another, etc. (Stern and Cleveland, 2004, p. 33, Cleveland et al., 1984, Kaufmann, 2004,  Office of Technology Assessments, 1990, Berndt, 1990, Schurr and Netschurt, 1960.)

Giljum et al. (2014, p. 324) report only a 0.9% p.a. improvement in the dollar value extracted from the use of each unit of minerals between 1980 and 2009, and that over the 10 years before the GFC there was no improvement. “…not even a relative decoupling was achieved on the global level.” They note that the figures would have been worse had the production of much rich world consumption not been outsourced to the Third World. Their Fig. 2, shows that over the period 1980 to 2009 the rate at which the world decoupled materials use from GDP growth was only one third of that which would have achieved an “absolute” decoupling, i.e., growth of GDP without any increase in materials use.

Diederan’s account (2009) of the productivity of minerals discovery effort is even more pessimistic. Between 1980 and 2008 the annual major deposit discovery rate fell from 13 to less than 1, while discovery expenditure went from about $1.5 billion p.a. to $7 billion p.a., meaning the productivity expenditure fell by a factor in the vicinity of around 100, which is an annual decline of around 40% p.a. Recent petroleum figures are similar; in the last decade or so discovery expenditure more or less trebled but the discovery rate has not increased.

A recent paper in Nature by a group of 18 scientists at the high-prestige Australian CSIRO (Hatfield-Dodds et al., 2015) argued that decoupling could eliminate any need to worry about limits to growth at least to 2050. The article contained no support for the assumption that the required rate of decoupling was achievable and when it was sought (through personal communication) reference was made to the paper by Schandl et al. (2015.)  However that paper contained the following surprising statements, “ … there is a very high coupling of energy use to economic growth, meaning that an increase in GDP drives a proportional increase in energy use.”  (They say the EIA, 2012, agrees.) “Our results show that while relative decoupling can be achieved in some scenarios, none would lead to an absolute reduction in energy or materials footprint.” In all three of their scenarios “…energy use continues to be strongly coupled with economic activity…”

The Australian Bureau of Agricultural Economics (ABARE, 2008) reports that the energy efficiency of energy-intensive industries is likely to improve by only 0.5% p.a. in future, and of non-energy-intensive industries by 0.2% p.a. In other words it would take 140 years for the energy efficiency of the intensive industries to double the amount of value they derive from a unit of energy.

Alexander (2014) concludes his review of decoupling by saying, ”… decades of extraordinary technological development have resulted in increased, not reduced, environmental impacts.”  Smil (2014) concludes that even in the richest countries absolute dematerialization is not taking place. Alvarez found that for Europe, Spain and the US GDP increased 74% in 20 years, but materials use actually increased 85%. (Latouche, 2014.) Similar conclusions re stagnant or declining materials use productivity etc. are arrived at by Aadrianse, 1997, Dettrich et al., (2014), Schutz, Bringezu and Moll, (2004), Warr, (2004), Berndt, (undated), and Victor (2008, pp. 55-56).

These sources and figures indicate the lack of support for the ecomodernists’ optimism. It was seen above that they are assuming that in 35 years time there can be massive absolute decoupling, i.e., that energy, materials and ecological demand associated with $1 of GDP can be reduced by a factor of around 27. But even if the 1.5% p.a. rate Hattfield-Dodds et al. say has been the recent achievement for materials use could be maintained the reduction would only be around a factor of 1.7, and various sources noted above say that their assumed rate is incorrect. There appears to be no ecomodernist literature that even attempts to provide good reason to think a general absolute decoupling is possible, let alone on the required scale.

The overlooked role of energy in productivity growth and decoupling.

Discussions of technical advance and economic growth have generally failed to focus on the significance of increased energy use. Previously productivity has been analysed only in terms of labour and capital “factors of production”, but it is now being recognized that in general greater output etc. has been achieved primarily through increased use of energy (and switching to fuels of higher “quality”, such as from coal and gas to electricity.)  Agriculture is a realm where technical advance has been predominantly a matter of increased energy use. Over the last half century productivity measured in terms of yields per ha or per worker have risen dramatically, but these have been mostly due to even greater increases in the amount of energy being poured into agriculture, on the farm, in the production of machinery, in the transport, pesticide, fertilizer, irrigation, packaging and marketing sectors, and in getting the food from the supermarket to the front door, and then dealing with the waste food and packaging. Less than 2% of the US workforce is now on farms, but agriculture accounts for around 17% of all energy used (not including several of the factors listed above.) Similarly the “Green Revolution” has depended largely on ways that involve greater energy use.

Ayres, et al., (2013), Ayres, Ayres and Warr (2002) and Ayres and Vouroudis (2013) are among those beginning to stress the significance of energy in productivity, and pointing to the likelihood of increased energy problems in future and thus declining productivity. Murillo-Zamorano, (2005, p. 72) says  “…our results show a clear relationship between energy consumption and productivity growth.” Berndt (1990) finds that technical advance accounts for only half the efficiency gains in US electricity generation. These findings caution against undue optimism regarding what pure technical advance can achieve independently from increased energy inputs; in general its significance for productivity gains appears not to have been as great as has been commonly assumed.

The productivity trend associated with this centrally important factor, energy, is itself in serious decline, evident in long term data on EROI ratios. Several decades ago the expenditure of the energy in one barrel of oil could produce 30 barrels of oil, but now the ratio is around 18 and falling. The ratio of petroleum energy discovered to energy required has fallen from 1000/1 in 1919 to 5/1 in 2006. (Murphy, 2010.) Murphy and others suspect  that an industrialised society cannot be maintained on a general energy ratio under about 10. (Hall, Lambert and Balough, 2014.)

The changing components of GDP.

Over recent decades there has been a marked increase in the proportion of rich nation GDP that is made up of “financial” services. These stand for “production” that takes the form of key strokes moving electrons around.  A great deal of it is wild speculation, making risky loans and making computer driven micro-second switches “investments”. These operations deliver massive increases in income to banks and managers, and these have significantly contributed to GDP figures. It could be argued that this domain should not be included in estimates of productivity because it misleadingly inflates the numerator in the output/labour ratio.

When output per worker in the production of “real” goods and services such as food and vehicles, or aged care is considered very different impressions can be gained.  For instance Kowalski (2011) reports that between 1960 and 2010 world cereal production increased 250%, but nitrogen fertilizer use in cereal production increased 750%, and land area used increased 40%. This aligns with the above evidence on steeply falling productivity of various inputs for ores and energy. It is therefore desirable to avoid analysing productivity, the “energy intensity” of an economy, and decoupling achievements in relation to the GDP measure.

Factors limiting the benefits from a technical advance.

There are several factors which typically determine the gains a technical advance actually enables are well below those that seem possible at first.  Engineers and economists make the following distinctions.

“Technical potential”  refers to what could be achieved if the technology could be fully applied with no regard to cost or other problems.

Economic (or ecological) potential”.  This is usually much less than the technical potential because to achieve all the gains that are technically possible would cost too much.  For instance some The Worldwide Fund for Nature quotes Smeets and Faiij (2007) as finding that it would be technically possible for the world’s forests to produce another 64 EJ/y of biomass energy p.a., but they say that the ecologically tolerable potential is only 8 EJ/y.

What are the net gains?  Enthusiastic claims about a technical advance typically focus on the gains and not the costs which should be subtracted to give a net value.  For instance the energy needed to keep buildings warm can be reduced markedly, but it costs a considerable amount of energy to do this, in the electricity needed to run the air-conditioning and heat pumps, and in the energy embodied in the insulation and triple glazing. There are also knock-on effects.  The Green Revolution doubled food yields, but only by introducing crops that required high energy inputs in the form of expensive fertlilzer, seeds and irrigation, and created social costs to do with the disruption of peasant communities.

  • What is socially/politically possible?  There are limits set by what people will accept.  It would be technically possible for many more people in any city to get to work by public transport, but large numbers would not give up the convenience of their cars even if they saved money doing so.
  • The Jeavons or “rebound” effect.  There is a strong tendency for savings made possible by a technical advance to be spent on consuming more of the thing saved, or something else.

Thus it is important to recognise that initial claims usually refer to “technical potential”, but significantly lower savings etc. are likely in the real world.

Now add the worsening limits.

The discussion so far has only dealt with decoupling achievements to date, but the difficulties involved in those achievements are in general likely to have been much less severe than those ahead, as there is continued deterioration in ore grades, forests, soils, chemical pollution, water supplies etc.  It is important now to consider briefly some of these domains, to see how they will make the task for the ecomodernist increasingly difficult.

Before looking at some specific areas the general “low hanging fruit” effect should be mentioned.  When effort is put into dealing with problems, recycling, conserving, increasing efficiency etc. the early achievements might be spectacular but as the easiest options are used up progress typically becomes more difficult and slow. This is so even when there are no problems of dwindling resource availability.

                        Minerals.

The grades of several ores being mined are falling and production costs have increased considerably since 1985. Topp (2008) reports that the productivity for Australian mining has declined 24% between 2000 and 2007. While reserve estimates can be misleading as they only state quantities miners have found to date, and they often increase over time, there is considerable concern about the depletion rate.

Dierderen (2009) says that continuation of current consumption rates will mean that we will have much less than 50 years left of cheap and abundant access to metal minerals, and that it will take exponentially more energy and minerals input to grow or even sustain the current extraction rate of metal minerals. He expects copper, nickel, molybdenum and cobalt to peak before 2035. Deideren’s conclusion is indeed, as his title says, sobering; “The peak in primary production of most metals may be reached no later than halfway through the 2020s.” (p. 23.) “Without timely implementation of mitigation strategies, the world will soon run out of all kinds of affordable mass products and services.”  Such as… “cheap mass-produced consumer electronics like mobile phones, flat screen TVs and personal computers, for lack of various scarce metals (amongst others indium and tantalum). Also, large-scale conversion towards more sustainable forms of energy production, energy conversion and energy storage would be slowed down by a lack of sufficient platinum-group metals, rare-earth metals and scarce metals like gallium. This includes large-scale application of high-efficiency solar cells and fuel cells and large-scale electrification of land-based transport.” Deideren points out that Gallium, Germanium, Indium and Tellurium are crucial for renewable technologies but are by-products currently available in low quantity from the mining of other minerals.  If the latter peak so will the availability of the former.

Scarcities in one domain often have knock-on and negative feedback effects in others.  Diederan says, “The most striking (and perhaps ironic) consequence of a shortage of metal elements is its disastrous effect on global mining and primary production of fossil fuels and minerals: these activities require huge amounts of main and ancillary equipment and consumables (e.g. barium for barite based drilling mud)”. (p. 9.)

The ecomodernist’s response must be to advocate mining poorer grade ores, but this means dealing with marked increases in energy and environmental costs.

  • The quantity of rock that has to be dug up increases. For ores at half the initial grade the quantity doubles, and so does the energy needed to dig, transport and crush it.
  • Poorer ores require finer grinding and more chemical reagents to release mineral components, meaning greater energy demand and waste treatment.
  • Meanwhile the easiest deposits to access are being depleted so it takes more energy to find, get to, and work the newer ones. They tend to be further away, deeper, and smaller.
  • Processing rich ores can be chemically quite different to processing poor ores. Only a very small proportion of any mineral existing in the earth’s crust has been concentrated by natural processes into ore deposits, between .001% and .01%, and the rest exists in common rock, mostly in silicates which are more energy-intensive to process than oxides and sulphides.  To extract a metal from its richest occurrence in common rock would take 10 to 100 times as much energy as to extract if from the poorest ore deposit. To extract a unit of copper from the richest common rocks would require about 1000 times as much energy per kg as is required to process ores used today.

Now consider the minerals situation in relation to the multiples issue. At present only a few countries are using most of the planet’s minerals production.  For instance the per capita consumption of iron ore for the ten top consuming countries is actually around 90 times the figure for all other countries combined. (Weidmann et al., 2013.) How long would mineral supply hold up, at what cost, if 9 – 10 people billion were to try to rise to rich world “living standards”? How likely is it that in view of current ore grade depletion rates and the miniscule decoupling achievement for minerals, the global amount of producing and consuming could multiply by 27, or 120, while the absolute amount of minerals consumed declined markedly?

The ecomodernist cannot hope to deal with the minerals problem without assuming very large scale adoption of nuclear energy, which they are willing to do.

Climate.

Most climate scientists now seem to accept the approach put forward by Meinshausen et al., (2009), and followed by the IPCC (2013) in analyzing in terms of a budget, an amount of carbon release that must not be exceeded if the 2 degree target is to be met.  They estimate that to have a 67% chance of keeping global temperature rise below this the amount of CO2e that can be released between 2000 and 2050 is 1,700 billion tonnes. By 2012 emissions accounted for 36% of this amount, meaning that if the present emission rate is kept up the budget would have been used up by 2033.  Given the seriousness of the possible consequences many regard a 67% chance as being too low and a2 degree rise as too high. (Anderson and Bows, 2008, and Hansen, 2008.)  For an 80% chance the budget limit would be 1,370 billion tonnes.

Few would say there is any possibility of eliminating emissions by 2033. Many emissions come from sources that would be difficult to control or reduce, such as carbon electrodes in the electric production of steel and aluminium. Only about 40% of US emissions come from power generation. Thus power station Carbon Capture and Storage technology cannot solve the problem.

Even the IPCC’s most optimistic emissions reduction scenario, RCP 2.6, could be achieved only if as yet non-existent technology will be able to take 1 billion tonnes of carbon out of the atmosphere every year through the last few decades of this century. (IPCC, 2014.)

Ecomodernists mostly regard the climate problem as solvable by the intensive adoption of nuclear energy. However even the most rapid build conceivable could not achieve the Meinschausen et al. target.

Urbanisation.

About half the world’s people now live in cities, and the ecomodernist strongly advocates increasing this markedly, on the grounds that intensification of settlement will enable freeing more space for nature.  This is an area where knock-on effects are significant. Urban living involves many high resource and ecological costs, including having to move in vast amounts of energy, goods, services and workers, to maintain elaborate infrastructures including those to lift water and people living in high-rise apartments, having to move out all “wastes”, having to provide artificial light, heating, cooling, air purification, having to build freeways, bridges, railways, airports, container terminals, and having to staff complex systems with expensive highly trained professionals and specialists.  Little or none of this dollar, energy, resource or ecological cost has to be met when people live in villages (See on Simpler Way settlements below).

The frequent superficiality and invalidity of the Manifesto’s case is illustrated by the following statement. “Cities occupy just 1 to 3 percent of the Earth’s surface, yet are home to nearly 4 billion people. As such, cities both drive and symbolize the decoupling of humanity from nature, performing far better than rural economies in providing efficiently for material needs…” This statement overlooks the vast areas needed to produce and transport food etc. into the relatively small urban areas. If four billion were to live as San Franciscans do now, with a footprint over 7 ha per person, the total global footprint would be almost 30 billion ha, 200% of the Earth’s surface, not 1- 3%. (WWF, 2014.) Urbanisation does not  “decouple humanity from nature”.

Biological resources and impacts.

Perhaps the most worrying limits being encountered are not to do with minerals or energy but involve the deterioration of biological resources and environmental systems. The life support systems of the planet, the natural resources and processes on which all life on earth depends, are being so seriously damaged that the World Wildlife Fund claims there has been a 30% deterioration since about 1970. Steffen et al., (2015) state much the same situation. A brief reference to a number of impacts is appropriate here to again indicate the magnitude of present problems and their rate of growth.

Biodiversity loss.

Species are being driven to extinction at such an increasing rate that it is claimed the sixth holocaust of biodiversity loss has begun. The rate has been estimated at 114 times the natural background rate. (Ceballos, et al., 2015, Kolbert, 2014.) The numbers or mass of big animals has declined dramatically. “… vertebrate species populations across the globe are, on average, about half the size they were 40 years ago.” (Carrington, 2014.) The mass of big animals in the sea is only 10% of what it was some decades ago. The biomass of corals on the Great Barrier Reef is only half what it was about three decade ago. By the end of the 20th century half the wetlands and one third of coral reefs had been lost. (Washington, 2014.)

Disruption of the nitrogen cycle.

Humans are releasing about as much nitrogen via artificial production, especially for agriculture, as nature releases. This has been identified as one of the nine most serious threats to the biosphere by the Planetary Boundaries Project. (Rockstrom and Raeworth, 2014.)

The increasing toxicity of the environment.

Large volumes of artificially produced chemicals are entering ecosystems disrupting and poisoning them.  This includes the plastics concentrating in the oceans and killing marine life.

Water.

Serious water shortages are impacting in about 80 countries. More than half the world’s people live in countries where water tables are falling. Over 175 million Indians and 130 million Chinese are fed by crops watered by pumps running at unsustainable rates. (Brown, 2011, p. 58.) Access to water will probably be the major source of conflict in the world in coming years. About 480 million people are fed by food produced from water pumped from underground. The water tables are falling fast and the petrol to run the pumps might not be available soon. In Australia overuse of water has led to serious problems, such as salinity in the Murray-Darling system. By 2050 the volume of water in these rivers might be cut to half the present amount, as the greenhouse problem impacts.

Fish.

Nearly all fisheries are being over-fished and the global fish catch is likely to go down from here on.  The mass of big fish in the oceans, such as shark and tuna, is now only 10% of what it was some decades ago. Ecomodernists assume that aquaculture will solve the fish supply problem. It is not clear what they think the farmed fish will be fed on.

Oceans.

Among the most worrying effects is the increasing acidification of the seas, dissolving the shells of many ocean animals, including the krill which are at the base of major ocean food chains.  This effect plus the heating of the oceans is seriously damaging corals.  The coral life on the Great Barrier Reef is down 30% on its original level, and there is a good chance the whole reef will be lost in forty years. (Hoegh-Guldberg, 2015.)

Food, land, agriculture.

Food supply will have to double to provide for the expected 2050 world population, and it is increasingly unlikely that this can be done. Food production increase trends are only around 60% of the rate of increase needed. (Ray, et al., 2013.) Food prices and shortages are already serious problems, causing riots in some countries.  If all people we will soon have on earth had an American diet we would need 5 billion ha of cropland, but there are only 1.4 billion ha on the planet and that area is likely to reduce as ecosystems deteriorate, water supply declines, salinity and erosion continue, population numbers and pressures to produce increase, land is used for new settlements and to produce more meat and bio-fuels, and as global warming has a number of negative effects on food production.

Burn, (2015) and Vidal (2010) both report the rate of food producing land loss at 30 million ha p.a. Vidal says, “…the implications are terrifying”, and he believes major food shortages are threatening. Pimentel says one third of all cropland has been lost in the last 40 years. China might be the worse case, losing 600 square miles p.a. in the 1950 – 1970 period, but by 2000 the rate had risen to 1,400 square miles p.a.  For 50 years about 500 villages have had to be abandoned every year due to incoming sand from the expanding deserts. If the estimates by Burn and Vidal are correct then more than 1 billion ha of cropland will have been lost by 2050, which is two-thirds of all cropland in use today.

The Ecomodernist Manifesto devotes considerable attention to the issue of future food production, using it as an example of the wonders technical advance can bring, including liberating peasants from backbreaking work. It is claimed that advances in modern agriculture will enable production of far more food on far less land, enabling much land to go back to nature. There is no recognition of the fact that modern agriculture is grossly unsustainable, on many dimensions.  It is extremely energy intensive, involving large scale machinery, international transport, energy-intensive inputs of fertilizer and pesticides, packaging, warehousing, freezing, dumping of less than perfect fruit and vegetables, serious soil damage through acidification and compaction, carbon loss and erosion, the energy-costly throwing away of nutrients in animal manures, the destruction of small scale farming and rural communities, the loss of the precious heritage that is genetic diversity … and the loss of food nutrient and taste quality (most evident in the plastic tomato.)

On all these dimensions peasant and home gardening and other elements in local agriculture such as ”edible landscapes”, community gardens and commons are superior. The one area where modern agriculture scores better is to do with labour costs, but that is due to the use of all that energy-intensive machinery. Ecomodernists do not seem to realize what a fundamental challenge is set for them by the well-established “inverse productivity relationship”, i.e., the fact that small scale food producers achieve higher yields per ha. (Smaje, 2015a, 2015b.) They are able to almost completely avoid food packaging, advertising and transport costs, to recycle all nutrients to local soils, benefit from overlaps and multiple functions (e.g., geese weed orchards, ducks eat snails, kitchen scraps feed poultry…) Possibly most importantly, local food production systems maximize the provision of livelihoods and are fundamental elements in resilient and sustainable communities.

Again a daunting challenge is set for the ecomodernist. Presumably the far higher yields from far less land will involve energy intensive high-rise greenhouses, water desalinisation, aquaculture, near 100% phosphorus and other nutrient recycling, elimination of nitrogen run-off, restoration of soil carbon levels, synthetic meat, and extensive global transport and packaging systems. Again numerical analyses aimed at showing what the energy, materials  and dollar budgets would be, or that the goals can be met, are not offered. In addition a glance at the tech fix vision for future food supply reveals the many knock on effects that would multiply problems in many other areas, most obviously energy, infrastructure and water provision and the associated demand for materials.

A glance at the energy implications for beef production should again establish the magnitude point. To produce one kg of beef take can take 20,000 litres of water, and it can take 4 kWh to desalinize 1 liter of water. Again it is evident that there would have to be very large scale commitment to nuclear energy.

            Summarising the biological resource situation.

The environmental problem is essentially due to the huge and unsustainable volumes of producing and consuming taking place.  Vast quantities of resources are being extracted from nature and vast quantities of wastes are being dumped back into nature. Present flows are grossly unsustainable but the ecomodernist believes the basic commitment to ever-increasing “living standards” that is creating the problems can and should continue, while population multiplies by 1.5, resources dwindle, and consumption multiplies perhaps by eight by 2100.

The energy implications.

In all the fields discussed it is evident that the ecomodernist vision would have to involve a very large increase in energy production and consumption, including for processing lower grade ores, producing much more food from much less land, desalinisation of water, dealing with greatly increased amounts of industrial waste (especially mining waste), and constructing urban infrastructures. The “no-limits-to-growth” scenario for Australia 2050 put forward by Hattfield-Dodds et al. concludes that present energy use would have to multiply by 2.7, more than most if not all other projections, and their scenarios do not take into account the energy needed to deal with any of the knock-on effects discussed above. (And their conclusion is based on a highly implausible rate of decoupling materials use from GDP growth, i.e., up to 4.5% p.a.)

If 9 billion people were to live on the per capita amount of energy Americans now average, world energy consumption in 2050 would be around x5 (for the US to world average ratio) x10/7 (for population growth) times the present 550 EJ p.a., i.e., around 3,930 EJ. Let us assume it is all to come from nuclear reactors, that technical advance cuts one-third off the energy needed to do everything, but that moving to poorer ores, desalinisation etc. and converting to (inefficient) hydrogen supply for many storage and transport functions counterbalance that gain.  The nuclear generating capacity needed would be around 450 times as great as at present.

Conclusions re the significance of the limits to growth.

This brief reference to themes within the general “limits to growth” account makes it clear that the baseline on which ecomodernist visions must build is not given by presentconditions. As Steffen et al. (2015) stress the baseline is one of not just deteriorating conditions, but accelerating deterioration. It is as if the ecomodernists are claiming that their A380 can be got to climb at a 60 degree angle, which is far steeper than it has ever done before, but at present it is in an alarming and accelerating decline with just about all its systems in trouble and some apparently beyond repair. The problem is the wild party on board, passengers and crew dancing around a bonfire and throwing bottles at the instruments, getting more drunk by the minute. A few passengers are saying the party should stop, but no one is listening, not even the pilots. The ecomodernist’s problem is not just about producing far more metals, it is about producing far more as grades decline, it is not just about producing much more food, it is about producing much more despite the fact that problems to do with water availability, soils, the nitrogen cycle, acidification, and carbon loss are getting worse.  It can be argued that on many separate fronts halting the deteriorating trends is now unlikely to be achieved. Yet the ecomodernist wants us to believe that the curves can be made to cease falling and to rise dramatically, without abandoning the quests for affluence and growth which are responsible for their deterioration.  Stopping the party is not thought to warrant consideration.

            The implications for centralisation, control and power.

The ecomodernist vision would have to involve vast, technically sophisticated, expert-run, bureaucratized and centralized global systems, most obviously for the control of the nuclear sector, e.g., to prevent access to weapons grade material. Both corporate and governmental agencies would have to be very large in scale, and relations between the corporate sector and top levels of government would set problems to do with openness, public accountability, democratic control, and corruption. Most production would be from a relatively few gigantic and automated mines, factories, feed lots, mega-greenhouses and plantations compressed into the relatively few best sites.  How this would provide jobs and livelihoods to perhaps 6 billion Third world poor would need to be explained. The provision of large amounts of capital would probably become much more centralised and problematic than it has been in the GFC era.

A “development” model focused on these massive, centralized, expert-dependent and capital intensive systems is not obviously going to improve the already severe problem of global inequality. Mega corporations will run the automated vertical farms and desal plants, assisted by governments who in the past have had no difficulty legislating to clear the locals out of the way, as when Third World governments enable GDP-raising palm oil plantations, logging, big dams and aquaculture. Thus Smaje regards ecomodernism as a new enclosure movement.

Morgan (2012) and Korrowicz (2012) provide disturbing accounts of the fragility and lack of resilience of highly integrated and complex systems. Tainter, (1988), draws attention to the way increasing system complexity leads towards negative synergisms and breakdown. For instance where two roads cross in a village no infrastructure might be needed but in a city multi-million dollar flyovers can be required. As Rome’s road system grew the effort needed just to maintain them grew towards taking up all road building capacity. Among the chief virtues of the small and local path are its robustness, redundancy and resilience, the capacity for simple repairs to simple systems, as well as its capacity to provide livelihoods to large numbers of people.

Above all the ecomodernist vision stands for the rejection of any suggestion that the economy needs altering, let alone scrapping, or that rampant-consumer culture needs to be replaced.  The problems are defined as purely technical. If minerals are becoming scare the solution is not to reduce use of them but to increase production of them. Thus there is no need to think about giving up consumerism, economic growth, the market system or the capitalist system. Radical thought and action need not be considered. Smaje describes it as “neoliberalism with a green veneer.” These messages are as consoling to the present working class and the precariat as they are to the capitalist class.

The mistaken “uni-dimensional” assumption.

Frequently evident in ecomodernist thinking is the way that development, emancipation, technology, progress, comfort, the elimination of disease and hunger are seen to lie along the one path that runs from primitive through peasant worlds to the present and the future.  At the modern end of the dimension there is material abundance, science and high technology, the market economy, freedom from backbreaking work, complex civilization with high educational standards and sophisticated culture. It is taken for granted that your choice is only about where you are on that dimension. Third World “development” can only be about moving up the dimension to greater capital investment, involvement in the global market, trade, GDP and consumer society. Thus they see localism and small is beautiful as “going back”, and condemning billions to continued hardship and deprivation.  Opposition to their advocacy of more modernism is met with, “…well, what period in history do you want to go back to?”

This world-view fails to grasp several things.  The first is the possibility that there might be more than one path; the Zapatista’s do not want to follow our path.  Another is that we  might opt for other end points than the one modernization is taking us to.  A third is that we might deliberately select desirable development goals rather than just accept where modernization takes us, and on some dimensions we might choose not to develop any further.  Ecomodernism has no concept of sufficiency or good enough; Smaje sees how it endorses being incessantly driven to strive for bigger and better, and he notes the spiritual costs. Many ecovillages are developed enough.

Possibly most important, it is conceivable that we could opt for a combination of elements from different points on the path. For instance there is no reason why we cannot have both sophisticated modern medicine and the kind of supportive community that humans have enjoyed for millennia, and have both technically astounding aircraft along with small, cheap, humble, fireproof, home made and beautiful mud brick houses, and have modern genetics along with neighbourhood poultry co-ops. Long ago humans had worked out how to make excellent and quite good enough houses, strawberries, dinners and friendships. We could opt for stable, relaxed, convivial and sufficient ways in some domains while exploring better ways in others, but ecomodernists see only two options; going forward or backward. They seem to have no interest in which elements in modernism are worthwhile and which of them should be dumped. The Frankfurt School saw some of them leading to Auschwitz and Hiroshima.

The inability to think in other than uni-dimensional terms is most tragic with respect to Third World “development”.  Conventional-capitalist development theory can only promise a “growth and trickle down” path, which if it continues would take many decades to lift all to tolerable conditions while the rich rise to the stratosphere, but which cannot continue if the limits to growth analysis of the global situation is correct. Yet The Simpler Way might quickly lift all to satisfactory conditions using mostly traditional technologies and negligible capital. (Trainer, 2012, 2013a, 2013b, Leahy, 2009.)

In his critique of Phillips (2014) Smaje (2015b) sees the Faustian bargain here, the readiness to suffer, indeed embrace, the relentless discontent, struggle, disruption and insecurity that modernism involves, without realizing that we might opt to take the benefits of modernism while dumping the disadvantages and designing ways of life that provide security, stability, a relaxed pace and a high quality of life for all.

A radically alternative vision; The Simpler Way.

Until the last decade or so there was no alternative to the dominant implicit ecomodernist world view, but now significant challenges have emerged, most evidently in the overlapping Eco-village, Degrowth, Transition Towns and localism movements. The fundamental beginning point for these is acceptance of the “limits to growth” case that levels of production, consumption, resource use and ecological impact are extremely unsustainable and that the resulting global problems cannot be solved unless there are dramatic reductions.  The core Simpler Way vision claim is that these reductions can be made while significantly improving the quality of life, even in the richest countries, but not without radical change in systems and lifestyles.  Following is a brief indication of some of the main elements in this vision. (For the detailed account see Trainer, 2011.)

The basic settlement form is the small scale town or suburb, restructured to be a highly self-sufficient local economy running mostly on local resources and requiring a minimal amount of resources and goods to be imported from further afield.  State and national governments would still exist but with relatively few functions. There would be extensive development of local commons such as community watersheds, forests, edible landscapes, workshops and windmills etc. and cooperatives would provide many goods and services. Extensive use could be made of high tech systems but mostly relatively low technologies would be used in small firms and farms, especially earth building, hand tool craft production, Permaculture, community gardening and commons. Leisure committees would maintain leisure rich communities, and other committees would manage orchards, woodlots, agricultural research, and the welfare of disabled, teenage, aged and other groups. Local economies would dramatically reduce the need for vehicles and transport, enabling conversion of many roads to community food production.

These settlements would have to be self-governing via thoroughly participatory procedures, including town meetings and referenda. Citizens are the only ones who can understand local conditions, problems and needs, and they would have to work out the best policies for the town and to own the decisions arrived at. Centralised states could not govern them at all effectively, especially given the much diminished resources that will be available to states.  More importantly the town would not meet its own needs well unless its citizens had a strong sense of empowerment and control and responsibility for their own affairs.

Systems, procedures and the overriding ethos would have to be predominantly cooperative and collective, given the recognition that individual welfare would depend heavily on how well the town was functioning. It would not be likely to thrive unless there was an atmosphere of inclusion and care, solidarity and responsibility.

An entirely new kind of economy would be needed, one that did not grow, rationally geared productive capacity to social need, had per capita levels of production, consumption, resource use and GDP far below current levels, was under public control, and was not driven by market forces, profit or competition. However, there might also be a large sector made up of privately owned small firms and farms, producing to sell in local markets, but operating under careful guidelines set by the town to ensure optimum benefit for the town. The transition period would essentially be about slowly establishing those enterprises, infrastructures, cooperatives, commons and institutions (Economy B) whereby the town developed its capacity to make sure that what needs doing is done, within the exiting mainly fee enterprise system (Economy A.) Over time experience would indicate the best balance between the two, and whether there was any need for the market sector.

There would be many free” goods from the commons, a large non-cash sector involving sharing, giving, helping and voluntary working bees, and almost no finance sector. Small public banks with elected boards would hold savings and arrange loans for maintenance or restructuring.  Some people might pay all their tax by extra contributions to the community working bees. Communities would ensure that there was no unemployment or poverty, no isolation or exclusion, all felt secure, and that all had a livelihood, a worthwhile and valued contribution to make to the town. Because the goal would be material lifestyles that were frugal but sufficient, involving for instance small and very low cost earth built houses, on average people might need to work for money only two days a week. It can be argued that the quality of life would be higher than it is for most people in rich countries today. Lest these ideas seem fanciful, they describe the ways many thousands now live in ecovillages and Transition Towns.

Beyond the town or suburban level there would be regional and national economies, and larger cities containing universities, steel works, and large scale production, e.g., of railway equipment, but their activities would be greatly reduced, and re oriented to provisioning the local economies. There would be little international trade or travel. The termination of the present vast expenditure on wasteful production would enable the amount spent on socially useful R and to be significantly increased.

A detailed analysis of an Australian suburban geography (Trainer, 2016) concludes that technically it would be relatively easy to carry out the very large reductions and restructurings indicated, possibly cutting in energy and dollar costs by around 90%.

It is obvious that the Simpler Way vision could not be realised unless there was enormous “cultural” change, especially away from competitive, acquisitive, maximising individualism and towards frugality, collectivism, sufficiency and responsible citizenship. Fortunately there is now increasing recognition that pursuing ever greater material wealth and GDP is not a promising path to greater human welfare. In a zero-growth settlement there could be no concern with the accumulation of wealth; all would have to be content with stable and secure circumstances, to enjoy non-material life satisfactions, and to be aware that their “welfare” depended not on their individual monetary wealth but on public wealth, i.e., on their town’s infrastructures, systems, edible landscapes, free concerts, working bees, committees, leisure resources, solidarity and morale.

Thus from The Simpler Way perspective the solution to global problems is not a technical issue; it is a value issue. We have all the technology we need to create admirable societies and idyllic lives. But this can’t be done if growth and affluence remain the overriding goals.

At present there would seem to be little chance that a transition to The Simpler Way will be achieved, but that is not central here; the issue is whether this vision or that of the ecomodernist makes more sense.

————-

Aadrianse, A., (1997), Resource Flows, Washington, World Resources Institute.

Australian Bureau of Agricultural and Resource Economics,(ABARE), (2008),  Energy in Australia, Canberra.

Alexander, S., (2014), A Critique of Techno-Optimism: Efficiency Without Sufficiency is Lost, Post Carbon Pathways, Working Papers.

Anderson, K. and A. Bows, (2008), “Reframing the climate change challenge in the light of post 2000 emission trends”, Philosophical Transactions of the Royal Society, 266, 3863 – 3882.

Asafu-Adjaye, J., et al., (2015) An Ecomodernist Manifesto, April, http://www.ecomodernism.org

Australian Government Climate Change Authority, (2013), Targets and Progress Review.

http://climatechangeauthority.gov.au/reviews/targets-and-progress-review/part/chapter-3-global-emissions-budget-2-degrees-or-less]

Ayres, R. U., L. W. Ayres and B. Warr, (2002), Is the US Economy Dematerialising? Main Indicators and Drivers, Center for the Management of Environmental Resources INSEAD, Fontainebleau, France, June.

Ayres, R. U., and B. Warr, (2009), The Economic Growth Engine: How Energy and Work Drive Material Prosperity, Cheltenham, UK and Northampton, Massachusetts, Edward Elgar.

Ayres, R. U., et al., (2013), ”The underestimated contribution of energy to economic growth”, Structural Change and Economic Dynamics, 27, 79 – 88.

Ayres, R. and V. Vouroudis, (2013), “The economic growth enigma; Capital, labour and useful energy?”, Energy Policy, 64 (2014) 16–28.

Berndt, E. R., (1990), “Energy use, technical progress and productivity growth: a survey of economic issues”, The Journal of Productivity Analysis, 2, pp.  67-83.

Blomqvist, L., T. Nordhaus and M. Shellenbeger, (2015), Nature Unbound; Decoupling for Conservation, Breakthrough Institute.

Brown, L., (2011), “The new geopolitics of food”, Foreign Policy, May.

Carradonna, J., et al., (2015), “A Call to Look Past An Ecomodernist Manifesto: A Degrowth Critique”, Resilience.org  | May 6.

Carrington, D., (2014), “Earth has lost half its wildlife in forty years, says WWF,” The Guardian, Oct. 1.

Ceballos, G., et al., (2015), “Accelerated modern human induced species loss. Entering the sixth mass extinction”. Sci. Adv., 9, 16.

Clark, D., (2011), “New data on imports and exports turns map of carbon emissions on its head,” The Guardian, 4th May.

Cleveland, C. J., R. Costanza, C. A. S. Hall, and R. K. Kaufmann, (1984), “Energy and the U.S. economy: A biophysical perspective”, Science, 225, pp., 890-897.

Crist, E., (2015), “The Reaches of Freedom: A Response to An Ecomodernist Manifesto”, Environmental Humanities, 7, pp. 245-254.

Diederen, A. M., (2009), Metal minerals scarcity: A call for managed austerity and the elements of hope, TNO Defence, Security and Safety, P.O. Box 45, 2280 AA Rijswijk, TheNetherlands.

Dittrich, M., S. Giljum, S. Bringezu, C. Polzin, and S. Lutter, (2011), Resource Use and Resource Productivity in Emerging Economies: Trends over the Past 20 Years, SERI Report No. 12, Sustainable Europe Research Institute (SERI), Vienna, Austria.

Giljum, S., M. Dittrich, M. Lieber, and S. Lutter, (2014), “Global Patterns of Material Flows and their Socio-Economic and Environmental Implications: A MFA Study on All Countries World-Wide from 1980 to 2009”, Resources, 3, 319-339.

Hall, C. A. S., J. G. Lambert and S. B. Balough, (2014), “EROI of different fuels and the implications for society”, Energy Policy64, January, 141–152.

Hansen, J., et al., (2008), “Target atmospheric CO2; Where Should humanity aim?”, The Open Atmospheric Science Journal, 2, 217 – 231.

Hattfield-Dodds, S., et al., (2015), “Australia is ‘free to choose’ economic growth and falling environmental pressures”, Nature, 527, 5 Nov., 49 –

Hoegh-Guldberg, (2015), “Coal and climate change: a death sentence for the Great Barrier Reef”, The Conversation, 20th May.

Huebner, J., (2005), “A possible declining trend for worldwide innovation”, Technological Forecasting and Social Change, 72, 980-986.

Hawken, P., A. B. Lovins, and H. Lovins, (1999), Natural Capital, London, Little Brown.

Hopkins, R., (2015) Book Review: Austerity Ecology & the Collapse-Porn Addicts by Leigh Phillips.  Transition Network, 24th Nov.

IPCC, (2014), Summary for Policymakers.  Climate Change 2014: Mitigation of Climate Change, Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Kaufmann, R. K., (2004), “A biophysical analysis of the energy/real GDP ratio: implications for substitution and technical change”, Ecological Economics , 6: pp. 35-56.

Kolbert,. E., (2014), The Sixth Extinction, Henry Holt and Co., New York.

Korowicz, D., (2012), Trade Off; Financial System Supply Chain Cross Contamination; A Study in Global Systemic Collapse, Mettis Risk Consulting and Feasta.

Latouche, S., (2014), Essays on Frugal Abundance; Essay 3. Simplicity Institute Report, 14c. simpicityinstitute.org

Leahy, T., (2009), Permaculture Strategy for the South African Villages, Permaculture InternationaI Productions, Palmwoods, Queensland. www.gifteconomy.org.au

Lenzen, et al., (2012) “Biodiversity: Remote responsibility”, Nature, 486, 36–37, (07 June 2012), doi:10.1038/486036a

Mackay, D., (2008), Energy – without the Hot Air. http://www.withouthotair.com/download.html

Meinshausen, M., N. Meinshausen, W. Hare, S. C. B. Raper, K. Frieler, R. Knuitti, D. J. Frame, and M. R. Allen, (2009), “Greenhouse gas emission targets for limiting global warming to 2 degrees C”, Nature, 458, 30th April, 1158 -1162.

Morgan, T., (2012), Perfect Storm: Energy, Finance and the End of Growth, Tullet Prebon.

Morillo-Zamorano, L., (2005), “The role of energy in productivity growth: A controversial issue?”, The Energy Journal, 26,2, 69-88.

Murphy, D., (2010), “What is the minimum EROI for a sustainable energy?”, The Oil Drum, 24th March.

Office of Technology Assessment, (1990), Energy Use and the U.S. Economy, US Congress, OTA-BP-E-57, U.S. Government Printing Office, Washington DC.

Phillips, L., (2014), Austerity Ecology and the Collapse-Porn Addicts; A Defence of Growth, Progress, Industry and Stuff, Zero Books, Winchester UK.

Ray D. K., Mueller N. D., West P. C., Foley J.A., (2013), “Yield Trends Are Insufficient to Double Global Crop Production by 2050.” PLOS ONE 8(6): e66428.doi:10.1371/journal.pone.0066428

Rockstrom, and K. Raeworth, (2014), Planetary Boundaries and Human Prosperity, Stockholm Resilience Centre, Stockholm.

Schandl, H., et al., (2015), ”Decoupling global environmental pressure and economic growth; scenarios for energy use, materials use and carbon emissions”, Journal of Cleaner Production, http://dx.doi.org/10.1016/j.jclepro.2015.06.100

Schurr, S., and B. Netschert, (1960), Energy and the American Economy, 1850-1975, Baltimore, Johns Hopkins University Press.

Schütz, H., S. Bringezu, S. Moll, (2004), Globalisation and the Shifting Environmental Burden. Material Trade Flows of the European Union, Wuppertal Institute, Wuppertal, Germany.

Smaje, C., (2015a), “Dark Thoughts on Ecomodernism”, Dark Mountain Blog, 12th August.

Smaje, C., (2015b), “Promethean porn and Malthusian mistakes: a letter to Leigh Phillips”, Small Farm Future, 12th Nov.

Smeets, E., and A. Faaij, (2007), “Bioenergy potentials from forestry in 2050 —  An assessment of the drivers that determine the potentials”, Climatic Change, 8, 353 – 390.

Sorrell, S., (2010), “Energy, economic growth and environmental sustainability; Five propositions”, Sustainability, 2, 1784 – 1809.

Steffen, W., W. Broadgate, L. Deutsch, O. Gaffney and C. Ludwig, (2015), “The Trajectory of the Anthropocene: The Great Acceleration.” The Anthropocene Review, 2, 1 81-98.

Stern, D. and C. J. Cleveland, (2004), “Energy and Economic Growth”, in C. J. Cleveland (ed.), Encyclopedia of Energy. San Diego: Academic Press.

Topp, V., L. Soames, D. Parham, and H. Block, (2008), Productivity in the Mining Industry: Measurement and Interpretation, Productivity Commission Staff Working PaperDecember , Australian Government Productivity Commission.

Tainter, J. A.,  (1988), The Collapse of Complex Societies, Cambridge University Press.

Trainer, T., (2011), The Simpler Way; The Alternative Society. http://thesimplerway.info/THEALTSOCLong.htm

Trainer, T., (2012), Third World Development; Conventional/capitalist way vs The Simpler way.

Trainer, T., (2013a), Chikukwa; An Alternative Development Model in Zimbabwe.

Trainer, T., (2013b), The Catalan Integral Coperative Movement.

Trainer, T., (2016), Remaking settlements; The Potential Cost Reductions Enabled by The Simpler Way. http://thesimplerway.info/RemakingSettlements.htm

Victor, P., (2008), Managing without growth: Slower by design, not disaster. Cheltenham, Edward Elgar Publishing.

Vidal, J., (2010), “Soil erosion threatens to leave earth hungry”, The Guardian, 14th Dec.

Vitousec, P. M., H. A. Mooney, J. Lubchenki, and J. M. Mellilo, (1997), “Human domination of earth’s ecosystems”, Science, July, 277, 445-499.

Von Weizacker, E., and A. B. Lovins, (1997), Factor Four: Doubling Wealth – Halving Resource Use : A New Report to the Club of Rome, St Leondards, Allen and Unwin.

Warr, B.,  (2004), Is the US economy dematerializing? Main indicators and drivers, Economics of Industrial Ecology: Materials, Structural Change and Spatial Scales. MIT Press, Cambridge, MA.

Washington, H., (2014), Addicted to Growth, Fenner Conference on the Environment, Canberra, 2 – 3 October.

West, J., (2013) Personal communication reported in Weidman et al., 2014, from CSIRO Ecosystem Sciences.

Wiebe, C., M. Bruckner, S. Giljum, C. Lutz, and C. Polzin, (2012), “Carbon and materials embodied in the international trade of emerging economies: A multi-regional input-output assessment of trends between 1995 and 2005”, J. Ind. Ecol., 16, 636–646.

Weidmann, T. O., H. Shandl, and D. Moran, (2014), “The footprint of using metals; The new metrics of consumption and productivity,” Environ. Econ. Policy Stud.,  DOI 10.1007/s10018-014-0085-y

Wiedmann, T. O., H. Schandl, M. Lenzen, D. Moran, S. Suh, J. West, and K. Kanemoto, (2015), “The material footprint of nations”, PNAS, 6272 -6276.

Word Wide Fund for Nature, (2014), Living Planet Report,  WWF International, Switzerland.





“But Can’t Technical Advance Solve the Problems?”

16 07 2016

More from Ted Trainer…..

tedtrainer

Ted Trainer

Ted Trainer.

9.4.16

The “limits to growth” analysis argues that the pursuit of affluent lifestyles and economic growth are the basic causes of the many alarming global problems we are running into.  We have environmental destruction, resource depletion, an impoverished Third World, problems of armed conflict and deteriorating cohesion and quality of life in even the richest countries…essentially because the levels of producing and consuming going on are far too high.  There is no possibility of these levels being maintained, let alone spread to all the world’s people. We must shift to far lower levels of consumption in rich countries. (For the detail see Trainer, 2011.)

The counter argument most commonly raised against the limits case is that the development of better technology will solve the problems, an enable us to go on living affluently in growth economies.  Almost everyone seems to hold this belief. It has recently been reasserted as “Ecomodernism.” (For the main statements see Asaef-Adjaye, 2016, and  Blomqvist, Nordhaus Shellenbeger, 2015. For a detailed critique see Trainer 2016a.)

It is not surprising that this claim is regarded as plausible, because technology does constantly achieve miraculous breakthroughs, and publicity is frequently given to schemes that are claimed could be developed to solve this or that problem.  However there is a weighty case that technical advance will not be able to solve the major global problems we face.

The Simpler Way view is that technical advances cannot solve the big global problems and therefore we must change to lifestyles and social systems which do not generate those problems.  This could easily be done if we wanted to do it, and it would actually enable a much higher quality of life than most of us have now in consumer society.  But it would involve abandoning the quest for affluent lifestyles and limitless economic growth…so it is not at all likely that this path will be taken.

The problems are already far too big for technical advance alone to solve.

Most people have little idea how serious the main problems are, or how far beyond sustainable levels we are. Here are some indicators of how far we have exceeded the limits to growth.

  • The 2007 IPCC Report said that if greenhouse gas emissions are to be kept to a “safe” level they must be cut by 50-80% by 2050, and more after that. The 50% figure would mean that the average American or Australian would have to go down to under 5% of their present per capita emission rate. Some argue that all emissions should cease well before 2030. (Anderson and Bows, 2009, Hansen, 2008, Spratt, 2014.
  • By 2050 the amount of productive land on the planet per capita will be 0.8 ha (assuming we will stop damaging and losing land.)  The present amount required to give each Australian their lifestyle is 8 ha.  This means we are 10 times over a sustainable amount, and there is not the slightest possibility of all the world’s people ever rising to anywhere near our level.
  • Australians use about 280 GJ of energy per capita p.a.  Are we heading for 500 GJ/person/y by 2050?  If all the world’s expected 9.7 billion people were to live as we live world energy supply would have to be around 4,500 EJ/y…which is 9 times the present world energy production and consumption.
  • Almost all resources are scarce and dwindling. Ore grades are falling, and there have been food and water riots. Fisheries and tropical forests are in serious decline. Yet only about one-fifth of the world’s people are using most of these; what happens when the rest rise to our levels?
  • Many of the world’s ecosystems are in alarmingly rapid decline.  This is essentially because humans are taking so much of the planet’s area,  and 40% of the biological productivity of the lands.  We are causing a holocaust of biodiversity die-off mainly because we are taking the habitats other species need.  Of about 8 billion ha of productive land we have taken 1.4 billion ha for cropland, and about 3.5 billion ha for grazing.  We are depleting most of the fisheries.  The number of big fish in the oceans is down to 10% of what it was. We are destroying around 15 million ha of tropical forest every year.  And if all 9 billion people expected are going to live as we do now, resource demands would be about 10 times as great as they are now.  There are many other environmental impacts that are either past the limits biologists think are tolerable, or approaching them, including the rate of nitrogen release, ozone destruction, chemical poisoning of the earth and atmospheric aerosol loads. (Rockstrom, 2009.)
  • The World Wildlife Fund estimates that we are now using up resources at a rate that it would take 1.5 planet earths to provide sustainably. (WWF, 2014.) If 9.7 billion are to live as we expect to in 2050 we will need more than 20 planet earths to harvest from.

These are some of the many ways in which we have already greatly exceeded the planet’s capacity to meet human demands, and they define the task the tech-fix believer is faced with.  So ask the tech-fix optimist, “If technology is going to solve our problems, when is it going to start?  Just about all of them seem to be getting worse at present.”

Now add the absurdity of economic growth.

These and many other facts and figures only indicate the magnitude of the present problems caused by over-production and over-consumption.  To this alarming situation we must now add the fact that our society is committed to rapid and limitless increases in “living standards” and GDP; i.e., economic growth is the supreme goal.

If we Australians have 3% p.a. economic growth to 2050, and by then all 9.7 billion people will have come up to the “living standards” we will have by then, the total amount of economic production in the world each year will be about 20 times as great as it is now.  The present amount of production and resource use is grossly unsustainable, yet we are committed to economic system which will see these rates multiplied 20 times by 2050.

And note that most of the resources and ecosystems we draw on to provide consumer lifestyles are deteriorating. The WWF’s Footprint index tells us that at present we would need 1.5 planet Earth’s to provide the resources we use sustainably. So the Tech-fix advocate’s task is to explain how we might cope with a resource demand that is 20×1.5 = 30 times a currently sustainable level by 2050…and twice as much by 2073 given 3% p.a. growth.

Huge figures such as these define the magnitude of the problem for technical-fix believers.  We are far beyond sustainable levels of production and consumption; our society is grossly unsustainable, yet its fundamental determination is to increase present levels without limit.  If technical advance is going to solve the problems caused by all that producing and consuming it must cut resource use and impacts by a huge multiple…and keep it down there despite endless growth.  Now ask the tech-fix believer what precisely he thinks will enable this.

Faith-based tech-fix optimism.

At this point we usually find that the belief in tech–fix is nothing but a faith, and one that has almost no supporting evidence.   Because technology has achieved many wonders it is assumed that it will come up with the required solutions, somehow.  This is as rational as someone saying, “I have a very serious lung disease, but I still smoke five packs of cigarettes a day, because technical advance could come up with a cure for my disease.”  This argument is perfectly true… and perfectly idiotic.  If you are on a path that is clearly leading to disaster the sensible thing is to get off it.  If technology does come up with solutions then it might make sense to get back on that path again.

The tech-fix optimist should be challenged to show in detail what are the grounds for us accepting that solutions will be found, to each and every one of the big problems we face.  What precisely might solve the biodiversity loss problem, the water shortage, the scarcity of phosphorus, the collapse of fish stocks, etc., and how likely are these possible beak-throughs?   Does it not make better sense to change from the lifestyles and systems that are causing these problems, at least until we can see that we can solve the resulting problems?

It should be stressed that the argument here is not to deny or undervalue the many astounding advances being made all the time in fields like medicine, astronomy, genetics, sub-atomic physics and IT, or to imply that these will not continue. The point is that technical advance is very unlikely to come up with ways that solve the resource and environmental problems being generated by affluent lifestyles.  The argument is that when the magnitude of the task (above) and the evidence on the significance of technical advance for resource and ecological problems is considered (below), tech-fix faith is seen to be extremely unwarranted … and the solutions have to be sought in terms of shifting to a Simpler Way of some kind.

Amory Lovins and Factor 4 or 5 reductions.

For decades Amory Lovins has been possibly the best known of several people who argue that technical advances could cut resource use per unit of GDP considerably.  He says we could in effect have 4 times the output with the same impact.  (Von Weizacher and Lovins, 1997).  But the above numbers make it clear that this is far from sufficient.  If by 2050 we should cut ecological impact and resource use in half (remember footprint and other indices show this is far from enough), but we also increase economic output by 20, then we’d need a factor 40 reduction, not Factor 4…and resource demand would be twice as high in another 23 years if 3% growth continued.

The factors limiting what technical advance can do.

It is important to keep in mind that there are several factors which typically determine the gains a technical advance actually enables are well below those that seem possible at first.  Engineers and economists make the following distinctions.

  • “Technical potential.”  This is what the technology could achieve if fully applied with no regard to cost or other problems.
  • Economic (or ecological) potential”.  This is usually much less than the technical potential because to achieve all the gains that are technically possible would cost too much.  For instance it is technically possible for passenger flights to be faster than sound, but it is far too costly.  It would be technically possible to recycle all lead used, but it would be much too costly in dollars and convenience to do so. Some estimate that it would be technically possible to harvest 1,400 million ha for biomass energy per year, but when ecologically sensitive regions are taken out some conclude that the yield could only be 250 million ha or less. (World Wildlife Fund, 2010, p. 181.)  The WWF study quotes Smeets and Faiij (2007) as finding that it would be technically possible for the world’s forests to produce another 64 EJ/y of biomass energy p.a., but Field, Campbelo and Lobell (2007) conclude that only 27 EJ/y can be obtained, under 2 per cent of the Smeets and Faiij figure.
  • What are the net gains?  Enthusiastic claims about a technical advance typically focus on the gains and not the costs which should be subtracted to give a net value.  For instance the energy needed to keep buildings warm can be reduced markedly, but it costs a considerable amount of energy to do this, in the electricity needed to run the air-conditioning and heat pumps, and in the energy embodied in the insulation and triple glazing.

The WWF Energy Report (2010) claims that big savings can be made in building heating and cooling, but their Figs. 3 – 11 and 3 – 12 show that although their measures would reduce heat used in buildings by 90%, electricity used would increase c. 50% (and there is no reference to what the embodied energy cost of manufacturing the equipment and insulation might be.)  The graphs don’t seem to show any net reduction in building energy use.

The Green Revolution doubled food yields, but only by introducing crops that required high energy inputs in the form of expensive fertilizers, seeds and irrigation.  One result was that large numbers of very poor farmers went out of business because they couldn’t afford the inputs.

Similarly, it is possible to solve some water supply problems by desalination, but only by increasing the energy and greenhouse problems.

  • What is socially/politically possible?  Then there are limits set by what people will accept.  It would be technically possible for many people in Sydney to get to work by public transport, but large numbers would not give up the convenience of their cars even if they saved money doing so.  The energy efficiency of American cars is much lower than what is technically possible, and in fact lower than it was decades ago … because many people want energy-intensive vehicles.  Australians are now building the biggest and most energy wasteful houses in the world.  A beautiful, tiny, sufficient mud brick house could be built for less than $10,000…but most people would not want one.  These examples make it clear that the problems of over-consumption in many realms are mainly social rather than technical, and that they can’t be solved by technical advance.  The essential tech-fix issue is to do with whether or not the problems can be solved by technical advances which allow us to go on living and consuming as we were before, or whether we must change to values and behaviour that don’t cause problems.
  • The Jevons or “rebound” effect.  Then there is the strong tendency for savings made possible by a technical advance to be spent on consuming more of the thing saved or something else.  For instance if we found how to get twice the mileage per litre of petrol many would just drive a lot more, or spend the money saved on buying more of something else.  The Indians have recently developed a very cheap car, making it possible for many more low income people to drive, consume petrol and increase greenhouse gases.

So it is always important to recognise that an announced technical miracle breakthrough probably refers to its technical potential but the savings etc. that it is likely to enable in the real world will probably be well below this.

Some evidence on technical advance in the relevant fields.

Again the focus here is on fields which involve high resource or ecological impacts and demands, not on the many advances being made in fields like medicine or particle physics. It should not be assumed that in general rapid, large or continuous technical gains are being routinely made in the relevant fields, especially in crucial areas such as energy efficiency. Ayres (2009) notes that for many decades there have been plateaus for the efficiency of production of electricity and fuels, electric motors, ammonia and iron and steel production.  The efficiency of electrical devices in general has actually changed little in a century (Ayres, 2009, Figs. 4.1 and 4.19, p. 127.)  “…the energy efficiency of transportation probably peaked around 1960”.  (p. 126), probably due to increased use of accessories.  Ayres’ Fig. 4.21a shows no increase in the overall energy efficiency of the US economy since 1960. (p. 128.)  He notes that reports tend to publicise particular spectacular technical advances and this can be misleading regarding long term average trends across whole industries or economies.

We tend not to hear about areas where technology is not solving problems, or appears to have been completely defeated.  Not long ago everyone looked forward to super-sonic mass passenger flight, but with the demise of Concorde this goal has been abandoned.  It would be too difficult and costly, even without an energy crunch coming up.  Sydney’s transport problems cannot be solved by more public transport; more rail and bus would improve things, but not much because the sprawling city has been build for the car on 70 years of cheap oil.  Yes you could solve all its problems with buses and trains, but only at an infinite cost.   The Murray-Darling river can only be saved by drastic reduction in the amount of water being taken out of it.  The biodiversity holocaust taking place could only be avoided if humans stopped taking so much of nature, and returned large areas of farmland and pasture to natural habitat. (For an extremely pessimistic analysis of what future technology might achieve, see Smith and Positrano, 2010.)

Most indices of technical progress, efficiency and productivity show long term tapering towards ceilings.  “But what about Moore’s law, where by computer chip power has followed a steep upward curve?”  Yes in some realms this happens, for a time, but the trend in IT is highly atypical.  (By the way, the advent of computers has not made much difference at all to the productivity of the economy; indeed in recent decades productivity growth indices for national economies have fallen.  This is identified as “The Productivity Paradox.”)

There are two important areas where recent trends seem to run counter to this argument; the remarkable fall in the costs of PV panels and the advent of new batteries. However the significance of these is uncertain. The PV cost is largely due to latge subsidies, very cheap labour, and the general failure of the Chinese economy to pay ecological costs of production. (On the enormous difference the last factor makes see Smith, 2016.)  Thus the real cost, and that which we will have to pay in future is likely to be much higher.  (… the EIA thinks costs will probably rise before long.), The significance of the new battery technology is clouded by the fact that costs would have to fall by perhaps two-thirds before they could be used for grid storage without greatly increasing the cost of power, and it is not likely that there is enough Lithium to enable grid level storage of renewable energy.

The crucial “decoupling” issue.

The fundamentally important element in the tech-fix or ecomodernist position is the belief/claim that resource demand and ecological impact can be “decoupled” from economic growth, that is, that new ways will enable the economy to keep growing and “living standards”, incomes and consumption to continue rising without increasing resource use or environmental damage (or while keeping these down to sustainable levels.) The following passages deal with considerable evidence on decoupling and show this belief to be extremely implausible, to put it mildly.

What about the falling “energy intensity” of the economy?”

The fact that the “energy intensity” of rich world economies, i.e., ratio of GDP to gross energy used within the country has declined is often seen as evidence of decoupling but this is misleading. It does not take into account the large amounts of energy embodied in imports, i.e., energy use we benefit from but does not show up in our national accounts.  (below.) Possibly more important is the long term process of “fuel switching”, i.e., moving to forms of energy which are of “higher quality” and enable more work per unit. For instance a unit of energy in the form of gas enables more value to be created than a unit in the form of coal, because gas is more easily transported, switched on and off, or converted from one function to another, etc. (Stern and Cleveland, 2004, p. 33, Cleveland et al., 1984, Kaufmann, 2004,  Office of Technology Assessments, 1990, Berndt, 1990, Schurr and Netschurt, 1960.)

What about productivity increases?

It is commonly thought that the power of technology is evident in the constantly improving productivity of the economy.  Again this is misleading, firstly because productivity gains have been low and decreasing in recent decades and this is a constant concern and puzzle among economists and politicians. Even the advent of computerisation has had a surprisingly small effect, a phenomenon now labelled the “Productivity Paradox.”

The overlooked role of energy in productivity growth and decoupling.

Most of the productivity growth that  has taken place now seems to have been due not to technical advance but to increased use of energy. Previous analyses have not realized this but have analysed only in terms of labour and capital input “factors of production”. Agriculture is a realm where technical advance has been predominantly a matter of increased energy use. Over the last half century productivity measured in terms of yields per ha or per worker have risen dramatically, but these have been mostly due to even greater increases in the amount of energy being poured into agriculture, on the farm, in the production of machinery, in the transport, pesticide, fertilizer, irrigation, packaging and marketing sectors, and in getting the food from the supermarket to the front door, and then dealing with the waste food and packaging. Less than 2% of the US workforce is now on farms, but agriculture accounts for around 17% of all energy used (not including several of the factors listed above.) Similarly the “Green Revolution” has depended largely on ways that involve greater energy use.

Ayres, et al., (2013), Ayres, Ayres and Warr (2002) and Ayres and Vouroudis (2013) are among those beginning to stress the significance of energy in productivity, and pointing to the likelihood of increased energy problems in future and thus declining productivity. Murillo-Zamorano, (2005, p. 72) says “…our results show a clear relationship between energy consumption and productivity growth.” Berndt (1990) finds that technical advance accounts for only half the efficiency gains in US electricity generation. These findings caution against undue optimism regarding what pure technical advance can achieve independently from increased energy inputs; in general its significance for productivity gains appears not to have been as great as has been commonly assumed.

The productivity trend associated with this centrally important factor, energy, is itself in serious decline, evident in long term data on EROI ratios. Several decades ago the expenditure of the energy in one barrel of oil could produce 30 barrels of oil, but now the ratio is around 18 and falling. The ratio of petroleum energy discovered to energy required has fallen from 1000/1 in 1919 to 5/1 in 2006. (Murphy, 2010.) Murphy and others suspect  that an industrialised society cannot be maintained on a general energy ratio under about 10. (Hall, Lambert and Balough, 2014.)

So when we examine the issue of productivity growth we find little or no support for the general tech-fix faith.  It is not the case that technical breakthroughs are constantly enabling significantly more to be produced per unit of inputs. The small improvements in productivity being made seem to be largely due to changes to more energy-intensive ways, and energy itself is exhibiting marked deterioration in productivity (ie, as evident in its EROI.) Some analysts (e.g., Ayres, 2009, Ayres et al., 2013) believe that any gains occurring now will probably disappear with coming rises in energy scarcity and cost.

Lets examine ewhere materials are used; not general GDP

Evidence on low past and present decoupling achievement.

The historical record suggests that at best rates of decoupling materials and energy use from GDP have been very low or less than zero; i.e., some important measures show materials or energy use to be increasing faster than GDP. It is important not to focus on national measures such as “Domestic Materials Consumption” as these do not take into account materials in imported goods.  For example the OECD (2015) claims that materials used within its countries has fallen 45% per dollar of GDP, but this figure does not take into account materials embodied in imported goods. When they are included rich countries typically show very low or worsening ratios. The commonly available global GDP (deflated) and energy use figures between 1980 and 2008 reveals only a 0.4% p.a. rise in GDP per unit of energy consumed.   Tverberg () reproduces the common plot for global energy use and GWP, showing an almost complete overlay; i.e., no tendency for energy use to fall away from GWP growth.

Weidmann et al. (2014) show that when materials embodied in imports are taken into account rich countries have not improved their resource productivity in recent years. They say “…for the past two decades global amounts of iron ore and bauxite extractions have risen faster than global GDP.” “… resource productivity…has fallen in developed nations.” “There has been no improvement whatsoever with respect to improving the economic efficiency of metal ore use.”

Giljum et al. (2014, p. 324) report only a 0.9% p.a. improvement in the dollar value extracted from the use of each unit of minerals between 1980 and 2009, and that over the 10 years before the GFC there was no improvement. “…not even a relative decoupling was achieved on the global level.” Their Fig. 2, shows that over the period 1980 to 2009 the rate at which the world decoupled materials use from GDP growth was only one third of that which would have achieved an “absolute” decoupling, i.e., growth of GDP without any increase in materials use. It must be stressed here that, as they point out, these findingss would have been worse had the production of much rich world consumption not been outsourced to the Third World (that is, had energy embodied in imports been included.)

Diederan’s account (2009) of the productivity of minerals discovery effort is even more pessimistic. Between 1980 and 2008 the annual major deposit discovery rate fell from 13 to less than 1, while discovery expenditure went from about $1.5 billion p.a. to $7 billion p.a., meaning the productivity expenditure fell by a factor in the vicinity of around 100, which is an annual decline of around 40% p.a. Recent petroleum figures are similar; in the last decade or so discovery expenditure more or less trebled but the discovery rate has not increased.

A recent paper in Nature by a group of 18 scientists at the high-prestige Australian CSIRO (Hatfield-Dodds et al., 2015) argued that decoupling could eliminate any need to worry about limits to growth at least to 2050. The article contained no support for the assumption that the required rate of decoupling was achievable and when it was sought (through personal communication) reference was made to the paper by Schandl et al. (2015.)  However that paper contained the following surprising statements, “ … there is a very high coupling of energy use to economic growth, meaning that an increase in GDP drives a proportional increase in energy use.”  (They say the EIA, 2012, agrees.) “Our results show that while relative decoupling can be achieved in some scenarios, none would lead to an absolute reduction in energy or materials footprint.” In all three of their scenarios “…energy use continues to be strongly coupled with economic activity…”

The Australian Bureau of Agricultural Economics (ABARE, 2008) reports that the energy efficiency of energy-intensive industries is likely to improve by only 0.5% p.a. in future, and of non-energy-intensive industries by 0.2% p.a. In other words it would take 140 years for the energy efficiency of the intensive industries to double the amount of value they derive from a unit of energy.

Alexander (2014) concludes his review of decoupling by saying, ”… decades of extraordinary technological development have resulted in increased, not reduced, environmental impacts.”  Smil (2014) concludes that even in the richest countries absolute dematerialization is not taking place. Alvarez found that for Europe, Spain and the US GDP increased 74% in 20 years, but materials use actually increased 85%. (Latouche, 2014.) Similar conclusions re stagnant or declining materials use productivity etc. are arrived at by Aadrianse, 1997, Dettrich et al., (2014), Schutz, Bringezu and Moll, (2004), Warr, (2004), Berndt, (undated), and Victor (2008, pp. 55-56).

A version of the decoupling thesis is the “Environmental Kuznets Curve”, i.e., the claim that as economic development takes place environmental impacts increase but then decrease. The evidence on this thesis indicates that it is not correct. Greenhouse gas emissions give us a glaring example. Alexander concludes his review, (2014),  “If the EKC hypothesis sounds too good to be true, that is because, on the whole, it is false.”

These sources and figures indicate the apparently total lack of support for the ecomodernists’ optimism. They are assuming that there can be massive absolute decoupling, i.e., that by 2050 energy, materials and ecological demand associated with $1 of GDP can be reduced by a factor of around 30. There appears to be noecomodernist literature that even attempts to provide good reason to think a general absolute decoupling is possible, let alone on the required scale. (I have made about five attempts to have such evidence sent to me from the leading ecomodernist authors, without receiving any.)

            The changing components of GDP.

There is another consideration that makes the situation much worse. Over recent decades there has been a marked increase in the proportion of rich nation GDP that is made up of “financial” services. These stand for “production” that takes the form of key strokes that move electrons around.  A great deal of it is wild speculation, making risky loans and making computer driven micro-second switches in “investments”. These operations deliver massive increases in income to banks and managers, commissions, loans, interest, consultancy fees.  These make a big contribution to GDP figures. In one recent year 40% of US corporate profits came from the finance sector. It could be argued that this domain should not be included in estimates of productivity because it misleadingly inflates the numerator in the output/labour ratio.

This means that the most significant measures will be to do with industries that use material and ecological inputs.  The crucial question is, in those industries that are causing the pressure on resources and ecosystems is significant decoupling taking place? However when output per worker in the production of “real” goods and services such as food and vehicles, or aged care is considered we do not seem to find reassuring evidence of decoupling.  Again agricultural industry provides some of the best examples. Over the last 50 years there has been a huge increase in energy used in fuel, pesticides, fertilizers, transport, packaging, marketing and waste treatment. Kowalski (2011) reports that between 1960 and 2010 world cereal production increased 250%, but nitrogen fertilizer use in cereal production increased 750%. Between 1997 and 2002 the US household use of energy on food increased 6 times as fast as use for all household purposes. (Canning et al., 2010.)

The enormous implications for energy demand.

The main ecomodernist texts make clear that if the technical advances envisaged could not take place unless there was extremely large scale increase in the amount of energy produced.  They look forward to shifting a large fraction of agriculture off land into intensive systems such as high rise greenhouses and acquaculture, massive use of desalination for water supply, processing lower grade ores, dealing with greatly increased amounts of industrial waste (especially mining waste), and constructing urban infrastructures for billions to live in as they propose shifting people from the land to allow more of it to be returned to nature.  They do not think renewable energy sources can provide these quantities of energy, so their proposals would have to involve very large numbers of fourth generation nuclear reactors (which run on plutonium). How large?

If 9 billion people were to live on the per capita amount of energy Americans now average, world energy consumption in 2050 would be around x5 (for the US to world average ratio) x10/7 (for population growth) times the present 550 EJ p.a., i.e., around 3,930 EJ. The nuclear generating capacity needed would be around 450 times as great as at present.

And the baseline is deteriorating…

The general “limits to growth” analysis of the global situation makes it clear that the baseline on which ecomodernist visions must build is not given by present conditions such as resource availability. As Steffen et al. (2015) and many others stress the baseline is one of not just deteriorating conditions, but accelerating deterioration.

It is as if the ecomodernists are claiming that their A380 can be got to climb at a 60 degree angle, which is far steeper than it has ever done before, but at present it is in an alarming and accelerating decline with just about all its systems in trouble and some apparently beyond repair. The problem is the wild party on board, passengers and crew dancing around a bonfire and throwing bottles at the instruments, getting more drunk by the minute. A few passengers are saying the party should stop, but no one is listening, not even the pilots. The ecomodernist’s problem is not just about producing far more metals, it is about producing far more as grades decline, it is not just about producing much more food, it is about producing much more despite the fact that problems to do with water availability, soils, the nitrogen cycle, acidification, and carbon loss are getting worse.  It can be argued that on many separate fronts halting the deteriorating trends is now unlikely to be achieved. Yet the ecomodernist wants us to believe that the curves can be made to cease falling and to rise dramatically, without abandoning the quests for affluence and growth which are responsible for their deterioration.  Stopping the party is not thought to warrant consideration.

This is not an argument against technology.

Research and development and improving things are obviously important and in The Simpler Way vision we would have more resources going into technical research than we have now despite a much lower GDP, because we would have phased out the enormous waste of resources that occurs in consumer-capitalist society.  But it is a mistake to think that the way to solve our problems is to develop better technology.  That will not solve the problems, because they are far too big, and they are being generated by trying to live in ways that generate impossible resource demands. The big global problems have been caused by our faulty social systems and values.  The solution is to develop ways and systems that don’t generate the problems, and this requires movement away from affluent, high energy, centralised, industrialised, globalised etc., systems and standards. Above all it requires a shift from obsession with getting rich, consuming and acquiring property. It requires a willing acceptance of frugality and sufficiency, of being content with what is good enough.

Hundreds of years ago we knew how to produce not just good enough but beautiful food, houses, cathedrals, clothes, concerts, works of art, villages and communities, using little more than hand tools and crafts.  Of course we should use modern technologies including computers (if we can keep the satellites up there) where these make sense.  But we don’t need much high-tech to design and enjoy high quality communities.

Some of our most serious problems are to do with social breakdown, depression, stress, and falling quality of life.  These problems will not be solved by better technology, because they derive from faulty social systems and values.  Technical advances often make these problems worse, e.g., by increasing the individual’s capacity to live independently of others and community, and by enabling machines to cause unemployment. Especially worrying is the fact that ecomodernist dreams would involve massive globally integrated professional and corporate run systems involving centralised control and global regulatory systems (e.g., to prevent proliferation of radioactive materials from all those reactors.  Firstly this is not a scenario that will have a place for billions of poor people.  It will enable a few super-smart techies, financiers and CEOs to thrive, making inequality far more savage, and it will set impossible problems for democracy because there will be abundant opportunities for those in the centre to sdrure their own interests, to be corrupt and secretive. (See Richard Smith’s disturbing account of China today: 2015.)

(For a detail account of The Simpler Way vision of a sustainable and satisfactory society see The Simpler Way website,  thesimplerway.info and  in particular thesimplerway.info/THEALTSOCLong.htm

—————————————

ABARE, (2008), Australian Energy Projections to 2029-30.  http://www.abare.gov.au/publications_html/energy/energy_10/energy_proj.pdf

Anderson, K., and A.  Bows, (2009), “Radical reframing of climate change agenda”, Tyndall Centre, Manchester University, http://sites.google.com//com/sitt/cutcarbonemissions80by2020/drs-kevin-anderson-aclice-bows-tyndall-centre-re-uk-radical-reforming-of-climate-change-agenda

Asafu-Adjaye, J., et al., (2015), An Ecomodernist Manifesto, April, http://www.ecomodernism.org

Ayres, R. U., The economic Growth Engine, Cheltenham, Elgar, 2009.

Ayres, R. U., et al., 2013, ”The underestimated contribution of energy to economic growth”, Structural Change and Economic Dynamics, 27, 79 – 88.

Berndt, E. R., (1990), “Energy use, technical progress and productivity growth: a survey of economic issues”, The Journal of Productivity Analysis, 2:, pp.  67-83.

Blomqvist, L., T. Nordhaus and M. Shellenbeger, (2015), Nature Unbound; Decoupling for Conservation, Breakthrough Institute.

Canning, P. et al., (2010), Energy Use in the US Food System, USDA.

Cleveland, C. J., R. Costanza, C. A. S. Hall, and R. K. Kaufmann “Energy and the U.S. economy: A biophysical perspective.” Science, 225: (1984), pp., 890-897.

Field, C.B., Campbell, J.E. and Lobell, D.B. (2007), “Biomass energy: the scale of the potential resource”, Trends in Ecology and Evolution, Vol. 13 No. 2, pp. 65-72.

Hansen, J., et al., (2008), “Target atmospheric CO2; Where Should humanity aim?”, The Open Atmospheric Science Journal, 2, 217 – 231.

  1. K. Kaufmann, (2004), “A biophysical analysis of the energy/real GDP ratio: implications for substitution and technical change”, Ecological Economics , 6: pp. 35-56.
  2. K. Kaufmann, (2004), “The mechanisms for autonomous energy efficiency increases: A co-integration analysis of the US energy/GDP ratio”, Energy Journal , 25(1), pp.  63-86.

Office of Technology Assessment, (1990), Energy Use and the U.S. Economy, US Congress, OTA-BP-E-57, U.S. Government Printing Office, Washington DC.

Rockstrom, J., (2009) “A safe operating space for humanity”, Nature, 461:24 (Sept.), pp. 472 – 476.

  1. Schurr, and B. Netschert, (1960), Energy and the American Economy, 1850-1975, Baltimore, Johns Hopkins University Press.

Smeets, E., and A. Faaij, (2007), “Bioenergy potentials from forestry in 2050 —  An assessment of the drivers that determine the potentials”, Climatic Change, 8, 353 – 390.

Smith, R., (2015), China’s communist-capitalist ecological apocalypse”, Real-world Economic Review, 71.

Spratt, D., (2014),The real budgetary emergency and the myth of ‘burnable carbon”, Climate Code Red, 22 May.

Stern, D. and C. J. Cleveland, (2004), “Energy and Economic Growth”, in C. J. Cleveland (ed.), Encyclopedia of Energy. San Diego: Academic Press.

Trainer, T, (2011), The Simpler Way; Outline of Our Perspective, http://thesimplerway.info/TSWmain.htm

Trainer, T., (2016a), The extreme implausibility of Ecomodernism, (This critique overlaps considerably with this argument against the Tech Fix position.)

Von Weizacker, E. and A. B. Lovins, (1997), Factor Four : Doubling Wealth – Halving Resource Use : A New Report to the Club of Rome, St Leondards, Allen & Unwin.

World Wide Fund for Nature, (2011), The Energy Report, WWF and Ecofys.





How “Green” is Lithium?

17 04 2016

Originally published on the KITCO website in 2014….. interesting how this makes no mention of NiFe batteries, they are simply ‘under the radar’……

 

The market for battery electric and hybrid vehicles is growing slowly but steadily – from 0.4% in 2012 to 0.6% in 2013 and 0.7% in 2014 (year-to-date) in the United States alone.

Consumers buy these vehicles despite lower gas prices out of a growing conscience and concern for the environment. With this strong attraction to alternative energy, grows the demand for lithium, which is predominantly mined and imported from countries like Bolivia, Chile, China and Argentina.

Within the U.S., only Nevada, future home of Tesla’s new “Gigafactory” for batteries, produces lithium. However, the overall ecological impact of lithium ion batteries remains somewhat unclear, as does the “well-to-wheel” effort and cost to recharge such batteries.

To fully grasp the relevance and environmental impact of lithium it is important to note that lithium ion batteries are also found in most mobile phones, laptop computers, wearable electronics and almost anything else powered by rechargeable batteries.

Dozens of reports are available on the ecological impact of lithium mining. Unfortunately, many of them are influenced by the perspective of the organizations or authors releasing them. Reducing the available information to studies carried out by government bodies and research institutes around the world, a picture emerges nonetheless:

  • Elemental lithium is flammable and very reactive. In nature, lithium occurs in compounded forms such as lithium carbonate requiring chemical processing to be made usable.
  • Lithium is typically found in salt flats in areas where water is scarce. The mining process of lithium uses large amounts of water. Therefore, on top of water contamination as a result of its use, depletion or transportation costs are issues to be dealt with. Depletion results in less available water for local populations, flora and fauna.
  • Toxic chemicals are used for leaching purposes, chemicals requiring waste treatment. There are widespread concerns of improper handling and spills, like in other mining operations around the world.
  • The recovery rate of lithium ion batteries, even in first world countries, is in the single digit percent range. Most batteries end up in landfill.
  • In a 2013 report, the U.S. Environmental Protection Agency (EPA) points out that nickel and cobalt, both also used in the production of lithium ion batteries, represent significant additional environmental risks.

A 2012 study titled “Science for Environment Policy” published by the European Union compares lithium ion batteries to other types of batteries available (lead-acid, nickel-cadmium, nickel-metal-hydride and sodium sulphur). It concludes that lithium ion batteries have the largest impact on metal depletion, suggesting that recycling is complicated. Lithium ion batteries are also, together with nickel-metal-hydride batteries, the most energy consuming technologies using the equivalent of 1.6kg of oil per kg of battery produced. They also ranked the worst in greenhouse gas emissions with up to 12.5kg of CO2 equivalent emitted per kg of battery. The authors do point out that “…for a full understanding of life cycle impacts, further aspects of battery use need to be considered, such as length of usage, performance at different temperatures, and ability to discharge quickly.”

Technology will of course improve, lithium supplies will be sufficient for the foreseeable future, and recycling rates will climb. Other issues like the migration of aging cars and electronic devices to countries with less developed infrastructures will, however, remain. As will the reality of lithium mining and processing. It is therefore conceivable that new battery technologies (sea water batteries or the nano-flowcell, for instance) will gain more importance in years to come, as will hydrogen fuel cells.

We will report about the pros and cons of each of these alternatives in future issues of Tech Metals Insider.

Bodo Albrecht,
tminsider@eniqma.com





INDUSTRY IN A LOW ENERGY FUTURE: TURNING TO NETWORK THEORY FOR SOLUTIONS

15 03 2016

This is Simon Michaux’s follow up to his article on the Implications of Peak Energy

Simon Michaux

SIMON MICHAUX

Dr Simon Michaux has a Bach App Sc in Physics and Geology and a PhD in mining engineering. He has worked in the mining industry for 18 years in various capacities. He has worked in industry funded mining research, coal exploration and in the commercial sector in an engineering company as a consultant. Areas of technical interest have been: Geometallurgy; mineral processing in comminution, flotation and leaching; blasting; mining geology; geophysics; feasibility studies; mining investment; and industrial sustainability.

There is a macro-scale pattern unfolding under all of us. Every non-renewable natural resource we depend upon is now depleting to the point of peak extraction, or will soon. Industrial systems that are heavily dependent on energy reserves and metal resources are now at serious risk of collapse as production of those raw materials will soon not be able to meet demand, since easy to access reserves will be exhausted, leaving low-grade stocks that are expensive or technically challenging to extract. All living systems on the planet are under stress and are also heavily degrading. Natural systems of all kinds are being depleted in the name of economic development, and the planet’s climate is also undergoing change.

Our culture’s fundamental belief that there are no limits and growth is good, is related to the belief that all resources are infinite. Humans, like all animals on the planet, are biologically driven to consume and expand – it’s a built-in survival mechanism. Yet, as this is a finite planet and our exploitation of these natural resources is exponential in form, there will come a point where severe volatility and resource scarcity will become a reality.

Energy is the rate determining step, which facilitates the continued application of technology with economies of scale. As studies have shown, total world fossil fuel supply is close to peak, driven by peak of oil production. What’s more, putting all energy sources together gives a snapshot of our industrial capability and suggests that peak total energy is projected to be approximately in the year 2017.

energy sources

The industrial systems vital for our society to function are supported by each of these energy sources in quite different ways, and they are not interchangeable easily. A compelling case can be made that that our society and its industrial sector energy supply faces a fundamental problem, that is systemic in nature.

Our industrial requirements will have to be met with a fundamentally different approach to anything we have achieved before. We need to stop depending on non-renewable natural resources and stop the material requirements of the human societal footprint growing exponentially. Mining will continue but according to a radically different business model, and with a very different mandate.

NETWORK SYSTEMS THEORY

Network theory and systems thinking has some insights to what the required new system of industrialisation could look like. Our human society, its economic and social interactions could be modelled as a system, where each activity could be a connection, for example the transport of goods, or the consumption of electricity. Nodes are where many connections intersect. For example, most activities involve a finance transfer thus will engage the services of a bank. The bank is a node, where many connections are able to function through. Not all nodes are equal though in regard to the number of connections they facilitate. The node of a car manufacturing business, for instance, will have many fewer connections than, say, the European Union Bank.

Image: NASA / Flickr CC BY NC 2.0
Image: NASA / Flickr CC BY NC 2.0

If connections are broken due to circumstance (using a city example, heavy storms and flooding could temporarily interrupt power supply to an individual neighbourhood) then the network is smaller in size but it still functions (power is still being supplied to other parts of the power grid). But if that same storm causes the power station used for electricity generation (a node) to shut down, then every consumer attached to that power station will lose power. The whole grid will crash.

The complexity of a network is supported by and defined by the energy inputs that support it. Our current complex system is supported by cheap abundant high density energy – oil. Complex system networks are not made ‘in situ’, but are grown over time from simple system networks.

What does all this mean for the current industrial grid? Peak total energy means the node of energy supply is about to be disrupted. All links in the network system supported by energy will be logistically traumatized. As it stands, any replacement energy is less dense per unit volume than oil, and requires extensive infrastructure to be built. Think of the amount of energy invested in the creation of our current system over time – without plentiful, easy to access energy, the replacement network system will need to be less complex than the current one, once fully operational. It will also take time for the network to reach full complexity.

The old system cannot function because input energy is sourced from non-renewable natural resources, all of which are depleting or soon will. As energy is the master resource, it defines what happens with all other resource systems. Any replacement system that is a practical option will have to have certain signatures.

PROGNOSIS

Due to energy constraints, all industrial output would have to be sourced from a geographically local area. This would affect everything from raw material consumption, water consumption to waste disposal. Product delivery to market would also be changed. All of this would have to become as close to net zero footprint in terms of source material and waste disposal. Industrial output would have to be simpler. Technology cannot be as complex as it is now. This implies that manufacturing goods will require more effort on our part, which means that we would have to value ‘stuff’ differently. All waste products will also require greater effort to dispose of, meaning that if they could be recycled, reused or repurposed, there would be less strain on the system to function. Maintaining QA/QC material standards and equipment maintenance would all have to be done within a relatively local geographic region. These challenging statements represent practical limits of a low energy future. As this represents quite a paradigm shift from our current state of exponential consumption based on whim, the most difficult but significant task in front of us is a revolution in perception and a restructuring of governance.

Political systems like capitalism, socialism, communism, fascism, etc. are all built in the context of unlimited natural resources. Whatever the new system looks like, it won’t be anything like what has been seen before. We can call it what we like. Planning will have to be projected over 50 to 60 years into the future but be flexible to evolve organically to its environs. The current system is very centralised, whereas the new system would have to be very decentralised due to energy constraints. The flow of information will become very important.

The Great Acceleration indicators, published by IGBP in collaboration with the Stockholm Resilience Centre
The Great Acceleration indicators, published by IGBP in collaboration with the Stockholm Resilience Centre

From a civilisation network systems footprint viewpoint, we must ask ourselves how we can develop an economy that offers enough for everyone, forever. Real world systems and their inputs must reflect this, and the familiar exponential curves of today’s economy must move to flat line or sinusoidal wave functions. We also need to ask what profile human civilisation has amongst the natural environment. Dynamic natural systems must be able to operate unhindered, where natural capital and biodiversity is allowed to recover. The new economic framework must appreciate that inputs and outputs to all systems must be stable over time.

There are two related conceptual ideas which could be a starting point to help us develop the above requirements: the circular economy and the steady state economy. In a future in which peak energy has dramatically changed the rules of the game, these concepts are required to maintain our industrial capacity. It is not a question of choice, as our natural resources are being depleted at an exponential rate. The timing is now. The next 100 years will be very different to the last 100 years.