Peak Copper is coming….

26 08 2019

Elon Musk told a closed-door Washington conference of miners, regulators and lawmakers that he sees a shortage of EV minerals coming, including copper and nickel (Scheyder 2019).   Other rare metals used in cars include neodymium, lanthanum, terbium, and dysprosium (Gorman 2009).

Alice Friedemann   www.energyskeptic.com  author of “When Trucks Stop Running: Energy and the Future of Transportation”, 2015, Springer and “Crunch! Whole Grain Artisan Chips and Crackers”. Podcasts: Derrick JensenPractical PreppingKunstlerCast 253KunstlerCast278Peak Prosperity , XX2 report

***

Richard A. Kerr. February 14, 2014. The Coming Copper Peak.  Science 343:722-724.

Production of the vital metal will top out and decline within decades, according to a new model that may hold lessons for other resources.

If you take social unrest and environmental factors into account, the peak could be as early as the 2020s

As a crude way of taking account of social and environmental constraints on production, Northey and colleagues reduced the amount of copper available for extraction in their model by 50%. Then the peak that came in the late 2030s falls to the early 2020s, just a decade away.

After peak Copper

Whenever it comes, the copper peak will bring change.  Graedel and his Yale colleagues reported in a paper published on 2 December 2013 in the Proceedings of the National Academy of Sciences that copper is one of four metals—chromium, manganese, and lead being the others—for which “no good substitutes are presently available for their major uses.”

If electrons are the lifeblood of a modern economy, copper makes up its blood vessels. In cables, wires, and contacts, copper is at the core of the electrical distribution system, from power stations to the internet. A small car has 20 kilograms (44 lbs) of copper in everything from its starter motor to the radiator; hybrid cars have twice that. But even in the face of exponentially rising consumption—reaching 17 million metric tons in 2012—miners have for 10,000 years met the world’s demand for copper.

But perhaps not for much longer. A group of resource specialists has taken the first shot at projecting how much more copper miners will wring from the planet. In their model runs, described this month in the journal Resources, Conservation and Recyclingproduction peaks by about mid-century even if copper is more abundant than most geologists believe.

Predicting when production of any natural resource will peak is fraught with uncertainty. Witness the running debate over when world oil production will peak (Science, 3 February 2012, p. 522).

The team is applying its depletion model to other mineral resources, from oil to lithium, that also face exponentially escalating demands on a depleting resource.

The world’s copper future is not as rosy as a minimum “125-year supply” might suggest, however. For one thing, any future world will have more people in it, perhaps a third more by 2050. And the hope, at least, is that a larger proportion of those people will enjoy a higher standard of living, which today means a higher consumption of copper per person. Sooner or later, world copper production will increase until demand cannot be met from much-depleted deposits. At that point, production will peak and eventually go into decline—a pattern seen in the early 1970s with U.S. oil production.

For any resource, the timing of the peak depends on a dynamic interplay of geology, economics, and technology. But resource modeler Steve Mohr of the University of Technology, Sydney (UTS), in Australia, waded in anyway. For his 2010 dissertation, he developed a mathematical model for projecting production of mineral resources, taking account of expected demand and the amount thought to be still in the ground. In concept, it is much like the Hubbert curves drawn for peak oil production, but Mohr’s model is the first to be applied to other mineral resources without the assumption that supplies are unlimited.

Exponential growth

Increasing the amount of accessible copper by 50% to account for what might yet be discovered moves the production peak back only a few years, to about 2045 — even doubling the copper pushes peak production back only to about 2050.  Quadrupling only delays peak until 2075.

Copper trouble spots

The world has been so thoroughly explored for copper that most of the big deposits have probably already been found. Although there will be plenty of discoveries, they will likely be on the small side.

“The critical issues constraining the copper industry are social, environmental, and economic,” Mudd writes in an e-mail. Any process intended to extract a kilogram of metal locked in a ton of rock buried hundreds of meters down inevitably raises issues of energy and water consumption, pollution, and local community concerns.

Civil war and instability make many large copper deposits unavailable

Mudd has a long list of copper mining trouble spots. The Reko Diq deposit in northwestern Pakistan close to both Iran and Afghanistan holds $232 billion of copper, but it is tantalizingly out of reach, with security problems and conflicts between local government and mining companies continuing to prevent developmentThe big Panguna mine in Bougainville, Papua New Guinea, has been closed for 25 years, ever since its social and environmental effects sparked a 10-year civil war that left about 20,000 dead.

Are we about to destroy the largest salmon fishery in the world for copper?

On 15 January the U.S. Environmental Protection Agency issued a study of the potential effects of the yet-to-be-proposed Pebble Mine on Bristol Bay in southwestern Alaska. Environmental groups had already targeted the project, and the study gives them plenty of new ammunition, finding that it would destroy as much as 150 kilometers of salmon-supporting streams and wipe out more than 2000 hectares of wetlands, ponds, and lakes.

Gold and Oil have already peaked

Copper is far from the only mineral resource in a race between depletion—which pushes up costs—and new technology, which can increase supply and push costs down. Gold production has been flat for the past decade despite a soaring price (Science, 2 March 2012, p. 1038). Much crystal ball–gazing has considered the fate of world oil production. “Peakists” think the world may be at or near the peak now, pointing to the long run of $100-a-barrel oil as evidence that the squeeze is already on.

Coal likely to peak in 2034, all fossil fuels by 2030, according to Mohr’s model

Fridley, Heinberg, Patzek, and other scientists believe Peak Coal is already here or likely by 2020.

Coal will begin to falter soon after, his model suggests, with production most likely peaking in 2034. The production of all fossil fuels, the bottom line of his dissertation, will peak by 2030, according to Mohr’s best estimate. Only lithium, the essential element of electric and hybrid vehicle batteries, looks to offer a sufficient supply through this century. So keep an eye on oil and gold the next few years; copper may peak close behind.

References

Gorman, S. August 30, 2009. As hybrid cars gobble rare metals, shortage looms. Reuters.

Scheyder, E. 2019. Exclusive: Tesla expects global shortage of electric vehicle battery minerals. Reuters.





THE END OF SUPERGIANTS: And What It Means

16 05 2019

GUEST POST: By Dr. Louis Arnoux

The meaning of this news snippet takes a bit of explaining.  What the specialised media did not emphasise is what follows:

When giant oil fields go into decline, they usually decline abruptly. Ghawar’s decline is ominous. It was discovered in 1948 and until recently represented about 50% of the oil crude production of the Kingdom of Saudi Arabia (KSA). Ghawar is representative of some 100 to 200 giant oil fields. Most of them are old.  The most recently discovered giants are of a diminutive size compared with those old giants.[2]

Giants represent about 1% of the total number of oil fields and yet produce over 60% of conventional oil crude.[3]Very few real giants have been discovered in recent years. The geology of the planet is now known well enough and prospects for new significant giant oil discoveries are known to be low.  In recent decades, discoveries of smaller oil fields have not been able to compensate for the eventual loss of the giants. Figure 1 illustrates the matter. It shows the net flux of addition to reserves per year (additional volumes less volumes used). Since 2010 the steep declining trend has worsened. The level of new discoveries per year is now only about 5% of yearly reserves depletion. That is, since the late 1970s the oil industry has been steadily depleting its stock-in-trade at a rather fast rate.

The fact that Ghawar is in terminal decline means that we must consider that most of the old giants are in a similar situation.  Some were already known to be in a terminal status, e.g. Cantarell in Mexico or the main North Sea fields.[4]  However, there is a paucity of recent public data on giants.  The matter of their depletion status is commercially sensitive.  Still, a number of public databases and studies from about 10 years ago provide a robust backdrop to the Ghawar news.[5]  This needs to be unpacked a bit more.  Older giants have been developed more slowly and as a result, tend to have lower depletion rates once they pass their peak of production.  More recent ones have been developed more aggressively with more recent technology and as a result, tend to have a much steeper depletion rate once past their production peak.  In short, we now must expect a “bunching”of abrupt declines of oil giants, old and more recent, between now and about 2030.

So, in fact, this little snippet of news about Ghawar tells us a lot.  It corroborates the assessment developed since 2010 with a number of colleagues, based on a thermodynamics analysis of the PPS and summarised in Figure 2.  In short, our world runs on net energy from oil.  Due to resource depletion, it takes more and more net energy from oil to get more oil. We estimate that in consequence, since the early 1980s, the absolute amount of net energy delivered by the oil industry to the non-oil part of the industrial world has been in steep decline.  The data summarised in Figure 3 corroborates Figure 2.

Almost no one noticed how dire the situation has become because most analysts reason in terms of barrels of crude or in financial terms. GDP growth data aggregates the growth of the oil industry world (oil industry plus everything and everyone that are necessary for the oil industry to operate) with that of the non-oil world.  This aggregation masks what is actually taking place. To keep operating the oil world progressively starves the non-oil world of the net energy that is vital for its continued existence.

It is in our view significant that it is precisely in the early 1980s that total global debt took off to high heaven (source Bank of America Meryl Lynch). This steep debt growth, evaluated in fiat currencies, masks the decline in net energy from oil; net energy that is at the source of all, actual tangible, real economic growth. Due to this decline, it is most unlikely that this global debt will ever be repaid.

The terminal decline of Ghawar also corroborates the more indirect analyses of the PPS summarised in Figure 3.  This means that the part-floating of Aramco that KSA wants to achieve in the near future is most likely so as to pre-empt having to go into a “fire sale” at a later stage when the decline of Ghawar and of the other Saudi large fields become rather obvious to even the most ignorant traders.

More importantly, the corroboration of our earlier analyses by the Ghawar news and the data summarised in Figure 3 tell us that we must expect abrupt turmoil from 2020 onwards not only re oil, but also concerning all other forms of energy supply, as well as socially and financially (consider the tail end of the orange curve onFigure 2). The present turmoil in Venezuela will probably appear as a forerunner of a nasty situation becoming global.

To emerge, develop and flourish, every civilisation requires a self-powered energy supply chain – i.e. it takes energy to get energy, so any civilisation lives on the energy surplus delivered to it by its self-powered energy supply chain(s). In the globalised industrial world’s case and until recently this was the oil industry (including the whole of the support systems required for the oil industry to operate).  Since oil overtook coal and biomass during the earlier part of the 20th century, the oil industry has been the sole self-powered supply chain of the industrial world. All other forms of energy depend on it, coal, natural gas, nuclear, all so-called “renewables”, and all the way to feed and food production. In our estimates, the oil industry entered terminal decline about 7 years ago and this decline will be over by about 2030 or before.  In our view, the decline of Ghawar corroborates that this end is most likely than not going to be abrupt.

The big problem is that presently we do not have a substitute energy supply chain that could be deployed in time. As summarised in Figure 4, what one calls “renewables” is not quite so and by a wide margin. Not only current “renewable” equipment requires net energy from oil for its manufacture, transport, maintenance, and eventual decommissioning but also its production results in substantial greenhouse gases emissions (GHGs).  Even more importantly, the current “renewable”technology mix cannot form the basis for a new, sustainable, self-powered energy supply chain able to substitute for the oil-based one within the time frame defined by the decline of net energy from oil and the imperatives to combat catastrophic global warming (at least 45% greenhouse gases emissions reduction by 2030).

We call the present situation the Energy Seneca (after the Roman philosopher who first identified patterns of progressive growth followed with a peak and then abrupt decline). Figure 5 explains why the industrial world is now in a very tight spot, just after it has passed through the Energy Seneca apex.  On the one hand, the oil industry world is trapped in the famous Red Queen effect (RQ).  It has to keep pumping at an ever-faster rate to keep delivering net energy while, per barrel extracted, this net energy is in steep decline.  Soon it will run out of breath…  On the other hand, alternatives face what I call the Inverse Red Queen effect (1/RQ).  If the alternatives grow too fast, their manufacture and deployment drain energy from the industrial world just when it desperately needs more. And if those alternatives do not grow fast enough, then the industrial world is bound to abruptly decline or even collapse.

The harsh reality that few have identified is that presently none of the solutions touted by “green”business interests, governmental bodies, and NGOs alike can extricate us in time from the combination of RQ and 1/RQ effects. Not only this combination precludes building a new self-powered energy supply chain in time but also it precludes augmenting the present oil industry with non-oil energy sources to extend its terminal operations.  In short, unbeknown to most, our world is in the process of losing access to all the energy forms it depends on.  This thermodynamic conundrum compounds global warming and all other ecological, social and financial global issues to form a lethal avalanche that has been in train since about 2008.  There is global cognitive failure on the part of world elites to recognise this situation and address it.

As shown in Figure 6, the abrupt end of the Oil Age converges with the surge in protests that have taken place in recent years and that keeps gathering momentum. While most do not understand the intricacies summarised here, thousands of scientists and millions of people now do realise that they no longer have a future.  There is a “demand-for-something-else” than what they presently have.  This now strident demand is for a way forward that breaks through prevailing cognitive failure and re-opens a future for the younger ones.

To conclude, in our view Ghawar’s decline heralds the abrupt end of the Oil Age, as we have known it so far, over the next ten years.  It does not mean that we are “running out of oil”; there is plenty left but most of it will stay underground.  If a resource cannot be used to generate economic activity it loses all value and ceases to be a resource.  Like it or not, we now have to face the harsh emerging reality on the downside of the Energy Seneca.





Can we save energy, jobs and growth at the same time ?

20 05 2018

I apologise in advance to anyone with a short attention span, this is a bit long at almost one and a half hours……  especially as if you are new to limits to growth, you might have to watch it more than once!
If you ever needed proof that economics is an imbecilic proposal, then this is it.

Published on 30 Jan 2018

Jancovici’s conference in ENS School of Paris – 08/01/2018 To download the Presentation : https://fr.slideshare.net/JoelleLecon… The depletion of natural resources, with oil to start with, and the need for a stable climate, will make it harder and harder to pursue economic growth as we know it. It has now become urgent to develop a new branch of economics which does not rely on the unrealistic assumption of a perpetual GDP increase. In this Colloquium, I will discuss a “physical” approach to economics which aims at understanding and managing the scaling back of our world economy. Biography : Jean-Marc Jancovici, is a French engineer who graduated from École Polytechnique and Télécom, and who specializes in energy-climate subjects. He is a consultant, teacher, lecturer, author of books and columnist. He is known for his outreach work on climate change and the energy crisis. He is co-founder of the organization “Carbone 4” and president of the think tank “The Shift Project”. Original video : https://www.youtube.com/watch?v=ey7_F… Facebook page : https://www.facebook.com/jeanmarc.jan… Website : https://jancovici.com/




The Collapse of Saudi Arabia is Inevitable

23 04 2018

I’ve been saying this for years now…….  but here’s one of the world’s best journalists explaining it way better than I can….. and you better believe it, when Saudi Arabia goes the way of Syria, it will be the trigger for global collapse to start in earnest.
By Nafeez Ahmed

nafeezSeptember 28, 2015 “Information Clearing House” – “MEE”- On Tuesday 22 September, Middle East Eye broke the story of a senior member of the Saudi royal family calling for a “change” in leadership to fend off the kingdom’s collapse.

In a letter circulated among Saudi princes, its author, a grandson of the late King Abdulaziz Ibn Saud, blamed incumbent King Salman for creating unprecedented problems that endangered the monarchy’s continued survival.

“We will not be able to stop the draining of money, the political adolescence, and the military risks unless we change the methods of decision making, even if that implied changing the king himself,” warned the letter.

Whether or not an internal royal coup is round the corner – and informed observers think such a prospect “fanciful” – the letter’s analysis of Saudi Arabia’s dire predicament is startlingly accurate.

Like many countries in the region before it, Saudi Arabia is on the brink of a perfect storm of interconnected challenges that, if history is anything to judge by, will be the monarchy’s undoing well within the next decade.

Black gold hemorrhage
The biggest elephant in the room is oil. Saudi Arabia’s primary source of revenues, of course, is oil exports. For the last few years, the kingdom has pumped at record levels to sustain production, keeping oil prices low, undermining competing oil producers around the world who cannot afford to stay in business at such tiny profit margins, and paving the way for Saudi petro-dominance.

But Saudi Arabia’s spare capacity to pump like crazy can only last so long. A new peer-reviewed study in the Journal of Petroleum Science and Engineering anticipates that Saudi Arabia will experience a peak in its oil production, followed by inexorable decline, in 2028 – that’s just 13 years away.

This could well underestimate the extent of the problem. According to the Export Land Model (ELM) created by Texas petroleum geologist Jeffrey J Brown and Dr Sam Foucher, the key issue is not oil production alone, but the capacity to translate production into exports against rising rates of domestic consumption.

Brown and Foucher showed that the inflection point to watch out for is when an oil producer can no longer increase the quantity of oil sales abroad because of the need to meet rising domestic energy demand.

In 2008, they found that Saudi net oil exports had already begun declining as of 2006. They forecast that this trend would continue.

They were right. From 2005 to 2015, Saudi net exports have experienced an annual decline rate of 1.4 percent, within the range predicted by Brown and Foucher. A report by Citigroup recently predicted that net exports would plummet to zero in the next 15 years.

From riches to rags
This means that Saudi state revenues, 80 percent of which come from oil sales, are heading downwards, terminally.

Saudi Arabia is the region’s biggest energy consumer, domestic demand having increased by 7.5 percent over the last five years – driven largely by population growth.

The total Saudi population is estimated to grow from 29 million people today to 37 million by 2030. As demographic expansion absorbs Saudi Arabia’s energy production, the next decade is therefore likely to see the country’s oil exporting capacity ever more constrained.

Renewable energy is one avenue which Saudi Arabia has tried to invest in to wean domestic demand off oil dependence, hoping to free up capacity for oil sales abroad, thus maintaining revenues.

But earlier this year, the strain on the kingdom’s finances began to show when it announced an eight-year delay to its $109 billion solar programme, which was supposed to produce a third of the nation’s electricity by 2032.

State revenues also have been hit through blowback from the kingdom’s own short-sighted strategy to undermine competing oil producers. As I previously reported, Saudi Arabia has maintained high production levels precisely to keep global oil prices low, making new ventures unprofitable for rivals such as the US shale gas industry and other OPEC producers.

The Saudi treasury has not escaped the fall-out from the resulting oil profit squeeze – but the idea was that the kingdom’s significant financial reserves would allow it to weather the storm until its rivals are forced out of the market, unable to cope with the chronic lack of profitability.

That hasn’t quite happened yet. In the meantime, Saudi Arabia’s considerable reserves are being depleted at unprecedented levels, dropping from their August 2014 peak of $737 billion to $672bn in May – falling by about $12bn a month.

At this rate, by late 2018, the kingdom’s reserves could deplete as low as $200bn, an eventuality that would likely be anticipated by markets much earlier, triggering capital flight.

To make up for this prospect, King Salman’s approach has been to accelerate borrowing. What happens when over the next few years reserves deplete, debt increases, while oil revenues remain strained?

As with autocratic regimes like Egypt, Syria and Yemen – all of which are facing various degrees of domestic unrest – one of the first expenditures to slash in hard times will be lavish domestic subsidies. In the former countries, successive subsidy reductions responding to the impacts of rocketing food and oil prices fed directly into the grievances that generated the “Arab Spring” uprisings.

Saudi Arabia’s oil wealth, and its unique ability to maintain generous subsidies for oil, housing, food and other consumer items, plays a major role in fending off that risk of civil unrest. Energy subsidies alone make up about a fifth of Saudi’s gross domestic product.

Pressure points
As revenues are increasingly strained, the kingdom’s capacity to keep a lid on rising domestic dissent will falter, as has already happened in countries across the region.

About a quarter of the Saudi population lives in poverty. Unemployment is at about 12 percent, and affects mostly young people – 30 percent of whom are unemployed.

Climate change is pitched to heighten the country’s economic problems, especially in relation to food and water.

Like many countries in the region, Saudi Arabia is already experiencing the effects of climate change in the form of stronger warming temperatures in the interior, and vast areas of rainfall deficits in the north. By 2040, average temperatures are expected to be higher than the global average, and could increase by as much as 4 degrees Celsius, while rain reductions could worsen.

This would be accompanied by more extreme weather events, like the 2010 Jeddah flooding caused by a year’s worth of rain occurring within the course of just four hours. The combination could dramatically impact agricultural productivity, which is already facing challenges from overgrazing and unsustainable industrial agricultural practices leading to accelerated desertification.

In any case, 80 percent of Saudi Arabia’s food requirements are purchased through heavily subsidised imports, meaning that without the protection of those subsidies, the country would be heavily impacted by fluctuations in global food prices.

“Saudi Arabia is particularly vulnerable to climate change as most of its ecosystems are sensitive, its renewable water resources are limited and its economy remains highly dependent on fossil fuel exports, while significant demographic pressures continue to affect the government’s ability to provide for the needs of its population,” concluded a UN Food & Agricultural Organisation (FAO) report in 2010.

The kingdom is one of the most water scarce in the world, at 98 cubic metres per inhabitant per year. Most water withdrawal is from groundwater, 57 percent of which is non-renewable, and 88 percent of which goes to agriculture. In addition, desalination plants meet about 70 percent of the kingdom’s domestic water supplies.

But desalination is very energy intensive, accounting for more than half of domestic oil consumption. As oil exports run down, along with state revenues, while domestic consumption increases, the kingdom’s ability to use desalination to meet its water needs will decrease.

End of the road
In Iraq, Syria, Yemen and Egypt, civil unrest and all-out war can be traced back to the devastating impact of declining state power in the context of climate-induced droughts, agricultural decline, and rapid oil depletion.

Yet the Saudi government has decided that rather than learning lessons from the hubris of its neighbours, it won’t wait for war to come home – but will readily export war in the region in a madcap bid to extend its geopolitical hegemony and prolong its petro-dominance.

Unfortunately, these actions are symptomatic of the fundamental delusion that has prevented all these regimes from responding rationally to the Crisis of Civilization that is unravelling the ground from beneath their feet. That delusion consists of an unwavering, fundamentalist faith: that more business-as-usual will solve the problems created by business-as-usual.

Like many of its neighbours, such deep-rooted structural realities mean that Saudi Arabia is indeed on the brink of protracted state failure, a process likely to take-off in the next few years, becoming truly obvious well within a decade.

Sadly, those few members of the royal family who think they can save their kingdom from its inevitable demise by a bit of experimental regime-rotation are no less deluded than those they seek to remove.

Nafeez Ahmed PhD is an investigative journalist, international security scholar and bestselling author who tracks what he calls the ‘crisis of civilization.’ He is a winner of the Project Censored Award for Outstanding Investigative Journalism for his Guardian reporting on the intersection of global ecological, energy and economic crises with regional geopolitics and conflicts. He has also written for The Independent, Sydney Morning Herald, The Age, The Scotsman, Foreign Policy, The Atlantic, Quartz, Prospect, New Statesman, Le Monde diplomatique, New Internationalist. His work on the root causes and covert operations linked to international terrorism officially contributed to the 9/11 Commission and the 7/7 Coroner’s Inquest.





The End of Growth, Seven Years Later

12 04 2018

I wrote The End of Growth in the months following the Global Financial Crisis of 2007-2008 (the book was published in North America in 2011), with the goal of helping to put that crisis in proper perspective. I argued that persistent economic growth is not “normal” in either an ecological or a historical frame of reference, and that a major threat to the continuation of growth (such as was posed by the 2008 crisis) is best interpreted as a signal that the global economy is approaching inevitable growth limits as the larger ecological systems of which it is a part become depleted, degraded, and destabilized.”

This is not an entirely new way of thinking about the economy. Starting in the 1960s, Nicholas Georgescu-Roegen, Kenneth Boulding, and Herman Daly laid the foundations for an economics that correctly situates human society within the context of Earth’s limited natural energy flows and resource stocks. In 1972, the landmark study The Limits to Growth argued that the rapid global economic expansion that began in the twentieth century would almost certainly end and reverse itself in the twenty-first due largely to resource depletion and pollution. These have remained minority views among economists for decades; however, I argued that they are well founded, and that we are now seeing the confirmation of Limits to Growth warnings.

However, three things have changed since The End of Growth first appeared in North America. There are clear signs that growth is becoming more difficult to achieve worldwide. Impacts from slowing growth are appearing in the social and political spheres. And both analysts and grassroots social movements are starting to regard growth as the cause, rather than the solution, to worsening ecological and social crises. Let’s explore these developments one by one.

Signs that growth has run its course. This book argues at some length that ongoing, annual global GDP growth is very nearly finished. However, the years since the 2008 crash have seen some semblance of “recovery,” in that growth, as conventionally measured, has revived. Is the book’s thesis thereby refuted? I would argue to the contrary. The effort required to achieve the “recovery” was truly astonishing. Trillions of dollars, euros, and yuan were created and spent by central banks to prop up the global financial system. More trillions were called into existence through government deficit spending. Some analysts point out that, in the U.S. at least, during the decade since 2008 the dollar amount of cumulative government deficit spending has exceeded the dollar amount of GDP growth.

Government and central bank efforts to forestall collapse effectively piled more debt onto a system already drowning in debt (the world total debt level, at $180 trillion, is higher now than before the 2008 crisis, and is approximately 300 percent of world GDP). As I argue in Chapter 2 (extrapolating the analysis of economists Hyman Minsky and Irving Fisher), the accumulation of debt, undertaken in order to generate wealth and economic expansion, is subject to the law of diminishing returns, and is likely to end in a massive de-leveraging event—as has occurred in similar situations throughout history. A new book by business strategist and financial consultant Graham Summers calls our current situation The Everything Bubblein that when the government bonds that serve as the foundation of our current financial system are in a bubble, all risk assets (everything in the financial world) is effectively a bubble too. Thus efforts contributing to the “recovery” since 2008 did not solve our underlying economic problems, but only hid them; the end-of-growth reckoning was not canceled, only postponed. There have been no significant reforms to the financial system or efforts to reduce society’s reliance on unsustainable debt. The “recovery” was therefore merely a temporary reprieve, and we should not fool ourselves into thinking that it can be replicated or extended much further.

Meanwhile, fundamental non-financial system dynamics are also leading toward economic contraction. As discussed in Chapter 3, the costs of climate change continue to soar. In 2017, the total bill for climate related disasters in the US alone was $306 billion—not enough to tip the economy into recession, but far above the $46 billion cost for the previous year. However, these disaster costs do not include the snowballing economic consequences of shifting weather patterns and declining biodiversity. Even if GDP growth can still be achieved in these circumstances, it is, to use a term coined by Herman Daly, “uneconomic growth,” in that it reflects or creates a decline in overall quality of life.

In the book, I discuss the accumulating impacts of fossil fuel depletion. In recent years, many energy experts have adopted the view that fossil fuel resources are large enough that depletion poses no economic threat to society. However, it is important to remember that industry harvests coal, oil, and natural gas using the low-hanging fruit principle. Thus the resources being extracted today are generally more expensive and difficult to access than those recovered decades ago. This higher-cost trend is accelerating, even though it is not yet fully reflected in fossil fuel prices or total production levels. One symptom of the trend is the declining profitability of the oil industry. During the past four years, the five largest oil companies were unable to pay for new investments and dividends without selling assets or taking on more debt; in 2017, according to FactSet, the companies spent $31 billion more than they generated from operations. Smaller companies that specialize in production of U.S. tight oil, using hydrofracturing and horizontal drilling, are in an even worse bind. In 2017, two-thirds of U.S. tight oil was produced at a financial loss. The oil industry’s only hope for profitability is higher prices—but higher prices would undercut demand for petroleum and eat away at economic growth. Meanwhile, global oil discoveries have declined to the slowest pace since 1947. And evidence suggests the current tight oil and shale gas boom in the U.S. will be short-lived, due to the limited size and highly variable quality of geological reservoirs. Altogether, depletion is posing a fast-accelerating challenge to the viability of the fossil fuel industry—which, for the past two centuries, has been the key to industrial society’s expansion.

Could the challenges to economic growth posed by fossil fuel depletion be overcome through a shift to renewable energy source? In 2015-2016, I worked with David Fridley of Lawrence Berkeley National Laboratory to explore the likely opportunities and constraints involved in a hypothetical societal shift to all-renewable energy. We found that such a shift would entail massive restructuring of energy end use (in transportation, manufacturing, food systems, and building operations) that would likely match the required investment in energy generation infrastructure. We concluded that the only way to make such a shift affordable and practically feasible over a relatively brief time (three or four decades) would be to reduce overall energy usage substantially, especially in high-use countries such as the United States. Doing so would likely be incompatible with GDP growth.

Social and political impacts from slowing growth. After decades of falling food and energy costs as a percentage of GDP, those costs stabilized and started growing at the start of the new century. Then came the financial crisis of 2008. Now, despite a decade of “recovery” following that crisis, not everyone is feeling the joy. Most of the increase in wealth and income since 2011 has gone to the top one percent of earners—the investor class, which is in position to benefit from government and central bank policies designed to shore up the financial system. Wages and salaries as a share of total GDP have fallen by about 5 percent since 2000, while corporate profits, rents, and interest income have increased by about the same percentage. As a result, the majority has seen gradual erosion in quality of life. This erosion is felt especially by the young, women, people of color, and those with few marketable skills. A consumer confidence report by the University of Michigan in March 2018 showed that, for the first time since such surveys have been undertaken, Americans younger than 35 are less optimistic about the economy than older Americans. This unease appears well-founded: research by Stanford economist Raj Chetty and colleagues has found that about 90 percent of Americans born in the 1940s earned more than their parents by the time they turned 30, while only about half of those born in the 1980s can say the same (figures were adjusted for inflation and household size).

Americans are feeling more anxious, depressed, and dissatisfied with their lives than they did in 2009, and happiness, or what researchers call “subjective well-being,” is declining among those surveyed in a detailed study by the Gallup Organization and the healthcare information service Sharecare.

Increasing inequality and declining future prospects are recipes for social unrest, political polarization, and the rise of populist or authoritarian politicians. Since 2008, authoritarian regimes have become more numerous, according to the Democracy Index compiled by “The Economist” magazine. The Democracy Index report for 2017 “records the worst decline in global democracy in years. Not a single region recorded an improvement in its average score since 2016, as countries grapple with increasingly divided electorates. Freedom of expression in particular is facing new challenges from both state and non-state actors. . . .”

The trend toward authoritarian leadership is most glaringly apparent in the United States, a nation now listed by the Index as a “flawed democracy.” Donald Trump gained election in 2016 promising to “Make America Great Again”; his electoral strategy centered on pitting one social-ethnic group (citizens of European-American heritage) against others (immigrants, African-Americans, and Latinos), while demonizing his political opponents. These tactics echo those of historic and emerging authoritarian politicians in Europe, The Philippines, and elsewhere.

Post-growth or De-growth analysts and movements. Increasing numbers of people regard the rapid global economic growth seen in the past few decades as metaphorically cancerous, since it was purchased at the expense of resource depletion, waste generation, and pollution, with severe impacts on global natural life support systems. Economic inequality has worsened and quality of life is crumbling. Growth of this sort has to end, voluntarily or otherwise.

Indeed, it’s become clear to many climate researchers and other environmental scientists that addressing climate change, resource depletion, and the biodiversity extinction crisis requires deliberately shrinking the economy. For example, British scientist Kevin Anderson of the Tyndall Center for Climate Change Research estimates that staying under the agreed-upon 2 degree Celsius ceiling for global warming in a way that allots poor countries their fair share of the carbon budget would require rich countries to reduce emissions by 10 percent per year—which would be incompatible with economic growth in those nations. And a new study in the journal Nature Sustainability concludes that:

[N]o country [currently] meets basic needs for its citizens at a globally sustainable level of resource use. Physical needs such as nutrition, sanitation, access to electricity and the elimination of extreme poverty could likely be met for all people without transgressing planetary boundaries. However, the universal achievement of more qualitative goals (for example, high life satisfaction) would require a level of resource use that is 2–6 times the sustainable level. . . . [O]ur findings suggest that the pursuit of universal human development, which is the ambition of the SDGs [Sustainable Development Goals], has the potential to undermine the Earth-system processes upon which development ultimately depends. But this does not need to be the case. A more hopeful scenario would see the SDGs shift the agenda away from growth towards an economic model where the goal is sustainable and equitable human well-being. [emphasis added}

Meanwhile, biologist E. O. Wilson has suggested that the only effective way to counter the biodiversity extinction crisis is to reserve half the world’s land and sea area for other species. It is difficult to imagine this happening in the context of continued economic expansion.

New economic thinking has contributed to recent discussions about how to understand and adapt to the end of growth. Post-Keynesian economists, such as Steve Keen, argue that conventional economic theory has two fatal blind spots. One is that an overly large private debt to GDP ratio can cause deflation and depression; the other is that energy is key driver of production (in conventional economic theory, the role of energy is barely considered at all). Without a proper understanding of debt, custodians of the financial system have no way to avoid periodic debt deflation events; and without an understanding of energy’s crucial role in the economy, conventional economists are unable to properly explain the ultimate source of growth and are therefore clueless about a primary growth limit.

The End of Growth discusses hopeful new initiatives and social experiments that could help society adapt to a post-growth regime. These include alternative economic arrangements such as the sharing economy—which is much more widely talked about today than when the book first appeared (and has also come in for some criticism); likewise the idea of a universal basic income.

Transition, a post-growth social movement discussed in Chapter 7, continues to expand, having spread now to over 50 countries, with thousands of groups in towns, villages, cities, universities, and schools. Its projects include promoting local food, local renewable energy, local investment, and local currency; some groups have opened repair cafes and tool libraries as ways of reducing consumption. Likewise, the degrowth movement in Europe, also discussed in Chapter 7, continues to broaden its appeal. In 2017, for the first time ever, a political party—the Five-Star Movement in Italy—successfully ran on a platform that included mention of degrowth. In the wake of that victory it seems particularly appropriate that an Italian language edition of this book will be published later this year.

*          *          *

The End of Growth may have appeared a few years ahead of its time. After all, the years 2012-2017 saw an increase, rather than continued fall, of U.S. and global GDP. The optics, as they say, were not good for the book’s central claim. But was its warning really premature? After all, the point of warnings is to convince people to alter behavior so as to avert harm or to pre-adapt to coming change. Harm and change of the kinds described in the book are no less certain today.

In the long run, we really won’t have any option other than to adapt to limits. The rapid economic growth the world witnessed in the twentieth century was a one-time-only phenomenon resulting from scientific research, technological development, advertising, consumer spending, and borrowing; crucially, it was ultimately fed by depleting, non-renewable fossil fuels—primarily petroleum. We are now living at the tail end of that era.

Politicians and conventional economists continue to call for more growth. This is, to use a tired and ugly metaphor, beating a dead horse. Belief among the general public in the possibility and benefit of further economic growth is eroding. And the harder we push human systems toward growth limits, the further and faster those systems will snap back as limits are exceeded. Whatever growth remains to be wrung from the system will come at the cost of future generations and the rest of nature, and will likely continue to disproportionately benefit the already wealthy. Those who hold their hands on the levers of national public policy, large corporations, and even philanthropy are missing end-of-growth signals because they are the only ones still benefiting from continued growth.

The next cyclical recession may be just around the corner. After the last one, the global economy was patched together with metaphorical hairpins and chewing gum. The next is likely to be much worse, as central banks and governments have already deployed most of their ammunition. The end of growth has been postponed as long as is humanly possible. It’s far past time to come to terms with ecological reality and make a deliberate transition to a post-growth regime.

heinberg-thumb-200x200Richard Heinberg is the author of thirteen books including: – Our Renewable Future: Laying  the Path for One Hundred Percent Clean Energy, co-authored with David Fridley (2016) – Afterburn (2015) – Snake Oil (July 2013) – The End of Growth (August 2011) – The Post Carbon Reader (2010) (editor) – Blackout: Coal, Climate, and the Last…





 Juggling Live Hand Grenades

6 04 2018

heinberg

Richard Heinberg

Richard Heinberg. 2017-4-25. Juggling Live Hand Grenades. Post Carbon Institute.

Here are a few useful recent contributions to the global sustainability conversation, with relevant comments interspersed. Toward the end of this essay I offer some general thoughts about converging challenges to the civilizational system.

  1. “Oil Extraction, Economic Growth, and Oil Price Dynamics,” by Aude Illig and Ian Schiller. BioPhysical Economics and Resource Quality, March 2017, 2:1.

Once upon a time it was assumed that as world oil supplies were depleted and burned, prices would simply march upward until they either crashed the economy or incentivized both substitute fuels and changes to systems that use petroleum (mainly transportation). With a little hindsight—that is, in view of the past decade of extreme oil price volatility—it’s obvious that that assumption was simplistic and useless for planning purposes. Illig’s and Schiller’s paper is an effort to find a more realistic and rigorously supported (i.e., with lots of data and equations) explanation for the behavior of oil prices and the economy as the oil resource further depletes.

The authors find, in short, that before oil production begins to decline, high prices incentivize new production without affecting demand too much, while low prices incentivize rising demand without reducing production too much. The economy grows. It’s a self-balancing, self-regulating system that’s familiar territory to every trained economist.

However, because oil is a key factor of economic production, a depleting non-renewable resource, and is hard to replace, conventional economic theory does a lousy job describing the declining phase of extraction. It turns out that once depletion has proceeded to the point where extraction rates start to decline, the relationship between oil prices and the economy shifts significantly. Now high prices kill demand without doing much to incentivize new production that’s actually profitable), while low prices kill production without doing much to increase demand. The system becomes sEnter a captionelf-destabilizing, the economy stagnates or contracts, the oil industry invests less in future production capacity, and oil production rates begin to fall faster and faster.

The authors conclude:

Our analysis and empirical evidence are consistent with oil being a fundamental quantity in economic production. Our analysis indicates that once the contraction period for oil extraction begins, price dynamics will accelerate the decline in extraction rates: extraction rates decline because of a decrease in profitability of the extraction business. . . . We believe that the contraction period in oil extraction has begun and that policy makers should be making contingency plans.

As I was reading this paper, the following thoughts crossed my mind. Perhaps the real deficiency of the peak oil “movement” was not its inability to forecast the exact timing of the peak (at least one prominent contributor to the discussion, petroleum geologist Jean Laherrère, made in 2002 what could turn out to have been an astonishingly accurate estimate for the global conventional oil peak in 2010, and global unconventional oil peak in 2015). Rather, its shortcoming was twofold: 1) it didn’t appreciate the complexity of the likely (and, as noted above, poorly understood) price-economy dynamics that would accompany the peak, and 2) it lacked capacity to significantly influence policy makers. Of course, the purpose of the peak oil movement’s efforts was not to score points with forecasting precision but to change the trajectory of society so that the inevitable peak in world oil production, whenever it occurred, would not result in economic collapse. The Hirsch Report of 2005 showed that that change of trajectory would need to start at least a decade before the peak in order to achieve the goal of averting collapse. As it turned out, the peak oil movement did provide society with a decade of warning, but there was no trajectory change on the part of policy makers. Instead, many pundits clouded the issue by spending that crucial decade deriding the peak oil argument because of insufficient predictive accuracy on the part of some of its proponents. And now? See this article:

  1. “Saudi Aramco Chief Warns of Looming Oil Shortage,” by Anjli Raval and Ed Crooks, Financial Times, April 14, 2017.

The message itself should be no surprise. Everyone who’s been paying attention to the oil industry knows that investments in future production capacity have fallen dramatically in the past three years as prices have languished. It’s important to have some longer-term historical perspective, though: today’s price of $50 per barrel is actually a high price for the fuel in the post-WWII era, even taking inflation into account. The industry’s problem isn’t really that prices are too low; it’s that the costs of finding and producing the remaining oil are too highIn any case, with prices not high enough to generate profits, the industry has no choice but to cut back on investments, and that means production will soon start to lag. Again, anyone who’s paying attention knows this.

What’s remarkable is hearing the head of Saudi Arabia’s state energy company convey the news. Here’s an excerpt from the article:

Amin Nasser, chief executive of Saudi Aramco, the world’s largest oil producing company, said on Friday that 20 [million] barrels a day in future production capacity was required to meet demand growth and offset natural field declines in the coming years. “That is a lot of production capacity, and the investments we now see coming back—which are mostly smaller and shorter term—are not going to be enough to get us there,” he said at the Columbia University Energy Summit in New York. Mr. Nasser said that the oil market was getting closer to rebalancing supply and demand, but the short-term market still points to a surplus as U.S. drilling rig levels rise and growth in shale output returns. Even so, he said it was not enough to meet supplies required in the coming years, which were “falling behind substantially.” About $1 [trillion] in oil and gas investments had been deferred and cancelled since the oil downturn began in 2014.

Mr. Nasser went on to point out that conventional oil discoveries have more than halved during the past four years.

The Saudis have never promoted the notion of peak oil. Their mantra has always been, “supplies are sufficient.” Now their tune has changed—though Mr. Nasser’s statement does not mention peak oil by name. No doubt he would argue that resources are plentiful; the problem lies with prices and investment levels. Yes, of course. Never mention depletion; that would give away the game.

  1. “How Does Energy Resource Depletion Affect Prosperity? Mathematics of a Minimum Energy Return on Investment (EROI),” by Adam R. Brandt. BioPhysical Economics and Resource Quality, (2017) 2:2.

Adam Brandt’s latest paper follows on work by Charlie Hall and others, inquiring whether there is a minimum energy return on investment (EROI) required in order for industrial societies to function. Unfortunately EROI calculations tend to be slippery because they depend upon system boundaries. Draw a close boundary around an energy production system and you are likely to arrive at a higher EROI calculation; draw a wide boundary, and the EROI ratio will be lower. That’s why some EROI calculations for solar PV are in the range of 20:1 while others are closer to 2:1. That’s a very wide divergence, with enormous practical implications.

In his paper, Brandt largely avoids the boundary question and therefore doesn’t attempt to come up with a hard number for a minimum societal EROI. What he does is to validate the general notion of minimum EROI; he also notes that society’s overall EROI has been falling during the last decade. Brandt likewise offers support for the notion of an EROI “cliff”: that is, if EROI is greater than 10:1, the practical impact of an incremental rise or decline in the ratio is relatively small; however, if EROI is below 10:1, each increment becomes much more significant. This also supports Ugo Bardi’s idea of the “Seneca cliff,” according to which societal decline following a peak in energy production, consumption, and EROI may be far quicker than the build-up to the peak.

  1. “Burden of Proof: A Comprehensive Review of the Feasibility of 100% Renewable-Electricity Systems,” by B.P. Heard, B.W. Brook, T.M.L. Wigley, and C.J.A. Bradshaw. Renewable and Sustainable Energy Reviews, Volume 76, September 2017, Pages 1122–1133.

This study largely underscores what David Fridley and I wrote in our recent book Our Renewable Future. None of the plans reviewed here (including those by Mark Jacobson and co-authors) passes muster. Clearly, it is possible to reduce fossil fuels while partly replacing them with wind and solar, using current fossil generation capacity as a fallback (this is already happening in many countries). But getting to 100 percent renewables will be very difficult and expensive. It will ultimately require a dramatic reduction in energy usage, and a redesign of entire systems (food, transport, buildings, and manufacturing), as we detail in our book.

  1. “Social Instability Lies Ahead, Researcher Says,” by Peter Turchin. January 4, 2017, Phys.org.

Over a decade ago, ecologist Peter Turchin began developing a science he calls cliodynamics, which treats history using empirical methods including statistical analysis and modeling. He has applied the same methods to his home country, the United States, and arrives at startling conclusions.

My research showed that about 40 seemingly disparate (but, according to cliodynamics, related) social indicators experienced turning points during the 1970s. Historically, such developments have served as leading indicators of political turmoil. My model indicated that social instability and political violence would peak in the 2020s.

Turchin sees the recent U.S. presidential election as confirming his forecast: “We seem to be well on track for the 2020s instability peak. . . . If anything, the negative trends seem to be accelerating.” He regards Donald Trump as more of a symptom, rather than a driver, of these trends.

The author’s model tracks factors including “growing income and wealth inequality, stagnating and even declining well-being of most Americans, growing political fragmentation and governmental dysfunction.” Often social scientists focus on just one of these issues; but in Turchin’s view, “these developments are all interconnected. Our society is a system in which different parts affect each other, often in unexpected ways.

One issue he gives special weight is what he calls “elite overproduction,” where a society generates more elites than can practically participate in shaping policy. The result is increasing competition among the elites that wastes resources needlessly and drives overall social decline and disintegration. He sees plenty of historical antecedents where elite overproduction drove waves of political violence. In today’s America there are far more millionaires than was the case only a couple of decades ago, and rich people tend to be more politically active than poor ones. This causes increasing political polarization (millionaires funding extreme candidates), erodes cooperation, and results in a political class that is incapable of solving real problems.

I think Turchin’s method of identifying and tracking social variables, using history as a guide, is relevant and useful. And it certainly offers a sober warning about where America is headed during the next few years. However, I would argue that in the current instance his method actually misses several layers of threat. Historical societies were not subject to the same extraordinary boom-bust cycle driven by the use of fossil fuels as our civilization saw during the past century. Nor did they experience such rapid population growth as we’ve experienced in recent decades (Syria and Egypt saw 4 percent per annum growth in the years after 1960), nor were they subject to global anthropogenic climate change. Thus the case for near-term societal and ecosystem collapse is actually stronger than the one he makes.

Some Concluding Thoughts

Maintaining a civilization is always a delicate balancing act that is sooner or later destined to fail. Some combination of population pressure, resource depletion, economic inequality, pollution, and climate change has undermined every complex society since the beginnings of recorded history roughly seven thousand years ago. Urban centers managed to flourish for a while by importing resources from their peripheries, exporting wastes and disorder beyond their borders, and using social stratification to generate temporary surpluses of wealth. But these processes are all subject to the law of diminishing returns: eventually, every boom turns to bust. In some respects the cycles of civilizational advance and decline mirror the adaptive cycle in ecological systems, where the crash of one cycle clears the way for the start of a new one. Maybe civilization will have yet another chance, and possibly the next iteration will be better, built on mutual aid and balance with nature. We should be planting the seeds now.

Yet while modern civilization is subject to cyclical constraints, in our case the boom has been fueled to an unprecedented extreme by a one-time-only energy subsidy from tens of millions of years’ worth of bio-energy transformed into fossil fuels by agonizingly slow geological processes. One way or another, our locomotive of industrial progress is destined to run off the rails, and because we’ve chugged to such perilous heights of population size and consumption rates, we have a long way to fall—much further than any previous civilization.

Perhaps a few million people globally know enough of history, anthropology, environmental science, and ecological economics to have arrived at general understandings and expectations along these lines. For those who are paying attention, only the specific details of the inevitable processes of societal simplification and economic/population shrinkage remain unknown.

There’s a small cottage industry of websites and commenters keeping track of signs of imminent collapse and hypothesizing various possible future collapse trajectories. Efforts to this end may have practical usefulness for those who hope to escape the worst of the mayhem in the process—which is likely to be prolonged and uneven—and perhaps even improve lives by building community resilience. However, many collapsitarians are quite admittedly just indulging a morbid fascination with history’s greatest train wreck. In many of my writings I try my best to avoid morbid fascination and focus on practical usefulness. But every so often it’s helpful to step back and take it all in. It’s quite a show.





The Future of Renewable Energy

19 10 2017

I 60% agree [ED: I only 10% agree…!] but have severe reservations with carrying the analogy too far. There are some real differences that make the two “revolutions” largely non-comparable:

(1) The digital revolution has brought us many new products that do things we couldn’t do before – computers, mobile phones, the internet. That makes it attractive to people and companies and has sped adoption. The energy revolution does not bring new final end products – the end products are electricity (and heat and motion) which we already had. What it brings are many new ways of generating electricity (and heating and moving things).

(2) To pay for the energy revolution people must pay once for the new technology that generates the energy source (mostly as electricity) and once for products that are adapted to this new energy source (eg a petrol or diesel car to an electric car) – and perhaps a third time for the back up or storage to cope with intermittency in the renewable power source.

(3) To supply electricity, heat and motion reliably and at demand will be incredibly expensive – there are good reasons to believe that current cost reductions in the energy generation arrangements for wind and solar will not be sustained when the fossil fuel back up (ie natural gas power stations ) that is the current back up have to be replaced by renewable energy back ups or energy storage infrastructures. In other words it will get more difficult over time when fossil fuel back up has to be closed down.

(4) Over the decades while the digital economy was being developed household, corporate and government debt started out much lower and has grown massively. At the start of the energy technology revolution the economy is maxed out on debt which is only sustainable with very low interest rates. Rising interest rates are not going to make it easy to fund the capital/equipment costs of a new technological revolution.

(5) Over the last few decades conventional oil production has peaked and depletion in coal and gas, as well as a variety of minerals that will be needed for another technological revolution are becoming more costly to extract because they are in depletion too, with lower ore quality being tapped. Depletion in the oil and natural gas sector are driving that sector into bankruptcy because the sector cannot recoup its rising costs from rising prices – a stagnant economy cannot charge rising energy prices without crashing the economy. Developing a new energy system takes energy – a renewables infrastructure is first of all dependent on fossil fuel based energy to build it and if the fossil fuel industry is in trouble at an early stage in the development of a renewable system that is going to be a serious problem.

All these things can be summarised as saying that the digital revolution occurred while the global economy still had expansion capacity. It had not yet reached the limits to economic growth – although for some time now the global economy has been in overshoot and running down resources and “natural capital” (I do not like the term, however I use it here as a shorthand).

The energy revolution has to be made in totally different and much more difficult times – while the global economy is in retreat. It will be difficult to bring a new energy sector into existence when the economy is stagnant and people will struggle to afford expensive innovation. Paradoxically in these circumstances it is likely to be many older technologies that will make sense again – perhaps in a reworked form. That is what makes the work of Kris de Decker written up in the Low Technology Magazine and its companion, the No Technology Magazine so important – rediscovering a multitude of solutions from history.

http://www.lowtechmagazine.com/
http://www.notechmagazine.com/

Below are links to two fantastic articles written by Kris de Decker in Low Technology Magazine – well researched, clear and easy to understand and full of relevant technical data.

What they show is that trying to build an electrical energy system mainly with wind and solar that would be able to meet the demand for electricity at all times as we have now is a futile endeavour. It would be way too expensive in money, resources and energy. We must get used to the idea of using electricity only when the sun is shining and the wind is blowing (enough).

In practical terms that means that

“…. if the UK would accept electricity shortages for 65 days a year, it could be powered by a 100% renewable power grid (solar, wind, wave & tidal power) without the need for energy storage, a backup capacity of fossil fuel power plants, or a large overcapacity of power generators.”

I dare say a similar conclusion would be drawn for Ireland.

http://www.lowtechmagazine.com/2017/09/how-to-run-modern-society-on-solar-and-wind-powe.html

The second article develops in more detail the idea of running the economy on renewables when the energy is there and is an important complement to the first article.

http://www.lowtechmagazine.com/2017/09/how-to-run-the-economy-on-the-weather.html#more