Three Things We Don’t Understand About Climate Change

3 09 2017

ANOTHER great article from Ahmed Nafeez’ new Medium website…….  Please support his magnificent efforts.

This is the most honest item on Climate Change I hace seen in quite a while. It almost goes as far as saying what I’ve now concluded, we must de-industrialise. Almost.

Go to the profile of Aarne Granlund
Aarne GranlundFollow



Thinking about climate change is not something that comes natural to humans — or ‘consumers’ as we have been called for decades. It is not only emotionally unpleasant, but analytically extremely challenging.

I argue that most of us do not grasp how immediate this situation has become, how fast it is progressing and what the scale of change needed is to reach the stabilisation targets of the Paris Agreement.

I also argue that after individuals, nations and corporations understand the urgency and the rate, they should be honest about the scale of action needed in order to avoid collapse of the biosphere and thus civilisation.

North America on 29th of August 2017. Tundra and forest fires in the Arctic + British Columbia and Hurricane Harvey off the coast of South Texas (Terra / MODIS @ Nasa WorldView).

Human society is deeply and permanently coupled to the Earth System. In the geological epoch we have entered called the Anthropocene, that system is undergoing immediate, massive disruption. The previous epoch of Holocene gave us agriculture and settled living arrangements.

Since the onset of industrial production at an accelerating rate and scale, human society has had deep and far ranging influence on natural processes which it depends on. Climate change is only one of the manifestations — there are multiple large-scale indicators of our presence on this planet from erosion to nitrogen runoff, species extinction to uncontrolled population growth.

1. Urgency

The first misunderstanding about climate change is related to how we perceive its impacts in the temporal space. It is not (only) a future issue, not a polar bear issue and certainly not an issue which only affects a few remote parts of the world.

Situation has become dangerous during the last three years of 2014, 2015, 2016 and now continuing into 2017. Certain parts of the world see less immediate danger but systematic changes affect us all.

NASA GISS dataset on land and ocean temperature anomalies (2017).

How is it possible that the Earth System has taken up our presence on the surface so lightly even when we have changed the chemistry of the atmosphere and the ocean with our carbon pollution?

Ocean heat uptake has doubled since 1997 (Gleckler et al, 2016).

Most of the energy (heat) human carbon pollution creates ends up warming the world ocean, some 93% of our pyromania ends up there. Every passing year we pump 41 gigatons (that is a very big number) of carbon dioxide into the Earth System, where roughly half of it is absorbed by natural sink capabilities of the ocean and the land biosphere. Rest of it ends up in the atmosphere with all the other gases we put up, including aerosols and certain novel entities that have never occured in the natural state of the Earth System.

The fact that increasing greenhouse gas loading from human sources in the carbon cycle is cumulative makes this an extremely vicious political, economic and social problem. The increment which ends up in the atmosphere can only be drawn down by the natural climate system on time scales extending to tens or hundreds of thousands of years.

The Global Carbon Budget from GCP, 2017.

One component of urgency is that when surface temperatures increase after being buffered by the ocean — without the world ocean we would already be 36°C hotter on the surface of continents from the increased atmospheric forcing — they can do so in a non-linear fashion.

This creates immediate impacts. Single exceptional extreme weather events are not caused by climate change but happen in a distinctively new climate. Hotter atmosphere holds more moisture which increases precipitation. Extreme heatwaves become more common. Ice in all its forms melts.

Right now there are multiple imminent disasters occuring in various parts of the planet. Global fire situation has been exceptional in Siberia, Greenland, Canada and in other parts of North America. Tundra burns, forests burn, people suffer. Europe has been under severe heat waves and there have been mass casualties from forest fires in Portugal.

There is extreme flooding in South Asia, impacting multiple cities and the country of Bangladesh of which one third is currently under water. Hurricane Harvey just hit South Texas at Category 4 strength and produced record precipitation totals for many locations, including but not limited to the City of Houston. Tens of millions suffer from these impacts — right now.

Arctic climate change is proceeding at fast pace (AMAP SWIPA, 2017

2. Rate and Scale of Change

The Arctic, area located on the top of the planet from 66°N north, is a prime example of systematic exponential change. It is warming at least twice as fast as the rest of the planet. There is less inertia in the Arctic than there is in the general climate system.

But even the general climate system is being pushed in ways which have no previous analogue in natural climate changes going back tens of millions of years. It is about the rate of carbon dioxide and other greenhouse gases added. There have been periods in the deep geological past of Earth when greenhouse gas concentrations have been much, much higher than they are today but increases have never occured this rapidly.

Proxy measurements of carbon dioxide from ice cores (NOAA @ NASA Climate Change

Earth is a fluid, non-linear system capable of abrupt and total change. Earth System has been in a hothouse state and for a while was mostly covered by ice. At current pathways we are literally going to lose very large portions of both continental polar ice sheets, possibly in their entirety. This will take centuries but when we commit, the result will be permanent. Permafrost is thawing, threathening both the carbon cycle and our settled living arrangements in the Arctic.

When climate scientists project future climate change up to and beyond 2050 and 2100 they refer to scenarios. They are used in policy making to set stabilisation targets.

Tipping elements in the climate system (Schellnhuber et al, 2015).

What is worrying is that humanity is currently putting in place an atmospheric forcing comparable to something between the RCP4.5 and 8.5 (watts per square meter) end results. The choice between the Paris Agreement ‘well below 2°C’ framing and higher, 3–4°C level of warming is the choice of having a civilisation with global governance capability or losing it.

At any pathway we choose to follow, in order for the climate to stabilise at a higher level of change, emissions need to be zero. If new carbon pollution enters the climate system, temperatures will go up. This also applies to 2.5°C emissions budgets as well as 3°C budgets.

3. Stabilisation

What is to be done? Multiple actions are under way. Our energy system is changing with global energy demand growth continuing to rise due to industrialisation of developing nations, but new added electricity capacity in the form of solar and wind power only appear to offset some of the added growth. Electricity is only a portion of our energy use profile.

The massive use of fossil fuels is the prime driver of human-caused climate change. The fraction of low-carbon energy is the same now that it was a few decades ago. Fossil fuels absolutely dominate our energy system at >80% share in total final energy consumption. Deforestation and other land-use change also contribute significantly, but our profligate use of fossil energy commits us to possibly catastrophic breakdowns of the climate system.

For a reasonable chance of keeping warming under 2℃ we can emit a further 865 billion tonnes of carbon dioxide (CO2). The climate commitments to reduce greenhouse gas emissions to 2030 are a first step, but recent analyses show they are not enough (Canadell and Smith, 2017

The trouble with negative emissions (Peters and Anderson, 2016

The carbon budget framing might seem like a radical socio-political construct but it is in fact the best depiction of the physical reality of climate change. Cumulative emissions dictate the mitigation outcome — there is absolutely no doubt about this as the Intergovernmental Panel on Climate Change has shown.

The relationship between temperature change and cumulative CO2 emissions (in GtCO2) from 1870 to the year 2100. (IPCC 2014 Synthesis Report).

It is indeed the fact that many applications of fossil energy are growing exponentially that is the problem for climate stabilisationAir travel, road freight, shipping. Exponential global growth. Based on sound understanding of the physical reality, their fossil carbon use should be declining exponentially.

Three years to safeguard our climate (Figueres at al, 2017

All of this is sadly true and supremely distressing. Emissions from fossil fuels and land use change are 60% higher than they were in 1990 when scientists established most of what has been shown above with high certainty. Only the resolution of understanding has increased along with worsening climate impacts.

F/ Honesty

Finding out the reality of this situation is a profound experience. It is a state shift in human cognition, comparable to expansion of internet and global connectivity.

What I argue as citizen is to stop lying to ourselves. We have to obey the ancient laws of nature. No amount of economic growth, green shift, denial or activism can negotiate with physical constraints of the Earth System.

Our energy system will never be able to transform fast enough to meet the Paris Agreement stabilisation target without mad assumptions of building a carbon draw down device on this planet three times the size of the current oil industry, capable of sequestering greenhouse gases from ambient air on the order of what the natural sinks like the world ocean and the land biosphere are currently doing.

Roughly 10% of us generate almost as much greenhouse gas emissions from our lifestyle as the rest of the people on this planet. Finnish household consumption added to territorial emissions at >15 tons CO2 equivalent per capita will breach the global carbon budget for lower stabilisation targets within a decade. This is a pragmatic, but also a moral issue. Nobody can escape it, no matter how much one tries.

Finnish emissions reductions and negative emissions to meet Paris Agreement framing (Climate Analytics, 2016.)

We have to transform our diets, mobility systems, energy production and conspicuous consumption within a decade to limit risks of profound magnitude. The first decade should cut all of our carbon pollution in half. The next one should halve the portion left and so on. We have to put in policies which enchance natural sinks and research artificial new sinks.

This is not an obligation just to protect future generations, poor people or animals anymore. It is a threat to huge amounts of people living in the present moment on this finite planet in our vast universe.

We have to push through this mentally, keeping focus on what there is to be done with resolute purpose against nearly impossible odds. We have to be honest to ourselves, respectful of others and lead by example in everything we do.

Everybody can enter this space with relatively little sacrifice. It might be very painful in the beginning but truth is, after all, one of the most precious things this world has to offer.

Do what comes naturally, but always remember three things: how immediate this is, what kind of rates it is progressing at and what the scale of change needed must be in order to limit risk.


It’s the end of the world as we know it (and I feel fine)

19 03 2017

This talk was given at a local TEDx event, produced independently of the TED Conferences. Our “psychological immune system” lets us feel truly happy even when things don’t go as planned.

Daniel Gilbert’s first TED talk has been seen by more than 8 million people and remains one of the most popular of all time.

Daniel Gilbert is the Edgar Pierce Professor of Psychology at Harvard University. He has won numerous awards for his research and teaching, including the American Psychological Association’s Distinguished Scientific Award for an Early Career Contribution to Psychology. In 2008 he was elected to the American Academy of Arts and Sciences.

His 2007 book, Stumbling on Happiness, spent 6 months on the New York Times bestseller list, has being translated into 30 languages, and was awarded the Royal Society’s General Book Prize for best science book of the year.

Your weekend laughter

12 10 2013