How (Not) to Run a Modern Society on Solar and Wind Power Alone

20 07 2019

This is a great article from Low-Tech Magazine explaining the limitations of renewable energy. Let me tell you, now we are off grid and not relying on it for the house site, I have personally visited the limits of solar energy on several occasions. Winter, in particular, really tests my ability to do things, even building. We’ve had lengthy rainy periods when the solar array has literally produced nothing whatsoever, and I couldn’t even use power tools. When the sun shines, I can do anything. But when it doesn’t……. to add insult to injury, even owning a wind turbine would not help, because at this time of year there’s no useable wind!

While the potential of wind and solar energy is more than sufficient to supply the electricity demand of industrial societies, these resources are only available intermittently. To ensure that supply always meets demand, a renewable power grid needs an oversized power generation and transmission capacity of up to ten times the peak demand. It also requires a balancing capacity of fossil fuel power plants, or its equivalent in energy storage. 

Consequently, matching supply to demand at all times makes renewable power production a complex, slow, expensive and unsustainable undertaking. Yet, if we would adjust energy demand to the variable supply of solar and wind energy, a renewable power grid could be much more advantageous. Using wind and solar energy only when they’re available is a traditional concept that modern technology can improve upon significantly.

100% Renewable Energy

It is widely believed that in the future, renewable energy production will allow modern societies to become independent from fossil fuels, with wind and solar energy having the largest potential. An oft-stated fact is that there’s enough wind and solar power available to meet the energy needs of modern civilisation many times over.

For instance, in Europe, the practical wind energy potential for electricity production on- and off-shore is estimated to be at least 30,000 TWh per year, or ten times the annual electricity demand. [1] In the USA, the technical solar power potential is estimated to be 400,000 TWh, or 100 times the annual electricity demand. [2]

Such statements, although theoretically correct, are highly problematic in practice. This is because they are based on annual averages of renewable energy production, and do not address the highly variable and uncertain character of wind and solar energy. 

Annual averages of renewable energy production do not address the highly variable and uncertain character of wind and solar energy

Demand and supply of electricity need to be matched at all times, which is relatively easy to achieve with power plants that can be turned on and off at will. However, the output of wind turbines and solar panels is totally dependent on the whims of the weather.

Therefore, to find out if and how we can run a modern society on solar and wind power alone, we need to compare time-synchronised electricity demand with time-synchronised solar or wind power availability. [3][4] [5] In doing so, it becomes clear that supply correlates poorly with demand.


The intermittency of solar en wind energy compared to demand

Above: a visualisation of 30 days of superimposed power demand time series data (red), wind energy generation data (blue), and solar insolation data (yellow). Average values are in colour-highlighted black lines. Data obtained from Bonneville Power Administration, April 2010. Source: [21]


The Intermittency of Solar Energy

Solar power is characterised by both predictable and unpredictable variations. There is a predictable diurnal and seasonal pattern, where peak output occurs in the middle of the day and in the summer, depending on the apparent motion of the sun in the sky. [6] [7]

When the sun is lower in the sky, its rays have to travel through a larger air mass, which reduces their strength because they are absorbed by particles in the atmosphere. The sun’s rays are also spread out over a larger horizontal surface, decreasing the energy transfer per unit of horizontal surface area.

When the sun is 60° above the horizon, the sun’s intensity is still 87% of its maximum when it reaches a horizontal surface. However, at lower angles, the sun’s intensity quickly decreases. At a solar angle of 15°, the radiation that strikes a horizontal surface is only 25% of its maximum. 

On a seasonal scale, the solar elevation angle also correlates with the number of daylight hours, which reduces the amount of solar energy received over the course of a day at times of the year when the sun is already lower in the sky. And, last but not least, there’s no solar energy available at night.

Cloud map

Image: Average cloud cover 2002 – 2015. Source: NASA.

Likewise, the presence of clouds adds unpredictable variations to the solar energy supply. Clouds scatter and absorb solar radiation, reducing the amount of insolation that reaches the ground below. Solar output is roughly 80% of its maximum with a light cloud cover, but only 15% of its maximum on a heavy overcast day. [8][9][10]

Due to a lack of thermal or mechanical inertia in solar photovoltaic (PV) systems, the changes due to clouds can be dramatic. For example, under fluctuating cloud cover, the output of multi-megawatt PV power plants in the Southwest USA was reported to have variations of roughly 50% in a 30 to 90 second timeframe and around 70% in a timeframe of 5 to 10 minutes. [6]

In London, a solar panel produces 65 times less energy on a heavy overcast day in December at 10 am than on a sunny day in June at noon. 

The combination of these predictable and unpredictable variations in solar power makes it clear that the output of a solar power plant can vary enormously throughout time. In Phoenix, Arizona, the sunniest place in the USA, a solar panel produces on average 2.7 times less energy in December than in June. Comparing a sunny day at midday in June with a heavy overcast day at 10 am in December, the difference in solar output is almost twentyfold. [11]

In London, UK, which is a moderately suitable location for solar power, a solar panel produces on average 10 times less energy in December than in June. Comparing a sunny day in June at noon with a heavy overcast day in December at 10 am, the solar output differs by a factor of 65. [8][9]

The Intermittency of Wind Energy

Compared to solar energy, the variability of the wind is even more volatile. On the one hand, wind energy can be harvested both day and night, while on the other hand, it’s less predictable and less reliable than solar energy. During daylight hours, there’s always a minimum amount of solar power available, but this is not the case for wind, which can be absent or too weak for days or even weeks at a time. There can also be too much wind, and wind turbines then have to be shut down in order to avoid damage.

On average throughout the year, and depending on location, modern wind farms produce 10-45% of their rated maximum power capacity, roughly double the annual capacity factor of the average solar PV installation (5-30%). [6] [12][13][14] In practice, however, wind turbines can operate between 0 and 100% of their maximum power at any moment.


Hourly wind power output on 29 different days in april 2005 at a wind plant in california

Hourly wind power output on 29 different days in april 2005 at a wind plant in california. Source: [6]


For many locations, only average wind speed data is available. However, the chart above shows the daily and hourly wind power output on 29 different days at a wind farm in California. At any given hour of the day and any given day of the month, wind power production can vary between zero and 600 megawatt, which is the maximum power production of the wind farm. [6]

Even relatively small changes in wind speed have a large effect on wind power production: if the wind speed decreases by half, power production decreases by a factor of eight. [15] Wind resources also vary throughout the years. Germany, the Netherlands and Denmark show a wind speed inter-annual variability of up to 30%. [1] Yearly differences in solar power can also be significant. [16] [17]

How to Match Supply with Demand?

To some extent, wind and solar energy can compensate for each other. For example, wind is usually twice as strong during the winter months, when there is less sun. [18] However, this concerns average values again. At any particular moment of the year, wind and solar energy may be weak or absent simultaneously, leaving us with little or no electricity at all.

Electricity demand also varies throughout the day and the seasons, but these changes are more predictable and much less extreme. Demand peaks in the morning and in the evening, and is at its lowest during the night. However, even at night, electricity use is still close to 60% of the maximum. 

At any particular moment of the year, wind and solar energy may be weak or absent simultaneously, leaving us with little or no electricity at all.

Consequently, if renewable power capacity is calculated based on the annual averages of solar and wind energy production and in tune with the average power demand, there would be huge electricity shortages for most of the time. To ensure that electricity supply always meets electricity demand, additional measures need to be taken.

First, we could count on a backup infrastructure of dispatchable fossil fuel power plants to supply electricity when there’s not enough renewable energy available. Second, we could oversize the renewable generation capacity, adjusting it to the worst case scenario. Third, we could connect geographically dispersed renewable energy sources to smooth out variations in power production. Fourth, we could store surplus electricity for use in times when solar and/or wind resources are low or absent.

As we shall see, all of these strategies are self-defeating on a large enough scale, even when they’re combined. If the energy used for building and maintaining the extra infrastructure is accounted for in a life cycle analysis of a renewable power grid, it would be just as CO2-intensive as the present-day power grid. 

Strategy 1: Backup Power Plants

Up to now, the relatively small share of renewable power sources added to the grid has been balanced by dispatchable forms of electricity, mainly rapidly deployable gas power plants. Although this approach completely “solves” the problem of intermittency, it results in a paradox because the whole point of switching to renewable energy is to become independent of fossil fuels, including gas. [19]

Most scientific research focuses on Europe, which has the most ambitious plans for renewable power. For a power grid based on 100% solar and wind power, with no energy storage and assuming interconnection at the national European level only, the balancing capacity of fossil fuel power plants needs to be just as large as peak electricity demand. [12] In other words, there would be just as many non-renewable power plants as there are today.

Power plant capacity united states

Every power plant in the USA. Visualisation by The Washington Post.

Such a hybrid infrastructure would lower the use of carbon fuels for the generation of electricity, because renewable energy can replace them if there is sufficient sun or wind available. However, lots of energy and materials need to be invested into what is essentially a double infrastructure. The energy that’s saved on fuel is spent on the manufacturing, installation and interconnection of millions of solar panels and wind turbines.

Although the balancing of renewable power sources with fossil fuels is widely regarded as a temporary fix that’s not suited for larger shares of renewable energy, most other technological strategies (described below) can only partially reduce the need for balancing capacity.

Strategy 2: Oversizing Renewable Power Production

Another way to avoid energy shortages is to install more solar panels and wind turbines. If solar power capacity is tailored to match demand during even the shortest and darkest winter days, and wind power capacity is matched to the lowest wind speeds, the risk of electricity shortages could be reduced significantly. However, the obvious disadvantage of this approach is an oversupply of renewable energy for most of the year.

During periods of oversupply, the energy produced by solar panels and wind turbines is curtailed in order to avoid grid overloading. Problematically, curtailment has a detrimental effect on the sustainability of a renewable power grid. It reduces the electricity that a solar panel or wind turbine produces over its lifetime, while the energy required to manufacture, install, connect and maintain it remains the same. Consequently, the capacity factor and the energy returned for the energy invested in wind turbines and solar panels decrease. [20]

Installing more solar panels and wind turbines reduces the risk of shortages, but it produces an oversupply of electricity for most of the year.

Curtailment rates increase spectacularly as wind and solar comprise a larger fraction of the generation mix, because the overproduction’s dependence on the share of renewables is exponential. Scientists calculated that a European grid comprised of 60% solar and wind power would require a generation capacity that’s double the peak load, resulting in 300 TWh of excess electricity every year (roughly 10% of the current annual electricity consumption in Europe).

In the case of a grid with 80% renewables, the generation capacity needs to be six times larger than the peak load, while the excess electricity would be equal to 60% of the EU’s current annual electricity consumption. Lastly, in a grid with 100% renewable power production, the generation capacity would need to be ten times larger than the peak load, and excess electricity would surpass the EU annual electricity consumption. [21] [22] [23] 

This means that up to ten times more solar panels and wind turbines need to be manufactured. The energy that’s needed to create this infrastructure would make the switch to renewable energy self-defeating, because the energy payback times of solar panels and wind turbines would increase six- or ten-fold.

For solar panels, the energy payback would only occur in 12-24 years in a power grid with 80% renewables, and in 20-40 years in a power grid with 100% renewables. Because the life expectancy of a solar panel is roughly 30 years, a solar panel may never produce the energy that was needed to manufacture it. Wind turbines would remain net energy producers because they have shorter energy payback times, but their advantage compared to fossil fuels would decrease. [24]

Strategy 3: Supergrids

The variability of solar and wind power can also be reduced by interconnecting renewable power plants over a wider geographical region. For example, electricity can be overproduced where the wind is blowing but transmitted to meet demand in becalmed locations. [19]

Interconnection also allows the combination of technologies that utilise different variable power resources, such as wave and tidal energy. [3] Furthermore, connecting power grids over large geographical areas allows a wider sharing of backup fossil fuel power plants.

Wind map europe saturday september 2 2017 23h48

Wind map of Europe, September 2, 2017, 23h48. Source: Windy.

Although today’s power systems in Europe and the USA stretch out over a large enough area, these grids are currently not strong enough to allow interconnection of renewable energy sources. This can be solved with a powerful overlay high-voltage DC transmission grid. Such “supergrids” form the core of many ambitious plans for 100% renewable power production, especially in Europe. [25] The problem with this strategy is that transmission capacity needs to be overbuilt, over very long distances. [19]

For a European grid with a share of 60% renewable power (an optimal mix of wind and solar), grid capacity would need to be increased at least sevenfold. If individual European countries would disregard national concerns about security of supply, and backup balancing capacity would be optimally distributed throughout the continent, the necessary grid capacity extensions can be limited to about triple the existing European high-voltage grid. For a European power grid with a share of 100% renewables, grid capacity would need to be up to twelve times larger than it is today. [21] [26][27]

Even in the UK, which has one of the best renewable energy sources in the world, combining wind, sun, wave and tidal power would still generate electricity shortages for 65 days per year.

The problems with such grid extensions are threefold. Firstly, building infrastructure such as transmission towers and their foundations, power lines, substations, and so on, requires a significant amount of energy and other resources. This will need to be taken into account when making a life cycle analysis of a renewable power grid. As with oversizing renewable power generation, most of the oversized transmission infrastructure will not be used for most of the time, driving down the transmission capacity factor substantially.

Secondly, a supergrid involves transmission losses, which means that more wind turbines and solar panels will need to be installed to compensate for this loss. Thirdly, the acceptance of and building process for new transmission lines can take up to ten years. [20][25] This is not just bureaucratic hassle: transmission lines have a high impact on the land and often face local opposition, which makes them one of the main obstacles for the growth of renewable power production.

Even with a supergrid, low power days remain a possibility over areas as large as Europe. With a share of 100% renewable energy sources and 12 times the current grid capacity, the balancing capacity of fossil fuel power plants can be reduced to 15% of the total annual electricity consumption, which represents the maximum possible benefit of transmission for Europe. [28]

Even in the UK, which has one of the best renewable energy sources in the world, interconnecting wind, sun, wave and tidal power would still generate electricity shortages for 18% of the time (roughly 65 days per year). [29] [30][31]

Strategy 4: Energy Storage

A final strategy to match supply to demand is to store an oversupply of electricity for use when there is not enough renewable energy available. Energy storage avoids curtailment and it’s the only supply-side strategy that can make a balancing capacity of fossil fuel plants redundant, at least in theory. In practice, the storage of renewable energy runs into several problems.

First of all, while there’s no need to build and maintain a backup infrastructure of fossil fuel power plants, this advantage is negated by the need to build and maintain an energy storage infrastructure. Second, all storage technologies have charging and discharging losses, which results in the need for extra solar panels and wind turbines to compensate for this loss. 

Wind map usa

Live wind map of the USA

The energy required to build and maintain the storage infrastructure and the extra renewable power plants need to be taken into account when conducting a life cycle analysis of a renewable power grid. In fact, research has shown that it can be more energy efficient to curtail renewable power from wind turbines than to store it, because the energy needed to manufacture storage and operate it (which involves charge-discharge losses) surpasses the energy that is lost through curtailment. [23]

If we count on electric cars to store the surplus of renewable electricity, their batteries would need to be 60 times larger than they are today

It has been calculated that for a European power grid with 100% renewable power plants (670 GW wind power capacity and 810 GW solar power capacity) and no balancing capacity, the energy storage capacity needs to be 1.5 times the average monthly load and amounts to 400 TWh, not including charging and discharging losses. [32] [33] [34]

To give an idea of what this means: the most optimistic estimation of Europe’s total potential for pumped hydro-power energy storage is 80 TWh [35], while converting all 250 million passenger cars in Europe to electric drives with a 30 kWh battery would result in a total energy storage of 7.5 TWh. In other words, if we count on electric cars to store the surplus of renewable electricity, their batteries would need to be 60 times larger than they are today (and that’s without allowing for the fact that electric cars will substantially increase power consumption).

Taking into account a charging/discharging efficiency of 85%, manufacturing 460 TWh of lithium-ion batteries would require 644 million Terajoule of primary energy, which is equal to 15 times the annual primary energy use in Europe. [36] This energy investment would be required at minimum every twenty years, which is the most optimistic life expectancy of lithium-ion batteries. There are many other technologies for storing excess electricity from renewable power plants, but all have unique disadvantages that make them unattractive on a large scale. [37] [38]

Matching Supply to Demand = Overbuilding the Infrastructure

In conclusion, calculating only the energy payback times of individual solar panels or wind turbines greatly overestimates the sustainability of a renewable power grid. If we want to match supply to demand at all times, we also need to factor in the energy use for overbuilding the power generation and transmission capacity, and the energy use for building the backup generation capacity and/or the energy storage. The need to overbuild the system also increases the costs and the time required to switch to renewable energy.

Calculating only the energy payback times of individual solar panels or wind turbines greatly overestimates the sustainability of a renewable power grid.

Combining different strategies is a more synergistic approach which improves the sustainability of a renewable power grid, but these advantages are not large enough to provide a fundamental solution. [33] [39] [40]

Building solar panels, wind turbines, transmission lines, balancing capacity and energy storage using renewable energy instead of fossil fuels doesn’t solve the problem either, because it also assumes an overbuilding of the infrastructure: we would need to build an extra renewable energy infrastructure to build the renewable energy infrastructure.

Adjusting Demand to Supply

However, this doesn’t mean that a sustainable renewable power grid is impossible. There’s a fifth strategy, which does not try to match supply to demand, but instead aims to match demand to supply. In this scenario, renewable energy would ideally be used only when it’s available. 

If we could manage to adjust all energy demand to variable solar and wind resources, there would be no need for grid extensions, balancing capacity or overbuilding renewable power plants. Likewise, all the energy produced by solar panels and wind turbines would be utilised, with no transmission losses and no need for curtailment or energy storage.  

Moulbaix Belgium  the windmill de la Marquise XVII XVIIIth centuries

Windmill in Moulbaix, Belgium, 17th/18th century. Image: Jean-Pol GrandMont.

Of course, adjusting energy demand to energy supply at all times is impossible, because not all energy using activities can be postponed. However, the adjustment of energy demand to supply should take priority, while the other strategies should play a supportive role. If we let go of the need to match energy demand for 24 hours a day and 365 days a year, a renewable power grid could be built much faster and at a lower cost, making it more sustainable overall.

If we could manage to adjust all energy demand to variable solar and wind resources, there would no need for energy storage, grid extensions, balancing capacity or overbuilding renewable power plants.

With regards to this adjustment, even small compromises yield very beneficial results. For example, if the UK would accept electricity shortages for 65 days a year, it could be powered by a 100% renewable power grid (solar, wind, wave & tidal power) without the need for energy storage, a backup capacity of fossil fuel power plants, or a large overcapacity of power generators. [29] 

If demand management is discussed at all these days, it’s usually limited to so-called ‘smart’ household devices, like washing machines or dishwashers that automatically turn on when renewable energy supply is plentiful. However, these ideas are only scratching the surface of what’s possible.

Before the Industrial Revolution, both industry and transportation were largely dependent on intermittent renewable energy sources. The variability in the supply was almost entirely solved by adjusting energy demand. For example, windmills and sailing boats only operated when the wind was blowing. In the next article, I will explain how this historical approach could be successfully applied to modern industry and cargo transportation.

Kris De Decker (edited by Jenna Collett)


Sources:

[1] Swart, R. J., et al. Europe’s onshore and offshore wind energy potential, an assessment of environmental and economic constraints. No. 6/2009. European Environment Agency, 2009.

[2] Lopez, Anthony, et al. US renewable energy technical potentials: a GIS-based analysis. NREL, 2012. See also Here’s how much of the world would need to be covered in solar panels to power Earth, Business Insider, October 2015.

[3] Hart, Elaine K., Eric D. Stoutenburg, and Mark Z. Jacobson. “The potential of intermittent renewables to meet electric power demand: current methods and emerging analytical techniques.” Proceedings of the IEEE 100.2 (2012): 322-334.

[4] Ambec, Stefan, and Claude Crampes. Electricity production with intermittent sources of energy. No. 10.07. 313. LERNA, University of Toulouse, 2010.

[5] Mulder, F. M. “Implications of diurnal and seasonal variations in renewable energy generation for large scale energy storage.” Journal of Renewable and Sustainable Energy 6.3 (2014): 033105.

[6] INITIATIVE, MIT ENERGY. “Managing large-scale penetration of intermittent renewables.” (2012).

[7] Richard Perez, Mathieu David, Thomas E. Hoff, Mohammad Jamaly, Sergey Kivalov, Jan Kleissl, Philippe Lauret and Marc Perez (2016), “Spatial and temporal variability of solar energy“, Foundations and Trends in Renewable Energy: Vol. 1: No. 1, pp 1-44. http://dx.doi.org/10.1561/2700000006

[8] Sun Angle and Insolation. FTExploring.

[9]  Sun position calculator, Sun Earth Tools.

[10] Burgess, Paul. ” Variation in light intensity at different latitudes and seasons effects of cloud cover, and the amounts of direct and diffused light.” Forres, UK: Continuous Cover Forestry Group. Available online at http://www. ccfg. org. uk/conferences/downloads/P_Burgess. pdf. 2009.

[11] Solar output can be increased, especially in winter, by tilting solar panels so that they make a 90 degree angle with the sun’s rays. However, this only addresses the spreading out of solar irradiation and has no effect on the energy lost because of the greater air mass, nor on the amount of daylight hours. Furthermore, tilting the panels is always a compromise. A panel that’s ideally tilted for the winter sun will be less efficient in the summer sun, and the other way around.

[12] Schaber, Katrin, Florian Steinke, and Thomas Hamacher. “Transmission grid extensions for the integration of variable renewable energies in europe: who benefits where?.” Energy Policy 43 (2012): 123-135.

[13] German offshore wind capacity factors, Energy Numbers, July 2017

[14] What are the capacity factors of America’s wind farms? Carbon Counter, 24 July 2015.

[15] Sorensen, Bent. Renewable Energy: physics, engineering, environmental impacts, economics & planning; Fourth Edition. Elsevier Ltd, 2010.

[16] Jerez, S., et al. “The Impact of the North Atlantic Oscillation on Renewable Energy Resources in Southwestern Europe.” Journal of applied meteorology and climatology 52.10 (2013): 2204-2225.

[17] Eerme, Kalju. “Interannual and intraseasonal variations of the available solar radiation.” Solar Radiation. InTech, 2012.

[18] Archer, Cristina L., and Mark Z. Jacobson. “Geographical and seasonal variability of the global practical wind resources.” Applied Geography 45 (2013): 119-130.

[19] Rugolo, Jason, and Michael J. Aziz. “Electricity storage for intermittent renewable sources.” Energy & Environmental Science 5.5 (2012): 7151-7160.

[20] Even at today’s relatively low shares of renewables, curtailment is already happening, caused by either transmission congestion, insufficient transmission availability, or minimal operating levels on thermal generators (coal and atomic power plants are designed to operate continuously). See: “Wind and solar curtailment”, Debra Lew et al., National Renewable Energy Laboratory, 2013. For example, in China, now the world’s top wind power producer, nearly one-fifth of total wind power is curtailed. See: Chinese wind earnings under pressure with fifth of farms idle, Sue-Lin Wong & Charlie Zhu, Reuters, May 17, 2015.

[21] Barnhart, Charles J., et al. “The energetic implications of curtailing versus storing solar- and wind-generated electricity.” Energy & Environmental Science 6.10 (2013): 2804-2810.

[22] Schaber, Katrin, et al. “Parametric study of variable renewable energy integration in europe: advantages and costs of transmission grid extensions.” Energy Policy 42 (2012): 498-508.

[23] Schaber, Katrin, Florian Steinke, and Thomas Hamacher. “Managing temporary oversupply from renewables efficiently: electricity storage versus energy sector coupling in Germany.” International Energy Workshop, Paris. 2013.

[24] Underground cables can partly overcome this problem, but they are about 6 times more expensive than overhead lines.

[25] Szarka, Joseph, et al., eds. Learning from wind power: governance, societal and policy perspectives on sustainable energy. Palgrave Macmillan, 2012.

[26] Rodriguez, Rolando A., et al. “Transmission needs across a fully renewable european storage system.” Renewable Energy 63 (2014): 467-476.

[27] Furthermore, new transmission capacity is often required to connect renewable power plants to the rest of the grid in the first place — solar and wind farms must be co-located with the resource itself, and often these locations are far from the place where the power will be used.

[28] Becker, Sarah, et al. “Transmission grid extensions during the build-up of a fully renewable pan-European electricity supply.” Energy 64 (2014): 404-418.

[29] Zero Carbon britain: Rethinking the Future, Paul Allen et al., Centre for Alternative Technology, 2013

[30] Wave energy often correlates with wind power: if there’s no wind, there’s usually no waves.

[31] Building even larger supergrids to take advantage of even wider geographical regions, or even the whole planet, could make the need for balancing capacity largely redundant. However, this could only be done at very high costs and increased transmission losses. The transmission costs increase faster than linear with distance traveled since also the amount of peak power to be transported will grow with the surface area that is connected. [5] Practical obstacles also abound. For example, supergrids assume peace and good understanding between and within countries, as well as equal interests, while in reality some benefit much more from interconnection than others. [22]

[32] Heide, Dominik, et al. “Seasonal optimal mix of wind and solar power in a future, highly renewable Europe.” Renewable Energy 35.11 (2010): 2483-2489.

[33] Rasmussen, Morten Grud, Gorm Bruun Andresen, and Martin Greiner. “Storage and balancing synergies in a fully or highly renewable pan-european system.” Energy Policy 51 (2012): 642-651.

[34] Weitemeyer, Stefan, et al. “Integration of renewable energy sources in future power systems: the role of storage.” Renewable Energy 75 (2015): 14-20.

[35] Assessment of the European potential for pumped hydropower energy storage, Marcos Gimeno-Gutiérrez et al., European Commission, 2013 

[36] The calculation is based on the data in this article: How sustainable is stored sunlight? Kris De Decker, Low-tech Magazine, 2015.

[37] Evans, Annette, Vladimir Strezov, and Tim J. Evans. “Assessment of utility energy storage options for increased renewable energy penetration.” Renewable and Sustainable Energy Reviews 16.6 (2012): 4141-4147.

[38] Zakeri, Behnam, and Sanna Syri. “Electrical energy storage systems: A comparative life cycle cost analysis.” Renewable and Sustainable Energy Reviews 42 (2015): 569-596.

[39] Steinke, Florian, Philipp Wolfrum, and Clemens Hoffmann. “Grid vs. storage in a 100% renewable Europe.” Renewable Energy 50 (2013): 826-832.

[40] Heide, Dominik, et al. “Reduced storage and balancing needs in a fully renewable European power system with excess wind and solar power generation.” Renewable Energy 36.9 (2011): 2515-2523.





Why stimulus can’t fix our energy problems

11 07 2019

If EVER you needed proof there is no energy transition happening, and that growth in fossil fuels consumption is increasing, or that without de-industrialization there is no way known we’ll avoid catastrophic climate change, then this article by Gail Tverberg is it……..

The years during which the quantities of material resources cease to grow correspond almost precisely to recessionary years.

Furthermore, Gail’s “2% lag” mentioned below proves the global economy is in serious trouble. Here in Australia for instance, car sales have been dropping for fourteen months straight……

Posted on July 10, 2019 by Gail Tverberg

Economists tell us that within the economy there is a lot of substitutability, and they are correct. However, there are a couple of not-so-minor details that they overlook:

  • There is no substitute for energy. It is possible to harness energy from another source, or to make a particular object run more efficiently, but the laws of physics prevent us from substituting something else for energy. Energy is required whenever physical changes are made, such as when an object is moved, or a material is heated, or electricity is produced.
  • Supplemental energy leverages human energy. The reason why the human population is as high as it is today is because pre-humans long ago started learning how to leverage their human energy (available from digesting food) with energy from other sources. Energy from burning biomass was first used over one million years ago. Other types of energy, such as harnessing the energy of animals and capturing wind energy with sails of boats, began to be used later. If we cut back on our total energy consumption in any material way, humans will lose their advantage over other species. Population will likely plummet because of epidemics and fighting over scarce resources.

Many people appear to believe that stimulus programs by governments and central banks can substitute for growth in energy consumption. Others are convinced that efficiency gains can substitute for growing energy consumption. My analysis indicates that workarounds, in the aggregate, don’t keep energy prices high enough for energy producers. Oil prices are at risk, but so are coal and natural gas prices. We end up with a different energy problem than most have expected: energy prices that remain too low for producers. Such a problem can have severe consequences.

Let’s look at a few of the issues involved:

[1] Despite all of the progress being made in reducing birth rates around the globe, the world’s population continues to grow, year after year.

Figure 1. 2019 World Population Estimates of the United Nations. Source: https://population.un.org/wpp/Download/Standard/Population/

Advanced economies in particular have been reducing birth rates for many years. But despite these lower birthrates, world population continues to rise because of the offsetting impact of increasing life expectancy. The UN estimates that in 2018, world population grew by 1.1%.

[2] This growing world population leads to a growing use of natural resources of every kind.

There are three reasons we might expect growing use of material resources:

(a) The growing world population in Figure 1 needs food, clothing, homes, schools, roads and other goods and services. All of these needs lead to the use of more resources of many different types.

(b) The world economy needs to work around the problems of an increasingly resource-constrained world. Deeper wells and more desalination are required to handle the water needs of a rising population. More intensive agriculture (with more irrigation, fertilization, and pest control) is needed to harvest more food from essentially the same number of arable acres. Metal ores are increasingly depleted, requiring more soil to be moved to extract the ore needed to maintain the use of metals and other minerals. All of these workarounds to accommodate a higher population relative to base resources are likely to add to the economy’s material resource requirements.

(c) Energy products themselves are also subject to limits. Greater energy use is required to extract, process, and transport energy products, leading to higher costs and lower net available quantities.

Somewhat offsetting these rising resource requirements is the inventiveness of humans and the resulting gradual improvements in technology over time.

What does actual resource use look like? UN data summarized by MaterialFlows.net shows that extraction of world material resources does indeed increase most years.

Figure 2. World total extraction of physical materials used by the world economy, calculated using  weight in metric tons. Chart is by MaterialFlows.net. Amounts shown are based on the Global Material Flows Database of the UN International Resource Panel. Non-metallic minerals include many types of materials including sand, gravel and stone, as well as minerals such as salt, gypsum and lithium.

[3] The years during which the quantities of material resources cease to grow correspond almost precisely to recessionary years.  

If we examine Figure 2, we see flat periods or periods of actual decline at the following points: 1974-75, 1980-1982, 1991, and 2008-2009. These points match up almost exactly with US recessionary periods since 1970:

Figure 3. Dates of US recessions since 1970, as graphed by the Federal Reserve of St. Louis.

The one recessionary period that is missed by the Figure 2 flat periods is the brief recession that occurred about 2001.

[4] World energy consumption (Figure 4) follows a very similar pattern to world resource extraction (Figure 2).

Figure 4. World Energy Consumption by fuel through 2018, based on 2019 BP Statistical Review of World Energy. Quantities are measured in energy equivalence. “Other Renew” includes a number of kinds of renewables, including wind, solar, geothermal, and sawdust burned to provide electricity. Biofuels such as ethanol are included in “Oil.”

Note that the flat periods are almost identical to the flat periods in the extraction of material resources in Figure 2. This is what we would expect, if it takes material resources to make goods and services, and the laws of physics require that energy consumption be used to enable the physical transformations required for these goods and services.

[5] The world economy seems to need an annual growth in world energy consumption of at least 2% per year, to stay away from recession.

There are really two parts to projecting how much energy consumption is needed:

  1. How much growth in energy consumption is required to keep up with growing population?
  2. How much growth in energy consumption is required to keep up with the other needs of a growing economy?

Regarding the first item, if the population growth rate continues at a rate similar to the recent past (or slightly lower), about 1% growth in energy consumption is needed to match population growth.

To estimate how much growth in energy supply is needed to keep up with the other needs of a growing economy, we can look at per capita historical relationships:

Figure 5. Three-year average growth rates of energy consumption and GDP. Energy consumption growth per capita uses amounts provided in BP 2019 Statistical Review of World Energy. World per capita GDP amounts are from the World Bank, using GDP on a 2010 US$ basis.

The average world per capita energy consumption growth rate in non-recessionary periods varies as follows:

  • All years: 1.5% per year
  • 1970 to present: 1.3% per year
  • 1983 to present: 1.0% per year

Let’s take 1.0% per year as the minimum growth in energy consumption per capita required to keep the economy functioning normally.

If we add this 1% to the 1% per year expected to support continued population growth, the total growth in energy consumption required to keep the economy growing normally is about 2% per year.

Actual reported GDP growth would be expected to be higher than 2%. This occurs because the red line (GDP) is higher than the blue line (energy consumption) on Figure 5. We might estimate the difference to be about 1%. Adding this 1% to the 2% above, total reported world GDP would be expected to be about 3% in a non-recessionary environment.

There are several reasons why reported GDP might be higher than energy consumption growth in Figure 5:

  • A shift to more of a service economy, using less energy in proportion to GDP growth
  • Efficiency gains, based on technological changes
  • Possible intentional overstatement of reported GDP amounts by some countries to help their countries qualify for loans or to otherwise enhance their status
  • Intentional or unintentional understatement of inflation rates by reporting countries

[6] In the years subsequent to 2011, growth in world energy consumption has fallen behind the 2% per year growth rate required to avoid recession.

Figure 7 shows the extent to which energy consumption growth has fallen behind a target growth rate of 2% since 2011.

Figure 6. Indicated amounts to provide 2% annual growth in energy consumption, as well as actual increases in world energy consumption since 2011. Deficit is calculated as Actual minus Required at 2%. Historical amounts from BP 2019 Statistical Review of World Energy.

[7] The growth rates of oil, coal and nuclear have all slowed to below 2% per year since 2011. While the consumption of natural gas, hydroelectric and other renewables is still growing faster than 2% per year, their surplus growth is less than the deficit of oil, coal and nuclear.  

Oil, coal, and nuclear are the types of energy whose growth has lagged below 2% since 2011.

Figure 7. Oil, coal, and nuclear growth rates have lagged behind the target 2% growth rate. Amounts based on data from BP’s 2019 Statistical Review of World Energy.

The situations behind these lagging growth rates vary:

  • Oil. The slowdown in world oil consumption began in 2005, when the price of oil spiked to the equivalent of $70 per barrel (in 2018$). The relatively higher cost of oil compared with other fuels since 2005 has encouraged conservation and the switching to other fuels.
  • Coal. China, especially, has experienced lagging coal production since 2012. Production costs have risen because of depleted mines and more distant sources, but coal prices have not risen to match these higher costs. Worldwide, coal has pollution issues, encouraging a switch to other fuels.
  • Nuclear. Growth has been low or negative since the Fukushima accident in 2011.

Figure 8 shows the types of world energy consumption that have been growing more rapidly than 2% per year since 2011.

Figure 8. Natural gas, hydroelectric, and other renewables (including wind and solar) have been growing more rapidly than 2% since 2011. Amounts based on data from BP’s 2019 Statistical Review of World Energy.

While these types of energy produce some surplus relative to an overall 2% growth rate, their total quantity is not high enough to offset the significant deficit generated by oil, coal, and nuclear.

Also, it is not certain how long the high growth rates for natural gas, hydroelectric, and other renewables can persist. The growth in natural gas may slow because transport costs are high, and consumers are not willing/able to pay for the high delivered cost of natural gas, when distant sources are used. Hydroelectric encounters limits because most of the good sites for dams are already taken. Other renewables also encounter limits, partly because many of the best sites are already taken, and partly because batteries are needed for wind and solar, and there is a limit to how fast battery makers can expand production.

Putting the two groupings together, we obtain the same deficit found in Figure 6.

Figure 9. Comparison of extra energy over targeted 2% growth from natural gas, hydroelectric and other renewables with energy growth deficit from oil, coal and nuclear combined. Amounts based on data from BP’s 2019 Statistical Review of World Energy.

Based on the above discussion, it seems likely that energy consumption growth will tend to lag behind 2% per year for the foreseeable future.

[8] The economy needs to produce its own “demand” for energy products, in order to keep prices high enough for producers. When energy consumption growth is below 2% per year, the danger is that energy prices will fall below the level needed by energy producers.

Workers play a double role in the economy:

  • They earn wages, based on their jobs, and
  • They are the purchasers of goods and services.

In fact, low-wage workers (the workers that I sometimes call “non-elite workers”) are especially important, because of their large numbers and their role in buying many items that use significant amounts of energy. If these workers aren’t earning enough, they tend to cut back on their discretionary buying of homes, cars, air conditioners, and even meat. All of these require considerable energy in their production and in their use.

High-wage workers tend to spend their money differently. Most of them have already purchased as many homes and vehicles as they can use. They tend to spend their extra money differently–on services such as private education for their children, or on investments such as shares of stock.

An economy can be configured with “increased complexity” in order to save energy consumption and costs. Such increased complexity can be expected to include larger companies, more specialization and more globalization. Such increased complexity is especially likely if energy prices rise, increasing the benefit of substitution away from the energy products. Increased complexity is also likely if stimulus programs provide inexpensive funds that can be used to buy out other firms and for the purchase of new equipment to replace workers.

The catch is that increased complexity tends to reduce demand for energy products because the new way the economy is configured tends to increase wage disparity. An increasing share of workers are replaced by machines or find themselves needing to compete with workers in low-wage countries, lowering their wages. These lower wages tend to lower the demand of non-elite workers.

If there is no increase in complexity, then the wages of non-elite workers can stay high. The use of growing energy supplies can lead to the use of more and better machines to help non-elite workers, and the benefit of those machines can flow back to non-elite workers in the form of higher wages, reflecting “higher worker productivity.” With the benefit of higher wages, non-elite workers can buy the energy-consuming items that they prefer. Demand stays high for finished goods and services. Indirectly, it also stays high for commodities used in the process of making these finished goods and services. Thus, prices of energy products can be as high as needed, so as to encourage production.

In fact, if we look at average annual inflation-adjusted oil prices, we find that 2011 (the base year in Sections [6] and [7]) had the single highest average price for oil.1 This is what we would expect, if energy consumption growth had been adequate immediately preceding 2011.

Figure 10. Historical inflation-adjusted Brent-equivalent oil prices based on data from 2019 BP Statistical Review of World Energy.

If we think about the situation, it not surprising that the peak in average annual oil prices took place in 2011, and the decline in oil prices has coincided with the growing net deficit shown in Figures 6 and 9. There was really a double loss of demand, as growth in energy use slowed (reducing direct demand for energy products) and as complexity increased (shifting more of the demand to high-wage earners and away from the non-elite workers).

What is even more surprising is that fact that the prices of fuels in general tend to follow a similar pattern (Figure 11). This strongly suggests that demand is an important part of price setting for energy products of all kinds. People cannot buy more goods and services (made and transported with energy products) than they can afford over the long term.

Figure 11. Comparison of changes in oil prices with changes in other energy prices, based on time series of historical energy prices shown in BP’s 2019 Statistical Review of World Energy. The prices in this chart are not inflation-adjusted.

If a person looks at all of these charts (deficits in Figures 6 and 9 and oil and energy prices in general from Figures 10 and 11) for the period 2011 onward, there is a very distinct pattern. There is at first a slow slide down, then a fast slide down, followed (at the end) by an uptick. This is what we should expect, if low energy growth is leading to low prices for energy products in general.

[9] There are two different ways that oil and other energy prices can damage the economy: (a) by rising too high for consumers or (b) by falling too low for producers to have funds for reinvestment, taxes and other needs. The danger at this point is from (b), energy prices falling too low for producers.  

Many people believe that the only energy problem that an economy can have is prices that are too high for consumers. In fact, energy prices seemed to be very high in the lead-ups to the 1974-1975 recession, the 1980-1982 recession, and the 2008-2009 recession. Figure 5 shows that the worldwide growth in energy consumption was very high in the lead-up to all three of these recessions. In the two earlier time periods, the US, Europe, and the Soviet Union were all growing their economies, leading to high demand. Preceding the 2008-2009 Great Recession, China was growing its economy very rapidly at the same time the US was providing low-interest rate rates for home purchases, some of them to subprime borrowers. Thus, demand was very high at that time.

The 1974-75 recession and the 1980-1982 recession were fixed by raising interest rates. The world economy was overheating with all of the increased leveraging of human energy with energy products. Higher short-term interest rates helped bring growth in energy prices (as well as food prices, which are very dependent on energy consumption) down to a more manageable level.

Figure 12. Three-month and ten-year interest rates through May 2019, in chart by Federal Reserve of St. Louis.

There was really a two-way interest rate fix related to the Great Recession of 2008-2009. First, when oil and other energy prices started to spike, the US Federal Reserve raised short term interest rates in the mid 2000s. This, by itself, was almost enough to cause recession. When recession started to set in, short-term interest rates were brought back down. Also, in late 2008, when oil prices were very low, the US began using Quantitative Easing to bring longer-term interest rates down, and the price of oil back up.

Figure 13. Monthly Brent oil prices with dates of US beginning and ending Quantitative Easing.

There is one recession that seems to have been the result of low oil prices, perhaps combined with other factors. That is the recession that was associated with the collapse of the central government of the Soviet Union in 1991.

[10] The recession that comes closest to the situation we seem to be heading into is the one that affected the world economy in 1991 and shortly thereafter.

If we look at Figures 2 and 5, we can see that the recession that occurred in 1991 had a moderately severe effect on the world economy. Looking back at what happened, this situation occurred when the central government of the Soviet Union collapsed after 10 years of low oil prices (1982-1991). With these low prices, the Soviet Union had not been earning enough to reinvest in new oil fields. Also, communism had proven to be a fairly inefficient method of operating the economy. The world’s self-organizing economy produced a situation in which the central government of the Soviet Union collapsed. The effect on resource consumption was very severe for the countries most involved with this collapse.

Figure 14. Total extraction of physical materials Eastern Europe, Caucasus and Central Asia, in chart by MaterialFlows.net. Amounts shown are based on the Global Material Flows Database of the UN International Resource Panel.

World oil prices have been falling too low, at least since 2012. The biggest decreases in prices have come since 2014. With energy prices already very low compared to what producers need, there is a need right now for some type of stimulus. With interest rates as low as they are today, it will be very difficult to lower interest rates much further.

Also, as we have seen, debt-related stimulus is not very effective at raising energy prices unless it actually raises energy consumption. What works much better is energy supply that is cheap and abundant enough that supply can be ramped up at a rate well in excess of 2% per year, to help support the growth of the economy. Suitable energy supply should be inexpensive enough to produce that it can be taxed heavily, in order to help support the rest of the economy.

Unfortunately, we cannot just walk away from economic growth because we have an economy that needs to continue to expand. One part of this need is related to the world’s population, which continues to grow. Another part of this need relates to the large amount of debt that needs to be repaid with interest. We know from recent history (as well as common sense) that when economic growth slows too much, repayment of debt with interest becomes a problem, especially for the most vulnerable borrowers. Economic growth is also needed if businesses are to receive the benefit of economies of scale. Ultimately, an expanding economy can be expected to benefit the price of a company’s stock.

Observations and Conclusions

Perhaps the best way of summing up how my model of the world economy differs from other ones is to compare it to popular other models.

The Peak Oil model says that our energy problem will be an oil supply problem. Some people believe that oil demand will rise endlessly, allowing prices to rise in a pattern following the ever-rising cost of extraction. In the view of Peak Oilers, a particular point of interest is the date when the supply of oil “peaks” and starts to decline. In the view of many, the price of oil will start to skyrocket at that point because of inadequate supply.

To their credit, Peak Oilers did understand that there was an energy bottleneck ahead, but they didn’t understand how it would work. While oil supply is an important issue, and in fact, the first issue that starts affecting the economy, total energy supply is an even more important issue. The turning point that is important is when energy consumption stops growing rapidly enough–that is, greater than the 2% per year needed to support adequate economic growth.

The growth in oil consumption first fell below the 2% level in 2005, which is the year some that some observers have claimed that “conventional” (that is, free flowing, low-cost) oil production peaked. If we look at all types of energy consumption combined, growth fell below the critical 2% level in 2012. Both of these issues have made the world economy more vulnerable to recession. We experienced a recession based on prices that were too high for consumers in 2008-2009. It appears that the next bottleneck may be caused by energy prices that are too low for producers.

Recessions that are based on prices that are too low for the producer are the more severe type. For one thing, such recessions cannot be fixed by a simple interest rate fix. For another, the timing is unpredictable because a problem with low prices for the producer can linger for quite a few years before it actually leads to a major collapse. In fact, individual countries affected by low energy prices, such as Venezuela, can collapse before the overall system collapses.

While the Peak Oil model got some things right and some things wrong, the models used by most conventional economists, including those included in the various IPCC reports, are far more deficient. They assume that energy resources that seem to be in the ground can actually be extracted. They see no limitations caused by prices that are too high for consumers or too low for producers. They do not realize that affordable energy prices can actually fall over time, as the economy weakens.

Conventional economists assume that it is possible for politicians to direct the economy along lines that they prefer, even if doing so contradicts the laws of physics. In particular, they assume that the economy can be made to operate with much less energy consumption than is used today. They assume that we collectively can decide to move away from coal consumption, without having another fuel available that can adequately replace coal in quantity and uses.

History shows that the collapse of economies is very common. Collectively, we have closed our eyes to this possibility ever happening to the world economy in the modern era. If the issue with collapsing demand causing ever-lower energy prices is as severe as my analysis indicates, perhaps we should be examining this scenario more closely.

Note:

[1] There was a higher spike in oil prices in 2008, but averaged over the whole year, the 2008 price was lower than the continued high prices of 2011.





A reality check on Renewable Energy

23 10 2018

Hat tip to my friend Shane who put me onto this TedX lecture…….  well worth sharing with your ecotopian friends! It does show how Australia – and Canada –  with very low population densities, are in not a bad position, except of course for the fact they are nowhere near the places with high densitity populations. You can’t beat arithmetics and physics…….

How much land mass would renewables need to power a nation like the UK? An entire country’s worth. In this pragmatic talk, David MacKay tours the basic mathematics that show worrying limitations on our sustainable energy options and explains why we should pursue them anyway. (Filmed at TEDxWarwick.) Lesson by David MacKay.





America NOT great again…….

31 08 2018

One of the many things I see on TV news material that makes me shout at the screen is economic commentators raving about America’s booming economy……. nothing of the sort is happening. Economies are measured in dollars, and as debt grows exponentially, so does the money supply, and the throughput of money increases, and stupid moronic ‘economists’ whose only job is to make you all believe everything’s doing just fine will make you believe the increasing GDP is both good and a sign of growth…… Here’s an article that debunks all this fake news.

Go to the profile of umair haque

Let’s start at the beginning. The reason that crackpot American theories of economics are wrong is that they presume capitalism is the answer to everything. More jobs? Wages must rise! Hey presto! The economy fixes itself. Supply and demand, my dude — go capitalism!! But wait — what happens if those jobs are, well, not very good ones, because corporations don’t really have to compete, because its made of gigantic monopolies now, not mom-and-pop soda shoppes? If instead of being something more like stable middle class careers, with upward mobility, benefits, retirements, security, stability, meaning, belonging, and so forth, they are something more like jobs only in name — in reality, hollowed out? What happens if all that’s left in a “job” is the chance to work harder and harder every year, for shrinking income, opportunity, savings, a declining quality of life?

That’s exactly what’s happened in America. The “jobs” that are being created are not high quality ones. Like more or less everything else predatory capitalism creates, they are of astonishingly low quality. Not only are they concentrated in low-growth sectors, they’re composed of menial tasks, and they offer dead ends, not paths upwards, outwards, or forwards.

The result is the dismal litany of statistics that, by now, you should know all too well. It’s as alarming as it is astonishing. 80% of American live paycheck to paycheck. 70% have less than $1000 in savingsA third struggle to afford even healthcare, education, and shelter. As a result, America’s seeing what Angus Deaton calls “deaths of despair.” The suicide rate is skyrocketing, and longevity is falling, as people who can’t cope with the trauma appear to be simply giving up on life. It is no mistake to say that capitalism is killing Americans — and yet, Americans are tragically wedded to capitalism.

Yet at the same time, things have never been better for the ultra rich. They’ve captured more than 100% of gains over the last decade. The stock market is booming — but just 10% of Americans really own stocks, and maybe 1% earn a living from capital income. So, enjoying inequality that now puts classical Rome to shame, the mega rich quite literally have piled up fortunes so incredibly vast, there is literally nowhere left to put all the money — all the yachts, mansions, and lofts have been bought. That is why interest rates are permanently at zero: there is so much money piled up at the top of the economy, there is nowhere left to put it, except the one place it should go, which is right back to the people who need it: the middle class and poor, or if you like, the proletariat and the petite bourgeoisie in Marxist terms.

The result is an economy with an imploded middle class. That might sound trivial, but is crucial. A middle class is one of the defining creations of modernity — and what happens when a society loses its middle class is another defining creation of modernity — fascism. But we’ll get to that in a moment.

Remember Steve St Angelo describing the fracking industry cannibalising itself? Well this guy seems to think the entire US economy is doing this too…..

“Growth” has turned predatory. American economics supposes — because it assumes capitalism is the best solution to everything — that growth is always good. But growth is not always good. Not just because it eats the planet (though it does) — but in this case, for a more immediate reason. Capitalism isn’t just eating the planet. It’s eating democracy, civilization, truth, reality, the future, and you.

Read it all here.





The Price of Oil

10 02 2018

Another excellent article by Dave Pollard over at How to Save the World…..  my only criticism of this article is that he’s not factoring in collapsing ERoEI will have on the production side…..


The clueless gamblers that speculate on stock and commodity prices have been having a field day recently. Desperately chasing profits, like high-rollers who keep increasing their casino bets every time they lose, they have wiped billions out of share and pension values in a lemming-like panic about whether and when the colossally overpriced stock market is going to crash. And they have also pushed the price of oil up to near $70/bbl for the first time in several years. These speculators, who contribute nothing of any value to our economy, are some of the most destructive individuals on the planet, destabilizing markets on which many depend for their lives and livelihoods. (They also wreak havoc on land, real estate, food, and currency prices.) And many of them make millions in commissions and bonuses just rolling the dice for their employers and clients and praying that their lucky bets (mostly on prices rising perpetually) will continue.

A couple of years ago I wrote an article about the price of oil, explaining that the issue we’re going to face in the 21st century isn’t one of energy running out, but of affordableenergy running out. Just as, during great depressions and famines, masses of food is left rotting in the ground because no one can afford to buy it (or even retrieve it and give it away), having oil in the ground that costs $80/bbl to get to market (especially if governments run out of money for subsidies, or, god forbid, decide that oil companies should start to pay the huge external costs of their activities) is not especially useful when you can only afford, in an economy ruined by overexploitation, environmental degradation, excessive debt, inequality and waste, $30/bbl for it.

Before I go further, if you’re one of the many who have been persuaded that “peak oil is over” and that renewables and new technology will soon save us from energy collapse, you might as well not read this article. Instead, I’d suggest you read this, or this, or this, or any of the many other articles written by people who understand the laws of thermodynamics and how the economy actually works.

This time I thought I’d start with a review of oil prices in the past. The chart above plots the course of oil prices (in inflation-adjusted dollars) back to 1946. Green lines show supply curves; red lines demand curves, and the dots at intersections are annual average oil prices for those years. Follow the dots:

  1. 1946-72. Oil prices were remarkably stable at about $25/bbl (in current dollars) during this entire period. The world became dependent on OPEC. Virtually all global growth in real terms since 1946 is attributable to increasing use of oil. Almost none of it is ascribable to new technology (other than energy extraction technology) or “efficiencies” or “innovation” or “economies of scale”. That’s it. If you’re a believer in GDP or that growth is essential to the economy you might want to keep that in mind (and if you are invested in stocks or land or any other industrial resource, you’d better believe, because their “value” is all computed in terms of future growth in exchange value, production and profits). Between 1946 and 1972 the OPEC nations were in bed with the western corporatists (as they still are today, supporting them politically and militarily), fixing the price of oil at that price to ensure the economy could continue to grow, as required, endlessly.
  2. 1973-80. OPEC fights back, realizing that although they can make money at $25/bbl because of the size and ease of tapping their reserves, they have already pumped out more than half of it, and they have only a few decades’ worth left and nothing to support their economy when it runs out. So they constrain production, driving the price up to $60/bbl (1975) and then $110/bbl (1980). At that price they can set money aside for when their oil runs out, and avoid the massive humanitarian crises that the end of oil spells for them. But for the western corporatists, this is disastrous: their economies are in a shambles, with double-digit inflation ruining profits, and line-ups at the pumps.
  3. 1981-85. The western corporatists “convince” OPEC to turn the pumps back on, persuading them that there is a happy medium price for oil (more than the $25-30/bbl that makes exploration for new sources uneconomic, but less than the $75/bbl threshold beyond which the global economy cannot pay for it and hence cannot survive. By 1985, OPEC has increased supply so that, despite the new demand from expanding Asian countries, the price has settled back in the perfect $50-60/bbl range. Remember here that the amount of production and consumption of oil is so close (there’s no place to put much excess once it’s pumped, and there’s no margin for error if there’s a serious shortage) that any changes in production, intentional or not, have a huge impact on price.
  4. 1986-2002. At $60/bbl, there’s an incentive to put more into the market than you can sustainably continue to produce, and also an incentive to find new sources — and remember, a small increase in supply has a big impact on lowering price. From the late 1980s to 2002, the lingering effects of the early-1980s crash kept demand from increasing as it had been, and a number of (heavily subsidized, environmentally catastrophically damaging) new sources of “dirty” and “tight” (harder to extract) oil were found. As a consequence, prices tumbled back to the $30/bbl level. OPEC was not happy, but some of their own short-term-thinking members were opening the taps to try to bolster their struggling economies, and the new sources meant OPEC as a whole had less oligopoly power over supplies and hence prices.
  5. 2003-08. The low prices were unsustainable to many producers, especially those with higher production costs that ceased or curtailed exploring, and that, combined with increasing demand from third-world countries, began pushing prices up again, to $60/bbl in 2005 and $90/bbl in 2008. You remember 2008, the bubble year, right? Over-exuberance had enabled speculators to push the price of everything up to ridiculous levels, and oil was not spared. The crash of 2008 also weakened demand, as many people could not afford to pay for anything, including fuel. But everyone knew the $90/bbl couldn’t last, just as they knew it in 1980.
  6. 2009-17. Banking on continuing high oil prices, speculators jumped into fracking and other high-risk, costly (and heavily-subsidized) smaller-scale oil ventures. For the first time, people who can’t think further ahead than the next quarter’s profit report were saying that there was more than enough oil, and that peak oil was dead. More reasoned experts argued that the danger to our planet from climate change caused by burning oil now exceeded the danger of running out of it (we may well experience both in the years to come). But many of the new ventures depended on sustained high oil prices, and as supply rose, price inevitably dropped. This was exacerbated by a chronic global recession that (despite what you might read in the Wall Street press) has left 90% of the population with massively higher debts and less disposable income than they had back in the 1980s. That recession curtailed demand and added to the price slump that saw oil drop from $90/bbl in 2008 to $60/bbl in 2015 and then back to a near-ruinous (for producers) $40/bbl in 2016-17. Many of the new operators declared bankruptcy, but in the mean-time they (and the ongoing recession for all but the super-rich) had created a short-term oil glut. More people came to believe that oil would be abundant forever, at reasonable prices. Many OPEC countries’ governments, already struggling with unruly political movements, and a permanently unemployed youth workforce, were getting antsy.
  7. 2018. Surprise, surprise, the oil price has risen again, to as high as $70/bbl, though it seems to be hovering mostly around the ‘ideal’ (for producers and consumers) $60/bbl level. The problem is, that’s not quite as ideal as it used to be. The cost of bringing new oil to market has risen from very low-levels (near $15/bbl in the mid-20th-century OPEC countries, to $45/bbl for much “tight” oil extraction). So a very volatile $50-60/bbl price doesn’t provide much margin for producers in an economy that demands significantly increasing profits every year. And it’s expensive for consumers, who start to reduce consumption and turn to alternative sources of energy (where available) when prices move into that $50-60/bbl range.

So what does this mean for the future? The second chart, below, describes what I think we’ll see by the middle of this century. Here we go:

  1. 2018-2025: Just a guess, but there doesn’t seem to be any compelling short-term trend in supply or demand one way or another, so I’m guessing that we’ll have a few years of relative stability, with prices ranging from $40-80/bbl depending on producer actions, politics, climate change proclivities, carbon taxes and regulations, and the strange whims and misconceptions of speculators (damn I’d like to see a huge speculation tax on every do-nothing transaction gamblers put through).
  2. 2025-2050: In the medium term, all bets are off. I can see, as conventional sources of oil get depleted and new ones cost more and more, the cost of getting oil to market rising enough that any price under $70/bbl won’t be worth the risk. And I can see, as the real economy (not the economy-of-the-elite the NYT and WSJ reports on) continues to struggle and inequality widens to become a political and even military issue in many parts of the world, the affordable ceiling price for oil dropping to $40/bbl. So that means there is no “happy medium” that works for both producers and consumers — any price is either too low for producers (keeping/driving them out of the market) or too high for consumers (leading to hoarding, involuntary reductions in use (ie repo’d cars and foreclosed homes) — or both. So I see prices whipsawing between $30/bbl or less (when the economy is in especially bad shape) and $100/bbl or more during speculative frenzies, rationing (in black markets), severe shortages and short-lived “is the long depression over yet?” economic recoveries.
  3. 2050-2100: This is the period in which I’ve forecast economic and/or energy collapse and the onset of chronic serious climate change trends and events. I don’t think the US dollar will survive this, so it’s hard to set a price on anything in that currency. I do see it as a long era of scavenging, re-use, rationing, nationalization (until national governments collapse and leave energy management to struggling local communities), hoarding, black markets, and yes, even conservation at last.

Not a very rosy picture, but those who’ve studied the economy and have been following oil prices for a while tend to support much of this hypothesis. Ultimately, it’s the economy, (not so) stupid. The economy is the tail that wags the energy dog, but ultimately the global industrial economy is founded entirely on the preposterous and untenable requirement that growth must continue forever, and the only thing that has provided sustained growth for the past couple of centuries has been cheap hydrocarbons.

And I understand oil doesn’t keep very well.





Lithium’s limits to growth

7 08 2017

The ecological challenges of Tesla’s Gigafactory and the Model 3

From the eclectic brain of Amos B. Batto

A long but well researched article on the limitations of the materials needed for a transition to EVs…..

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Many electric car advocates are heralding the advent of Tesla’s enormous battery factory, known as the “Gigafactory,” and its new Model 3 electric sedan as great advances for the environment.  What they are overlooking are the large quantities of energy and resources that are consumed in lithium-ion battery manufacturing and how these quantities might increase in the future as the production of electric vehicles (EVs) and battery storage ramps up.

Most of the credible life cycle assessment (LCA) studies for different lithium-ion chemistries find large large greenhouse gas emissions per kWh of battery. Here are the CO2-eq emissions per kWh with the battery chemistry listed in parentheses:
Hao et al. (2017): 110 kg (LFP), 104 kg (NMC), 97 kg (LMO)
Ellingsen et al. (2014): 170 kg (NMC)
Dunn et al. (2012): 40 kg (LMO)
Majeau-Bettez et al. (2011): 200 kg (NMC), 240 kg (LFP)
Ou et al (2010): 290 kg (NMC)
Zackrisson et al (2010): 440 kg (LFP)

Dunn et al. and Hao et al. are based on the GREET model developed by Argonne National Laboratory, which sums up the steps in the process and is based on the estimated energy consumption for each step. In contrast, Ellingsen et al. and Zackrisson et al. are based on the total energy consumption used by a working battery factory, which better captures all the energy in the processing steps, but the data is old and the battery factory was not very energy efficient, nor was it operating at full capacity. Battery manufacturing is getting more energy efficient over time and the energy density of the batteries is increasing by roughly 7% a year, so less materials are needed per kWh of battery. It is also worth noting that no LCA studies have been conducted on the NCA chemistry used by Tesla. NCA has very high emissions per kg due to the large amount of nickel in the cathode, but is very energy dense, so less total material is needed per kWh, so it is probably similar in emissions to NMC.

The big debate in the LCA studies of battery manufacturing is how much energy is consumed per kWh of battery in the battery factory. In terms of MJ per kWh of battery, Ellingsen et al. estimate 586 MJ, Zachrisson et al. estimate 451 MJ and Majeu-Bettez et al. estimate 371-473 MJ. However, the energy for the drying rooms and factory equipment is generally fixed, regardless of the throughput. Ellingsen et al (2014) found that the energy expended to manufacture a kWh of battery could vary as much as 4 times, depending on whether the factory is operating at full capacity or partial capacity. Since the Gigafactory will probably be operating a full capacity and energy efficiency is improving, let’s assume between 100 MJ and 150 MJ per kWh of battery in the Gigafactory (which converts to 28 – 42 kWh per kWh of battery). It is unlikely to be significantly less, because it is more energy efficient to burn natural gas for the drying rooms than use electric heaters, but the Gigafactory will have to use electric heaters to meet Musk’s goal of 100% renewable energy.

If producing 105 GWh of batteries per year at 100 – 150 MJ per kWh, plus another 45 GWh of packs with batteries from other factories at 25 MJ per kWh, the Gigafactory will consume between 3,229 and 4,688 GWh per year, which is between 8.3% and 12.0% of the total electrical generation in Nevada in 2016. I calculate that 285 MW of solar panels can be placed on the roof of the Gigafactory and they will only generate 600 GWh per year, assuming a yearly average of 7.16 kWh/m2/day of solar radiation, 85% (1.3 million m2) of the roof will be covered, 20% efficiency in the panels and a 10% system loss.

Solar panels in dusty locations such as Nevada loose roughly 25% of their output if they are not regularly cleaned. Although robots have been developed to clean panels with brushes, water will most likely be used to clean the Gigafactory’s panels. A study by Sandia National Laboratory found that photovoltaic energy plants in Nevada consume 0.0520 acre-feet of water per MW of nameplate capacity per year. The solar panels at the Gigafactory will probably have 25% less area per MW than the solar panels in the Sandia study, so we can guesstimate that the solar panels on the Gigafactory roof will consume 11.1 acre-feet or 13,700 cubic meters of water per year.

Solar panels can also be placed on the ground around the factory, and but consider the fact that the Gigafactory will only receive 4.23 kWh/m2/day in December, compared to 9.81 kWh/m2/day in July. With less than half the energy from the panels during the winter, the Gigafactory will need other sources of energy during the times when it is cloudy and the sun’s rays are more indirect. Even during the summer, the Gigafactory will probably have to use temporary battery storage to smooth out the solar output or get additional energy with electric utilities which use gas peaking, battery storage or buy energy from the regional grid to give the Gigafactory a stable supply of electricity.

The original mockup of the Gigafactory showed wind turbines on the hillsides around the plant, but wind energy will not work onsite, because the area has such low wind speed. A weather station in the Truckee River valley along I-80, near the Gigafactory, measures an average wind speed of 3.3 m/s at a height of 6 meters, although the wind speed is probably higher at the site of the Gigafactory. Between 4 to 5 m/s is the minimum wind speed to start generating any energy, and between 5 and 6 m/s is generally considered the minimum for wind turbines to be economically viable. It might be possible to erect viable wind turbines onsite with 150 m towers to capture better wind, but the high costs make it likely that Tesla will forgo that option.

The region has good geothermal energy at depths of 4000 to 6000 feet and this energy is not variable like solar and wind. However, there is a great deal of risk in geothermal exploration which costs $10 million to drill a test well. It is more likely that Tesla will try to buy geothermal energy from nearby producers, but geothermal energy in the region is already in heavy demand, due to the clean energy mandates from California, so it won’t be cheap.

Despite Musk’s rhetoric about producing 100% of the Gigafactory’s energy onsite from renewable sources, Tesla knows that it is highly unrealistic, which is why it negotiated to get $8 million in electricity rebates from the state of Nevada over an 8 year period. It is possible that the Gigafactory will buy hydroelectric energy from Washington or Oregon, but California already competes for that electricity. If Tesla wants a diversified supply of renewable energy to balance out the variability of its solar panels, it will probably have to provide guaranteed returns for third parties to build new geothermal plants or wind farms in the region.

I would guesstimate that between 2/3 of the electricity consumed by the Gigafactory will come from the standard Nevada grid, whereas 1/3 will be generated onsite or be bought from clean sources. In 2016, utility-scale electricity generation in Nevada was 72.8% natural gas, 5.5% coal, 4.5% hydroelectric, 0.9% wind, 5.7% PV solar, 0.6% concentrated solar, 9.8% geothermal, 0.14% biomass and 0.03% petroleum coke. If we use the grams of CO2-eq per kWh estimated by IPCC AR5 WGIII and Bruckner et al (2014), then natural gas emits 595 g, coal emits 1027 g, petroleum emits 880 g, hydroelectric emits 24 g, terrestrial wind emits 11 g, utility PV solar emits 48 g, residential PV solar emits 41 g, concentrated solar emits 27 g, geothermal emits 38 g and biomass emits 230 g. Based on those emission rates, grid electricity in Nevada emits 499 g CO2-eq per kWh. If 2/3 comes from the grid and 1/3 comes from rooftop PV solar or a similar clean source, then the electricity used in the Gigafactory will emit 346 g CO2 per kWh. If consuming between 3,229 and 4,688 GWh per year, the Gigafactory will emit between 1.12 and 1.62 megatonnes of CO2-eq per year, which represents between 3.1% and 4.5% of the greenhouse gas emissions that the state of Nevada produced in 2014 according to the World Resources Institute.

Aside from the GHG emissions from the Gigafactory, it is necessary to consider the greenhouse gas emissions from mining, refining and processing the materials used in the Gigafactory. The materials used in batteries consume a tremendous amount of energy and resources to produce. The various estimates of the energy to produce the materials in batteries and their greenhouse gas emissions shows the high impact that battery manufacturing has on the planet.

ImpactPerKgBatteryMaterials

To get some idea of how much materials will be used in the NCA cells produced by the Gigafactory, I attempted to do a rough calculation of the weight of materials in 1 kWh of cells. Taking the weight breakdown of an NMC battery cell in Olofsson and Romare (2013), I used the same weight percentages for the cathode, electrolyte, anode and packaging, but scaled the energy density up from 233 kW per kg in the NCA cells in 2014 to 263 kW per kg, which is a 13% increase, since Telsa claims a 10% to 15% increase in energy density in the Gigafactory’s cells. Then, I estimated the weight of the components in the cathode, using 76% nickel, 14% cobalt, and 10% aluminum and some stochiometry to calculate the lithium and oxygen compared to the rest of the cathode materials. The 2170 cells produced by the Gigafactory will probably have different weight ratios between their components, and they will have more packaging materials than the pouch cells studied by Olofsson and Romare, but this provides a basic idea how much material will be consumed in the Tesla cells.

BatteryMaterialsIn1KWhGigafactory

The estimates of the energy, the emissions of carbon dioxide equivalent, sulfur dioxide equivalent, phosphorous equivalent and human toxicity to produce the metals are taken from Nuss and Eckelman (2014), which are process-sum estimates based on the EcoInvent database. These are estimates to produce generic metals, not the highly purified metals used in batteries, and the process-sum methodology generally underestimates the emissions, so the estimates should be taken with a grain of salt but they do give some idea about the relative impact of the different components in battery cells since they use the same methodology in their calculations.

At this point we still don’t know how large the battery will be in the forthcoming Model 3, but it has been estimated to have a capacity of 55 kWh based on a range of 215 miles for the base model and a 20% reduction in the size of the car compared to the Model S. At that battery size, the cells in the Model 3 will contain 6.3 kg of lithium, 26.4 kg of nickel, 4.9 kg of cobalt, 27.9 kg of aluminum, 56.6 kg of copper and 21.0 kg of graphite.

Even more concerning is the total impact of the Gigafactory when it ramps up to its planned capacity of 150 GWh per year. Originally, the Gigafactory was scheduled to produce 35 GWh of lithium ion batteries by 2020, plus package an additional 15 GWh of cells produced in other factories. After Tesla received 325,000 preorders for the Model 3 within a week of being announced on March 31, 2016, the company ambitiously announced that it would triple its planned battery production and be able to produce 500,000 cars a year by 2018–two years earlier than initially planned. Now Elon Musk is talking about building 2 to 4 additional Gigafactories and one is rumored to have signed a deal to build one of them in Shanghai.

If the components for 1 kWh of Gigafactory batteries is correct and the Nevada plant manages to produce as much as Musk predicts, then the Gigafactory and the cells it packages from other battery factories will consume 17,119 tonnes of lithium, 71,860 tonnes of nickel, 13,292 tonnes of cobalt, 154,468 tonnes of copper and 75,961 tonnes of aluminum. All of these metals except aluminum have limited global reserves, and North America doesn’t have enough production capacity to hope to supply all the demand of the Gigafactory, except in the case of aluminum and possibly copper.

150GWhInGigafactory

When the Gigafactory was originally announced, Telsa made statements about sourcing the battery materials from North America which would both reduce its costs and lower the environmental impact of its batteries. These claims should be treated with skepticism. The Gigafactory will reduce the transportation emissions in battery manufacturing, since it will be shipping directly from the refineries and processors, but the transportation emissions will still be very high because North America simply doesn’t produce enough of the metals needed by the Gigafactory. If the Gigafactory manufacturers 150 GWh of batteries per year, then it will consume almost 200 times more lithium than North America produced in 2013. In addition, it will also consume 166% of the cobalt, 133% of the natural graphite, 25.7% of the nickel, and 5.6% of the copper produced by North American mines in 2016. Presumably synthetic graphite will be used instead of natural graphite because it has a higher purity level of carbon and more uniform spheroid flakes which allow for the easier flow of electrons in the cathode, but most synthetic graphite comes from Asia. Only in the case of aluminum does it seem likely that the metal will come entirely from North America, since Gigafactory will consume 1.9% of North American mine production and the US has excess aluminum refining capacity and no shortage of bauxite. Even when considering that roughly 45 GWh of the battery cells will come from external battery factories which are presumably located in Asia, the Gigafactory will overwhelm the lithium and cobalt markets in North America, and strain the local supplies of nickel and copper.

GigafactoryMetalConsumption

Shipping from overseas contributes to greenhouse gases, but shipping over water is very energy efficient. The Gigafactory is located at a nexus of railroad lines, so it can efficiently ship the battery materials coming from Asia through the port of Oakland. The bigger problem is that most ships on international waters use dirty bunker fuels that contain 2.7% sulfur on average, so they release large quantities of sulfur dioxide into the atmosphere that cause acid rain and respiratory diseases.

A larger concern than the emissions from shipping is the fact that the production of most of these battery materials is an energy intensive process that consumes between 100 and 200 mejajoules per kg. The aluminum, copper, nickel and cobalt produced by North America is likely to come from places powered by hydroelectric dams in Canada and natural gas in the US, so they are comparatively cleaner.  Most of the metal refining and graphite production in Asia and Australia, however, is done by burning coal. Most of the places that produce battery materials either lack strong pollution controls, as is the case in Russia, the Democratic Republic of Congo (DRC), Zambia, Philippines or New Caledonia, or they use dirty sources of energy, as is the case in China, India, Australia, the DRC, Zambia, Brazil and Madagascar.

MineProductionByCountry

Most of the world’s lithium traditionally came from pumping lithium rich subsurface water out of the salt flats of Tibet, northeast Chile, northwest Argentina and Nevada, but the places with concentrated lithium brines are rapidly being exhausted. The US Geological Survey estimates that China’s annual production of lithium which mostly comes from salt flats in Tibet has fallen from 4500 tonnes in 2012 to just 2000 tonnes in 2016. Silver Peak, Nevada, which is the only place in North America where lithium is currently extracted, may be experiencing similar production problems due to the exhaustion of its lithium, but its annual production numbers are confidential.

Since 1966 when brine extraction began in Silver Peak, the concentration of lithium in the water has fallen from 360 to 230 ppm (parts per million), and it is probably around 200 ppm today. At that concentration of lithium, 14,300 liters of water need to be extracted to produce 1 kg of battery-grade lithium metal. This subsurface water is critical in a state that only receives an average of 9 inches of rain per year. Parts of Nevada are already suffering from water rationing, so a massive expansion of lithium extraction is an added stress, but the biggest risk is that brine operations may contaminate the ground water. 30% of Nevada’s water is pumped from underground aquifers, so protecting this resource is vitally important. Lithium-rich water is passed through a series of 4 or 5 evaporation pools over a series of 12 to 18 months, where it is converted to lithium chloride, which is toxic to plants and aquatic life and can contaminate the ground water. Adams-Kszos and Stewart (2003) measured the effect of lithium chloride contamination in aquatic species 150 miles away from brine operations in Nevada.

As the lithium concentrations fall in the water, more energy is expended in pumping water and evaporating it to concentrate the lithium for processing. Argonne National Laboratory estimates that it takes 3 times as much energy to extract a tonne of lithium in Silver Peak, Nevada as in the Atacama Salt Flats of Chile, where the lithium is 7 times more concentrated.  Most of the lithium in Chile and Argentina is produced with electricity from diesel generators, but in China and Australia it comes from burning coal, which is even worse.

For every kg of battery-grade lithium, 4.4 kg of slaked lime is consumed to remove magnesium and calcium from the brine in Silver Peak. The process of producing this lime from limestone releases 0.713 kg of COfor every kg of lime. In addition, 5 kg of soda ash (Na2CO3) is added for each kilo of battery-grade lithium to precipitate it as lithium carbonate. Production of soda ash is also an energy intensive process which produces greenhouse gases.

Although lithium is an abundant element and can be found in ocean water and salty lakes, there are only 4 places on the planet where it is concentrated enough without contaminants to be economically extracted from the water and the few places with concentrated lithium water are rapidly being exploited. In 2008, Meridian International estimated that 2 decades of mining had extracted 20% of the lithium from the epicenter of the Atacama Salt Flats where lithium concentrations are above 3000 ppm. According to Meridian’s calculations, the world only had 4 million tonnes of high-concentration lithium brine reserves remaining in 2008.

As the best concentrations of lithium brine are being exhausted, extraction is increasingly moving to mining pegmatites, such as spodumene. North Carolina, Russia and Canada shut down their pegmatite operations because they couldn’t compete with the cheap cost of lithium from the salt flats of Chile and Argentine, but Australia and Zimbabwe have dramatically increased their production of lithium from pegmatites in recent years. Between 2004 and 2016, the percentage of global lithium from pegmatites increased from 39% to 44%.

LithiumFromPegmatites

In 2016, Australia produced 40.9% of the global lithium supply by processing spodumene, which is an extremely energy-intensive process. It takes 125 MJ of energy to extract a kilo of lithium from Chile’s salt flats, whereas 850 MJ is consumed to extract the same amount of lithium from spodumene in Australia. The spodumene is crushed, so it can be passed through a flotation beneficiation process to produce a concentrate. That concentrate is then heated to 1100ºC to change the crystal structure of the mineral. Then, the spodumene is ground and mixed with sulfuric acid and heated to 250ºC to form lithium sulfate. Water is added to dissolve the lithium sulfate and it is filtered before adding soda ash which causes it to precipitate as lithium carbonate. As lithium extraction increasingly moves to pegmatites and salt flats with lower lithium concentrations, the energy consumption will dramatically increase to produce lithium in the future.

Likewise, the energy to extract nickel and cobalt will also increase in future. The nickel and cobalt from Canada and the copper from the United States, generally comes from sulfide ores, which require much less energy to refine, but these sulfide reserves are limited. The majority of nickel and cobalt, and a sizable proportion of the copper used by the Gigafactory will likely come from places which present ethical challenges. Nickel from sulfide ores generally consumes less than 100 MJ of energy per kg, whereas nickel produced from laterite ores consumes between 252 and 572 MJ per kg. All the sulfide sources emit less than 10 kg of CO2 per kg of nickel, whereas the greenhouse gas emissions from laterite sources range from 25 to 46 kg  CO2 per kg of nickel. It is generally better to acquire metals from sulfide ores, since they emit fewer greenhouse gases and they generally come from deeper in the ground, whereas laterite ores generally are produced by open pit and strip mining which causes greater disruption of the local ecology. Between 2004 and 2016, the percentage of global primary production of nickel from laterite ores increase from 40% to 60% and that percentage will continue to grow in the future, since 72% of global nickel “resources” are laterites according to the US Geological Survey.

globalNickelProduction

Cobalt is a byproduct of copper or nickel mining. The majority of the sulfide ores containing copper/cobalt are located in places like Norilsk, Russia, Zambia and the Katanga Province of the Democratic Republic of Congo, where there are no pollution controls to capture the large amounts of sulfur dioxide and heavy metals released by smelting. The refineries in Norilsk, Russia, which produce 11% of the world’s nickel and 5% of its cobalt, are so polluting, that nothing grows within a 20 kilometer radius of the refineries and it is reported that Norilsk has the highest rates of lung cancer in the world.

The Democratic Republic of Congo currently produces 54% of the world’s cobalt and 5% of its copper. Buying cobalt from the DRC helps fuel a civil war in the Katanga Province where the use of children soldiers and systematic rape are commonplace. Zambia, which is located right over the border from Katanga Province, produces 4% of the world’s cobalt and copper and it also has very lax pollution controls for metal refining.

Most of the cobalt and nickel produced by the DRC and Zambia is shipped to China for refining by burning coal. China has cracked down on sulfur dioxide and heavy metal emissions in recent years, and now the DRC is attempting to do more of the refining within its own borders. The problem is that the DRC produces most of its energy from hydroelectric dams in tropical rainforests, which is the dirtiest energy on the planet. According to the IPCC (AR5 WGIII 2014), hydroelectric dams typically emit a medium of 24 g of  CO2-eq per kWh, but tropical dams accumulate large amounts of vegetation which collect at the bottom of the dam where bacteria feeding on the decaying matter release methane (CH4) in the absence of oxygen. There have been no measurements of the methane released by dams in the DRC, but studies of 3 Amazonian hydroelectric dams found that they emit an average of 2556 g CO2-eq per kWh. Presumably the CO2 from these dams would have been emitted regardless of whether the vegetation falls on the forest floor or in a dam, but rainforest dams are unique environments without oxygen that produces methane. If we only count the methane emissions, then Amazonian hydroelectric dams emit an average of 2044 g CO2-eq per kWh. Any refining of copper/cobalt in the DRC and Zambia or nickel/cobalt in Brazil will likely use this type of energy which emits twice as much greenhouse gases as coal.

To avoid the ethical problems with obtaining nickel and cobalt from Russia and cobalt and copper from the DRC and Zambia, the Gigafactory will have to consume metals from laterite ores in places like Cuba, New Caledonia, Philippines, Indonesia and Madagascar, which dramatically increases the greenhouse gas emissions of these metals. The nickel/cobalt ore from Moa, Cuba is shipped to Sherritts’ refineries in Canada, so presumably it will be produced with pollution controls in Cuba and Canada and relatively clean sources of energy. In contrast, the nickel/cobalt mining in the Philippines and New Caledonia has generated protracted protests by the local population who are effected by the contamination of their water, soil and air. When Vale’s $6 billion high pressure acid leaching plant in Goro, New Caledonia leaked 100,000 liters of acid-tainted effluent leaked into a local river in May 2014, protesters frustrated by the unaccountability of the mining giant burned a third of its trucks and one of its buildings, causing between $20 and $30 million in damages. The mining companies extracting nickel and cobalt in the Philippines have shown so little regard for the health of the local people, that the public outcry induced the Duterte administration to recently announce that it will prohibit all open pit mining of nickel. If this pronouncement is enforced, the operations of 28 of the 41 companies mining nickel/cobalt in the country will be shut down and the global supply of nickel will be reduced between 8% and 10%.

Most refining of laterite ores in the world is done with dirty energy, which is problematic because these ores require so much more energy than sulfide ores. Much of the copper/cobalt from the DRC and Zambia and the nickel/cobalt from the Philippines is shipped to China where it is refined with coal. The largest nickel/cobalt laterite mine and refinery in the world is the Ambatovy Project in Madagascar. Although the majority of the electricity on the island comes from hydroelectric dams, the supply is so limited that Ambatovy constructed three 30 MW coal-powered generators, plus 30 MW diesel powered generators.

It is highly likely that many of the LCA studies of lithium-ion batteries have underestimated the energy and greenhouse gas emissions to produce their metals, because they assume that the lithium comes from brine operations and the copper, nickel and cobalt come from sulfide ores with high metal concentrations. As lithium extraction increasingly shifts to spodumene mining and nickel and cobalt mining shifts to laterite ores, the greenhouse gas emissions to produce these metals will dramatically increase.

As the global production of lithium-ion batteries ramps up, the most concentrated ores for these metals will become exhausted, so that mining will move to less-concentrated sources, which require more energy and resources in the extraction and processing.  In 1910, copper ore in the US contained 1.9% copper. By 1950, this percentage had fallen to 0.9% copper, and by 1980 it was at 0.5% copper. As the concentration of copper in the ore has fallen, the environmental impact of extraction has risen. In a study of the smelting and refining of copper and nickel, Norgate and Rankin (2000) found that the energy consumption, greenhouse gas emissions and sulfur dioxide emissions per kg of metal rose gradually when changing from ore with 3% or 2% metal to 1% metal, but below 1% the environmental impacts increased dramatically. MJ/kg, CO2/kg and SO2/kg doubled when moving from ore with 1% metal to ore with 0.5% metal, and they doubled again when moving to 0.25% metal. Producing a kilo of copper today in the US has double the environmental impact of a kg of copper half a century ago and it will probably have 4 times the impact in the future.

The enormous demand for metals by battery manufacturers will force the mining companies to switch to less and less concentrated ores and consume more energy in their extraction. If the Nevada Gigafactory produces 150 GWh of batteries per year, then it will dramatically reduce the current global reserves listed by the US Geological survey. The Nevada Gigafatory will cut the current global lithium reserves from 400 to 270 years, assuming that current global consumption in other sectors does not change (which is highly unlikely). If the Gigafactory consumes metals whose recycled content is the US average recycling rate, then the current global copper reserves will be reduced from 37.1 to 36.9 years, the nickel reserves from 34.7 to 33.9 years, and the cobalt reserves from 56.9 to 52.5 years.

Recycling at the Gigafactory will not dramatically reduce its demand for metals. If we assume that 80% of the metal consumed by the Gigafactory will come from recycled content starting in 15 years when batteries start to be returned for recycling, then current global reserves will be extended 0.04 years for copper, 0.09 years for nickel, 0.9 years for cobalt. Only in the case of lithium will recycling make a dramatic difference, extending the current reserves 82 years for lithium.

The prospects for global shortages of these metals will become even more dire if the 95.0 million vehicles that the world produced in 2016 were all long-range electrics as Elon Musk advocates for “sustainable transport.” If the average vehicle (including all trucks and buses) has a 50 kWh battery, then the world would need to produce 4750 GWh of batteries per year just for electric vehicles. With energy storage for the electrical grid, that total will probably double, so 64 Gigafactories will be needed. Even that might not enough. In Leonardo de Caprio’s documentary Before the Flood, Elon Musk states, “We actually did the calculations to figure out what it would take to transition the whole world to sustainable energy… and you’d need 100 Gigafactories.”

Lithium-ion batteries will get more energy dense in the future, but they are unlikely to reach the high energy density of the NCA cells produced in the Gigafactory, if using the LMO or LFP chemistries. For that kind of energy density, they will probably need either an NCA or an altered NMC chemistry which is 70%-80% nickel, so the proportion of lithium, nickel, cobalt and copper in most future EV batteries is likely to be similar to the Gigafactory’s NCA cells. If 4750 GWh of these batteries are produced every year at an energy density of 263 Wh/kg, then the current global reserves will be used up in 24.5 years for lithium, 31.2 years for copper, 20.2 years for nickel, and 15.4 years for cobalt. Even if those batteries are produced with 80% recycled metals, starting in 15 years time, the current global lithium reserves would be extended 6.6 years, or 7.4 years if all sectors switch to using 80% recycled lithium. Using 80% recycled metal in the batteries would extend current copper, nickel and cobalt reserves by 0.7, 0.5 and 0.1 years, respectively. An 80% recycling rate in all sectors would make a difference for copper, extending its reserves by 11.5 years, but only 2.8 years for nickel and 0.2 years for cobalt. In other words, recycling will not significantly reduce the enormous stresses that lithium-ion batteries will place on global metal supplies, because they represent so much new demand for metals.

As the demand for these metals increases, the prices will increase and new sources of these metals will be found, but they will either be in places like the DRC with ethical challenges or in places with lower quality ores which require more energy and resources to extract and refine. We can expect more energy-intensive mining of spodumene and  more strip mining of laterite ores which cause more ecological disruption. The ocean floor has enormous quantities of manganese, nickel, copper and cobalt, but the energy and resources to scrap the bottom of the ocean will dramatically increase the economic and ecological costs. If battery manufacturing dramatically raises the prices of lithium, nickel, cobalt, copper (and manganese for NMC cells), then it will be doubly difficult to transition to a sustainable civilization in other areas. For example, nickel and cobalt are essential to making carbide blades, tool dies and high-temperature turbine blades and copper is a vital for wiring, electronics and electrical motors. It is hard to imagine how the whole world will transition to a low-carbon economy if these metals are made prohibitively expensive by manufacturing over a billion lithium-ion batteries for EVs.

Future batteries will probably be able to halve their weight by switching to a solid electrolyte and using an anode made of lithium metal, lithiated silicon or carbon nanotubes (graphene), but that will only eliminate the copper, while doing little to reduce the demand for the other metals. Switching the anode to spongy silicon or graphene will allow batteries to hold more charge per kilogram, but those materials also dramatically increase the cost and the energy and resources that are consumed in battery manufacturing.

In the near future, lithium-ion batteries are likely to continue to follow their historical trend of using 7% less materials each year to hold the same amount of charge. That rate of improvement, however, is unlikely to last. An NCA cathode currently holds a maximum of 200 mAh of energy per gram, but its theoretical maximum is 279 mAh/g. It has already achieved 72% of what is theoretically possible, so there is little scope to keep improving. NMC at 170 mAh/g is currently farther from its theoretical limit of 280 mAh/g, but the rate of improvement is likely to slow as these battery chemistries bump against their theoretical limits.

Clearly the planet doesn’t have the resources to build 95 million long-range electric vehicles each year that run on lithium-ion batteries. Possibly a new type of battery will be invented that only uses common materials, such as aluminum, zinc, sodium and sulfur, but all the batteries that have been conceived with these sorts of material still have significant drawbacks. Maybe a new type of battery will be invented that is suitable for vehicles or the membranes in fuel cells will become cheap enough to make hydrogen a viable competitor, but at this point, lithium-ion batteries appear likely to dominate electric vehicles for the foreseeable future. The only way EVs based on lithium-ion can become a sustainable solution for transport is if the world learns to live with far fewer vehicles.

Currently 3% more vehicles are being built each year, and there is huge demand for vehicles in the developing world. While demand for cars has plateaued in the developed world, vehicle manufacturing since 1999 has grown 17.4% and 10.5% per year in China and India, respectively. If the developing world follows the unsustainable model of vehicle ownership found in the developed world, then the transition to electrified transport will cause severe metal shortages. Based on current trends, Navigant Research predicts that 129.9 million vehicles will be built in the year 2035, when there will be 2 billion vehicles on the road.

GlobalAutoProduction

On the other hand, James Arbib and Tony Seba believe that autonomous vehicles and Transport as a Service (TaaS) such as Uber and Lyft will dramatically reduce demand for vehicles, lowering the number of passenger vehicles on American roads from 247 to 44 million by 2030. If 95% of passenger miles are autonomous TaaS by 2030 and the lifespan of electric vehicles grows to 500,000 miles as Arbib and Seba predict, then far fewer vehicles will be needed. Manufacturing fewer electric vehicles reduces the pressure to extract metals from laterite ores, pegmatites, the ocean floor, and lower-grade ores in general with higher ecological costs.

Ellingsen et al (2016) estimate that the energy consumed by battery factories per kWh of batteries has halved since 2012, however, that has to be balanced by the growing use lithium from spodumene and nickel and cobalt from laterite ores, and ores with lower metal concentrations that require more energy and produce more pollution. Given the increased energy efficiency in battery manufacturing plants and the growing efficiencies of scale, I would guesstimate that lithium-ion battery emissions are currently at roughly 150 kg  CO2-eq per kWh of battery and that the Gigafactory will lower those emissions by a third to roughly 100 kg  CO2-eq / kWh. If the Model 3, uses a 55 kWh battery, then its battery emissions would be roughly 5500 kg  CO2-eq.

Manufacturing a medium-sized EV without the battery emits 6.5 tonnes of  CO2-eq according to Ellingsen et al (2016). Electric cars don’t have the huge engine block of an ICE car, but they have large amounts of copper in the motor’s rotor and the windings and the Model 3 will have far more electronics than a standard EV. The Model S has 23 kg of electronics and I would guesstimate that the Model 3 will have roughly 15 lbs of electronics if it contains nVidia’s Drive PX or a custom processor based on the K-1 graphics processor. If the GHG emissions are roughly 150 kg  CO2-eq per kg of electronics, we can guesstimate that 2.2 tonnes of  CO2-eq will be emitted to manufacture the electronics in the Model 3. Given the large amount of copper, electronics and sensors in the Model 3, add an additional tonne, plus 5.5 tonnes for its 50 kWh battery, so a total of 13 tonnes of  CO2-eq will be emitted to manufacture the entire car.

Manufacturing a medium-sized ICE car emits between 5 and 6 tonnes, so there is roughly a 7.5 tonne difference in GHG emissions between manufacturing the Model 3 and a comparable ICE car. A new ICE car the size of the Model 3 will get roughly 30 mpg. In the US, a gallon of gasoline emits 19.64 lbs of CO2, but it emits 24.3 lbs of  CO2e when the methane and nitrous oxide are included, plus the emissions from extraction, refining and transportation, according to the Argonne National Laboratory. Therefore, we will need to burn 680 gallons of gasoline or drive 20,413 miles at 30 mpg to equal those 7.5 extra tonnes in manufacturing the Model 3.

At this point, the decision whether the Model 3 makes ecological sense depends on where the electricity is coming from. Let’s assume that the Model 3 will consume 0.30 kWh of electricity per mile, which is what the EPA estimates the Nissan Leaf to consume. The Model S will be a smaller and more aerodynamic car than the Leaf, but it will also weigh significantly more due to its larger battery. If we also include the US national average of 4.7% transmission losses in the grid, then the Model 3 will consume 0.315 kWh per mile. After driving the Model 3 100,000 miles, the total greenhouse gas emissions (including the production emissions) will range between 14.1 and 45.3 tonnes, depending on its energy source to charge the battery.

VehicleEmissions100000miles

In comparison, driving a 30 mpg ICE car (with 5.5 tonnes in production emissions) will emit 42.2 tonnes of  CO2-eq after 100,000 miles. If we guesstimate that manufacturing a Toyota Prius will emit 7 tonnes, then driving it 100,000 miles at 52 mpg will emit 28.2 tonnes. Only in places like Kentucky which get almost all their electricity from coal is an ICE car the better environmental choice. The Model 3, however, will have worse emissions than most of its competitors in the green car market, if it is running on average US electricity, which emits 528 grams of CO2-eq per kWh. It will emit slightly more than a plugin hybrid like the Chevy Volt and an efficient hybrid like the Toyota Prius and substantially more than a short-range electric, like the Nissan Leaf.

Most previous comparisons between electric cars and ICE cars were based on short-range electrics with smaller batteries, such as the Nissan Leaf, which is why environmental advocates are so enthusiastic about EVs. However, comparing the Model S and Model 3 to the Nissan Leaf, Chevy Volt and Toyota Prius hybrid shows that the environmental benefits of long-range EVs are questionable when compared to short-range EVs, plugin hybrids and hybrids. Only when running the Model 3 on cleaner sources of electricity does it emit less greenhouse gases than hybrids and plugin hybrids, but in the majority of the United States it will emit slightly more. Many of the early adopters of EVs also owned solar panels, so buying a Model 3 will reduce their carbon footprint, but the proportion of EV owners with solar panels on their roofs is falling. According to CleanTechnica’s PlugInsights annual survey, 25% of EV buyers before 2012 had solar panels on their roofs, compared to just 12% in 2014-2015. Most people who own solar panels do not have a home battery system so they can not use their clean energy all day, and most EV charging will happen at night using dirtier grid electricity.

Another factor to consider is the effect of methane leakage in the extraction and transport of natural gas. There is a raging scientific debate about what percentage of natural gas leaks into the atmosphere without being burned. A number of studies have concluded that the leakage of methane causes electricity from natural gas to have GHG emissions similar to coal, but there is still no consensus on the matter.  If the leakage rate is as high as some researchers believe, then EVs will emit more greenhouse gases than hybrids and efficient ICE cars in places like California which burn large amounts of natural gas.

On the other hand, many people believe that EVs will last 300,000 miles or even 500,000 miles since they have so few moving parts, so their high emissions in manufacturing will be justified. However, the EV battery will probably have to be replaced, and the manufacturing emissions for a long range EV battery can be as high as building a whole new ICE car. Another factor that could inhibit the long life of Telsa’s cars is the fact that the company builds cars described as “computers on wheels,” which are extremely difficult for third parties to fix and upgrade over time. Telsa only sells its parts to authorized repair shops and much of the functionality of car is locked up with proprietary code and secret security measures, as many do-it-yourselfers have discovered to their chagrin. When Tesla cars are damaged and sold as salvage, Tesla remotely disables its cars, so that they will no longer work even if repaired. The $600 inspection fee to reactivate the car plus the towing fees discourage Teslas from being fixed by third parties. These policies make it less likely that old Teslas will be fixed and their lifespans extended to counterbalance the high environmental costs of producing the cars.

Although the Model 3 has high greenhouse gas emissions in its production and driving it is also problematic in parts of the world that currently use dirty energy, those emissions could be significantly reduced in the future if they are accompanied by a shift to renewable energy, more recycling and the electrification of mining equipment, refining and transport. The car’s ecological benefits will increase if the emissions can be decreased in producing battery materials and the greater energy density of batteries is used to decrease the total materials in batteries rather than keep extending the range of EVs. Producing millions of Model 3s will strain the supply of vital metals and shift extraction to reserves which have higher ecological costs. However, the Model 3 could become a more sustainable option if millions of them are deployed in autonomous Transport as a Service fleets, which Arbib and Seba predict will be widespread by 2030, since TaaS will cost a tenth of the price of owning a private vehicle. If the Model 3 and future autonomous EVs become a means to drop the global demand for private vehicles and that helps reduce the demand for lithium, nickel, cobalt and copper down to sustainable levels, then the high environmental costs of manufacturing the Model 3 would be justified.

Nonetheless, the Model 3 and the NCA 2170 batteries currently being produced by Tesla offer few of those possible future ecological benefits. Most of the metal and graphite in the battery is being produced with energy from fossil fuels. In the short term at least, Telsa batteries will keep growing in capacity to offer more range, rather than reducing the total consumption of metals per battery. The extra sensors, processing power and electronics in the current Model 3 will increase its ecological costs without providing the Level 4 or 5 autonomy that would make it possible to convince people to give up their private vehicles. In the here and now, the Model 3 is generally not the best ecological choice, but it might become a better choice in the future.

The Model 3 promises to transform the market not only for EVs, but cars in general. If the unprecedented 500,000 pre-orders for the Model 3 are any indication of future demand, then long-range electrics with some degree of autonomous driving like the Model 3 will capture most of the EV market. Telsa’s stunning success will induce the rest of auto-makers to also start making long-range EVs with large batteries, advanced sensors, powerful image processors, advanced AI, cellular networking, driving data collection and large multimedia touchscreens. These features will dramatically increase the environmental costs of car manufacturing. Whether these features will be balanced by other factors which reduce their environmental costs remains to be seen.

Much of this analysis is guess work, so it should be taken with a grain of salt, but it points out the problems with automatically assuming that EVs are always better for the environment. If we consider sulfate emissions, EVs are significantly worse for the environment. Also, when we consider the depletion of critical metal reserves, EVs are significantly worse than ICE vehicles.

The conclusion should be that switching to long-range EVs with large batteries and advanced electronics bears significant environmental challenges. The high manufacturing emissions of these types of EVs make their ecological benefits questionable for private vehicles which are only used on average 4% of the time. However, they are a very good option for vehicles which are used a higher percentage of the time such as taxis, buses and heavy trucks, because they will be driven many miles to counterbalance their high manufacturing emissions. Companies such as BYD and Proterra provide a model of the kinds of electric vehicles that Tesla should be designing to promote “sustainable transport.” Tesla has a few ideas on the drawing board that are promising from an ecological perspective, such as its long-haul semi, the renting out of Teslas to an autonomous TaaS fleet, and a new vehicle that sounds like a crossover between a sedan and a minibus for public transport. The current Model 3, however, is still a vehicle which promotes private vehicle ownership and bears the high ecological costs of long-range lithium batteries and contributes to the growing shortage of critical metals.

Clearly, EVs alone are not enough to reduce greenhouse gas emissions or attain sustainable transport in general. The first step is to work on switching the electric grid to cleaner renewable energy and installing more residential solar, so that driving an EV emits less CO2. However, another important step is redesigning cities and changing policies so that people aren’t induced to drive so many private vehicles. Instead of millions of private vehicles on the road, we should be aiming for walkable cities and millions of bikes and electric buses, which are far better not only for human health, but also for the environment.

A further step where future Model 3s may help is in providing autonomous TaaS that helps convince people to give up their private vehicles. However, autonomous EVs need to be matched by public policies that disincentivize the kind of needless driving that will likely occur in the future. The total number of miles will likely increase in the future due to autonomous electric cars driving around looking for passengers to pick up and people who spend more time in the car because they can surf the web, watch movies, and enjoy the scenery without doing the steering. Plus, the cost of the electricity to charge the battery is so cheap compared to burning gasoline that people will be induced to drive more, not less.





Not happy, Jan…….

8 04 2017

If you’ve been following this blog, you will know I’ve been saying for quite some time that out of the ludicrous Lithium battery rush happening right now as a ‘fix it’ for all and sundry energy problems, a lot of disappointed people will surface. Well, one just has, and he’s one of the most high profile person in the sustainability movement.

I met Michael Mobbs almost certainly before 2010, which is the year I went working for the solar industry. He gave a public lecture about sustainability in Pomona at the Rural Futures Network; I wonder how that’s going now..? Mobbs has undertaken converting an old terrace house in Sydney to ‘sustainability’ by disconnecting from the water grid and sewerage. He also went grid tied solar, the whole project is well documented on his website, and you have to give him credit for doing the almost impossible…. in Sydney no less. I for one would never undertake such a project, it’s so much easier to start from scratch in the country! And that’s hard enough, let me tell you….

It now appears, Mobbs decided to also cut himself off from the electricity grid…. and it seems that didn’t go so well….

mobbsbatteriesOn Mobbs’ website, there is an “invitation to install & supply an off-grid solar system” It seems he had one installed in March 2015, but it’s not working as it should, or at least as Mobbs thought it should…..

Firstly, let’s start with what he got……. It’s a bit hard to tell from the photo, apart from the fact it is an Alpha ‘box’. From the blog, I also established that this comes with a 3kW inverter, itself a problem, it appears to be too small. Going to Alpha’s website, I cannot find the system Mobbs appears so proud of in the above photo; and let’s face it, two years is a long time in the world of technology. All the products on display say that the output of these cabinets is 5kW, but nowhere does it say it even features an inverter.  Solarchoice’s website shows a 3kW Storion-S3 cabinet, but not even it looks like what Mobbs has in the photo – it only has one door, the ‘new ones’ have two….. The inverter is called an AEV-3048, and perhaps the A stands for Alpha, and 3048 means 3000W/48V, but it’s all guesswork because finding information is a problem.

So why is a 3kW inverter a problem in a house with a claimed baseload of 86W, very close to what we achieved in Cooran actually…..

Another huge flaw with the Alpha system that I’ve recently become aware of also stems from the fact that all the energy first goes through the batteries: the Alpha system’s output is always limited to 3,000W regardless of the solar size; it can’t deliver above this. This is an extremely important point to understand because it affects the way I live and how I’m able to use my appliances. I’ll break it down in a way that’s practical and simple; prepare yourself to be blown away by this outrageous system limitation.

We’ve already established that the base load of my house is 86W. Let’s say I wake up in the morning, turn on a couple of lights in the kitchen because it’s still dark (20W), turn on the toaster because I’m in the mood for toast with butter for breakfast (1,200W), and my daughter (who happens to be staying with me) turns on her hair dryer while getting ready (1,500W) and she decides she needs to put on a load of laundry before she leaves the house (500W). Doesn’t seem too out of the ordinary, right? Well, we would be in trouble: all of the power would cut off, and the Alpha system would shut down because we would have exceeded its 3,000W limit. Regardless of the size of my solar system, I can NEVER exceed 3,000W of power consumption in my house while using the Alpha system. This was very hard to swallow.

Oh Michael…….  welcome to living off the grid!

Mobbs gives a brief description of how he worked out this baseload….

Step one, determining my total base load, wasn’t as easy as I expected, especially given the fact that I have three different monitoring systems that could provide me with the information. The Efergy and Wattwatchers systems confirmed what I already knew: my house’s base load was about 86W (60W for the aerator and roughly 20W for the fridge occasionally turning on).However, where I ran into problems was with the Alpha ESS reporting system: it was saying my base load was 257W, which is three times larger than the base load reported for the house.At first I thought this difference of 171W was the base load of the Alpha system itself, but their numbers just didn’t add up.

I do have a theory here, he may have got the sums wrong because he used to be grid tied, and maybe, just maybe, his figures did not include what was exported. But I’m only guessing. My main reason for thinking this is that he is running a conventional fridge, while we achieved our low baseload using a freedge which consumes 20% of the energy a conventional fridge does…. make no mistake, a conventional fridge’s ‘baseload’ is half or more of his 86W. He’s claiming 20W for his fridge (480Wh/day, 20W x 24 hrs), but I have never seen any fridge perform that well…. Most fridges today still consume a whole kilowatthour a day. So there could be another error there.

But it gets worse……

Now you see why I said that I probably made a huge mistake by purchasing the Alpha system when going off-grid. The simple truth is that the Alpha system is not designed to be used in an off-grid setting, and they have not implemented the necessary retrofits to make it work in that environment. However, during my recent research, I came across a product that is designed specifically to be used off-grid and shows great promise for high efficiency and effective energy management: the SMA Sunny Island system.

Bad news Michael……  the SMA Sunny Island is not designed for off the grid either, it’s made to work with other SMA grid tied units in a hybrid grid/backup batteries system.

Worse still, he also seems to have storage issues….

For the last few weeks, in the particularly cloudy and rainy weather Sydney has had to endure, Mobbs had to turn off his fridge (bloody fridges, they are a curse…) during the day to ensure that the house, which he shares with two others, has enough power for a “civilised life” at night-time. Worse than that, the system has a bug in it that causes it to trip out every couple of days. It seems flashing digital lights have become part of his life….!

“I’m running short of power,” Mobbs said complaining that the system that he has in place is delivering 1kWh/day less than he expected. “I thought this would be a walk in the park, but I appear to have tripped over.”

I’m seriously starting to think a lot of installers have no idea what they are doing. I recently related the story of my friend Bruce whose inlaws replaced a perfectly good system (because of a fridge no less!), and they were sold a Sunny Island, with I was told over the phone just two days ago, gel cells for storage……… completely not what either Bruce or I would have bought. Solar companies (including this well known one who shall remain nameless) have simply turned into salespeople selling whatever it is they have in stock off catalogues…….

Mobbs then writes……

The main difference between the Alpha and Sunny Island system: Sunny Island can send solar energy directly to the house when it is needed and completely bypasses the system’s batteries. SMA’s Sunny Island system not only extends battery life by not cycling all loads through them, but using solar directly into loads means items can be set to run on timers during the day, (washing, dishwasher etc) to maximise the benefit of an abundant afternoon supply of solar. It also has a larger peak design capacity than Alpha. For example, if you have a 4kW solar system, with the SMA units that would allow a potential delivery of 4kW of solar (in optimum conditions) directly into the house’s load + the 4.6kW of power from the batteries delivered by the Sunny Island controller (they can run in parallel to each other).  That’s a big potential 8.6 kW of continuous capacity to loads.  As I’ve already pointed out, in contrast the Alpha output is always limited to the 3,000W delivery of the battery inverter regardless of the solar size.

More bad news Michael…… this only works that way if you are grid tied with a hybrid system!

Michael also doesn’t seem to understand how off the grid works…

Alpha has an inefficient way of managing my solar energy (by diverting all of it through my batteries first), which decreases my battery life by constantly charging and discharging them…

Errr…..  Michael, that’s how battery storage works! Which is of course exactly why Lithium batteries are not good at this. Mobbs also wrote…:

Like any system that transfers and converts energy from one form to another, there are going to be losses. No system is perfect. However, as I started doing more research, I became aware of a key element of the way the Alpha system operates that may mean my decision to purchase it was a huge mistake: the Alpha system transfers all its incoming solar energy through the batteries before it delivers it to the house. When I learned this, I was devastated. One of the most important figures of merit in a system such as mine are the battery losses. If you put 1kWh into a battery it doesn’t all come out! There are losses associated with both charging and discharging. The higher the charge/discharge rate, the greater proportion of energy is lost and the shorter my battery life becomes. So, I repeat, all my energy is getting charged and discharged through the batteries before I ever even see it in the house. For someone living off-grid, this level of energy loss and battery depreciation is unacceptable, and I was never made aware of it by the installer.

This is why I know there will be a lot of disappointed grid disconnectors. They have swallowed the idea that living off grid is just like living on it hook line and sinker, when it cannot possibly be. How long have I been saying solar has shortcomings?

If you’re going to go off the grid, first, you need to know exactly how much energy you’re consuming. Then you need to know what your peak power demand will be so you can size your inverter. Then, you must size your battery bank so that you can go on living through a series of cloudy days without your batteries falling over. Accurate climate data is really important. And if you ask me, any off the grid system should be tailor made for the household, not all fitted in a box…..

The comments on Mobbs’ blog are interesting, including one from Alpha who obviously can do without the bad publicity and are suggesting entering into consultation….. well if you ask me, the time for consultation is before installation, not after it’s established the gear does not perform as needed….

Furthermore, and this is most important, get batteries that can be flattened and recharged for as many times as you like, almost forever if you go the way of Nickel Iron batteries……

At least Mobbs is aware of what his system is doing, but most consumers don’t. They will buy these cabinets, not understand what the monitors tell them, and the Lithium batteries will be cycled to death, failing early without a doubt, driving incompetent solar companies broke and giving solar power a really bad name. Plus, let’s face it, by the time all these systems die, you won’t be able to get replacement bits in a post collapse world….

There is one more issue…… on his blog Mobbs shows..:

In 1996, I installed 18 solar panels, each with 120-watt capacity. It reduced the amount the house took from the grid by more than 60%. Since then, I have installed 12 additional panels, bringing my home’s total system capacity to just over 3.5kW. mobbs panels

In addition to the roof solar cells, the house uses sunlight to heat water through a standard solar hot-water system. The environmental savings achievable by using solar hot-water heaters are summed up by Gavin Gilchrist in his book, The Big Switch:
“If all the electric water heaters in Australia were replaced with solar ones, greenhouse gas emissions from Australia’s households would be cut by one-fifth.” One fifth is one mighty big saving!

The Bottom Line… I am saving hundreds of dollars every year not paying electricity bills by powering my household appliances using the Sun. 

I totally concur re the solar water heaters. Amazingly, I have friends in Geeveston who have one, and they hardly ever boost, which is astonishing considering how everyone was telling me how poorly solar would work in Tassie.

BUT…… all those original PVs were replaced when Mobbs cut the cord and increased his array size from 2kW to 5kW…… they were only ten years old, and as Prieto pointed out recently, the early retirement/replacement of PVs and balance of system can drive the ERoEI of solar to negative territory….. I can’t find mention of what happened to the obsolete 120W panels for which it might be hard to find compatible equipment.

One last thing……  his baseload of 86W is clearly wrong if a 3.5kW array can’t drive it. Our electricity habit was run for years on just 1.28kW, and I intend to now do it in Tassie with just 2kW. I rest my case.