WHY DO POLITICAL AND ECONOMIC LEADERS DENY PEAK OIL AND CLIMATE CHANGE?

23 08 2018

By Alice Friedemann, originally published by Energy Skeptic

Since there’s nothing that can be done about climate change, because there’s no scalable alternative to fossil fuels, I’ve always wondered why politicians and other leaders, who clearly know better, feel compelled to deny it. I think it’s for exactly the same reasons you don’t hear them talking about preparing for Peak Oil.

1) Our leaders have known since the 1970s energy crises that there’s no comparable alternative energy ready to replace fossil fuels. To extend the oil age as long as possible, the USA went the military path rather than a “Manhattan Project” of research and building up grid infrastructure, railroads, sustainable agriculture, increasing home and car fuel efficiency, and other obvious actions.

Instead, we’ve spent trillions of dollars on defense and the military to keep the oil flowing, the Straits of Hormuz open, and invade oil-producing countries. Being so much further than Europe, China, and Russia from the Middle East, where there’s not only the most remaining oil, but the easiest oil to get out at the lowest cost ($20-22 OPEC vs $60-80 rest-of-world per barrel), is a huge disadvantage. I think the military route was chosen in the 70s to maintain our access to Middle East oil and prevent challenges from other nations. Plus everyone benefits by our policing the world and keeping the lid on a world war over energy resources, perhaps that’s why central banks keep lending us money.

2) If the public were convinced climate change were real and demanded alternative energy, it would become clear pretty quickly that we didn’t have any alternatives. Already Californians are seeing public television shows and newspaper articles about why it’s so difficult to build enough wind, solar, and so on to meet the mandated 33% renewable energy sources by 2020.

For example, last night I saw a PBS program on the obstacles to wind power in Marin county, on the other side of the Golden Gate bridge. Difficulties cited were lack of storage for electricity, NIMBYism, opposition from the Audubon society over bird kills, wind blows at night when least needed, the grid needs expansion, and most wind is not near enough to the grid to be connected to it. But there was no mention of Energy Returned on Energy Invested (EROEI) or the scale of how many windmills you’d need to have. So you could be left with the impression that these problems with wind could be overcome.

[ED: read this about the impossibility of California going 100% renewables]

I don’t see any signs of the general public losing optimism yet. I gave my “Peak Soil” talk to a critical thinking group, very bright people, sparkling, interesting, well-read, thoughtful, and to my great surprise realized they weren’t worried until my talk, partly because so few people understand the Hirsch 2005 “liquid fuels” crisis concept, nor the scale of what fossil fuels do for us. I felt really bad, I’ve never spoken to a group before that wasn’t aware of the problem, I wished I were a counselor as well. The only thing I could think of to console them was to say that running out of fossil fuels was a good thing — we might not be driven extinct by global warming, which most past mass extinctions were caused by.

3) As the German military peak oil study stated, when investors realize Peak Oil is upon us, stock markets world-wide will crash (if they haven’t already from financial corruption), as it will be obvious that growth is no longer possible and investors will never get their money back.

4) As Richard Heinberg has pointed out, there’s a national survival interest in being the “Last Man (nation) Standing“. So leaders want to keep things going smoothly as long as possible. And everyone is hoping the crash is “not on my watch” — who wants to take the blame?

5) It would be political suicide to bring up the real problem of Peak Oil and have no solution to offer besides consuming less. Endless Growth is the platform of both the Republican and Democratic parties. More Consumption and “Drill, Baby, Drill” is the main plan to get out of the current economic and energy crises.

There’s also the risk of creating a panic and social disorder if the situation were made utterly clear — that the carrying capacity of the United States is somewhere between 100 million (Pimentel) and 250 million (Smil) without fossil fuels, like the Onion’s parody “Scientists: One-Third Of The Human Race Has To Die For Civilization To Be Sustainable, So How Do We Want To Do This?

There’s no solution to peak oil, except to consume less in all areas of life, which is not acceptable to political leaders or corporations, who depend on growth for their survival. Meanwhile, too many problems are getting out of hand on a daily basis at local, state, and national levels. All that matters to politicians is the next election. So who’s going to work on a future problem with no solution? Jimmy Carter is perceived as having lost partly due to asking Americans to sacrifice for the future (i.e. put on a sweater).

I first became aware of this at the 2005 ASPO Denver conference. Denver Mayor Hickenlooper pointed out that one of his predecessors lost the mayoral election because he didn’t keep the snow plows running after a heavy snow storm. He worried about how he’d keep snow plows, garbage collection, and a host of other city services running as energy declined.

A Boulder city council member at this conference told us he had hundreds of issues and constituents to deal with on a daily basis, no way did he have time to spend on an issue beyond the next election.

Finally, Congressman Roscoe Bartlett told us that there was no solution, and he was angry that we’d blown 25 years even though the government knew peak was coming. His plan was to relentlessly reduce our energy demand by 5% per year, to stay under the depletion rate of declining oil. But not efficiency — that doesn’t work due to Jevons paradox.

The only solution that would mitigate suffering is to mandate that women bear only one child. Fat chance of that ever happening when even birth control is controversial, and Catholics are outraged that all health care plans are now required to cover the cost of birth control pills. Congressman Bartlett, in a small group discussion after his talk, told us that population was the main problem, but that he and other politicians didn’t dare mention it. He said that exponential growth would undo any reduction in demand we could make, and gave this example: if we have 250 years left of reserves in coal, and we turn to coal to replace oil, increasing our use by 2% a year — a very modest rate of growth considering what a huge amount is needed to replace oil — then the reserve would only last 85 years. If we liquefy it, then it would only last 50 years, because it takes a lot of energy to do that.

Bartlett was speaking about 250 years of coal reserves back in 2005. Now we know that the global energy from coal may have peaked last year, in 2011 (Patzek) or will soon in 2015 (Zittel). Other estimates range as far as 2029 to 2043. Heinberg and Fridley say that “we believe that it is unlikely that world energy supplies can continue to meet projected demand beyond 2020.” (Heinberg).

6) Political (and religious) leaders gain votes, wealth, and power by telling people what they want to hear. Several politicians have told me privately that people like to hear good news and that politicians who bring bad news don’t get re-elected. “Don’t worry, be happy” is a vote getter. Carrying capacity, exponential growth, die-off, extinction, population control — these are not ideas that get leaders elected.

7) Everyone who understands the situation is hoping The Scientists Will Come up With Something. Including the scientists. They’d like to win a Nobel prize and need funding. But researchers in energy resources know what’s at stake with climate change and peak oil and are as scared as the rest of us. U.C.Berkeley scientists are also aware of the negative environmental impacts of biofuels, and have chosen to concentrate on a politically feasible strategy of emphasizing lack of water to prevent large programs in this from being funded (Fingerman). They’re also working hard to prevent coal fired power plants from supplying electricity to California by recommending natural gas replacement plants instead, as well as expanding the grid, taxing carbon, energy efficiency, nuclear power, geothermal, wind, and so on — see http://rael.berkeley.edu/projects for what else some of UCB’s RAEL program is up to. Until a miracle happens, scientists and some enlightened policy makers are trying to extend the age of oil, reduce greenhouse gases, and so on. But with the downside of Hubbert’s curve so close, and the financial system liable to crash again soon given the debt and lack of reforms, I don’t know how long anyone can stretch things out.

8) The 1% can’t justify their wealth or the current economic system once the pie stops expanding and starts to shrink. The financial crisis will be a handy way to explain why people are getting poorer on the down side of peak oil too, delaying panic perhaps.

Other evidence that politicians know how serious the situation is, but aren’t saying anything, are Congressman Roscoe Bartlett’s youtube videos (Urban Danger). He’s the Chairman of the peak oil caucus in the House of Representatives, and he’s saying “get out of dodge” to those in the know. He’s educated all of the representatives in the House, but he says that peak oil “won’t be on their front burner until there’s an oil shock”.

9) Less than one percent of our elected leaders have degrees in science. They’re so busy raising money for the next election and their political duties, that even they may not have time to read enough for a “big picture view” of (systems) ecology, population, environment, natural resources, biodiversity / bioinvasion, water, topsoil and fishery depletion, and all the other factors that will be magnified when oil, the master resource that’s been helping us cope with these and many other problems, declines.

10) Since peak fossil fuel is here, now (we’re on a plateau), there’s less urgency to do something about climate change for many leaders, because they assume, or hope, that the remaining fossil fuels won’t trigger a runaway greenhouse. Climate change is a more distant problem than Peak Oil. And again, like peak oil, nothing can be done about it. There’s are no carbon free alternative liquid fuels, let alone a liquid fuel we can burn in our existing combustion engines, which were designed to only use gasoline. There’s no time left to rebuild a completely new fleet of vehicles based on electricity, the electric grid infrastructure and electricity generation from windmills, solar, nuclear, etc., are too oil dependent to outlast oil. Batteries are too heavy to ever be used by trucks or other large vehicles, and require a revolutionary breakthrough to power electric cars.

11) I think that those who deny climate change, despite knowing it is real, are thinking like chess players several moves ahead. They hope that by denying climate change an awareness of peak oil is less likely to occur, and I’m guessing their motivation is to keep our oil-based nation going as long as possible by preventing a stock market crash, panic, social disorder, and so on.

12) Politicians and corporate leaders probably didn’t get as far as they did without being (techno) optimists, and perhaps really believe the Scientists Will Come Up With Something. I fear that scientists are going to take a lot of the blame as things head South, even though there’s nothing they can do to change the laws of physics and thermodynamics.

Conclusion

We need government plans or strategies at all levels to let the air out of the tires of civilization as slowly as possible to prevent panic and sudden discontinuities.

Given history, I can’t imagine the 1% giving up their wealth (especially land, 85% of which is concentrated among 3% of owners). I’m sure they’re hoping the current system maintains its legitimacy as long as possible, even as the vast majority of us sink into 3rd world poverty beyond what we can imagine, and then are too poor and hungry to do anything but find our next meal.

Until there are oil shocks and governments at all levels are forced to “do something”, it’s up to those of us aware of what’s going on to gain skills that will be useful in the future, work to build community locally, and live more simply. Towns or regions that already have or know how to implement a local currency fast will be able to cope better with discontinuities in oil supplies and financial crashes than areas that don’t.

The best possible solution is de-industrialization, starting with Heinberg’s 50 million farmers, while also limiting immigration, instituting high taxes and other disincentives to encourage people to not have more than one child so we can get under the maximum carrying capacity as soon as possible.

Hirsch recommended preparing for peak 20 years ahead of time, and we didn’t do that. So many of the essential preparations need to be at a local, state, and federal level, they can’t be done at an individual level. Denial and inaction now are likely to lead to millions of unnecessary deaths in the future. Actions such as upgrading infrastructure essential to life, like water delivery and treatment systems (up to 100 years old in much of America and rusting apart), sewage treatment, bridges, and so on. After peak, oil will be scarce and devoted to growing and delivering food, with the remaining energy trickling down to other essential services — probably not enough to build new infrastructure, or even maintain what we have.

I wish it were possible for scientists and other leaders to explain what’s going on to the public, but I think scientists know it wouldn’t do any good given American’s low scientific literacy, and leaders see the vast majority of the public as big blubbering spoiled babies, like the spaceship characters on floating chairs in Wall-E, who expect, no demand, happy Hollywood endings.

References

If you want an article to send to a denier you know, it would be hard to do better than Donald Prothero’s “How We Know Global Warming is Real and Human Caused“.

Fingerman, Kevin. 2010. Accounting for the water impacts of ethanol production. Environmental Research Letters.

Heinberg, R and Fridley, D. 18 Nov 2010. The end of cheap coal. New forecasts suggest that coal reserves will run out faster than many believe. Energy policies relying on cheap coal have no future. Nature, vol 468, pp 367-69.

Patzek, t. W. & Croft, G. D. 2010. A global coal production forecast with multi-Hubbert cycle analysis. Energy 35, 3109–3122.

Pimentel, D. et al. 1991. Land, Energy, and Water. The Constraints Governing Ideal U.S. Population Size. Negative Population Growth.

Smil, V. 2000. Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production. MIT Press.

Urban Danger. Congressman Roscoe Bartlett youtube videos:

Zittel, W. & schindler, J. energy Watch Group, Paper no. 1/07 (2007); available at http:// go.nature.com/jngfsa





A response to Changing the Conversation

8 12 2017

Ed. Note: Richard Smith’s article, Climate Crisis and Managed Deindustrialization: Debating Alternatives to Ecological Collapse, which Saral is responding to this post, can be found on Resilience.org here, or here on DTM where I republished it. My only gripe with Saral’s essay is the total lack of mention of debt abolition…..  canceling debt is the only way forward when we start talking about what to do about all the job losses.

By Saral Sarkar, originally published by Saral Sarkar blog

In his article,1 Richard calls upon his readers to “change the conversation”. He asks, “What are your thoughts?” He says, if we don’t “come up with a viable alternative, our goose is cooked.” I fully agree. So I join the conversation, in order to improve it.

Let me first say I appreciate Richard’s article very much. It is very useful, indeed necessary, to also present one’s cause in a short article – for those who are interested but, for whatever reason, cannot read a whole book. Richard has ably presented the eco-socialist case against both capitalism and “green” capitalism.

But the alternative Richard has come up with is deficient in one very important respect, namely in respect of viability. Allow me to present here my comradely criticisms. It will be short.

Is only Capitalism the Problem?

(1) Richard writes, “Capitalism, not population is the main driver of planetary ecological collapse … .”. It sounds like an echo of statements from old-Marxist-socialism. It is not serious. Is Richard telling us that, while we are fighting a long-drawn-out battle against capitalism in order to overcome it, we can allow population to continuously grow without risking any further destruction of the environment? Should we then think that a world population of ten billion by 2050 would not be any problem?

I would agree if Richard would say that capitalism is, because of its growth compulsion, one of the main drivers of ecological collapse. But anybody who has learnt even a little about ecology knows that in any particular eco-region, exponential growth of any one species leads to collapse of its ecological balance. If we now think of the planet Earth as one whole eco-region and consider all the scientific reports on rapid bio-diversity loss and rapid dwindling of the numbers of larger animals, then we cannot but correlate these facts with the exponential growth of our own species, homo sapiens sapiens, the latter being the cause of the former two.

No doubt, capitalism – together with the development of technologies, especially agricultural and medical technologies – has largely enabled the huge growth of human numbers in the last two hundred years. But human population growth has been occurring even in pre-capitalist and pre-medieval eras, albeit at a slower rate. Parallel to this, also environmental destruction has been occurring and growing in these eras.

It is not good to tell our readers only half the truth. The whole truth is succinctly stated in the equation:

I = P  x  A  x  T

where I stands for ecological impact (we can also call it ecological destruction), P for population, T for Technology and A for affluence. All these three factors are highly variable. Let me here also quote Paul Ehrlich, one of my teachers in political ecology. Addressing leftists, he once wrote, “Whatever [be] your cause, it is a lost cause unless we control population [growth]”. Note the phrase “whatever your cause”. Ehrlich meant to say, and I too think so, the cause may be environmental protection, saving the earth, protecting biodiversity, overcoming poverty and unemployment, women’s liberation, preventing racist and ethnic conflicts and cleansings, preventing huge unwelcome migration flows, preventing crime, fighting modern-day slavery, bringing peace in the world, creating a socialist world order etc. etc. etc., in all cases stopping population growth is a very important factor. Sure, that will in no case be enough. But that is an essential part of the solutions.

Note that in the equation cited above, there is no mention of capitalism. Instead, we find there the two factors technology and affluence. We can call (and we generally do call) the product of T x A (production of affluence by means of industrial technologies) industrialism, of which there has until now been two main varieties: the capitalist one and the planned socialist one (of the soviet type). Nothing will be gained for saving the ecological balance of the Earth if only capitalism is replaced with socialism, and ruling socialists then try to increase production at a higher rate, which they must do under the pressure of a growing population which, moreover, develops higher ambitions and aspirations, and demands all the good things that middle class Americans enjoy.

(2) Modern-day old-socialists do not deny the existence of an ecological problem. They have also developed several pseudo-solutions such as “clean” and “renewable” energies and materials, efficiency revolution, decoupling of GDP growth from resource use etc.

It’s good that Richard rejects the idea that green capitalism can save us. But why can’t it? “Because”, he writes, “companies can’t commit economic suicide to save the humans. There’s just no solution to our crisis within the framework of any conceivable capitalism.” This is good, but not enough. Because there are old-socialists (I know many in Germany) who believe that it is only individual capitalists/companies and the system capitalism that are preventing a rapid transition to 100 percent clean renewable energies and 100 percent recycling of all materials. Thanks to these possibilities, they believe, old-socialist type of industrialism, and even economic and population growth, can be reconciled with the requirements of sustainability. I don’t think that is possible, and I have also earlier elaborately explained why.2 Said briefly, “renewable energies” are neither clean nor renewable, and 100 percent recycling is impossible because the Entropy Law also applies to matter. What Richard thinks is not clear from this article of his. It is necessary to make his thoughts on this point clear.

Is Bottom-up Democracy of Any Use in the Transition Period?

(3) Richard writes, “Rational planning requires bottom-up democracy.” I do not understand the connection between the two, planning and democracy. At the most, one could say that for better planning for the villages, the planning commission should also listen to the villagers. But at the national level? Should, e.g., the inhabitants of each and every 500 souls village in the Ganges basin codetermine in a bottom up democratic planning process how the waters of the said river and its tributaries should be distributed among ca. 500 million inhabitants of the basin? If that were ever to be attempted, the result would be chaos, not planning. Moreover, how do you ensure that the villagers are capable of understanding the national interest and overcoming their particular interests? Such phrases are only illusions.

In his 6th thesis, Richard sketches a rosy, idealistic picture of a future eco-socialist society and its citizens. That may be attractive for him, me and other eco-socialists. But this future lies in distant future. First we would need a long transition period of contracting economies, and that would cause a lot of pain to millions of people spoilt by consumerism or promises of a consumerist future. We shall have to convince such people, and that would be an altogether difficult job. We should tell them the truth, namely that austerity is necessary for saving the earth. We can promise them only one thing, namely that all the pains and burdens as well as the benefits of austerity will be equitably distributed among all.

What to Do About Jobs?

(4) Richard writes: “Needless to say, retrenching and closing down such industries would mean job losses, millions of jobs from here to ChinaYet if we don’t shut down those unsustainable industries, we’re doomed.” And then he puts the question “What to do?” We can be sure that all people who wholly depend on a paid job for their livelihood, whom we must also win over, will confront us with this jobs question. Let me finish my contribution to this conversation with an answer to this question. 

There is not much use talking to ourselves, the already converted. We need to start work, immediately and all over the world, especially in those countries where poverty and unemployment is very high. We know that, generally, these countries are also those where population growth is very high. People from the rich countries cannot simply tell their people, sorry, we have to close down many factories and we cannot further invest in industrializing your countries. But the former can tell the latter that they can help them in controlling population growth. The latter will understand easily that it is an immediately effective way to reduce poverty and unemployment. A massive educative campaign will of course be necessary in addition to concrete monetary and technical help.

In the rich countries, contrary to what Richard perhaps thinks, it will not be possible to provide new equivalent jobs to replace those jobs we need to abolish. For such countries, reducing working hours and job-sharing in the short term, and, in the long term, ostracizing automation and labor-saving technologies, and using labor-intensive methods of production instead, are together the only solution. That is already known. Another thing that would be needed is to negate free trade and international competition. However, it must also be said openly that high wages and salaries cannot be earned under such circumstances. 

We eco-socialist activists must begin the work with a massive world-wide political campaign in favor of such ideas and policies.

Notes and References

1. Smith, Richard (2017) “ Climate Crisis and Managed Deindustrialization: Debating Alternatives to Ecological Collapse.”
https://forhumanliberation.blogspot.de/2017/11/2753-climate-crisis-and-managed.html
and
https://www.commondreams.org/views/2017/11/21/climate-crisis-and-managed-deindustrialization-debating-alternatives-ecological

2. My views expressed in this article have been elaborately presented in my book:
Eco-Socialism or Eco-Capitalism? – A Critical Analysis of Humanity’s Fundamental Choices (1999). London: Zed Books,  and in various articles published in my blog-site
www.eco-socialist.blogspot.com





Changing the conversation

8 12 2017

I have to say I have been baffled by some of the comments readers of this blog have left behind when I challenged the sustainability of planting a wind farm in the middle of nowhere in Australia’s outback…… well my friends, I am no longer the only one voicing the need for de-industrialisation. This piece from Resilience dot org, by Richard Smith, and originally published by Common Dreams and another I will soon also republish agree with me.  The time to add ANY MORE CO2 to the air is over…

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

For far too long, polite conversation, public debate and consideration of policy initiatives have been subordinated to the imperatives of capitalist reproduction, above all profit maximization. Profit maximization and job creation go hand in hand and crucially depend upon economic growth. All “reasonable” solutions to the crisis of global warming take that as their starting point, a fundamental principle that cannot be challenged. This is the unspoken premise of carbon taxes: Carbon taxes do not threaten growth. They’re simply another cost of doing business, another tax which moreover can be passed along to consumers. This is why ExxonMobil, Shell, BP and most big fossil fuel companies support carbon taxes as the lesser evil (cap and trade is the greater evil precisely because a cap would threaten growth, which is why cap and trade are not acceptable to business and why such schemes have all been either rejected outright as in the United States or so watered down as to be useless charades as in Europe, British Columbia and elsewhere). The oil companies are not looking to put themselves out of business. Industry and IEA studies project that global demand for fossil fuels will rise by 40% over the next few decades and the oil companies intend to cash in on this growth. To do so they need to deflect criticism by being good citizens, paying their carbon taxes, contributing to the “solution” or at least appearing to do so.

The problem is, we live in an economy built on perpetual growth but we live on a finite planet with limited resources and sinks. To date, all efforts to “green” capitalism have foundered on this fundamental contradiction: maximizing profit and saving the planet are inherently in conflict and cannot be systematically aligned even if, here and there, they might coincide for a moment. That’s because under capitalism, CEOs and corporate boards are not responsible to society, they’re responsible to private shareholders. CEOs can embrace environmentalism when it boosts profits, as with energy efficiency, recycling, and new “green” products and the like. But saving the world requires that the pursuit of profits be systematically subordinated to ecological concerns—and this they cannot do. No corporate board can sacrifice earnings, let alone put itself out of business, just to save the humans because to do so would be to risk shareholder flight or worse. Profit-maximization is an iron rule of capitalism, a rule that trumps all else, and this sets the limits to ecological reform within capitalism—and not the other way around as the promoters of “green capitalism” imagined.

To save the humans we know we have to drastically cut fossil fuel consumption. But “Keep It in the Ground” is not just an abstraction and not just about future supplies. If we’re going to radically suppress fossil fuel consumption in the here and now as we must, then this has to translate into drastic retrenchments and closures of industrial plants across the economy—and not just of coal mines, oil and gas companies but all the fossil fuel dependent industries: autos, trucking, petrochemical industries, airlines, shipping, construction and more.

What’s more, the global ecological crisis we face is far bigger than just fossil fuels. We’re not just overconsuming fossil fuels. We’re overconsuming every resource on the planet, driving ourselves and countless other species to extinction. Ultimately, if we really want to save the planet, we’re going to have to shut down or at least drastically retrench all kinds of resource-hogging, polluting, unnecessary, unsustainable industries and companies from fossil fuels to bottled water, from disposable products to agrichemicals, plastic junk to military weapons of destruction.

Take just one: Cruise ships are the fastest growing sector of mass tourism on the planet. But they are by far the most polluting tourist indulgence ever invented: Large ships can burn more than 150 tons of the filthiest diesel bunker fuel per day, spewing out more fumes—and far more toxic fumes—than 5 million cars, polluting entire regions, the whole of southern Europe – and all this to ferry a few thousand boozy passengers about bashing coral reefs. There is just no way this industry can be made sustainable. The cost of the ticket for that party boat cruise is our children. The same can be said for dozens if not hundreds of industries, thousands of companies around the world. We can save these industries, save capitalism, or we can save the planet. We can’t save both.

Needless to say, retrenching and closing down such industries would mean job losses, millions of job losses from here to China (pdf).  Yet if we don’t shut down those unsustainable industries we’re doomed. What to do? There’s no point in chanting “Keep It in the Ground” if we don’t have a jobs program for all those workers whose jobs need to be excessed to save those workers’ children and ours. This is our dilemma.

Planned, managed deindustrialization or unplanned, chaotic ecological collapse

Capitalism cannot solve this problem because no company can promise new jobs to unemployed coal miners, oil-drillers, automakers, airline pilots, chemists, plastic junk makers, and others whose jobs would be lost because their industries would have to be retrenched—and unemployed workers don’t pay taxes. So CEOs, workers, and governments find that they all “need” to maximize growth, overconsumption, even pollution, to destroy their children’s tomorrows to hang onto their jobs today. Thus we’re all onboard the high-speed train of ravenous and ever-growing plunder and pollution.

And as our locomotive races toward the cliff of ecological collapse, the only thoughts on the minds of our CEOS, capitalist economists, politicians and labor leaders is how to stoke the locomotive to get us there faster. Professor Fong is right: Corporations aren’t necessarily evil. They just can’t help themselves. They’re doing what they’re supposed to do for the benefit of their owners. But this means that so long as the global economy is based on capitalist private/corporate property and competitive production for market, we’re doomed to collective social suicide and no amount of tinkering with the market can brake the drive to global ecological collapse.

We can’t shop our way to sustainability because the problems we face cannot be solved by individual choices in the marketplace. They require collective democratic control over the economy to prioritize the needs of society and the environment. And they require local, national, regional and international economic planning to re-organize our economies, to provide new jobs to replace those jobs we need to abolish, and to rationally and fairly redeploy resources to those ends. In a paper I wrote for The Next System Project last year—”Six Theses on Saving the Planet—I laid out my argument for ecosocialism as the only alternative to market-driven ecological collapse in the form of six theses:

  1. Capitalism, not population is the main driver of planetary ecological collapse and it cannot be reformed enough to save the humans.
  2. Green capitalism can’t save us because companies can’t commit economic suicide to save the humans. There’s just no solution to our crisis within the framework of any conceivable capitalism.
  3. The only alternative to market-driven ecological collapse is to transition to some sort of mostly planned, mostly publicly owned economy based on a global ‘contraction and convergence’ around a sustainable level of resource consumption that can provide a dignified living standard for all the world’s peoples while leaving enough for future generations and other species.
  4. Rational planning requires bottom-up democracy.
  5. Democracy requires rough socioeconomic equality – which requires that we abolish extreme differences in incomes and wealth and enforce those rights already in theory guaranteed to us in the Universal Declaration of Rights (1949) including the right to work at fair compensation, the right to equal employment, the right to adequate food, housing, medical care, education, social services, and a comfortable retirement.
  6. Far from “austerity,” an ecosocialist future offers us liberation from the treadmill of consumerism, from the fetishism of commodities. Freeing ourselves from the toil of producing unnecessary and /or harmful products and services would free us to shorten the work day, to enjoy the leisure promised but never delivered by capitalism, to redefine the meaning of the standard of living to connote a way of life that is actually richer, while consuming less, to realize the fullest potential of every human being. This is the emancipatory promise of ecosocialism.

For some readers, my arguments may raise as many questions as they answer. Fine. But if we don’t change the conversation, if we don’t deal with the systemic problems of capitalism and come up with a viable alternative, our goose is cooked.  So if not ecosocialism, then what? This is the public debate we need to be having right now. What are your thoughts?

One of my Facebook allies has written a reply of sorts to this article, because we both agree it doesn’t really go quite far enough……  some of us are true radicals…! I will post Saral’s essay soon.  Mike.





Fifty Million Farmers

14 03 2014

There was a time not so long ago when famine was an expected, if not accepted, part of life. Until the 19th century—whether in China, France, India or Britain—food came almost entirely from local sources and harvests were variable. In good years, there was plenty—enough for seasonal feasts and for storage in anticipation of winter and hard times to come; in bad years, starvation cut down the poorest and the weakest—the very young, the old, and the sickly. Sometimes bad years followed one upon another, reducing the size of the population by several percent. This was the normal condition of life in pre-industrial societies, and it persisted for thousands of years.

SainsburyInStoreToday, in America, such a state of affairs is hard to imagine. Food is so cheap and plentiful that obesity is a far more widespread concern than hunger. The average mega-supermarket stocks an impressive array of exotic foods from across the globe, and even staples are typically trucked from hundreds of miles away. Many people in America did go hungry during the Great Depression, but those were times that only the elderly can recall. In the current regime, the desperately poor may experience chronic malnutrition and may miss meals, but for most the dilemma is finding time in the day’s hectic schedule to go to the grocery store or to cook. As a result, fast-food restaurants proliferate: the fare may not be particularly nutritious, but even an hour’s earnings at minimum wage will buy a meal or two. The average American family spent 20 percent of its income on food in 1950; today the figure is 10 percent.

This is an extraordinary situation; but because it is the only one that most Americans alive today have ever experienced, we tend to assume that it will continue indefinitely. However there are reasons to think that our current anomalous abundance of inexpensive food may be only temporary; if so, present and future generations may become acquainted with that old, formerly familiar but unwelcome houseguest—famine.

The following are four principal bases (there are others) for this gloomy forecast.

The first has to with looming fuel shortages. This is a subject I have written about extensively elsewhere, so I shall not repeat myself in any detail. Suffice it to say that the era of cheap oil and natural gas is coming to a crashing end, with global oil production projected to peak in 2010 and North American natural gas extraction rates already in decline. These events will have enormous implications for America’s petroleum-dependent food system.

energyfarmingModern industrial agriculture has been described as a method of using soil to turn petroleum and gas into food. We use natural gas to make fertilizer, and oil to fuel farm machinery and power irrigation pumps, as a feedstock for pesticides and herbicides, in the maintenance of animal operations, in crop storage and drying, and for transportation of farm inputs and outputs. Agriculture accounts for about 17 percent of the U.S. annual energy budget; this makes it the single largest consumer of petroleum products as compared to other industries. By comparison, the U.S. military, in all of its operations, uses only about half that amount. About 350 gallons (1,500 litres) of oil equivalents are required to feed each American each year, and every calorie of food produced requires, on average, ten calories of fossil-fuel inputs. This is a food system profoundly vulnerable, at every level, to fuel shortages and skyrocketing prices. And both are inevitable.

An attempt to make up for fuel shortfalls by producing more biofuels—ethanol, butanol, and biodiesel—will put even more pressure on the food system, and will likely result in a competition between food and fuel uses of land and other resources needed for agricultural production. Already 14 percent of the U.S. corn crop is devoted to making ethanol, and that proportion is expected to rise to one quarter, based solely on existing projects-in-development and government mandates.

communityfarmingThe second factor potentially leading to famine is a shortage of farmers. Much of the success of industrial agriculture lies in its labour efficiency: far less human work is required to produce a given amount of food today than was the case decades ago (the actual fraction, comparing the year 2000 with 1900, is about one seventh). But that very success implies a growing vulnerability. We don’t need as many farmers, as a percentage of the population, as we used to; so, throughout the past century, most farming families—including hundreds of thousands and perhaps millions that would have preferred to maintain their rural, self-sufficient way of life—were economically forced to move to cities and find jobs. Today so few people farm that vital knowledge of how to farm is disappearing. The average age of American farmers is over 55 and approaching 60. The proportion of principal farm operators younger than 35 has dropped from 15.9 percent in 1982 to 5.8 percent in 2002. Of all the dismal statistics I know, these are surely among the most frightening. Who will be growing our food twenty years from now? With less oil and gas available, we will need far more knowledge and muscle power devoted to food production, and thus far more people on the farm, than we have currently.

The third worrisome trend is an increasing scarcity of fresh water. Sixty percent of water used nationally goes toward agriculture. California’s Central Valley, which produces the substantial bulk of the nation’s fruits, nuts, and vegetables, receives virtually no rainfall during summer months and relies overwhelmingly on irrigation. But the snowpack on the Sierras, which provides much of that irrigation water, is declining, and the aquifer that supplies much of the rest is being drawn down at many times its recharge rate. If these trends continue, the Central Valley may be incapable of producing food in any substantial quantities within two or three decades. Other parts of the country are similarly overspending their water budgets, and very little is being done to deal with this looming catastrophe. [editorial note:  this is happening right now!]

climateagricultureFourth and finally, there is the problem of global climate change. Often the phrase used for this is “global warming,” which implies only the fact that the world’s average temperature will be increasing by a couple of degrees or more over the next few decades. The much greater problem for farmers is destabilization of weather patterns. We face not just a warmer climate, but climate chaos: droughts, floods, and stronger storms in general (hurricanes, cyclones, tornadoes, hail storms)—in short, unpredictable weather of all kinds. Farmers depend on relatively consistent seasonal patterns of rain and sun, cold and heat; a climate shift can spell the end of farmers’ ability to grow a crop in a given region, and even a single freak storm can destroy an entire year’s production. Given the fact that modern American agriculture has become highly centralized due to cheap transport and economies of scale (almost the entire national spinach crop, for example, comes from a single valley in California), the damage from that freak storm is today potentially continental or even global in scale. We have embarked on a century in which, increasingly, freakish weather is normal.

I am not pointing out these problems, and their likely consequences, in order to cause panic. As I propose below, there is a solution to at least two of these dilemmas, one that may also help us address the remaining ones. It is not a simple or easy strategy and it will require a coordinated and sustained national effort. But in addition to averting famine, this strategy may permit us to solve a host of other, seemingly unrelated social and environmental problems.

Intensifying Food Production

In order to get a better grasp of the problems and the solution being proposed, it is essential that we understand how our present exceptional situation of cheap abundance came about. In order to do that, we must go back not just a few decades, but at least ten thousand years.

stone-age-farm-farmer-lgThe origins of agriculture are shrouded in mystery, though archaeologists have been whittling away at that mystery for decades. We know that horticulture (gardening) began at somewhat different periods, independently, in at least three regions—the Middle East, Southeast Asia, and Central America. Following the end of the last Ice Age, roughly 12,000 years ago, much of humanity was experiencing a centuries-long food crisis brought on by the over-hunting of the megafauna that had previously been at the center of the human diet. The subsequent domestication of plants and animals brought relative food security, as well as the ability to support larger and more sedentary populations.

As compared to hunting and gathering, horticulture intensified the process of obtaining food. Intensification (because it led to increased population density—i.e., more mouths to feed), then led to the need for even more intensification: thus horticulture (gardening) eventually led to agriculture (field cropping). The latter produced more food per unit of land, which enabled more population growth, which meant still more demand for food. We are describing a classic self-reinforcing feedback loop.

As a social regime, horticulture did not represent a decisive break with hunting and gathering. Just as women had previously participated in essential productive activities by foraging for plants and hunting small animals, they now played a prominent role in planting, tending, and harvesting the garden—activities that were all compatible with the care of infants and small children. Thus women’s status remained relatively high in most horticultural societies. Seasonal surpluses were relatively small and there was no full-time division of labor.

But as agriculture developed—with field crops, ploughs, and draft animals—societies inevitably mutated in response. Plowing fields was men’s work; women were forced to stay at home and lost social power. Larger seasonal surpluses required management as well as protection from raiders; full-time managers and specialists in violence proliferated as a result. Societies became multi-layered: wealthy ruling classes (which had never existed among hunter-gatherers, and were rare among gardeners) sat atop an economic pyramid that came to include scribes, soldiers, and religious functionaries, and that was supported at its base by the vastly more numerous peasants—who produced all the food for themselves and everyone else as well. Writing, mathematics, metallurgy, and, ultimately, the trappings of modern life as we know it thus followed not so much from planting in general, as from agriculture in particular.

As important an instance of intensification as agriculture was, in many respects it pales in comparison with what worldpopgrowth4has occurred within the past century or so, with the application of fossil fuels to farming. Petroleum-fed tractors replaced horses and oxen, freeing up more land to grow food for far more people. The Haber-Bosch process for synthesizing ammonia from fossil fuels, invented just prior to World War I, has doubled the amount of nitrogen available to green nature—with nearly all of that increase going directly to food crops. New hybrid plant varieties led to higher yields. Technologies for food storage improved radically. And fuel-fed transport systems enabled local surpluses to be sold not just regionally, but nationally and even globally. Through all of these strategies, we have developed the wherewithal to feed seven times the population that existed at the beginning of the Industrial Revolution. And, in the process, we have made farming uneconomical and unattractive to all but a few.

That’s the broad, global overview. In America, whose history as an independent nation begins at the dawn of the industrial era, the story of agriculture comprises three distinct periods:

The Expansion Period (1600 to 1920): Increases in food production during these three centuries came simply from putting more land into production; technological change played only a minor role.

The Mechanization Period (1920 to 1970): In this half-century, technological advances issuing from cheap, abundant fossil-fuel energy resulted in a dramatic increase in productivity (output per worker hour). Meanwhile, farm machinery, pesticides, herbicides, irrigation, new hybrid crops, and synthetic fertilizers allowed for the doubling and tripling of crop production. Also during this time, U.S. Department of Agriculture policy began favoring larger farms (the average U.S. farm size grew from 100 acres in 1930 to almost 500 acres by 1990), and production for export.

The Saturation Period (1970-present): In recent decades, the application of still greater amounts of energy have produced smaller relative increases in crop yields; meanwhile an ever-growing amount of energy is being expended to maintain the functioning of the overall system. For example, about ten percent of the energy in agriculture is used just to offset the negative effects of soil erosion, while increasing amounts of pesticides must be sprayed each year as pests develop resistances. In short, strategies that had recently produced dramatic increases in productivity became subject to the law of diminishing returns.

While we were achieving miracles of productivity, agriculture’s impact on the natural world was also growing; indeed it is now the single greatest source of human damage to the global environment. That damage takes a number of forms: erosion and salinisation of soils; deforestation (a strategy for bringing more land into cultivation); fertilizer runoff (which ultimately creates enormous “dead zones” around the mouths of many rivers); loss of biodiversity; fresh water scarcity; and agrochemical pollution of water and soil.

In short, we created unprecedented abundance while ignoring the long-term consequences of our actions. This is more than a little reminiscent of how some previous agricultural societies—the Greeks, Babylonians, and Romans—destroyed soil and habitat in their mania to feed growing urban populations, and collapsed as a result.

Fortunately, during the past century or two we have also developed the disciplines of archaeology and ecology, which teach us how and why those ancient societies failed, and how the diversity of the web of life sustains us. Thus, in principle, if we avail ourselves of this knowledge, we need not mindlessly repeat yet again the time-worn tale of catastrophic civilizational collapse.

The 21st Century: De-Industrialization

How might we avoid such a fate?

deindustrialisationSurely the dilemmas we have outlined above are understood by the managers of the current industrial food system. They must have some solutions in mind.

Indeed they do, and, predictably perhaps, those solutions involve a further intensification of the food production process. Since we cannot achieve much by applying more energy directly to that process, the most promising strategy on the horizon seems to be the genetic engineering of new crop varieties. If, for example, we could design crops to grow with less water, or in unfavourable climate and soil conditions, we could perhaps find our way out of the current mess.

Unfortunately, there are some flaws with this plan. Our collective experience with genetically modifying crops so far shows that glowing promises of higher yields, or of the reduced need for herbicides, have seldom been fulfilled. At the same time, new genetic technologies carry with them the potential for horrific unintended consequences in the forms of negative impacts on human health and the integrity of ecosystems. We have been gradually modifying plants and animals through selective breeding for millennia, but new gene-splicing techniques enable the re-mixing of genomes in ways and to degrees impossible heretofore. One serious error could result in biological tragedy on an unprecedented scale.

Yet even if future genetically modified commercial crops prove to be much more successful than past ones, and even if we manage to avert a genetic apocalypse, the means of producing and distributing genetically engineered seeds is itself reliant on the very fuel-fed industrial system that is in question.

Is it possible, then, that a solution lies in another direction altogether—perhaps in deliberately de-industrializingdetroitfarm production, but doing so intelligently, using information we have gained from the science of ecology, as well as from traditional and indigenous farming methods, in order to reduce environmental impacts while maintaining total yields at a level high enough to avert widespread famine?

This is not an entirely new idea (as you all well know, the organic and ecological farming movements have been around for decades), but up to this point the managers of the current system have resisted it. This is no doubt largely because those managers are heavily influenced by giant corporations that profit from centralized industrial production for distant markets. Nevertheless, the fact that we have reached the end of the era of cheap oil and gas demands that we re-examine the potential costs and benefits of our current trajectory and its alternatives.

I believe we must and can de-industrialize agriculture. The general outline of what I mean by de-industrialization is simple enough: this would imply a radical reduction of fossil fuel inputs to agriculture, accompanied by an increase in labour inputs and a reduction of transport, with production being devoted primarily to local consumption.

Once again, fossil fuel depletion almost ensures that this will happen. But at the same time, it is fairly obvious that if we don’t plan for de-industrialization, the result could be catastrophic. It’s worth taking a moment to think about how events might unfold if the process occurs without intelligent management, driven simply by oil and gas depletion.

Facing high fuel prices, family farms would declare bankruptcy in record numbers. Older farmers (the majority, in other words) would probably choose simply to retire, whether they could afford to or not. However, giant corporate farms would also confront rising costs—which they would pass along to consumers by way of dramatically higher food prices.

Yields would begin to decline—in fits and starts—as weather anomalies and water shortages affected one crop after another.

Meanwhile, people in the cities would also feel the effects of skyrocketing energy prices. Entire industries would falter, precipitating a general economic collapse. Massive unemployment would lead to unprecedented levels of homelessness and hunger.

Many people would leave cities looking for places to live where they could grow some food. Yet they might find all of the available land already owned by banks or the government. Without experience of farming, even those who succeeded in gaining access to acreage would fail to produce much food and would ruin large tracts of land in the process.

Eventually these problems would sort themselves out; people and social systems would adapt—but probably not before an immense human and environmental tragedy had ensued.

I wish I could say that this forecast is exaggerated for effect. Yet the actual events could be far more violent and disruptive than it is possible to suggest in so short a summary.

Examples and Strategies

cityfarmThings don’t have to turn out that way. As I have already said, I believe that the de-industrialization of agriculture could be carried out in a way that is not catastrophic and that in fact substantially benefits society and the environment in the long run. But to be convinced of the thesis we need more than promises—we need historic examples and proven strategies. Fortunately, we have two of each.

In some respects the most relevant example is that of Cuba’s Special Period. In the early 1990s, with the collapse of the Soviet Union, Cuba lost its source of cheap oil. Its industrialized agricultural system, which was heavily fuel-dependent, immediately faltered. Very quickly, Cuban leaders abandoned the Soviet industrial model of production, changing from a fuel- and petrochemical-intensive farming method to a more localized, labor-intensive, organic mode of production.

How they did this is itself an interesting story. Eco-agronomists at Cuban universities had already been advocating a transition somewhat along these lines. However, they were making little or no headway. When the crisis hit, they were given free rein to, in effect, redesign the entire Cuban food system. Had these academics not had a plan waiting in the wings, the nation’s fate might have been sealed.

cubaHeeding their advice, the Cuban government broke up large, state-owned farms and introduced private farms, farmer co-ops, and farmer markets. Cuban farmers began breeding oxen for animal traction. The Cuban people adopted a mainly vegetarian diet, mostly involuntarily (Meat eating went from twice a day to twice a week). They increased their intake of vegetable sources of protein and farmers decreased the growing of wheat and rice (Green Revolution crops that required too many inputs). Urban gardens (including rooftop gardens) were encouraged, and today they produce 50 to 80 percent of vegetables consumed in cities.

Early on, it was realized that more farmers were needed, and that this would require education. All of the nation’s colleges and universities quickly added courses on agronomy. At the same time, wages for farmers were raised to be at parity with those for engineers and doctors. Many people moved from the cities to the country; in some cases there were incentives, in others the move was forced.

The result was survival. The average Cuban lost 20 pounds of body weight, but in the long run the overall health of the nation’s people actually improved as a consequence. Today, Cuba has a stable, slowly growing economy. There are few if any luxuries, but everyone has enough to eat. Having seen the benefit of smaller-scale organic production, Cuba’s leaders have decided that even if they find another source of cheap oil, they will maintain a commitment to their new, decentralized, low-energy methods.

I don’t want to give the impression that Cubans sailed through the Special Period unscathed. Cuba was a grim place during these years, and to this day food is far from plentiful there by American standards. My point is not that Cuba is some sort of paradise, but simply that matters could have been far worse.

It could be objected that Cuba’s experience holds few lessons for our own nation. Since Cuba has a very different government and climate, we might question whether its experience can be extrapolated to the U.S.

uncle-sam-victory-gardenLet us, then, consider an indigenous historical example. During both World Wars, Americans planted Victory Gardens. During both periods, gardening became a sort of spontaneous popular movement, which (at least during World War II) the USDA initially tried to suppress, believing that it would compromise the industrialization of agriculture. It wasn’t until Eleanor Roosevelt planted a Victory Garden in the White House lawn that agriculture secretary Claude Wickard relented; his agency then began to promote Victory Gardens and to take credit for them. At the height of the movement, Victory Gardens were producing roughly 40 percent of America’s vegetables, an extraordinary achievement in so short a time.

In addition to these historical precedents, we have new techniques developed with the coming agricultural crisis in mind; two of the most significant are Permaculture and Biointensive farming (there are others—such as efforts by Wes Jackson of The Land Institute to breed perennial grain crops—but limitations of time and space require me to pick and choose).

permapicPermaculture was developed in the late 1970s by Australian ecologists Bill Mollison and David Holmgren in anticipation of exactly the problem we see unfolding before us. Holmgren defines Permaculture as “consciously designed landscapes that mimic the patterns and relationships found in nature, while yielding an abundance of food, fiber, and energy for provision of local needs.” Common Permaculture strategies include mulching, rainwater capture using earthworks such as swales, composting, and the harmonious integration of aquaculture, horticulture, and small-scale animal operations. A typical Permaculture farm may produce a small cash crop but concentrates largely on self-sufficiency and soil building. Significantly, Permaculture has played an important role in Cuba’s adaptation to a low-energy food regime.

Biointensive farming has been developed primarily by Californian John Jeavons, author of How to Grow More Vegetables. Like Permaculture, Biointensive is a product of research begun in the 1970s. Jeavons defines Biointensive (now trademarked as “Grow Biointensive”) farming as

. . . an organic agricultural system that focuses on maximum yields from the minimum area of land, while simultaneously improving the soil. The goal of the method is long-term sustainability on a closed-system basis. Because biointensive is practiced on a relatively small scale, it is well suited to anything from personal or family to community gardens, market gardens, or minifarms. It has also been used successfully on small-scale commercial farms.

???????????????????????????????Like Homgren and Mollison, Jeavons has worked for the past three decades in anticipation of the need for the de-industrialization of food production due to accumulating environmental damage and fossil fuel depletion. Currently Biointensive farming is being taught extensively in Africa and South America as a sustainable alternative to the globalized monocropping. The term “biointensive” suggests that what we are discussing here is not a de-intensification of food production, but rather the development of production along entirely different lines. While both Permaculture and Biointensive have been shown to be capable of dramatically improving yields-per-acre, their developers clearly understand that even these methods will eventually fail us unless we also limit demand for food by gradually and humanely limiting the size of the human population.

In short, it is possible in principle for industrial nations like the U.S. to make the transition to smaller-scale, non-petroleum food production, given certain conditions. There are both precedents and models.

However, all of them imply more farmers. Here’s the catch—and here’s where the ancillary benefits kick in.

The Key: More Farmers!

comfarmOne way or another, re-ruralization will be the dominant social trend of the 21st century. Thirty or forty years from now—again, one way or another—we will see a more historically normal ratio of rural to urban population, with the majority once again living in small, farming communities. More food will be produced in cities than is the case today, but cities will be smaller. Millions more people than today will be in the countryside growing food.

They won’t be doing so the way farmers do it today, and perhaps not the way farmers did it in 1900.

Indeed, we need perhaps to redefine the term farmer. We have come to think of a farmer as someone with 500 acres and a big tractor and other expensive machinery. But this is not what farmers looked like a hundred years ago, and it’s not an accurate picture of most current farmers in less-industrialized countries. Nor does it coincide with what will be needed in the coming decades. We should perhaps start thinking of a farmer as someone with 3 to 50 acres, who uses mostly hand labour and twice a year borrows a small tractor that she or he fuels with ethanol or biodiesel produced on-site.

How many more farmers are we talking about? Currently the U.S. has three or four million of them, depending on how we define the term.

Let’s again consider Cuba’s experience: in its transition away from fossil-fueled agriculture, that nation found that it required 15 to 25 percent of its population to become involved in food production. In America in 1900, nearly 40 percent of the population farmed; the current proportion is close to one percent.

Do the math for yourself. Extrapolated to this country’s future requirements, this implies the need for a minimum of 40 to 50 million additional farmers as oil and gas availability declines. How soon will the need arise? Assuming that the peak of global oil production occurs within the next five years, and that North American natural gas is already in decline, we are looking at a transition that must occur over the next 20 to 30 years, and that must begin approximately now.

Fortunately there are some hopeful existing trends to point to. The stereotypical American farmer is a middle-aged, Euro-American male, but the millions of new farmers in our future will have to include a broad mix of people, reflecting America’s increasing diversity. Already the fastest growth in farm operators in America is among female full-time farmers, as well as Hispanic, Asian, and Native American farm operators.

young-farmer-female

Another positive trend worth noting: Here in the Northeast, where the soil is acidic and giant agribusiness has not established as much of a foothold as elsewhere, the number of small farms is increasing. Young adults—not in the millions, but at least in the hundreds—are aspiring to become Permaculture or organic or Biointensive farmers. Farmers markets and CSAs are established or springing up throughout the region. This is somewhat the case also on the Pacific coast, much less so in the Midwest and South.

What will it take to make these tentative trends the predominant ones? Among other things we will need good and helpful policies. The USDA will need to cease supporting and encouraging industrial monocropping for export, and begin supporting smaller farms, rewarding those that make the effort to reduce inputs and to grow for local consumption. In the absence of USDA policy along these lines, we need to pursue state, county, and municipal efforts to support small farms in various ways, through favourable zoning, by purchasing local food for school lunches, and so on.

We will also require land reform. Those millions of new farmers will need access to the soil, and there must be some means for assisting in making land available for this purpose. Conservation land trusts may be useful in this regard, and we might take inspiration from Indian Line Farm, here in the northeast.

Since so few people currently know much about farming, education will be essential. Universities and community colleges have both the opportunity and responsibility to quickly develop programs in small-scale ecological farming methods—programs that also include training in other skills that farmers will need, such as in marketing and formulating business plans.

Since few if any farms are financially successful the first year or even the second or third, loans and grants will also be necessary to help farmers get started.

These new farmers will need higher and stabilized food prices. As difficult as it may be even to imagine this situation now, food rationing may be required at some point in the next two or three decades. That quota system needs to be organized in such a way as to make sure everyone has the bare essentials, and to support the people at the base of the food system—the farmers.

Finally, we need a revitalization of farming communities and farming culture. A century ago, even in the absence of the air and auto transport systems we now take for granted, small towns across this land strove to provide their citizens with lectures, concerts, libraries, and yearly chautauquas. Over the past decades these same towns have seen their best and brightest young people flee first to distant colleges and then to the cities. The folks left behind have done their best to maintain a cultural environment, but in all too many cases that now consists merely of a movie theater and a couple of video rental stores. Farming communities must be interesting, attractive places if we expect people to inhabit them and for children to want to stay there.

If We Do This Well

We have been trained to admire the benefits of intensification and industrialization. But, as I’ve already indicated, we have paid an enormous price for these benefits—a price that includes alienation from nature, loss of community and tradition, and the acceptance of the anonymity and loss of autonomy implied by mass society. In essence, this tradeoff has its origins in the beginnings of urbanization and agriculture.

Could we actually regain much of what we have lost? Yes, perhaps by going back, at least in large part, to horticulture. Recall that the shift from horticulture to agriculture was, as best we can tell, a fateful turning point in cultural history. It represented the beginning of full-time division of labour, hierarchy, and patriarchy.

permaculture_farmBiointensive farming and Permaculture are primarily horticultural rather than agricultural systems. These new, intelligent forms of horticulture could, then, offer an alternative to a new feudalism with a new peasantry. In addition, they emphasize biodiversity, averting many of the environmental impacts of field cropping. They use various strategies to make hand labor as efficient as possible, minimizing toil and drudgery. And they typically slash water requirements for crops grown in arid regions.

We have gotten used to a situation where most farmers rely on non-farm income. As of 2002 only a bit less than 60 percent of farm operators reported that their primary work is on the farm. Only 9 percent of primary operators on farms with one operator, and 10 percent on farms with multiple operators, report all of their income as coming from the farm.

The bad side of this is that it means it’s hard to make a living farming these days. The good side is that we don’t have to think of farming as an exclusive occupation. As people return to small communities and to farming, they could bring with them other interests. Rather than a new peasantry that spends all of its time in drudgery, we could look forward to a new population of producers who maintain interests in the arts and sciences, in history, philosophy, spirituality, and psychology—in short, the whole range of pursuits that make modern urban life interesting and worthwhile.

Moreover, the re-ruralization program I am describing could be a springboard for the rebirth of democracy in this nation. I do not have to tell this audience how, over the past few years, democracy in America has become little more than a slogan. In fact this erosion of our democratic traditions has been going on for some time. As Kirkpatrick Sale showed in his wonderful book Human Scale, as communities grow in size, individuals’ ability to influence public affairs tends to shrink. Sociological research now shows that people who have the ability to influence policy in their communities show a much higher sense of satisfaction with life in general. In short, the re-ruralization of America could represent the fulfilment of Thomas Jefferson’s vision of an agrarian democracy—but without the slaves.

If we do this well, it could mean the revitalization not only of democracy, but of the family and of authentic, place-based culture. It could also serve as the basis for a new, genuine conservatism to replace the ersatz conservatism of the current ruling political elites.

What I am proposing is nothing less than a new alliance among environmental organizations, farmers, gardeners, organizations promoting economic justice, the anti-globalization movement, universities and colleges, local businesses, churches, and other social organizations. Moreover, the efforts of this alliance would have to be coordinated at the national, state, and local level. This is clearly a tall order. However, we are not talking about merely a good idea. This is a survival strategy.

It may seem that I am describing and advocating a reversion to the world of 1800, or even that of 8,000 BC. This is not really the case. We will of course need to relearn much of what our ancestors knew. But we have discovered a great deal about biology, geology, hydrology, and other relevant subjects in recent decades, and we should be applying that knowledge—as Holmgren, Mollison, Jeavons, and others have done—to the project of producing food for ourselves.

whats-wrong-with-our-food-system

Cultural anthropology teaches us that the way people get their food is the most reliable determinant of virtually all other social characteristics. Thus, as we build a different food system we will inevitably be building a new kind of culture, certainly very different from industrial urbanism but probably also from what preceded it. As always before in human history, we will make it up as we go along, in response to necessity and opportunity.

Perhaps these great changes won’t take place until the need is obvious and irresistibly pressing. Maybe gasoline needs to get to $10 a gallon. Perhaps unemployment will have to rise to ten or twenty or forty percent, with families begging for food in the streets, before embattled policy makers begin to reconsider their commitment to industrial agriculture.

But even in that case, as in Cuba, all may depend upon having another option already articulated. Without that, we will be left to the worst possible outcome.

Rather than consigning ourselves to that fate, let us accept the current challenge—the next great energy transition—as an opportunity not to vainly try to preserve business as usual, the American Way of Life that, we are told, is not up for negotiation, but rather to re-imagine human culture from the ground up.

(This lecture drew on certain ideas earlier put forward by Knox, New York farmer Sharon Astyk in her remarks at the 2006 Peak Oil and Community Solutions conference in Yellow Springs, Ohio, and on others that emerged in conversation with Pat Murphy of Community Service and Julian Darley of the Post Carbon Institute.)