What “transition” are the Germans up to exactly?

19 02 2020

Jonathon Rutherford pointed me to this fantastic article…. Last night the ABC’s Foreign Correspondent had a piece on energy transition, making the broad argument that Germany is succeeding by comparison to Miserable old Australia. Much has been written about Germany’s Energiewende, but the real situation is a good deal more messy than the doco portrayed as shown in this piece by Jean Marc Jancovici (written in 2017, but still applicable). It will be fascinating indeed to see how the German transition, involving the planned phase out of coal by 2038 pans out, especially if it is combined with the nuclear phase out. Make no mistake though, Germany is closing down unviable mines, just like Britain had to 70 years past its Peak Coal…. As Jancovici shows, the transition to date – which, despite massive renewable investment has achieved literally no carbon reduction – has been very expensive. While the German electorate seems more willing to stomach the costs than Australia, there might be limits! I say this, of course, as somebody who, like Jonathon, wants such a transition; but doubts it can be done within the growth-consumer etc framework taken for granted and desired everywhere collapsing first…

Jean Marc Jancovic

250 to 300 billion euros, which is more than the cost of rebuilding from scratch all the French nuclear power plants, is what Germany has invested from 1996 to 2014 to increase by 22% the fraction of renewable electricity into the gross production of the country (that went from 4% to 27%). For this price tag our neighbors did not decrease their energy imports, did not accelerate the decrease of their CO2 emissions per capita, that remain 80% higher to those of a French, increased the stress on the European grid (which is not less useful when electricity production is “decentralized”, all the opposite), and it is debatable whether it allowed to create industrial champions and jobs by millions. If net exports are taken into account – they rose from zero to an average 6% of the annual production, and mostly happen when the wind blows or the sun shines – the fraction of renewable electricity in the domestic consumption is probably closer to 20%. Analysis below.

***

Seen from France, our German neighbors definitely combine all virtues: their public spending is under control, their exports are at the highest, the unemployement low, and on top of that housing affordable and mid-sized companies thriving like nowhere else. With such a series of accomplishments, why on Earth should we act differently from them on any subject? And, in particular, when it comes to energy, the French press is generally eager to underline that they have chosen the right path, when we remain blinded by our radioactive foolishness.

As usual, facts and figures may fit with the mainstream opinion in the paper… or not. In order to allow the reader to conclude his way, I have gathered below some figures that are published by bodies that are neither antinuclear nor pronuclear, neither anti-renewables nor pro-renewables, but only in charge of counting electrons depending on where they have been generated. Let’s start!

Where do the German electrons come from?

Anyone saying that German electricity is more and more renewable will indeed answer correctly. Without any doubt, renewable electricity increases in Germany.

German electricity generation coming from renewable sources since 1996, in GWh 
(1 GWh = 1 million kWh ; the electricity consumption of Germany is roughly 600 billion kWh – hence 600.000 GWh – per year).

In 12 years (1996 to 2012) the renewable production has been multiplied by 7.

Data from AGEE-Stat, Federal Ministry of Environment, Germany.

From there, anyone will conclude that if renewables increase, the rest decreases. True again!

Breakdown of German electricity generation in 1991.

Renewables amount to 4% of the total, with 3% for hydroelectricity (which amounts to 12% in France).

Data from TSP data portal TSP data portal

Breakdown of German electricity generation in 2014.

Renewables now amount to over 27% of the total, but only half of them is composed of intermittent modes (solar and wind).

Data from ENTSOE

But there is something else that is obvious when looking at the graphs above: in 2011 as in 1991, most of the electricity generation comes from fossil fuels, coal (including lignite) being the first primary energy used, and, furthermore, the amount of kWh coming from coal, oil and gas is about the same today as what it was 20 years ago. If the name of the game is to decrease CO2 emissions, then no significant progress has been made in two decades.

Breakdown of the German electricity generation from 1980 to 2014

One will easily see that the total coming from fossil fuels (coal, oil and gas) is roughly constant over the period, with a little less coal, a little more gas, and almost no oil anymore.

One will also notice that nuclear has begun to decrease in 2006 (thus before Fukushima), and that the “new renewables” (biomass, solar and wind) increase came on top of the rest until 2006.

Data from TSP data portal

A zoom at the monthly production for the last years (since 2005) confirms the rise of the “new renewables” (biomass, wind, solar) in a total that remains globally unchanged. Something else which is clearly visible is that fossil fuels account for the dominant share in the winter increase (France is thus not the only country with an increased consumption in winter).

Monthly electricity production in Germany from January 2005 to May 2015, with a breakdown showing fossil fuels (oilgas and most of all coal), nuclear, hydroelectricity, and “new renewables” (all renewables except hydro).

The sharp decrease of nuclear after Fukushima (March 2011) is clear, but a close look indicates that shortly after it came back to its historical trend, that is a slow decline that begun in 2006.

Data from ENTSOE

What is absolutely certain is therefore that renewable electricity has significantly increased in Germany, and that’s definitely what is focusing the attention of the French press. But… the available data indicates that before 2006 this renewable supply came on top of the rest (with no impact on CO2 emissions), and after 2006 they mostly substituted nuclear (with no more decrease of the CO2 emissions!).

If that is so, then the overall “non fossil” generation (nuclear and renewables alltogether) must be about stable. And it is indeed what is happening!

Historical monthly “non fossil” electricity generation in Germany from January 2005 to May 2015, in GWh.

This production totals renewables (including hydro) and nuclear. The trend is almost flat, and we will see below that the increase of the last two years is almost fully exported.

Author’s calculations on primary data from ENTSOE

As the global production is otherwise almost stable, it means that the share of “non fossil” must be about constant (on average), which is confirmed by figures.

Monthly share of “non fossil” electricity generation in Germany from January 2005 to May 2015.

Author’s calculations on primary data from ENTSOE

Another element that confirms that renewables substitute nuclear, and not fossil fuels, is to observe the historical energy imports of Germany and France (which has far less renewables in its electricity generation, but far more nuclear).

Reconstitution of German imports by energy, in billion constant dollars since 1981.

There is no obvious difference with France (below): the trends are exactely the same for oil and gas, and the amounts of the same magnitude. One will notice that Germany imports coal (almost 50% of its consumption).

Author’s calculations on primary data from BP Statistical Review, 2015

Energy imports in France, in billion constant dollars since 1981.

It resembles a lot to Germany!

Author’s calculations on primary data from BP Statistical Review, 2015

One might argue that we should also take into account the exports associated with domestic industries in renewable energies: wind turbines, solar panels, or biogas production units. But… for solar panels Germany is a heavy importer, as Europe. We have imported for more than 110 billion dollars of imported solar cells from 2008 to 2014, and Germany accounted for almost half of the total. For wind turbines China is also becoming a tough competitor on the international market. It is not clear whether the cumulated exports have outbalanced by far the cumulated imports!

What about money?

Another hot topic regarding the German “transition” is its cost. First, let’s recall that the “transition”, for the time being, is a change for 22% of the electricity production (but Germans also use oil products, gas and coal – the latter for their industry). Discussing money allows for a number of possibilities, and the first item that is discussed here is investments. These are absolutely indispensable to increase capacities, and one thing is sure: capacities have increased!500

Installed capacities for various renewable modes in Germany since 1996, in MW.

The total amounts to 93.000 MW, or 93 GW.

Source: AGEE-Stat, Federal Ministry of Environment, Germany.

Germans therefore had 93 GW (or 93 000 MW) of installed capacities for renewable electricity at the end of 2014, that is more than the French installed capacity in nuclear power plants, that will amount to 65 GW when Flamanville is completed. One might therefore conclude that Germany produces more renewable electricity than France nuclear. Actually, it is not the case: Germany produced roughly 160 TWh (160 billion kWh) of renewable electricity in 2014, when the French nuclear output was about 3 times more. The reason is that the load factor for the new renewable capacities in Germany is between 60% and 10%, when for nuclear the values are rather between 70% and 80%. Furthermore, the german load factor (for renewables) is rapidly decreasing for the moment.

Load factor for each renewable capacity in Germany.

This factor corresponds to the fraction of the year during which the capacity shoud operate at full load to produce what it really produces in a year.

For example, if this factor is 20%, it means that the annual output would be obtained with the capacity operating at full load during 20% of the year, and nothing the rest of the time. What really happens, of course, is that during the year the output of a given installation constantly varies between zero and full load, and when an average is done over a large number of installations and a long time (one year), then we get this famous load factor.

The higher it is, and the more electricity you get out of a given capacity.

The curve “total” gives the average factor for all renewable capacities in Germany. It has been divided by 2 since 1996, because solar (which contribued a lot to new capacities) has a much lower load factor than any other renewable capacity.

Author’s calculations on primary data from (BP Statistical Review, European Wind Association, AGEE Stat).

As a consequence, to produce as much as 8 GW of nuclear (one third of the German capacity) with a 80% or 90% load factor, it is necessary to have – in Germany – 40 GW of wind turbines, that have a load factor below 20% (as low as 14% for bad years), and even more if losses due to storage are taken into account. With photovoltaic, 65 GW are necssary (without losses due to storage). In both cases, it is more than what has already been installed in Germany.

To benefit from the production of these new capacities, investments are necessary. One should of course invest in the production units themselves (wind turbines, solar panels, etc), but also in the grid. It is obviously necessary to connect the additional sources, but also to reinforce the power transmission lines, or add some new. Indeed, the new capacities (in the Northern part of the country for wind) are located far from the regions of high consumption (which are rather in the South).

Besides, for a same annual production, the installed capacity increases when the load factor decreases. The low load factor of solar and wind lead to a high installed capacity… that will sometimes lead to a very high instant power that has to be evacuated, including through exports (see below).

The question is: how much will it cost? Figures for this part are hard to find, because the operators of low and high voltage power lines do not separate, in their financial reporting, what pertains to the “transition” from the rest. The graphs below give some hints from which we will derive an order of magnitude.

Billion euros invested yearly into the transportation network in Germany.

Source: European Parliament

One can see a strong increase after 2011, 2 years after Germany voted a “Law on the Expansion of Energy Lines”. But in 2016 Transport operators (transport is the part of the grid that operates over 90.000 volts) had completed only a third of the new lines to be built (source: same as above).

Billion euros invested yearly into the distribution network in Germany (distribution is the part of the grid that operates below 90.000 volts).

Source: European Parliament

If we sum up what is invested into the grid, both low and high voltage, we come up with something in the range of 8 billions per year, that is about what is now invested into production means. But no breakdown is available between what is just regular maintenance, and what is linked to the increase in the total power installed.

The commentary in the European report that goes with the chart on soaring investment in the transport network from 2011 suggests that there is a part of the investments that “remain to be done”. We will therefore assume, as a first approach, that investments in the grid (in the broad sense) are, or will eventually be, about 50% of what goes into production units over the period.

If we make the a additional hypothesis that unitary costs for solar, wind and biomass decrease by respectively 5%, 2% and 2% per year, and if we accept that for the period pre-2004 it was also necessary to put half of an euro into the grid when one euro was invested into new capacities, then Germany has already invested more than 250 billion euros into its “transition”.

Yearly investments, in billion euros, that Germany has made into adding new renewable capacities.

These amounts include both the sources (solar panels, wind turbines) and the rest of the electric system (grid). This amount does not include the amounts, far less important, invested into renewable heat.

Author’s calculations on primary data from BP Statistical Review, European Wind Association, AGEE Stat.

The graph below provides an estimate directly given by the German Ministry of the Economy. One can see that the order of magnitude is the same for the “production” part, with a higher peak around 2010.

Investments in renewable electricity production unites in Germany, in billion euros.

Source: Renewable Energies Information Portal

And what about a “completed” transition? If Germany was to turn to renewables all its present electricity production, it should “convert” an additional 320 TWh, or 2 times what has already been done. We can assume that the unitary cost of wind turbines and solar panels is not bound to be divided by something significant anymore (among other reasons, we might suggest that the production of turbines or panels will increasingly suffer from the growing scarcity of raw materials, that will apply here as elsewhere).

We can also assume that the unitary costs of the investments in the grid required to absorb new capacities increase with the installed capacity of intermittent sources. In other words, the integration cost of the last MW to be connected is supposed to be higher than the integration cost of any MW that came before. In practical terms, we will assume that for any euro invested into additionnal capacities, al capacities, we must put one euro into the grid “at large”: low and high voltage power lines, transformers, storage devices.

We will at last assume that the share of each mode remains the same.

With these hypotheses, we need to add:

  • 90 GW of wind turbines, and
  • 120 GW of solar, and
  • 20 GW of biomass

for a total cost of 750 billion euros, grid reinforcement included.

But then, to backup intermittence with no more coal and gas power plants (and no possibility to rely on the “dirty” plants of the neighboring countries!), such a system would require a storage capacity of 100 to 200 GW (such as pumping stations), when Germany has only 4 so far, for an investment of 500 to 1000 billion euros, for example with new dams in the German Alps, and plenty of pipes to carry water up and down from the Baltic Sea (with batteries the investment would be even higher and the lifetime much shorter).

As such a way to store electricity generates losses of 30% of the incoming electricity (the yield of a pumping station is 75%, and transporting electricity from the turbines to the storage and vice-versa adds 5% at least), it means that the installed capacity has to be increased by 20% to 40% – depending on the share used without storage – for an additionnal 250 billion euros, grid included.

The total bill should therefore amount to something close to a year of GDP, that is over 2000 billion euros. Furthermore, assuming biomass units keep the same load factor and have a yield between 30% and 45% (smaller units have a smaller yield), that any land devoted to biomass production can produce 5 tonnes oil equivalent per year of raw energy, then 20% to 25% of the country (8 to 10 million hectares) would be devoted to biomass production for electricity generation. Easier said than done!

If we try to summarize, at this point we can conclude that:

  • From 1996 to 2014, Germany has increased by 140 billion kWh (or 140 TWh) its renewable electricity, and in this total:
    • a little more than 60 TWh is an increase of electricity production (which contradicts the idea sometimes put forward that “when everyone has a solar panel on his roof and a wind turbine in the field next door, then the population becomes conscious of the true value of electricity and uses less”), that will mostly be exported at “sacrified” prices since the global consumption is decreasing,

Electricity generation in France since 1985, in billion kWh.

From 1995 to 2014 it increased by 12%.

Source BP Statistical Review, 2015

Electricity generation in Germany since 1985, in billion kWh.

From 1995 to 2014 it increased by 14% (a little more than in France). Besides the global aspect is very similar (the stability during the 80’s and the early 90’s is the reflect of the reunification, because of the poor efficiency of former East Germany).

Source: BP Statistical Review, 2015

  • Roughly 60 TWh has been used to partially offset nuclear, that decreased from 160 to 100 TWh,
  • Fossil fuels decreased by only 12 TWh, which is not significant over the period (the change of the shares of gas and coal in the total fossil is not linked to the penetration of renewables),
  • Germany has invested 300 billion euros (over 10% of its annual GDP), and should multiply this amount by 7 at least to become 100% renewable in electricity. This investment should be repeated for a large part in 25 year, that is the lifetime of wind turbines or solar panels (nuclear power plants last 60 to 80 years). Over 60 years, a “100% renewable electricity” plan would therefore require 15 to 30 times more capital than producing the same electricity with nuclear power plants (not accounting for the cost of capital).
  • This “transition”, so far, has had no discernable impact on the energy trade balance. Becoming fully renewable for electricity will avoid gas imports for electricity generation (now amounting to 160 TWh per year, or 16 billion cubic meters, for roughly 4 billion euros), but no more, since oil (which represents by far the dominant part) is almost absent from electricity generation, and coal is mostly domestic,
  • This “transition”, so far, had had no effects on CO2 emissions, and to have one it will be necessary to phase out coal, when, for the time being, our German friends are planning to add more capacities (and lignite production has been increasing for several years),

Monthly electricity generation coming from lignite in Germany since 2006, in GWh.

Not really going down!

Source: ENTSOE

Let’s recall that lignite, apart from CO2 emissions, is produced from open pit mines, that lead to a complete destruction of the environment over tens of square kilometers, heaps of ashes, water pollution, population displacement, etc, and that lignite power plants are no more virtuous than nuclear ones regarding heat losses.

A lignite mine in Germany, with a digging machine at the center of the picture.

The size of the bulldozer, at the bottom of the excavator, gives an idea of the size of the digging machine! And besides the landscape is not precisely environmentally friendly…

Photo: Alf van Beem, Wikipedia Commons

A lignite power plant in Germany (Neurath; roughly 4000 MW of installed capacity).

The difference with a nuclear power plant is not that obvious! The “answer” is in the presence of chimneys (to evacuate fumes), that do not exist for nuclear power plants, in a water treatment plant (not necessary with nuclear), and in the train terminal used to carry lignite (50 000 tonnes per day at full capacity, when a nuclear power plant will use 10 kg of U235 to provide the same thermal energy).

  • and, at last, it is absolutely certain that some jobs have been created, but if we offset those that have been destroyed elsewhere, because the end consumer cannot spend his money twice, the total is most certainly below the numbers boasted by the German government (which, like all governments, counts what is created in the sector sustained, but cautiously avoids to look at the perverse effects that might happen elsewhere for the same reason!).

Let’s now take a lookat what happened for the end consumer. The amount per kWh has indeed increased, but not only because of renewables. Gas and coal also played a role, because the price of the fuel represents 50% to 70% of the full production cost with coal and gas fired power plants.

Price per kWh for the individual cosumer in Germany, 1998 to 2012.

The increase is clear, but the main contributor is “production+distribution”, which includes transportation costs, but also the purchasing price of fossil fuels used with coal and gas power plants. One will notice that the red bar increases during the 2000-2009 period, when the price of imported gas and coal rises fast, and decreases when the price of imported gas and coal decrease (2009-2011).

Source : BDEW

Spot prices of gas in several regions of the world (Henry Hub relates to the US) and of oil, all expressed in dollars per million British Thermal Unit 
(1 million BTU ≈ 0,3 MWh).

CIF means Charged Insurance and Freight, that is the full cost with transportation and insurance.

The price of gas in Europe evolves just as the red bar in the previous graph over the period 2000 – 2012.

Source: BP Statistical Review, 2015

Spot prices of coal in several regions of the world.

Over the period 2000 – 2012, the price of coal in Europe has also evolved as the red bar in the graph giving the price per electrical kWh for the end consumer.

Source: BP Statistical Review, 2015

We might now suggest an additional conclusion: if electricity prices have increased for the individual, it is not only because of renewables, but because there remains an important fraction coming from fossil fuels!

Where do the German electrons go?

That’s a funny question: if Germans produce electricity, it is to use it, ins’t it? Well, that partially true, but also partially false. European countries are interconnected, and electricity can go from one country to another. Statistics show that imports and exports have greatly increased at the borders of Germany lately.

Monthly balance of electricity echanges (with the rest of Europe) at the border of Germany, in GWh.

One will easily notice that the magnitude increases until 2007, and remains at the same level since then. Besides, Germans used to export little amounts before 2005, and now export more, mainly in the winter.

Data from ENTSOE

As the above graph shows, exports mostly take place in the winter (and imports in the spring). It happens that it is also in the winter that there is more wind, as the graph below shows.

Monthly wind production in GWh from January 2005.

The output is highly variable depending on the year, but it always happens in December of January.

Data from ENTSOE

It is therefore normal to wonder wether there is not a link between wind and exports. And it might well be the case!

Monthly exchanges (vertical axis, positive values mean net imports and negative ones net exports) depending on the monthly wind production in Germany, from January 2005 to May 2015.

The dots clearly show that when wind production increases, exports also increase. It suggests that increased exports are directely or indirectely linked to an increase in wind production.

Author’s calculations on primary data from ENTSOE

This link between the German electricity production coming from “new renewables” and German electricity exports is also found when looking at the hourly production and exports.

German hourly production coming from solar and wind combined, in MWh (horizontal axis), vs,  for the same hour, German electricity exports in MWh (vertical axis), for the year 2013.

This cloud of points clearly shows that hourly exports increase with the hourly production coming from wind+solar.

Source: Author on data from Paul-Frederik Bach

This is, incidentally, exactly the situation in Denmark, which, even more spectacularly, manages the intermittency of its production with imports (not necessarily carbon-free) and dispatchable modes (namely fossil fuels, Denmark is a flat country with no dams!).

Danish Electricity supply in November 2017

Source: Paul-Frederik Bach

If exports have increased along with the increase of the amount of renewable electricity produced, then it might be instructive to look at the fraction of “non fossil electricity” that remains in Germany once deducted the exports that appeared since the beginning of the EnergieWende.

Non fossil electricity (renewable+nuclear) once additional exports (since the beginning of the EnergieWende) are deducted.

Surprise: what remains for Germany is about constant for the last 10 years. In other words, the fraction of renewables that does not replace nuclear is exported (and does not replace any fossil production, which is consistent with what is mentionned above).

Author’s calculations on data from ENTSOE

As production increases when the wind blows, but not consumption, a last effect generated by the 10% of electricity coming from wind is a significant decrease in spot price of electricity when wind increases.

Hourly spot price of electricity on the German market depending on the hourly wind production for 2013.

Obviously, the more wind there is, the lower the price is, with the apparition of nil or even negative prices over 10 GWh per hour. As there was roughly 30 GW of installed capacity in Germany in 2013, it means that when one third of wind turbines operate at fiull power, nil or negative prices appear (and then the producer pays the consumer to take the electricity, because the cost of stopping everything is even higher).

When there is no wind the average price is 50 euros per MWh, and when the installed capacity is operating at almost full power (24 GW) the average price per MWh falls below 20 euros.

Data from pfbach.dk

If we come back to the initial question, our dear neighbors certainly do something that is meaningful for them, but what they do not do for certain is trying to phase out fossil fuels as fast as possible. A simple reminder of the emissions per capita on each side of the Rhine will show that the “good guys” are not necessarily where the press finds them!500

Per capita CO2 emissions coming from fuel combustion in France, from 1965 onwards (in tonnes). This graph is made assuming the emission factor is constant for each fuel.

Coal contributes for a little below 1 tonne per person and per year (4 times less than in 1965), gas for about 1,5 tonne, and oil for 4 tonnes, for a total of roughly 6 tonnes in 2014.

Author’s calculations on data from BP Statistical Review, 2015

Per capita CO2 emissions coming from fuel combustion in Germany, from 1965 onwards (in tonnes). This graph is made assuming the emission factor is constant for each fuel.

Oil contributes a little more than in France, but gas is 50% higher, and coal 5 times higher, for a total of over 10 tonnes.

Since 1980 he evolution for oil is very similar to what it is for France, but the “transition” is still to come regarding coal and gas… and obviously the “EnergieWende” didn’t have any kind of “CO2 avoided” effect that is often boasted in governmental or even academic publications.

Author’s calculations on data from BP Statistical Review, 2015

If we look at Germany’s overall CO2 emissions, we can see that those arising from coal and gas – which are the two fossil fuels used for electricity generation, oil being marginal – have only decreased by 40 million tons in 20 years.

Fossil CO2 emissions in Germany from 1965, discriminated by fuel (this graph is made assuming the emission factor is constant for each fuel).

Emissions from coal have dropped by 40 million tonnes since 1996 (but this also includes the effect of improving the energy efficiency in the industry after the reunification), and those from gas have hardly changed.

Calculation: Jancovici on BP Statistical Review data, 2017

But that does not prevent our German friends from claiming more than 100 million tonnes of avoided emissions thanks to these renewable energies!

Avoided emissions claimed by the German Ministry of the Economy.

While electricity consumption is not increasing, it is extraordinary to find avoided emissions – thanks to renewable electricity – that amount to 3 times the real decrease in emissions from coal and gas, all uses combined! The “politically correct” that replaces a correct calculation (or an efficient action…) is also effective on the other side of the Rhine…

Source: Renewable Energies Information Portal

Of course, one can only wish that our Germans friends do succeed, in a short delay, to get rid of fossil fuels, in electricity generation and elsewhere. But, on the ground of the available data, a preliminary conclusion is that they have achieved nothing significant in that direction for the last 15 years. If they eventually succeed to get rid of fossil fuels in the 10 to 20 years to come, and if the population is ready to pay 10 times more (that is 3000 billion euros instead of 300) to avoid the inconvenients of nuclear, real or supposed, there is nothing to object. It is a respectable choice, only it is not the only one which is possible!

But if the Germans where to stop in midstream, that is with renewables that have substituted only nuclear, without replacing fossil fuels, then they will have spent their money on something else than the European objective (phasing out fossil fuels), and lost a precious time, which is the most serious damage in the present case, as Europe is running against time regarding its energy supply.





The Hopium of the people

8 11 2018

The Consciousness of Sheep has published another important article. I first came across the impossibility of carbon capture and storage as a silver bullet for ‘solving’ climate change while listening to Kevin Anderson speaking on the matter…….  he says CCS is assumed to work in the future and adopted in ALL of the IPCC’s scenario, even the bleakest 6-8 degrees C rise by 2100. Yet, not one single attempt at this technology has come close to working or being economically viable. And it won’t because it’s literally the stupidest idea yet, even if George Monbiot’s latest garbage comes a close second….

It was this realisation that eventually drove me to accepting nothing but de-industrialisation would save us now…….

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

If it sounds too good to be true, it almost certainly is.  That, at least, is the approach I’m taking to the flurry of crowd-funder videos currently doing the rounds on social media, promoting technologies that suck carbon out of the atmosphere.  As with a raft of other faux-green technologies that were hawked around social media, like solar roadways, waterseers and hyperloops, the machine that can suck carbon dioxide out of the air will never fulfill its promise.

To understand why, consider that the atmosphere is very big – roughly 5.5 quadrillion tons of gas.  But the carbon dioxide content is very small – just over 405 parts per million.  And humans release around 40 billion tons of the stuff every year.  So any machine that is going to attempt the task – even assuming 100 percent efficiency – would need to hoover up 2,470 tons of atmosphere to capture just 1 ton of carbon dioxide; and it would have to do this roughly a thousand times a second to keep up with our ongoing emissions.

 

Even when fitted to chimneys – where the carbon dioxide is at least concentrated – carbon capture technologies have proved excessively expensive in both financial and energy terms.  There is little point deploying technologies that are so energy-intensive that they themselves depend upon fossil fuels to power them.  However, this issue pales into insignificance when compared to the difficulty of storing any carbon dioxide that is captured.  As Kevin Bullis warned a few years ago in MIT Technology Review:

“Even if costs are made far lower than they are today, the impact of carbon capture will be limited by the sheer scale of infrastructure needed to store carbon dioxide… Vaclav Smil, a professor at University of Manitoba and master of sobering energy-related numbers, calculates that if we were to bury just one-fifth of the global carbon dioxide emissions, we would need to build an industry capable of handling twice the volume of stuff as the entire oil industry, an industry that took 100 years to develop, driven by a large and mostly expanding market.”

Selling captured carbon might provide a means of financing some limited deployment of carbon capture technology.  However, as Bullis notes, ironically:

“One market is for enhanced oil recovery; that is, injecting carbon dioxide into oil wells to increase the amount of oil they can produce. The carbon dioxide would stay underground. In some cases, this technique could double the amount of oil that comes out of a well. And, of course, burning that oil emits a fair amount of carbon dioxide.”

One reason why so many of us might be prepared to stump up the cash to fund carbon capture technologies – both those hawked around social media and those on laboratory benches in our universities – is that the alternative is too bleak to face up to.  As Mayer Hillman at the Guardian notes:

“There are three options in tackling climate change. Only one will work… the first and only effective course, albeit a deeply unpopular one, would be to stop using any fossil fuels. The second would be to voluntarily minimise their use as much as climate scientists have calculated would deliver some prospect of success. Finally, we can carry on as we are by aiming to meet the growth in demand for activities dependent on fossil fuels, allowing market forces to mitigate the problems that such a course of action generates – and leave it to the next generation to set in train realistic solutions (if that is possible), that the present one has been unable to find…”

The stark reality, of course is that “we” are not going to do anything about climate change.  This is because – in the US, UK and EU where lifestyles will need to change the most – there is no “we,” but rather an increasingly polarised “us” and “them.”  Andy Stone at Forbes alludes to this when he says:

“Summing up, the path to least climate impact will require nations to work together to cut global carbon emissions by 45% in just over a decade.”

“Such a cut in emissions will require an unprecedented degree of political will and global cooperation…

“Yet, despite the major political barriers to dramatic near-term emissions cuts, a terrifying realization is that such action is, in fact, the most realistic option available to hold climate change in check. Of the climate action pathways modeled by the IPCC, the scenario that requires boldest action in the near term is the only one that doesn’t also require a leap of faith that a suite of uneconomic, logistically challenging, and ultimately unproven negative emissions technologies will in fact deliver us from our collective peril.”

In more egalitarian societies in which the gap between rich and poor is narrower, an “unprecedented degree of political will” might be possible.  However, after decades of neoliberal politics and economics, only massive sacrifices on the part of the very wealthy are likely to prevent a further drift toward a climate change denying populism among the majority of impoverished citizens.  Speaking to the likelihood of the affluent making such sacrifices, Hillman points out that:

“Remarkably, public expectations about the future indicate that only minor changes in the carbon-based aspects of our lifestyles are anticipated. It is as if people can continue to believe that they have an inalienable right to travel as far and as frequently as they can afford. Indeed, there is a widespread refusal by politicians to admit to the fact the process of melting ice caps contributing to sea level rises, and permafrost thawing in tundra regions cannot now be stopped, let alone reversed.”

Even those – like Hillman and Stone – who have dropped the techno-rose-tinted glasses and acknowledged the huge changes to our lifestyles that are needed to reverse the climate damage that has already been done are oblivious to the consequences of that change.  More than six out of every seven people alive today only exist because of the Haber–Bosch process that produces synthetic ammonia (fertiliser) from fossil fuels.  Any genuine effort at reversing climate change had to have as its starting point a reduction in the human population at least to the level prior to the (industrial agriculture) “Green Revolution;” less than half of today’s population.  Instead – with a great deal of help from religions that implore us to go forth and multiply, and economists that need a new base for the global Ponzi scheme – we have grown our population as fast as agricultural productivity has improved.

Comic actor/director Woody Allen summed up our predicament thus:

“More than any other time in history, mankind faces a crossroads. One path leads to despair and utter hopelessness; the other to total extinction.  Let us pray we have the wisdom to choose correctly.”

The choice before us is that we can take action to reverse climate change and a lot of people are going to die.  Alternatively, we can do nothing about climate change and a lot of people are going to die.  And since nobody has the wisdom or the bravery to make that choice, we can all sit around pretending that some incredibly implausible technology is going to come riding to our rescue… the opium of the people indeed.





Is this a sign of collapse gathering pace…?

15 05 2018

The articles coming from the consciousness of sheep are getting more and more interesting… after reading this one, I could not help but think that while Australia’s energy dilemmas are different to the UK’s, the following quote really struck a cord with me…:

Underlying all of this is a fundamental truth that few are prepared to contemplate: with the end of the last supplies of cheap fossil fuels, there is no affordable energy mix for the foreseeable future.  No combinations of gas, nuclear and renewables can be developed and deployed at the same time as prices are held at levels that are only just affordable to millions of British households.  Nor is there any option of returning to cheap gas from depleted North Sea deposits; still less reopening coal deposits put out of reach by the Thatcher government.

We are ‘lucky’ to have more coal and gas than we know what to do with, until that is it becomes so obvious we can’t keep burning these climate destroying fuels, we just stop. Hopefully before it’s too late.  But consider this……  if the UK economy collapses, what effect would it have on ours? Oil is creeping up, and our electricity rates are the subject of much moaning all over the country. An economic shock is coming, as sure as the sun rises in the East…..

Centrica may not care

Sometimes a story is repeated so often that its veracity is never challenged.  One such is the myth that British households are in thrall to a wicked energy cartel that puts excessive profits above common decency.  So much so, indeed, that the government and the opposition parties have all signed up to some form of energy cap designed to keep energy prices affordable.

The grain of truth in this story is that, aided by a craven regulator, the “big six” – British Gas, EDF Energy, E.ON, Npower, Scottish Power, and SSE – have on many occasions operated a cartel to hold prices up.  How else can we explain, for example, recent British Gas price increases in the face of a collapse in their customer base?

“British Gas owner Centrica lost 110,000 energy supply accounts in the first four months of the year.  That is roughly equivalent to 70,000 customers as many households buy their gas and electricity from British Gas, so will have two accounts.

“Last year, the company lost 1.3 million energy accounts…

“In April, British Gas announced a 5.5% increase in both gas and electricity bills, which comes into effect at the end of this month.  It blamed the rising wholesale cost of energy and the cost of meeting emissions targets and introducing smart meters.

“Other big energy firms have also announced price increases this year, including Npower, EDF and Scottish Power.”

This is surely evidence of a cartel being operated behind the back of the regulator… or is it?

There is an alternative explanation for the recent behaviour of the soon to be Big Four that should send a shiver through the UK economy.  Toward the end of last year, Jillian Ambrose at the Telegraph reported that:

“Britain’s second-largest energy supplier is eyeing the exit as the Government’s crackdown on energy bills threatens profits.

“SSE, formerly known as Scottish and Southern Energy, may turn its back on supplying gas and power to almost 8m British homes ­after years of political threats against the six largest energy companies comes to a head.

“City sources say the FTSE 100 energy giant is quietly discussing early plans to sell off its customer accounts, or even spin the business off as a separate listed company in order to focus on networks and renewable energy and avoid the Government’s looming energy price cap.”

Some months earlier I took the time to examine Centrica’s (British Gas’ parent company) annual accounts.  The results are not pretty:

“While Centrica profits were down (but still high) the division of British Gas that supplies electricity to UK consumers (businesses and households) actually made a loss of £61.1 million last year – in the household market, the loss was even bigger at £71.9 million.  That is, business electricity consumers are subsidising household electricity to some extent, while Centrica itself is subsidising its UK electricity business out of the profits from its other divisions.  Despite this, of course, electricity consumers are facing increasing bills even as they scale back their consumption.  This is exacerbated by the government decision to load the cost of renewables, new gas and new nuclear onto customers’ bills; effectively creating in all but name an even more regressive tax than VAT.”

Centrica’s response at the start of this year was to axe 4,000 jobs; having previously ceased maintaining the strategically essential Rough natural gas storage facility in the North Sea.  SSE in the meantime has announced a merger with N-Power in an attempt to rationalise both company’s retail energy business.  Unfortunately, no business to date has managed the trick of cutting its way to greatness… particularly in an economic climate in which ever fewer consumers can afford the service.

Centrica’s route out of an increasingly unprofitable domestic energy supply sector will be to focus on its much larger international energy business.  Britain’s remaining retail energy suppliers – all of which are foreign owned – may not enjoy this option.  For example, EDF’s wholesale energy investments are tied up in an increasingly risky and very-likely loss-making nuclear power sector.  Nor is there much to be gained from investment in renewable energy technologies that depend upon uncertain government subsidies that have become politically toxic among ordinary voters.

Underlying all of this is a fundamental truth that few are prepared to contemplate: with the end of the last supplies of cheap fossil fuels, there is no affordable energy mix for the foreseeable future.  No combinations of gas, nuclear and renewables can be developed and deployed at the same time as prices are held at levels that are only just affordable to millions of British households.  Nor is there any option of returning to cheap gas from depleted North Sea deposits; still less reopening coal deposits put out of reach by the Thatcher government.

For the moment, the UK government is content to fill Britain’s energy gap with imports.  However, as global energy supplies begin to tighten once more, pricing and profitability issues are likely to rise up the political agenda again.  Faced with an increasing struggle to remain profitable, and in the face of a government determined to add the cost of green energy onto domestic bills while legislating to prevent those bills from rising, companies like Centrica may simply choose to walk away.  After all, one of the blessings of being a private corporation (as opposed to a public utility) is that nobody can stop you from closing when you run out of money.





A question too obvious…

25 04 2018

Every now and again someone poses a question so obvious that you wonder why nobody asked it before.  When that happens, it is usually because it reveals an unconscious narrative that you have been following.  It is precisely because it jars with what you thought you knew that it is so unsettling.  And, of course, most people will seek some means of avoiding the ramifications of the question; such as questioning the motives of the person asking it.

So it is that Time Magazine “Hero of the Environment,” Michael Shellenberger poses just such an apparently innocuous question:

“If solar and wind are so cheap, why are they making electricity so expensive?”

Image result for grid renewables

There are clearly merits to this question.  The spiralling cost of electricity played a major role in the recent Australian election.  In Britain, even the neoliberal Tory government has been obliged to introduce legislation to cap energy prices; while the Labour opposition threatens to dispense with the private energy market altogether.  Across the USA prices are spiralling ever upward, making Trump’s pro-fossil fuel stance popular for large numbers of Americans:

“Over the last year, the media have published story after story after story about the declining price of solar panels and wind turbines.  People who read these stories are understandably left with the impression that the more solar and wind energy we produce, the lower electricity prices will become.

“And yet that’s not what’s happening. In fact, it’s the opposite.

“Between 2009 and 2017, the price of solar per watt declined by 75 percent while the price of wind declined by 50 percent.  And yet — during the same period — the price of electricity in places that deployed significant quantities of renewables increased dramatically.”

According to Shellenberger, countries and states that have led the green energy charge have also led the charge to higher electricity prices.  Denmark has seen a 100 percent price increase, Germany 51 percent and California 24 percent.  At face value, these electricity price increases flatly contradict the narrative that we – and especially our governments – have been sold: that ever cheaper renewable energy technologies are the solution to our energy security and climate change problems.

Since the price of coal and gas has also fallen, we cannot point to fossil fuels as the cause of increasing energy prices.  That is, rushing to replace “dirty” fossil fuel power stations with even more “cheap” wind turbines and solar panels is unlikely to halt the rise in energy prices.

This brings us back to the apparently cheap renewables.  Could there be something about them that has caused prices to rise?

Once again, challenging the narrative helps expose the problem.  As with the term “renewable” itself, the problem is with our failure to examine the whole picture.  While to all intents and purposes, sunlight and wind are inexhaustible sources of energy, the technologies that harness and convert that energy into useful electrical energy are not – both are highly dependent on oil-based global supply chains.  In the same way, while the cost of manufacturing and deploying wind turbines and solar panels has dropped sharply in the past 20 years, the opposite is true of the deliverable electricity they generate.

For all the talk about this or that organisation, city or country generating 100 percent of its electricity from renewables, the reality is that the majority of their (and our) electricity is generated from gas together with smaller volumes of nuclear and coal.  Just because a company like Apple or Google pays extra for us to pretendthat it doesn’t use fossil fuels does not change the reality that without fossil fuels those companies would be out of business.  And that isn’t going to change unless someone can find a way of making the sun shine at night and the wind to blow 24/7/365.

The economic problem that Shellenberger points to is simply that the value of renewable electricity is in inverse proportion to its availability.  That is, when the wind isn’t blowing and the sun isn’t shining, additional electricity is at a premium.  When the sun is blazing and the wind is blowing on the other hand, there is often more electricity than is needed.  The result is that the value of that electricity falls.  In both circumstances, however, the monetary costs fall on the fossil fuel and nuclear generators that provide baseload and back-up capacity.  When there is insufficient renewable electricity, they have to be paid more to increase their output.  When there is too much renewable electricity, they have to be paid more to curtail their output.  Those additional monetary costs are then added to the energy bills of their consumers.

In these circumstances, the falling cost of the renewable electricity technology is almost irrelevant.  According to Shellenberger:

“Part of the problem is that many reporters don’t understand electricity. They think of electricity as a commodity when it is, in fact, a service — like eating at a restaurant.

“The price we pay for the luxury of eating out isn’t just the cost of the ingredients most of which, like solar panels and wind turbines, has declined for decades.

“Rather, the price of services like eating out and electricity reflect the cost not only of a few ingredients but also their preparation and delivery.”

Even if the price of renewable technologies fell to zero, the cost of supplying electricity to end users would continue to rise.  Indeed, paradoxically, if the cost fell to zero, the price would spiral out of control precisely because of the impact on the wider system required to move that renewable electricity from where it is generated to where and when it is required.  In short, and in the absence of cheap and reliable storage and back-up technologies that have yet to be invented, the more renewable electricity generating technologies we deploy, the higher our electricity bills are going to rise.

This may, of course, be considered (at least among the affluent liberal classes) to be a price worth paying to reduce our carbon emissions (although there is little evidence that this is happening).  But it has potentially explosive political consequences.  As the UK government’s energy policy reviewer, Dieter Helm pointed out:

“It is not particularly difficult to set out what an efficient energy system might look like which meets the twin objectives of the climate change targets and security of supply. There would, however, remain a binding constraint: the willingness and ability to pay for it. There have to be sufficient resources available, and there has in a democracy to be a majority who are both willing to pay and willing to force the population as a whole to pay. This constraint featured prominently in the last three general elections, and it has not gone away.” (My emphasis)

Energy poverty and discontent is a growing phenomenon across Western states, as stagnating real wages leave millions of families struggling to cover the cost of basics like food and energy that have risen in price far faster than official inflation.  This has already translated into the disruptive politics of Brexit, Donald Trump and the rise of the European far right and far left parties.  In acknowledging this constraint, Helm points to the true depths of our current trilemma – we have simultaneous crises in our environment, our energy and resource base and our economy.

Thus far, “solutions” put forward to address any one arm of the trilemma – economic growth, renewable energy, hydraulic fracturing – impact negatively on the other arms; ultimately rendering the policy undeliverable.  Until we can drop our illusory narratives, grasp the full implications of the trilemma, and begin to develop policy accordingly, like the rising price of supposedly cheaper renewable electricity, things can only go from bad to worse.





Tesla semis and the laws of physics

23 11 2017

UPDATE

Since posting this, Tesla’s semis have been unsurprisingly shelved…….  white elephant from the start!

Summary

Tesla unveiled the prototype of its Semi to much fanfare in November 2017.

Successive press events and public test drives built the perception that the Semi would enter production in the near term; numerous large companies made preorders.

Yet, during the Q1 2018 earnings call, the Semi received no mention except in response to questions; CEO Elon Musk essentially admitted the project had been put on hold.

Lack of capital to build a manufacturing plant and apparent technological challenges have raised eyebrows since the unveiling; the financing situation has only gotten worse since then.

It appears increasingly certain that the Tesla Semi will never see commercial production.

ANOTHER excellent and well researched article from Alice Friedemann. This pretty well confirms everything I told our mate Eclipse who believes in all this techno crap, because that’s all it is. I find it baffling how people get taken in by such rubbish.  Even if these trucks were going to be built, it would be a HUGE waste of Lithium batteries, because they are needed elsewhere, in things that we need to carry around for doing useful things…….

Loads of interesting links in the references at the bottom

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

electric-semi-Nikola-One

Tesla Truck

Preface: Most people think that electric truck makers need to tell us the specs — the battery kWh, price, performance, and so on — before we can possibly know anything about their truck.

But that’s simply not true.  We know what lithium-ion batteries are capable of. And we know the kWh, size, and weight of the battery needed to move a truck of given weight a certain number of miles.  That makes it possible for scientists to work backwards and figure out how many kWh the battery would need to be to go 300 to 500 miles, what it would weigh, and the likely price for the battery needed for a truck at the maximum road limit of 80,000 pounds. [in Australia it’s 40 tonnes – our trucks have more wheels! We also have B doubles, some with 9 axles that can haul 64.5 tonnes https://www.nhvr.gov.au/files/201707-0577-common-heavy-freight-vehicles-combinations.pdf ]

S. Sripad and V. Viswanathan (2017) at Carnegie Mellon have done just that.  They published a paper in the peer-reviewed American Chemical Society Letters at the following link: Performance metrics required of next-generation batteries to make a practical electric semi truck.  Below is my review of their paper along with some additional cited observations of my own.

 — Alice Friedemann   www.energyskeptic.com  author of “When Trucks Stop Running: Energy and the Future of Transportation”, 2015, Springer and “Crunch! Whole Grain Artisan Chips and Crackers”. Podcasts: Derrick JensenPractical PreppingKunstlerCast 253KunstlerCast278Peak Prosperity , XX2 report

* * *

Authors S. Sripad and V. Viswanathan felt compelled to write their paper because there are so many guesstimates of the likely cost and performance of an electric class 8 semi-truck in the media. But these hasty calculations don’t take into account critical factors like the specific energy density of the battery pack, vehicle weight, drag, rolling resistance, battery kwH to go a given distance, and weight of the batteries given current Li-ion battery technology.

The definition of class 8 trucks is their weight of 33,000 pounds or more.  We can assume electric class 8 trucks would have the same basic truck weight, because building them with light-weight aluminum or carbon fiber is too expensive. And unlike cars, where the average income of an electric car buyer is $148,158 (NRC 2015), and the amount of aluminum needed to light-weight the car is a small fraction of what a truck would require, the trucking industry is a cut throat business with razor thin profits.  Light-weighting them is out of the question.

The maximum weight of a truck allowed on the road is 80,000 pounds, so if the body weight of the truck is the minimum 33,000 pounds, then the maximum amount of cargo that can be carried is 47,000 pounds.

The authors found that a 900 mile range [to arrive at kms, just multiply by 1.6] is simply not possible with today’s batteries, because the weight of the battery pack required is 54,000 pounds plus 33,000 pounds truck weight, which is 87,000 pounds, well over the maximum road weight limit of 80,000 pounds. And this truck that can not haul cargo will set you back $500,000 to $650,000 dollars for the battery alone.

A 600 mile range isn’t commercial either. For starters, the battery pack would cost $320,000 to $420,000 dollars, and on top of that you’ll need add another $100,000 for the body of the truck. To move a truck 600 miles requires a 36,000 pound battery + 33,000 pound truck weight and the truck can only carry 11,000 pounds, which is 36,000 pounds less than a diesel truck can carry.

Musk claims the range of the truck can be as much as 500 miles.  Based on the figures in Table 1, that means the battery would cost $267,000 to $350,000 (also add on $100,000 for the truck body), and the battery will weigh 30,000 pounds + 33,000 pound truck weight and be able to carry only 17,000 pounds of cargo, which is 30,000 fewer pounds than a diesel truck.

Even if the range is on the low end of 300 miles, the battery will still be very heavy, 18,000 pounds + 33,000 pounds truck weight and and only be able to carry 29,000 pounds of cargo, which is 18,000 pounds less than a diesel truck.

The bottom line according to the authors, is that a 600 to 900 mile range truck will use most or all of their battery power to move the battery itself, not the cargo. The cost of the battery is $160,000 to $210,000 plus $100,000 for the truck body, so overall $260,000 to $310,000, which is $140,00 to $190,000 more than a new $120,000 diesel truck — considerably more than used diesel class 8 truck, which can cost as little as $3,000.

If anyone in the trucking industry is reading this, I’d like to know if a 300 mile range with just 18,000 pounds of cargo is acceptable.  I suspect the answer is no, because the Port of Los Angeles explored the concept of using an all-electric battery drayage (short-haul) truck to transfer freight between the port and warehouses, but rejected these trucks because the 350 kWh battery weighed 7,700 pounds and reduced cargo payload too much. Nor was the 12 hours or more to recharge the battery acceptable. Ultra-fast 30 min recharging was considered too risky since this might reduce battery lifespan, and bearing the cost of replacing these expensive batteries was out of the question (Calstart 2013).

Even if a way has been found to charge a truck in half an hour without reducing battery life, the amount of power needed to do that is huge, so new transmission, voltage lines, upgrading many substations with more powerful transformers, and new natural gas generating power plants will need to be constructed.  Across the nation that’s many billion dollars.  Who will pay for that?

It shouldn’t be surprising that a truck battery would weigh so much.  Car batteries simply don’t scale up — they make trucks too heavy.  The authors calculated that a 900 mile electric class 8 truck would require a battery pack 31 times the size and weight of a 100 kWh Tesla Model S car not only because of weight, but all the other factors mentioned above (aerodynamics, rolling resistance, etc).

If the Tesla Semi or any other truck maker’s prototype performs better than this, there are additional questions to ask.  For example, new diesel trucks today get 7 miles per gallon. But the U.S. Super Truck program has built trucks that get an amazing 12 mpg. But those trucks are not being made commercially.  I don’t know why, but it could be because this achievement was done by making the prototype truck with very light weight expensive materials like carbon fiber or aluminum, costly tires with less rolling resistance, and other expensive improvements that were too expensive to be commercial.

Performance can also be gamed – a diesel truck going downhill or on level ground, with less than the maximum cargo weight, going less than 45 miles per hour with an expert driver who seldom brakes, can probably get 12 mpg even though they’re not driving a Super Truck.

Who’s going to buy the Tesla Semi, Cummins EOS, Daimler E-FUSO, or BYD all-electric semi-trucks?

Most trucking companies are very small and can’t afford to buy expensive trucks: 97% of the 1.3 million trucking companies in the U.S. own 20 trucks or less, 91% have six or fewer. They simply aren’t going to buy an electric truck that costs roughly 2.5 times more than a diesel truck, carries half the weight, just 300 miles (diesel trucks can go 1,800 miles before refueling).

Nor will larger, wealthier trucking companies be willing to invest in electric trucks until the  government pays for and builds the necessary charging stations. This is highly unlikely given there’s no infrastructure plan (Jenkins 2017), nor likely the money to execute one, given the current reverse Robin Hood “tax reform” plan. With less money to spend on infrastructure, charging stations might not even be on the list.

The big companies that have bought (hybrid) electric class 4 to 6 trucks so far only did so because local, state, and federal subsidies made up the difference between the cost of a diesel and (hybrid) electric truck.  The same will likely be true of any company that makes class 8 long-haul trucks.

I constructed Table 1 to summarize the averages of figure 2 in this paper, which has the estimated ranges of required battery pack sizes, weights, cost, and payload capacities of a 300, 600, or 900 mile truck.

Range (miles) Battery kWh required Battery Pack Cost at $160-$210 per kWh Battery Weight kg / tons Max Payload
300 1,000 $160 – 210,000   8,200 /   9 8.5
600 2,000 $320 – 420,000 16,000 / 18 5.5
900 3,100 $500 – 650,000 24,500 / 27 0

Table 1. All electric truck data from figure 2 of Sripad (2017).   A diesel truck Max payload is 23.5 tons.  The max payload (cargo weight) is derived from the max truck road weight of 40 tons, minus battery weight, minus weight of the truck (17.5 tons).

As to whether the Tesla Semi will perform as well as Elon Musk says, it is not certain he will still be in business in 2019, because Musk and other electric car makers are competing for very few potential electric car buyers and with each other as well. There will never be enough electric car buyers because of the distribution of wealth. Sixty-nine percent of the United States population has less than $1,000 in savings (McCarthy 2016). At best the top 10% can afford an electric car, but many of them don’t want an electric car, don’t have a garage, prefer Lyft or mass transit, are saving to buy a house or survive the next financial crash.  And if states or the Trump administration end subsidies that will further dent sales.

Nor will there ever be completely automated cars or trucks, because unlike airplanes, where pilots have 8 minutes of grace before the crash to go back to manual controls, there is only a second for a car or truck driver to notice that an accident is about to occur and override the system.  The better the system is automated, the less likely the driver is to even be paying attention.  So the idea that the poor bottom 90% can order an automated electric car to their doorstep isn’t going to happen.  Nor can it happen with a driver – there is simply too little time to notice and react.

Just imagine if an automatic truck were hacked or malfunctioned, it would be like an attack missile with that much weight and momentum behind it.

Even if the Tesla semis are built in 2019, we won’t know until 2024 if charging in just half an hour, cold weather, and thousands of miles driven reduces driving range and battery life, if the battery can withstand the rough ride of roads, and be certain that lithium is still cheap and easily available.

The only thing going for the Tesla Semi is that electricity is cheap, for now.  But at some point finite natural gas will begin to decline and become very expensive, even potentially unaffordable for the bottom 90%.  As gas decline exponentially continues, all the solar and wind power in the world does no good because the electric grid requires natural gas to balance their intermittent power. There is no other kind of energy storage in sight.  Utility-scale batteries are far from commercial.  Although compressed air energy storage and pumped hydro storage dams are commercial, there are so few places to put these expensive alternatives that they can make little, if any meaningful contribution, ever.

Meanwhile, this hoopla may drive Musk’s stock up and distract from his lack of meeting the Model 3 goals, but investors have limited patience, and Musk has over $5 billion in debt to pay back.  It may be that Elon Musk is banking on government subsidies, like the $9 million State of California award to the BYD company for 27 electric trucks — $333,000 per truck (ARB 2016), and the Ports of Los Angeles and San Pedro who will subsidize a zero emission truck that can go at least 200 miles.

References

ARB. 2016. State to award $9 million for zero-emission trucks at two rail yards, one freight transfer yard in Southern California. California Air Resources Board.

Calstart. 2013. I-710 project zero-emission truck commercialization study. Calstart for Los Angeles County Metropolitan Transportation Authority. 4.7

Jenkins, A. 2017. Will anybody actually use Tesla’s electric semi truck? Fortune.

McCarthy, N. September 23, 2016. Survey: 69% Of Americans Have Less Than $1,000 In Savings. Forbes.

NRC. 2015. Overcoming barriers to deployment of plug-in electric vehicles. Washington, DC: National Academies Press.

Sripad, S.; Viswanathan, V. 2017. Performance metrics required of next-generation batteries to make a practical electric semi truck.  ACS Energy Letters 2: 1669-1673.

Vartabedian, M. 2017. Exclusive: Tesla’s long-haul electric truck aims for 200 to 300 miles on a charge. Reuters.

Related Articles





French nuclear financial crisis deepens

9 12 2016

French taxpayers face huge nuclear bill as EDF financial crisis deepens

Originally published on the Ecologist’s website…..

I alluded to this in response to some of Eclipse’s comments on some of my earlier posts. I’m of the opinion the entire global nuclear energy sector is about to go tits up….

Paul Brown

8th December 2016

Nuclear giant EDF could be heading towards bankruptcy, writes Paul Brown, as it faces a perfect storm of under-estimated costs for decommissioning, waste disposal and Hinkley C. Meanwhile income from power sales is lagging behind costs, and 17 of its reactors are off-line for safety tests. Yet French and UK governments are turning a blind eye to the looming financial crisis.

EDF’s biggest problem is the cost of producing power from these ageing power stations is greater than the wholesale price, so everything they sell is at a loss. It is impossible to see how they can ever make a profit. Then they still have to decommission.

The liabilities of Électricité de France (EDF) – the biggest electricity supplier in Europe, with 39 million customers – are increasing so fast that they will soon exceed its assets, according a report by an independent equity research company,

nuclear_power_432Bankruptcy for EDF seems inevitable – and if such a vast empire in any other line of business seemed to be in such serious financial trouble, there would be near-panic in the workforce and in governments at the subsequent political fall-out.

But it seems that the nuclear-dominated EDF group is considered too big to be allowed to fail. So, to keep the lights on in western Europe, the company will have to be bailed out by the taxpayers of France and the UK.

The French government, facing elections next spring, and the British, struggling with the implications of the Brexit vote to leave the European Union, are currently turning a blind eye to the report by AlphaValue that EDF has badly under-reported its potential liabilities.

Ageing nuclear reactors

While EDF is threatening to sue people who say it is technically bankrupt, the evidence is that the cost of producing electricity from its ageing nuclear reactors is greater than the market price.

Coupled with the impossibility of EDF paying the full decommissioning costs of its reactors, it is inevitable that it is the taxpayers in France and the UK who will eventually pick up the bill. However this will not be easy due to the EU’s ‘state aid’ rules, which limit governments’ ability to support ailing companies.

There is also the ongoing thorny problem of disposing of the nuclear waste and spent fuel rods, which are building up in cooling ponds and stores on both sides of the Channel, with no disposal route yet in sight.

A looming problem for EDF, which already admits is has €37 billion of debt, is that 17 of its ageing fleet of nuclear reactors, which provide 70% of France’s electricity, are being retired.

According to AlphaValue, EDF has underestimated the liabilities for decommissioning these reactors by €20 billion. Another €33.5 billion should be added to cost of handling nuclear waste, the report says. Juan Camilo Rodriguez, an equity analyst who is the author of the report, says that a correct adjustment of nuclear provisions would lead to the technical bankruptcy of the company.

In a statement, EDF said it “strongly contests the alleged accounting and financial analyses by the firm AlphaValue carried out at the request of Greenpeace and relating to the situation of EDF”.

It says that its accounts are audited and certified by its statutory auditors, and that the dismantling costs of EDF’s existing nuclear power fleet have also been subject to an audit mandated by the French Ministry of the Environment, Energy and the Sea.

Even with its huge debts, EDF’s problems could be surmounted if the company was making big profits on its electricity sales, but the cost of producing power from its nuclear fleet is frequently greater than the wholesale price.

That creates a second problem – that unless the wholesale price of electricity rises and stays high, the company will make a loss on every kilowatt of electricity it sells. The new rightwing French presidential candidate, François Fillon, promises not to retire French reactors and to keep them going for 60 years. But this cannot be done without more cost.

This is the third problem: vast sums of capital are needed to refurbish EDF’s old nuclear fleet for safety reasons following the 2011 Fukushima nuclear disaster in Japan.

New nuclear stations

Even more money is required to finish new nuclear stations EDF is already committed to building. The first, Flamanville in northern France, is five years late and billions over budget. Questions over the quality of the steel in its reactor are still not resolved, and it may never be fully operational.

Add to that the need for €12 billion (or potentially considerably more) capital to complete the two nuclear stations EDF is committed to building at Hinkley Point in southwest England, and it is hard to see where all the money will come from.

To help the cash-strapped company, its ultimate owner, the French state, has already provided €3 billion in extra capital this year, and decided to forego its shareholder dividend. But that is a drop in the ocean.

Mycle Schneider, a Paris-based independent international consultant on energy and nuclear policy, says: “The French company overvalues its nuclear assets, and underestimates how much it will cost to decommission them.

“However, EDF’s biggest problem is the cost of producing power from these ageing power stations. The cost is greater than the wholesale price, so everything they sell is at a loss. It is impossible to see how they can ever make a profit.”

He says that is not the company’s only problem: France has not dealt with the problem of nuclear waste, and has badly underestimated the cost of doing so: “With German electricity prices going down and production increasing in order to export cheap electricity to France, it is impossible to see how EDF can ever compete. It is really staggering that no one is paying any attention to this.”

Even former EDF director Gérard Magnin agrees. He resigned from the board in July as he thought the Hinkley Point project too risky for the company because of its already stretched finances. Now he says that, with the reactors closed for safety checks, the French nuclear industry faces “its worst situation ever”.

The company’s troubles do not stop in France, as EDF also owns the UK nuclear industry. Ironically, it took over 15 reactors in the UK after British Energy went bankrupt in 2002 because the cost of producing the electricity was greater than the wholesale price – exactly the situation being repeated now in France.

Repeated life extensions

Since the sale of UK nuclear plants to EDF in 2008 at a cost £12.5 billion, the company has continued to operate them, and has repeatedly got life extensions to keep them running.

But this cannot go on forever, and they are expected to start closing in the next ten years. Once this happens, the asset value of each station would become a liability, and EDF’s mountain of debt would get bigger.

So far, the French and UK governments, and the company itself, seem to be in denial about this situation. Currently 17 French reactors are shut down for safety checks, following the discovery of faulty safety-critical compenents including large, difficult to replace steel forgings like steam generators.

The company has issued reassuring statements that they will be back to full power after Christmas, however in so doing EDF is assuming that the safety checks will give the reactors a clean bill of health. In fact, there are three other possible outcomes:

  • additional potentially time-consuming tests are needed that will create further months of downtime.
  • remedial engineering works are required to make the reactors safe. These would probably be costly and time-consuming.
  • key components at the heart of the reactors, for example steam generators, need to be replaced altogether. However this would be so costly that, for a nuclear plant already reaching the end of its lifetime, premature closure would be the only viable option.

Perhaps the most likely outcome is that some of the 17 reactors will fall into each of these four categories, creating as yet unquantifiable unbudgeted costs for the company.

Meanwhile, to make up the shortfall from the closed reactors, electricity is being bought from neighbouring countries, including the UK, to keep the lights on in France. The power shortage is temporarily causing an increase in wholesale prices – but one that EDF is unable to fully exploit because so many of its reactors are not generating.

The future remains unpredictable – but as long as there are no actual power cuts, no action is expected from governments. Despite official denials, however, the calculations of many outside the industry suggest that it is only a matter of time before disaster strikes.

The cost of producing electricity from renewables is still falling, while nuclear gets ever more expensive, and massive liabilities loom. Ultimately, the bill will have to be passed on to the taxpayers.

 





Some reflections on the Twilight of the Oil Age – part I

15 07 2016

Guest post by Louis Arnoux, republished from Ugo Bardi’s Cassandra’s Legacy blog…..

This three-part post was inspired by Ugo’s recent post concerning Will Renewables Ever ReplaceFossils? and recent discussions within Ugo’s discussion group on how is it that “Economists still don’t get it”?  It integrates also numerous discussion and exchanges I have had with colleagues and business partners over the last three years.

Introduction

Since at least the end of 2014 there has been increasing confusions about oil prices, whether so-called “Peak Oil” has already happened, or will happen in the future and when, matters of EROI (or EROEI) values for current energy sources and for alternatives, climate change and the phantasmatic 2oC warming limit, and concerning the feasibility of shifting rapidly to renewables or sustainable sources of energy supply.  Overall, it matters a great deal whether a reasonable time horizon to act is say 50 years, i.e. in the main the troubles that we are contemplating are taking place way past 2050, or if we are already in deep trouble and the timeframe to try and extricate ourselves is some 10 years. Answering this kind of question requires paying close attention to system boundary definitions and scrutinising all matters taken for granted.

It took over 50 years for climatologists to be heard and for politicians to reach the Paris Agreement re climate change (CC) at the close of the COP21, late last year.  As you no doubt can gather from the title, I am of the view that we do not have 50 years to agonise about oil.  In the three sections of this post I will first briefly take stock of where we are oil wise; I will then consider how this situation calls upon us to do our utter best to extricate ourselves from the current prevailing confusion and think straight about our predicament; and in the third part I will offer a few considerations concerning the near term, the next ten years – how to approach it, what cannot work and what may work, and the urgency to act, without delay.

Part 1 – Alice looking down the end of the barrel

In his recent post, Ugo contrasted the views of the Doomstead Diner‘s readers  with that of energy experts regarding the feasibility of replacing fossil fuels within a reasonable timeframe.  In my view, the Doomstead’s guests had a much better sense of the situation than the “experts” in Ugo’s survey.  To be blunt, along current prevailing lines we are not going to make it.  I am not just referring here to “business-as-usual” (BAU) parties holding for dear life onto fossil fuels and nukes.  I also include all current efforts at implementing alternatives and combating CC.  Here is why.

The energy cost of system replacement

What a great number of energy technology specialists miss are the challenges of whole system replacement – moving from fossil-based to 100% sustainable over a given period of time.  Of course, the prior question concerns the necessity or otherwise of whole system replacement.  For those of us who have already concluded that this is an urgent necessity, if only due to CC, no need to discuss this matter here.  For those who maybe are not yet clear on this point, hopefully, the matter will become a lot clearer a few paragraphs down.

So coming back for now to whole system replacement, the first challenge most remain blind to is the huge energy cost of whole system replacement in terms of both the 1st principle of thermodynamics (i.e. how much net energy is required to develop and deploy a whole alternative system, while the old one has to be kept going and be progressively replaced) and also concerning the 2nd principle (i.e. the waste heat involved in the whole system substitution process).  The implied issues are to figure out first how much total fossil primary energy is required by such a shift, in addition to what is required for ongoing BAU business and until such a time when any sustainable alternative has managed to become self-sustaining, and second to ascertain where this additional fossil energy may come from.

The end of the Oil Age is now

If we had a whole century ahead of us to transition, it would be comparatively easy.  Unfortunately, we no longer have that leisure since the second key challenge is the remaining timeframe for whole system replacement.  What most people miss is that the rapid end of the Oil Age began in 2012 and will be over within some 10 years.  To the best of my knowledge, the most advanced material in this matter is the thermodynamic analysis of the oil industry taken as a whole system (OI) produced by The Hill’s Group (THG) over the last two years or so (http://www.thehillsgroup.org).

THG are seasoned US oil industry engineers led by B.W. Hill.  I find its analysis elegant and rock hard.  For example, one of its outputs concerns oil prices.  Over a 56 year time period, its correlation factor with historical data is 0.995.  In consequence, they began to warn in 2013 about the oil price crash that began late 2014 (see: http://www.thehillsgroup.org/depletion2_022.htm).  In what follows I rely on THG’s report and my own work.

Three figures summarise the situation we are in rather well, in my view.

Figure 1 – End Game

oilendgame

For purely thermodynamic reasons net energy delivered to the globalised industrial world (GIW) per barrel by the oil industry (OI) is rapidly trending to zero.  By net energy we mean here what the OI delivers to the GIW, essentially in the form of transport fuels, after the energy used by the OI for exploration, production, transport, refining and end products delivery have been deducted.

However, things break down well before reaching “ground zero”; i.e. within 10 years the OI as we know it will have disintegrated. Actually, a number of analysts from entities like Deloitte or Chatham House, reading financial tealeaves, are progressively reaching the same kind of conclusions.[1]

The Oil Age is finishing now, not in a slow, smooth, long slide down from “Peak Oil”, but in a rapid fizzling out of net energy.  This is now combining with things like climate change and the global debt issues to generate what I call a “Perfect Storm” big enough to bring the GIW to its knees.

In an Alice world

At present, under the prevailing paradigm, there is no known way to exit from the Perfect Storm within the emerging time constraint (available time has shrunk by one order of magnitude, from 100 to 10 years).  This is where I think that Doomstead Diner’s readers are guessing right.  Many readers are no doubt familiar with the so-called “Red Queen” effect illustrated in Figure 2 – to have to run fast to stay put, and even faster to be able to move forward.  The OI is fully caught in it.

Figure 2 – Stuck on a one track to nowhere

perfectstorm

The top part of Figure 2 highlights that, due to declining net energy per barrel, the OI has to keep running faster and faster (i.e. pumping oil) to keep supplying the GIW with the net energy it requires.  What most people miss is that due to that same rapid decline of net energy/barrel towards nil, the OI can’t keep “running” for much more than a few years – e.g. B.W. Hill considers that within 10 years the number of petrol stations in the US will have shrunk by 75%…

What people also neglect, depicted in the bottom part of Figure 2, is what I call the inverse Red Queen effect (1/RQ). Building an alternative whole system takes energy that to a large extent initially has to come from the present fossil-fuelled system.  If the shift takes place too rapidly, the net energy drain literally kills the existing BAU system.[2] The shorter the transition time the harder is the 1/RQ.

I estimate the limit growth rate for the alternative whole system at 7% growth per year.

In other words, current growth rates for solar and wind, well above 20% and in some cases over 60%, are not viable globally.  However, the kind of growth rates, in the order of 35%, that are required for a very short transition under thePerfect Storm time frame are even less viable – if “we” stick to the prevailing paradigm, that is.  As the last part of Figure2 suggests, there is a way out by focusing on current huge energy waste, but presently this is the road not taken.

On the way to Olduvai

In my view, given that nearly everything within the GIW requires transport and that said transport is still about 94% dependent on oil-derived fuels, the rapid fizzling out of net energy from oil must be considered as the defining event of the 21st century – it governs the operation of all other energy sources, as well as that of the entire GIW.  In this respect, the critical parameter to consider is not that absolute amount of oil mined (as even “peakoilers” do), such as Million barrels produced per year, but net energy from oil per head of global population, since when this gets too close to nil we must expect complete social breakdown, globally.

The overall picture, as depicted ion Figure 3, is that of the “Mother of all Senecas” (to use Ugo’s expression).   It presents net energy from oil per head of global population.[3]  The Olduvai Gorge as a backdrop is a wink to Dr. Richard Duncan’s scenario (he used barrels of oil equivalent which was a mistake) and to stress the dire consequences if we do reach the“bottom of the Gorge” – a kind of “postmodern hunter-gatherer” fate.

Oil has been in use for thousands of year, in limited fashion at locations where it seeped naturally or where small well could be dug out by hand.  Oil sands began to be mined industrially in 1745 at Merkwiller-Pechelbronn in north east France (the birthplace of Schlumberger).  From such very modest beginnings to a peak in the early 1970s, the climb took over 220 years.  The fall back to nil will have taken about 50 years.

The amazing economic growth in the three post WWII decades was actually fuelled by a 321% growth in net energy/head.  The peak of 18GJ/head in around 1973, was actually in the order of some 40GJ/head for those who actually has access to oil at the time, i.e. the industrialised fraction of the global population.

Figure 3 – The “Mother of all Senecas”

seneca
In 2012 the OI began to use more energy per barrel in its own processes (from oil exploration to transport fuel deliveries at the petrol stations) than what it delivers net to the GIW.  We are now down below 4GJ/head and dropping fast.

This is what is now actually driving the oil prices: since 2014, through millions of trade transactions (functioning as the“invisible hand” of the markets), the reality is progressively filtering that the GIW can only afford oil prices in proportion to the amount of GDP growth that can be generated by a rapidly shrinking net energy delivered per barrel, which is no longer much.  Soon it will be nil. So oil prices are actually on a downtrend towards nil.

To cope, the OI has been cannibalising itself since 2012.  This trend is accelerating but cannot continue for very long. Even mainstream analysts have begun to recognise that the OI is no longer replenishing its reserves.  We have entered fire-sale times (as shown by the recent announcements by Saudi Arabia (whose main field, Ghawar, is probably over 90% depleted) to sell part of Aramco and make a rapid shift out of a near 100% dependence on oil and towards “solar”.

Given what Figure 1 to 3 depict, it should be obvious that resuming growth along BAU lines is no longer doable, that addressing CC as envisaged at the COP21 in Paris last year is not doable either, and that incurring ever more debt that can never be reimbursed is no longer a solution, not even short-term.

Time to “pull up” and this requires a paradigm change capable of avoiding both the RQ and 1/RQ constraints.  After some 45 years of research, my colleagues and I think this is still doable.  Short of this, no, we are not going to make it, in terms of replacing fossil resources with renewable ones within the remaining timeframe, or in terms of the GIW’s survival.

Next: 

Part 2 – Enquiring into the appropriateness of the question

Part 3 – Standing slightly past the edge of the cliff

 

[1] See for example, Stevens, Paul, 2016, International Oil Companies: The Death of the Old Business Model, Energy, Research Paper, Energy, Environment and Resources, Chatham House; England, John W., 2016, Short of capital? Risk of underinvestment in oil and gas is amplified by competing cash priorities, Deloitte Center for Energy Solutions, Deloitte LLP.  The Bank of England recently commented: “The embattled crude oil and natural gas industry worldwide has slashed capital spending to a point below the minimum required levels to replace reserves — replacement of proved reserves in the past constituted about 80 percent of the industry’s spending; however, the industry has slashed its capital spending by a total of about 50 percent in 2015 and 2016. According to Deloitte’s new study {referred to above], this underinvestment will quickly deplete the future availability of reserves and production.”

[2] This effect is also referred to as “cannibalising”.  See for example, J. M. Pearce, 2009, Optimising Greenhouse Gas Mitigation Strategies to Suppress Energy Cannibalism, 2nd Climate Change Technology Conference, May 12-15, Hamilton, Ontario, Canada.  However, in the oil industry and more generally the mining industry, cannibalism usually refers to what companies do when there are reaching the end of exploitable reserves and cut down on maintenance, sell assets at a discount or acquires some from companies gone bankrupt, in order to try and survive a bit longer.  Presently there is much asset disposal going on in the Shale Oil and Gas patches, ditto among majors, Lukoil, BP, Shell, Chevron, etc….  Between spending cuts and assets disposal amounts involved are in the $1 to $2 trillions.

[3] This graph is based on THG’s net energy data, BP oil production data and UN demographic data.