It’s the Consumption, Stupid….

2 05 2018

The 2nd Law of Thermodynamics – The Gaping Hole in the Middle of the Circular Economy

paul mobbsA great article by Paul Mobbs, an independent environmental consultant, investigator, author and lecturer, and maintains the Free Range Activism Website (FRAW).

Why the latest buzz-phrase in consumer sustainability is not only failing to tackle the core problem, but why it is doomed to fail

Listening to Radio 4 this morning I heard the two juxtaposed keywords that I’ve learned to dread over the last couple of the years; ‘circular economy’. It’s a great idea, and I can’t fault the true belief of those promoting it. My problem is that the way they describe it has little to do with the physical realities of the world, and hence it’s really just a “get out of hell free” card for affluent consumers – who are, it would appear, the most vociferous proponents of this idea.

As is so often the case with feel-good eco-stories, the Today programme’s[1] interviewer was all light and fluffy; and obviously flummoxed because they did not have the confidence to ask any basic, challenging questions of the interviewee.

The segment was examining the new research[2] from Portsmouth University. They’ve found a ‘mutant’ enzyme from bacteria they found living on plastic in recycling centres. As with all enzymes[3] – like the things they add to washing powder so you can clean clothes without boiling them – these complex molecules accelerate chemical reactions by working on the chemical bonds which hold things together. In this case, the enzyme breaks down the bonds of the polyethylene terephthalate[4] (PET) molecule.

Great idea; and if shown to be ecologically safe, great chemistry. That’s not the issue here.

Enter ‘the Circular Economy’

The scientist then described the value of this enzyme as part of the ‘circular economy’[5] – a concept proposed in the 1980s, and popularized in recent years by organizations such a the Ellen MacArthur Foundation[6], of moving from a linear to a circular economic process:

  • ‘Linear’ economy – meaning that materials are created, used and disposed as waste, requiring that new resources must be reduced to replace them, which is how the core of the global economy works today;
  • ‘Circular’ economy – meaning that all materials and products are manufactured and sold so that their content can be fully recycled and used in new products once more, obviating the need to produce new resources to replace them.

It is a lovely idea. One which I would whole-heartedly support, but for one slight technical hitch I perceive in this concept; The Laws of Thermodynamics[7] – and my particular favourite, The Second Law of Thermodynamics[8].

The Laws of Thermodynamics arose in parallel with industrialization, having first been used to described the operation of steam engines. Over time science has perfected the principles of these ‘laws’ and now finds that they are universal.

The Second Law deals with irreversible reactions – that is, operations which once undertaken cannot be undone.

What the ‘circular economy’ idea would propose in relation to PET plastic bottles is: Take some natural gas (yes, contrary to the idea that plastics come form oil, most plastics are made from the light by-products of oil refining, but mostly natural gas and gas condensate) and turn it into PET plastic; then make a plastic bottle with a blow-moulding machine; use the bottle; then recycle the bottle, and keep recycling after each use – obviating the need to use more natural gas to create plastic. As a result, the use of the bottle becomes ‘circular’.

Sounds great, doesn’t it?

The thermodynamic restrictions of human hope

Of course, there’s always a big hairy “but” in situations like this.

In this case, the use of plastic represents a ‘reversible’ reaction – you can make plastic, and then recycle the plastic to make more plastic. Sorted!

The energy expended in doing that, however, is an irreversible[9] process. It can’t be recovered.

The Second Law dictates that energy can be used, but in the process the ‘quality’ (for which read ‘usefulness’, or ‘density’, or ‘value’) of that energy is degraded; and once degraded, that ‘quality’ cannot be recovered without using even more energy than was expended when the energy was first used.

For example, water flowing downhill can turn a turbine to make electricity; but it takes more electricity than that was generated to pump that same volume of water back to the top of the hill again.

Now at this point proponents of the circular economy will talk about using renewable energy, thereby avoiding the issue of finite resources being used to power the process. That’s true, up to a point; and that point is, what are those renewable energy system made from? Finite resources.

Limits to renewable energy

Just because renewable energy is ‘renewable’, it doesn’t mean the machines we require to harvest that energy are freed from the finite limits of the Earth’s resources[10].

There are grand schemes to power the world using renewable energy. The difficulty is that no one has bothered to check to see if the resources are available to produce that energy. Recent research suggests that the resources required to produce that level of capacity cannot currently be supplied[11].

The crunch point is that while there might be enough indium, gallium, neodymium and other rare metals to manufacture wind turbines or PV panels for the worlds half-a-billion or so affluent consumers (i.e., the people most likely to be reading this), there is not enough to give everyone on the planet that same level of energy consumption – we’d run out long before then.

For example, the first metal humans smelted[12] about 9,000 years ago was copper. Ever since copper has been a brilliant indicator of human development, with consumption increasing in line with human development ever since. One reason for that is that as industrial use has fallen (e.g., replacing copper pipes with plastic) we’ve used more copper for new technologies (e.g., electronics – roughly 14%[13] of the weight of a mobile phone is copper).

Copper also has one of the best, most mature recycling systems, but even then it’s been estimated that only half of all copper is reused[14].

The problem is, due to its long and intensive global use, we’re approaching ‘peak copper’[15] – the point where the remaining amount of copper in the ground, and more importantly its falling ore quality, reduces the amount which can be economically produced annually. And more significantly, the ecological impact[16] of the falling copper ore quality is that the energy consumed and the greenhouse gases emitted by production increase exponentially.

Now of course we’ll use copper more efficiently. And if we run short, rising prices will increase recycling rates – though it will also increase the disruptive theft[17] of copper in society. The difficulty is that, just last week[18], the copper industry announced that it worried about production after 2020.

Strategy is important, but ‘real’ change is critical

OK, back to the ‘circular economy’.

What really matters here is not so much the material used in production, but the energy density of production. Energy density isn’t just a matter of how much energy it takes to produce an article, but how long that article lasts. That in turn affects the ‘return’ on the energy invested in its production – or EROEI[19].

Let’s say a plastic bottle takes six weeks to be manufactured, filled, bought, consumed, collected and reprocessed to the point of re-manufacture. That’s good because recycling plastic can represent a saving of more than 50%[20] on the energy used to produce it compared to virgin materials.

What determines the long-term sustainability of this though is not just the one-time saving, but the viable fraction that can be reclaimed and reused.

Let’s assume that, at best, we can recover 60% of the content of the bottle over each 6 week cycle. After 1 cycle, 6 weeks, we have 60% of the material left. After 2 cycles, 12 weeks, we have 60% × 60% = 36% left. After three cycles there’s 60% × 36% = 22%. After four cycles, 13%, etc.

By the end of one year (8 or 9 cycles) we’d only have 1% of our plastic left.

The obvious response is, “well, let’s recycle more”. The problem is that achieving a higher recovery rate actually requires expending more energy, reducing the energy saved – and as you get nearer to 100% the amount required is likely to exceed the energy involved in producing new plastic from raw materials.

For example, recycling in densely populated urban areas is easy, because waste management is an essential part of being able to run an urban area. But what about more sparsely populated rural areas and villages? At what point does the energy expended running a collection vehicle exceed the energy saved from materials recovery? (answer – it’s completely dependent upon local circumstance, and so has to be evaluated as part of the planning process rather than generalized in advance).

“It’s consumption, stupid!”

It’s the same as the falling copper ore problem. The more diffuse your source, the more energy you have to expend to recover it. Getting the easy to find plastic, let’s say the first half, will be easy. Getting the next 20% might take as much effort. The 10% after that twice again. And the last 20%? It might produce no saving at all.

Alternatively we could extend the life of the bottle – by refilling instead of recycling. That would have a significant effect, but even then, on each refill cycle a certain number of bottles would be rejected.

Don’t ignore this option though. It is arguable that, in lieu of increasing recycling rates, extending the service life of resources probably has the best energy profile – since it reduces not only the need to re-manufacture resources, but also the need to recycle/replace them. The problem is that reuse often requires far greater change and co-operation by consumers – precisely the thing our ‘liberal’ economy hates doing because it involves dictating the actions of consumers.

Forget Bill Clinton’s line about ‘the economy’; “It’s consumption, stupid!”

More importantly, throughout this whole process, energy is expended[21]; and energy is the one thing we can’t recover. Therefore we have to avoid re-manufacture or recovery in the first place. The difficulty is that no one wants to advocate this – combining multiple reuse, high recycling AND longer service life – as it means the effective elimination of consumerism, fashion, ‘innovation’, and many of the other totemic traits[22] of the modern consumer materialist economy.

Then again, given that a large amount of the world’s wealth is derived from resource exploitation, any change to that pattern is likely to have huge implications for the day-to-day economy[23] that the most affluent consumers rely upon in order to consume.

The ‘Circular Economy’ must accept thermodynamic reality

Arthur Eddington[24] was a British scientist (and Quaker) who advanced physics and astrophysics in the first decades of the 20th Century, and popularized the theories of Albert Einstein – against the then anti-German and anti-Jewish prejudice of the science establishment.

In relation to the Second Law of Thermodynamics, Eddington produced a famous statement:

If someone points out to you that your pet theory of the universe is in disagreement with Maxwell’s equations – then so much the worse for Maxwell’s equations. If it is found to be contradicted by observation – well these experimentalists do bungle things sometimes. But if your theory is found to be against the second law of thermodynamics I can give you no hope; there is nothing for it but to collapse in deepest humiliation.

The ‘circular economy’ is, in my opinion, a ruse to make affluent consumers feel that they can keep consuming without the need to change their habits. Nothing could be further[25] from the truth, and the central reason for that is the necessity for energy to power economic activity[26].

While the ‘circular economy’ concept admittedly has the right ideas, it detracts from the most important aspects of our ecological crisis today[27] – it is consumption that is the issue, not the simply the use of resources. Though the principle could be made to work for a relatively small proportion[28] of the human population, it could never be a mainstream solution for the whole world because of its reliance on renewable energy technologies to make it function – and the over-riding resource limitations on harvesting renewable energy.

In order to reconcile the circular economy with the Second Law we have to apply not only changes to the way we use materials, but how we consume them. Moreover, that implies such a large reduction in resource use[29] by the most affluent, developed consumers, that in no way does the image of the circular economy, portrayed by its proponents, match up to the reality[30] of making it work for the majority of the world’s population.

In the absence of a proposal that meets both the global energy and resource limitations[30] on the human system, including the limits on renewable energy production, the current portrayal of the ‘circular economy’ is not a viable option. Practically then, it is nothing more than a salve for the conscience of affluent consumers who, deep down, are conscious enough to realize that their life of luxury will soon be over as the related ecological and economic crises[31] bite further up the income scale.

 

References:

  1. BBC Radio 4: ‘Today’, 17th April 2018 – https://www.bbc.co.uk/programmes/b006qj9z
  2. Guardian Online: ‘Scientists accidentally create mutant enzyme that eats plastic bottles’, 16th April 2018 – https://www.theguardian.com/environment/2018/apr/16/scientists-accidentally-create-mutant-enzyme-that-eats-plastic-bottles
  3. Wikipedia: ‘Enzyme’ – https://en.wikipedia.org/wiki/Enzyme
  4. Wikipedia: ‘Polyethylene terephthalate’ – https://en.wikipedia.org/wiki/Polyethylene_terephthalate
  5. Wikipedia: ‘Circular economy’ – https://en.wikipedia.org/wiki/Circular_economy
  6. Wikipedia: ‘Ellen MacArthur Foundation’ – https://en.wikipedia.org/wiki/Ellen_MacArthur_Foundation
  7. Wikipedia: ‘Laws of thermodynamics’ – https://en.wikipedia.org/wiki/Laws_of_thermodynamics
  8. Wikipedia: ‘Second law of thermodynamics’ – https://en.wikipedia.org/wiki/Second_law_of_thermodynamics
  9. Wikipedia: ‘Irreversible process’ – https://en.wikipedia.org/wiki/Irreversible_process
  10. BioScience: ‘Energetic Limits to Economic Growth’, vol.61 no.1, January 2011 – http://www.fraw.org.uk/library/pages/brown2011.shtml
  11. EU Joint Research Committee: ‘Critical Metals in Strategic Energy Technologies – Assessing Rare Metals as Supply-Chain Bottlenecks in Low-Carbon Energy Technologies’, 2011 – http://www.oakdenehollins.com/pdf/CriticalMetalsinSET.pdf
  12. Wikipedia: ‘Chalcolithic’ – https://en.wikipedia.org/wiki/Chalcolithic
  13. U.S. Geological Survey: ‘Recycled Cell Phones – A Treasure Trove of Valuable Metals’, July 2006 – http://pubs.usgs.gov/fs/2006/3097/fs2006-3097.pdf
  14. Environmental Science and Technology: ‘Dynamic Analysis of Global Copper Flows’, Glöser et al., vol.47 no.12 pp.6564-6572, May 2013 – https://pubs.acs.org/doi/full/10.1021/es400069b
  15. Wikipedia: ‘Peak copper’ – https://en.wikipedia.org/wiki/Peak_copper
  16. Resource Policy: ‘The Environmental sustainability of mining in Australia: key mega-trends and looming constraints’, Gavin M. Mudd, vol.35 no.2 pp.98-115, June 2010 – http://www.fraw.org.uk/library/pages/mudd2010.shtml
  17. Wikipedia: ‘Metal theft’ – https://en.wikipedia.org/wiki/Metal_theft
  18. Mining: ‘Copper supply crunch earlier than predicted – experts’, 10th April 2018 – http://www.mining.com/copper-supply-crunch-earlier-predicted-experts/
  19. Wikipedia: ‘Energy returned on energy invested’ – https://en.wikipedia.org/wiki/Energy_returned_on_energy_invested
  20. Ecological Modelling: ‘Analysis of energy footprints associated with recycling of glass and plastic – case studies for industrial ecology’, vol.174 no.1-2 pp.175-189, May 2004 – https://www.sciencedirect.com/science/article/pii/S0304380004000067
  21. Sustainability: ‘Energy, Economic Growth and Environmental Sustainability: Five Propositions’, vol.2 pp.1784-1809, 18th June 2010 – http://www.mdpi.com/2071-1050/2/6/1784/pdf
  22. Nature: ‘Time to leave GDP behind’, vol.505 pp.283-285, 16th January 2014 – http://www.nature.com/polopoly_fs/1.14499!/menu/main/topColumns/topLeftColumn/pdf/505283a.pdf
  23. International Journal of Transdisciplinary Research: ‘The Need for a New, Biophysical-Based Paradigm in Economics for the Second Half of the Age of Oil’, vol.1 no.1 pp.4-22, 2006 – http://www.fraw.org.uk/library/pages/hallklitgaard2006.shtml
  24. Wikipedia: ‘Arthur Eddington’ – https://en.wikipedia.org/wiki/Arthur_Eddington
  25. Journal of Cleaner Production: ‘Why are we growth-addicted? The hard way towards degrowth in the involutionary western development path’, vo.18 no.6 pp.590-595, April 2010 – https://degrowth.org/wp-content/uploads/2011/05/Van-Griethuysen-why-are-we-growth-addicted.pdf
  26. The Australian National University : ‘The Role of Energy in Economic Growth’, Centre for Climate Economics & Policy, October 2010 – http://www.fraw.org.uk/library/pages/stern2010.shtml
  27. PNAS: ‘Tracking the ecological overshoot of the human economy’, vol.99 no.14 pp.9266-9271, 9th July 2002 – http://www.fraw.org.uk/library/pages/wackernagel2002.shtml
  28. The Corner House: ‘Energy Security: For Whom?, For What?’, February 2012 – http://www.fraw.org.uk/library/pages/cornerhouse2012.shtml
  29. Paul Mobbs/MEI: ‘Energy Beyond Oil – Could You Cut Your Energy Use by Sixty Percent?’, June 2005 – http://www.fraw.org.uk/mei/energy_beyond_oil_book.shtml
  30. Ecological Economics: ‘Degrowth and the supply of money in an energy-scarce world’, vol.84 pp.187-193, 28th March 2011 – http://www.fraw.org.uk/library/pages/douthwaite2011.shtml
  31. Proceedings of the Royal Society B: ‘Can a collapse of global civilization be avoided?’, vol.280 no.1754, 7th March 2013 – http://www.fraw.org.uk/library/pages/ehrlich2013.shtml
  32. Melbourne Sustainable Society Institute: ‘Is Global Collapse Imminent?: An Updated Comparison of The Limits to Growth with Historical Data’, Research Paper No.4, August 2014 – http://www.fraw.org.uk/library/pages/turner2014.shtml
Advertisements




Lithium’s limits to growth

7 08 2017

The ecological challenges of Tesla’s Gigafactory and the Model 3

From the eclectic brain of Amos B. Batto

A long but well researched article on the limitations of the materials needed for a transition to EVs…..

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Many electric car advocates are heralding the advent of Tesla’s enormous battery factory, known as the “Gigafactory,” and its new Model 3 electric sedan as great advances for the environment.  What they are overlooking are the large quantities of energy and resources that are consumed in lithium-ion battery manufacturing and how these quantities might increase in the future as the production of electric vehicles (EVs) and battery storage ramps up.

Most of the credible life cycle assessment (LCA) studies for different lithium-ion chemistries find large large greenhouse gas emissions per kWh of battery. Here are the CO2-eq emissions per kWh with the battery chemistry listed in parentheses:
Hao et al. (2017): 110 kg (LFP), 104 kg (NMC), 97 kg (LMO)
Ellingsen et al. (2014): 170 kg (NMC)
Dunn et al. (2012): 40 kg (LMO)
Majeau-Bettez et al. (2011): 200 kg (NMC), 240 kg (LFP)
Ou et al (2010): 290 kg (NMC)
Zackrisson et al (2010): 440 kg (LFP)

Dunn et al. and Hao et al. are based on the GREET model developed by Argonne National Laboratory, which sums up the steps in the process and is based on the estimated energy consumption for each step. In contrast, Ellingsen et al. and Zackrisson et al. are based on the total energy consumption used by a working battery factory, which better captures all the energy in the processing steps, but the data is old and the battery factory was not very energy efficient, nor was it operating at full capacity. Battery manufacturing is getting more energy efficient over time and the energy density of the batteries is increasing by roughly 7% a year, so less materials are needed per kWh of battery. It is also worth noting that no LCA studies have been conducted on the NCA chemistry used by Tesla. NCA has very high emissions per kg due to the large amount of nickel in the cathode, but is very energy dense, so less total material is needed per kWh, so it is probably similar in emissions to NMC.

The big debate in the LCA studies of battery manufacturing is how much energy is consumed per kWh of battery in the battery factory. In terms of MJ per kWh of battery, Ellingsen et al. estimate 586 MJ, Zachrisson et al. estimate 451 MJ and Majeu-Bettez et al. estimate 371-473 MJ. However, the energy for the drying rooms and factory equipment is generally fixed, regardless of the throughput. Ellingsen et al (2014) found that the energy expended to manufacture a kWh of battery could vary as much as 4 times, depending on whether the factory is operating at full capacity or partial capacity. Since the Gigafactory will probably be operating a full capacity and energy efficiency is improving, let’s assume between 100 MJ and 150 MJ per kWh of battery in the Gigafactory (which converts to 28 – 42 kWh per kWh of battery). It is unlikely to be significantly less, because it is more energy efficient to burn natural gas for the drying rooms than use electric heaters, but the Gigafactory will have to use electric heaters to meet Musk’s goal of 100% renewable energy.

If producing 105 GWh of batteries per year at 100 – 150 MJ per kWh, plus another 45 GWh of packs with batteries from other factories at 25 MJ per kWh, the Gigafactory will consume between 3,229 and 4,688 GWh per year, which is between 8.3% and 12.0% of the total electrical generation in Nevada in 2016. I calculate that 285 MW of solar panels can be placed on the roof of the Gigafactory and they will only generate 600 GWh per year, assuming a yearly average of 7.16 kWh/m2/day of solar radiation, 85% (1.3 million m2) of the roof will be covered, 20% efficiency in the panels and a 10% system loss.

Solar panels in dusty locations such as Nevada loose roughly 25% of their output if they are not regularly cleaned. Although robots have been developed to clean panels with brushes, water will most likely be used to clean the Gigafactory’s panels. A study by Sandia National Laboratory found that photovoltaic energy plants in Nevada consume 0.0520 acre-feet of water per MW of nameplate capacity per year. The solar panels at the Gigafactory will probably have 25% less area per MW than the solar panels in the Sandia study, so we can guesstimate that the solar panels on the Gigafactory roof will consume 11.1 acre-feet or 13,700 cubic meters of water per year.

Solar panels can also be placed on the ground around the factory, and but consider the fact that the Gigafactory will only receive 4.23 kWh/m2/day in December, compared to 9.81 kWh/m2/day in July. With less than half the energy from the panels during the winter, the Gigafactory will need other sources of energy during the times when it is cloudy and the sun’s rays are more indirect. Even during the summer, the Gigafactory will probably have to use temporary battery storage to smooth out the solar output or get additional energy with electric utilities which use gas peaking, battery storage or buy energy from the regional grid to give the Gigafactory a stable supply of electricity.

The original mockup of the Gigafactory showed wind turbines on the hillsides around the plant, but wind energy will not work onsite, because the area has such low wind speed. A weather station in the Truckee River valley along I-80, near the Gigafactory, measures an average wind speed of 3.3 m/s at a height of 6 meters, although the wind speed is probably higher at the site of the Gigafactory. Between 4 to 5 m/s is the minimum wind speed to start generating any energy, and between 5 and 6 m/s is generally considered the minimum for wind turbines to be economically viable. It might be possible to erect viable wind turbines onsite with 150 m towers to capture better wind, but the high costs make it likely that Tesla will forgo that option.

The region has good geothermal energy at depths of 4000 to 6000 feet and this energy is not variable like solar and wind. However, there is a great deal of risk in geothermal exploration which costs $10 million to drill a test well. It is more likely that Tesla will try to buy geothermal energy from nearby producers, but geothermal energy in the region is already in heavy demand, due to the clean energy mandates from California, so it won’t be cheap.

Despite Musk’s rhetoric about producing 100% of the Gigafactory’s energy onsite from renewable sources, Tesla knows that it is highly unrealistic, which is why it negotiated to get $8 million in electricity rebates from the state of Nevada over an 8 year period. It is possible that the Gigafactory will buy hydroelectric energy from Washington or Oregon, but California already competes for that electricity. If Tesla wants a diversified supply of renewable energy to balance out the variability of its solar panels, it will probably have to provide guaranteed returns for third parties to build new geothermal plants or wind farms in the region.

I would guesstimate that between 2/3 of the electricity consumed by the Gigafactory will come from the standard Nevada grid, whereas 1/3 will be generated onsite or be bought from clean sources. In 2016, utility-scale electricity generation in Nevada was 72.8% natural gas, 5.5% coal, 4.5% hydroelectric, 0.9% wind, 5.7% PV solar, 0.6% concentrated solar, 9.8% geothermal, 0.14% biomass and 0.03% petroleum coke. If we use the grams of CO2-eq per kWh estimated by IPCC AR5 WGIII and Bruckner et al (2014), then natural gas emits 595 g, coal emits 1027 g, petroleum emits 880 g, hydroelectric emits 24 g, terrestrial wind emits 11 g, utility PV solar emits 48 g, residential PV solar emits 41 g, concentrated solar emits 27 g, geothermal emits 38 g and biomass emits 230 g. Based on those emission rates, grid electricity in Nevada emits 499 g CO2-eq per kWh. If 2/3 comes from the grid and 1/3 comes from rooftop PV solar or a similar clean source, then the electricity used in the Gigafactory will emit 346 g CO2 per kWh. If consuming between 3,229 and 4,688 GWh per year, the Gigafactory will emit between 1.12 and 1.62 megatonnes of CO2-eq per year, which represents between 3.1% and 4.5% of the greenhouse gas emissions that the state of Nevada produced in 2014 according to the World Resources Institute.

Aside from the GHG emissions from the Gigafactory, it is necessary to consider the greenhouse gas emissions from mining, refining and processing the materials used in the Gigafactory. The materials used in batteries consume a tremendous amount of energy and resources to produce. The various estimates of the energy to produce the materials in batteries and their greenhouse gas emissions shows the high impact that battery manufacturing has on the planet.

ImpactPerKgBatteryMaterials

To get some idea of how much materials will be used in the NCA cells produced by the Gigafactory, I attempted to do a rough calculation of the weight of materials in 1 kWh of cells. Taking the weight breakdown of an NMC battery cell in Olofsson and Romare (2013), I used the same weight percentages for the cathode, electrolyte, anode and packaging, but scaled the energy density up from 233 kW per kg in the NCA cells in 2014 to 263 kW per kg, which is a 13% increase, since Telsa claims a 10% to 15% increase in energy density in the Gigafactory’s cells. Then, I estimated the weight of the components in the cathode, using 76% nickel, 14% cobalt, and 10% aluminum and some stochiometry to calculate the lithium and oxygen compared to the rest of the cathode materials. The 2170 cells produced by the Gigafactory will probably have different weight ratios between their components, and they will have more packaging materials than the pouch cells studied by Olofsson and Romare, but this provides a basic idea how much material will be consumed in the Tesla cells.

BatteryMaterialsIn1KWhGigafactory

The estimates of the energy, the emissions of carbon dioxide equivalent, sulfur dioxide equivalent, phosphorous equivalent and human toxicity to produce the metals are taken from Nuss and Eckelman (2014), which are process-sum estimates based on the EcoInvent database. These are estimates to produce generic metals, not the highly purified metals used in batteries, and the process-sum methodology generally underestimates the emissions, so the estimates should be taken with a grain of salt but they do give some idea about the relative impact of the different components in battery cells since they use the same methodology in their calculations.

At this point we still don’t know how large the battery will be in the forthcoming Model 3, but it has been estimated to have a capacity of 55 kWh based on a range of 215 miles for the base model and a 20% reduction in the size of the car compared to the Model S. At that battery size, the cells in the Model 3 will contain 6.3 kg of lithium, 26.4 kg of nickel, 4.9 kg of cobalt, 27.9 kg of aluminum, 56.6 kg of copper and 21.0 kg of graphite.

Even more concerning is the total impact of the Gigafactory when it ramps up to its planned capacity of 150 GWh per year. Originally, the Gigafactory was scheduled to produce 35 GWh of lithium ion batteries by 2020, plus package an additional 15 GWh of cells produced in other factories. After Tesla received 325,000 preorders for the Model 3 within a week of being announced on March 31, 2016, the company ambitiously announced that it would triple its planned battery production and be able to produce 500,000 cars a year by 2018–two years earlier than initially planned. Now Elon Musk is talking about building 2 to 4 additional Gigafactories and one is rumored to have signed a deal to build one of them in Shanghai.

If the components for 1 kWh of Gigafactory batteries is correct and the Nevada plant manages to produce as much as Musk predicts, then the Gigafactory and the cells it packages from other battery factories will consume 17,119 tonnes of lithium, 71,860 tonnes of nickel, 13,292 tonnes of cobalt, 154,468 tonnes of copper and 75,961 tonnes of aluminum. All of these metals except aluminum have limited global reserves, and North America doesn’t have enough production capacity to hope to supply all the demand of the Gigafactory, except in the case of aluminum and possibly copper.

150GWhInGigafactory

When the Gigafactory was originally announced, Telsa made statements about sourcing the battery materials from North America which would both reduce its costs and lower the environmental impact of its batteries. These claims should be treated with skepticism. The Gigafactory will reduce the transportation emissions in battery manufacturing, since it will be shipping directly from the refineries and processors, but the transportation emissions will still be very high because North America simply doesn’t produce enough of the metals needed by the Gigafactory. If the Gigafactory manufacturers 150 GWh of batteries per year, then it will consume almost 200 times more lithium than North America produced in 2013. In addition, it will also consume 166% of the cobalt, 133% of the natural graphite, 25.7% of the nickel, and 5.6% of the copper produced by North American mines in 2016. Presumably synthetic graphite will be used instead of natural graphite because it has a higher purity level of carbon and more uniform spheroid flakes which allow for the easier flow of electrons in the cathode, but most synthetic graphite comes from Asia. Only in the case of aluminum does it seem likely that the metal will come entirely from North America, since Gigafactory will consume 1.9% of North American mine production and the US has excess aluminum refining capacity and no shortage of bauxite. Even when considering that roughly 45 GWh of the battery cells will come from external battery factories which are presumably located in Asia, the Gigafactory will overwhelm the lithium and cobalt markets in North America, and strain the local supplies of nickel and copper.

GigafactoryMetalConsumption

Shipping from overseas contributes to greenhouse gases, but shipping over water is very energy efficient. The Gigafactory is located at a nexus of railroad lines, so it can efficiently ship the battery materials coming from Asia through the port of Oakland. The bigger problem is that most ships on international waters use dirty bunker fuels that contain 2.7% sulfur on average, so they release large quantities of sulfur dioxide into the atmosphere that cause acid rain and respiratory diseases.

A larger concern than the emissions from shipping is the fact that the production of most of these battery materials is an energy intensive process that consumes between 100 and 200 mejajoules per kg. The aluminum, copper, nickel and cobalt produced by North America is likely to come from places powered by hydroelectric dams in Canada and natural gas in the US, so they are comparatively cleaner.  Most of the metal refining and graphite production in Asia and Australia, however, is done by burning coal. Most of the places that produce battery materials either lack strong pollution controls, as is the case in Russia, the Democratic Republic of Congo (DRC), Zambia, Philippines or New Caledonia, or they use dirty sources of energy, as is the case in China, India, Australia, the DRC, Zambia, Brazil and Madagascar.

MineProductionByCountry

Most of the world’s lithium traditionally came from pumping lithium rich subsurface water out of the salt flats of Tibet, northeast Chile, northwest Argentina and Nevada, but the places with concentrated lithium brines are rapidly being exhausted. The US Geological Survey estimates that China’s annual production of lithium which mostly comes from salt flats in Tibet has fallen from 4500 tonnes in 2012 to just 2000 tonnes in 2016. Silver Peak, Nevada, which is the only place in North America where lithium is currently extracted, may be experiencing similar production problems due to the exhaustion of its lithium, but its annual production numbers are confidential.

Since 1966 when brine extraction began in Silver Peak, the concentration of lithium in the water has fallen from 360 to 230 ppm (parts per million), and it is probably around 200 ppm today. At that concentration of lithium, 14,300 liters of water need to be extracted to produce 1 kg of battery-grade lithium metal. This subsurface water is critical in a state that only receives an average of 9 inches of rain per year. Parts of Nevada are already suffering from water rationing, so a massive expansion of lithium extraction is an added stress, but the biggest risk is that brine operations may contaminate the ground water. 30% of Nevada’s water is pumped from underground aquifers, so protecting this resource is vitally important. Lithium-rich water is passed through a series of 4 or 5 evaporation pools over a series of 12 to 18 months, where it is converted to lithium chloride, which is toxic to plants and aquatic life and can contaminate the ground water. Adams-Kszos and Stewart (2003) measured the effect of lithium chloride contamination in aquatic species 150 miles away from brine operations in Nevada.

As the lithium concentrations fall in the water, more energy is expended in pumping water and evaporating it to concentrate the lithium for processing. Argonne National Laboratory estimates that it takes 3 times as much energy to extract a tonne of lithium in Silver Peak, Nevada as in the Atacama Salt Flats of Chile, where the lithium is 7 times more concentrated.  Most of the lithium in Chile and Argentina is produced with electricity from diesel generators, but in China and Australia it comes from burning coal, which is even worse.

For every kg of battery-grade lithium, 4.4 kg of slaked lime is consumed to remove magnesium and calcium from the brine in Silver Peak. The process of producing this lime from limestone releases 0.713 kg of COfor every kg of lime. In addition, 5 kg of soda ash (Na2CO3) is added for each kilo of battery-grade lithium to precipitate it as lithium carbonate. Production of soda ash is also an energy intensive process which produces greenhouse gases.

Although lithium is an abundant element and can be found in ocean water and salty lakes, there are only 4 places on the planet where it is concentrated enough without contaminants to be economically extracted from the water and the few places with concentrated lithium water are rapidly being exploited. In 2008, Meridian International estimated that 2 decades of mining had extracted 20% of the lithium from the epicenter of the Atacama Salt Flats where lithium concentrations are above 3000 ppm. According to Meridian’s calculations, the world only had 4 million tonnes of high-concentration lithium brine reserves remaining in 2008.

As the best concentrations of lithium brine are being exhausted, extraction is increasingly moving to mining pegmatites, such as spodumene. North Carolina, Russia and Canada shut down their pegmatite operations because they couldn’t compete with the cheap cost of lithium from the salt flats of Chile and Argentine, but Australia and Zimbabwe have dramatically increased their production of lithium from pegmatites in recent years. Between 2004 and 2016, the percentage of global lithium from pegmatites increased from 39% to 44%.

LithiumFromPegmatites

In 2016, Australia produced 40.9% of the global lithium supply by processing spodumene, which is an extremely energy-intensive process. It takes 125 MJ of energy to extract a kilo of lithium from Chile’s salt flats, whereas 850 MJ is consumed to extract the same amount of lithium from spodumene in Australia. The spodumene is crushed, so it can be passed through a flotation beneficiation process to produce a concentrate. That concentrate is then heated to 1100ºC to change the crystal structure of the mineral. Then, the spodumene is ground and mixed with sulfuric acid and heated to 250ºC to form lithium sulfate. Water is added to dissolve the lithium sulfate and it is filtered before adding soda ash which causes it to precipitate as lithium carbonate. As lithium extraction increasingly moves to pegmatites and salt flats with lower lithium concentrations, the energy consumption will dramatically increase to produce lithium in the future.

Likewise, the energy to extract nickel and cobalt will also increase in future. The nickel and cobalt from Canada and the copper from the United States, generally comes from sulfide ores, which require much less energy to refine, but these sulfide reserves are limited. The majority of nickel and cobalt, and a sizable proportion of the copper used by the Gigafactory will likely come from places which present ethical challenges. Nickel from sulfide ores generally consumes less than 100 MJ of energy per kg, whereas nickel produced from laterite ores consumes between 252 and 572 MJ per kg. All the sulfide sources emit less than 10 kg of CO2 per kg of nickel, whereas the greenhouse gas emissions from laterite sources range from 25 to 46 kg  CO2 per kg of nickel. It is generally better to acquire metals from sulfide ores, since they emit fewer greenhouse gases and they generally come from deeper in the ground, whereas laterite ores generally are produced by open pit and strip mining which causes greater disruption of the local ecology. Between 2004 and 2016, the percentage of global primary production of nickel from laterite ores increase from 40% to 60% and that percentage will continue to grow in the future, since 72% of global nickel “resources” are laterites according to the US Geological Survey.

globalNickelProduction

Cobalt is a byproduct of copper or nickel mining. The majority of the sulfide ores containing copper/cobalt are located in places like Norilsk, Russia, Zambia and the Katanga Province of the Democratic Republic of Congo, where there are no pollution controls to capture the large amounts of sulfur dioxide and heavy metals released by smelting. The refineries in Norilsk, Russia, which produce 11% of the world’s nickel and 5% of its cobalt, are so polluting, that nothing grows within a 20 kilometer radius of the refineries and it is reported that Norilsk has the highest rates of lung cancer in the world.

The Democratic Republic of Congo currently produces 54% of the world’s cobalt and 5% of its copper. Buying cobalt from the DRC helps fuel a civil war in the Katanga Province where the use of children soldiers and systematic rape are commonplace. Zambia, which is located right over the border from Katanga Province, produces 4% of the world’s cobalt and copper and it also has very lax pollution controls for metal refining.

Most of the cobalt and nickel produced by the DRC and Zambia is shipped to China for refining by burning coal. China has cracked down on sulfur dioxide and heavy metal emissions in recent years, and now the DRC is attempting to do more of the refining within its own borders. The problem is that the DRC produces most of its energy from hydroelectric dams in tropical rainforests, which is the dirtiest energy on the planet. According to the IPCC (AR5 WGIII 2014), hydroelectric dams typically emit a medium of 24 g of  CO2-eq per kWh, but tropical dams accumulate large amounts of vegetation which collect at the bottom of the dam where bacteria feeding on the decaying matter release methane (CH4) in the absence of oxygen. There have been no measurements of the methane released by dams in the DRC, but studies of 3 Amazonian hydroelectric dams found that they emit an average of 2556 g CO2-eq per kWh. Presumably the CO2 from these dams would have been emitted regardless of whether the vegetation falls on the forest floor or in a dam, but rainforest dams are unique environments without oxygen that produces methane. If we only count the methane emissions, then Amazonian hydroelectric dams emit an average of 2044 g CO2-eq per kWh. Any refining of copper/cobalt in the DRC and Zambia or nickel/cobalt in Brazil will likely use this type of energy which emits twice as much greenhouse gases as coal.

To avoid the ethical problems with obtaining nickel and cobalt from Russia and cobalt and copper from the DRC and Zambia, the Gigafactory will have to consume metals from laterite ores in places like Cuba, New Caledonia, Philippines, Indonesia and Madagascar, which dramatically increases the greenhouse gas emissions of these metals. The nickel/cobalt ore from Moa, Cuba is shipped to Sherritts’ refineries in Canada, so presumably it will be produced with pollution controls in Cuba and Canada and relatively clean sources of energy. In contrast, the nickel/cobalt mining in the Philippines and New Caledonia has generated protracted protests by the local population who are effected by the contamination of their water, soil and air. When Vale’s $6 billion high pressure acid leaching plant in Goro, New Caledonia leaked 100,000 liters of acid-tainted effluent leaked into a local river in May 2014, protesters frustrated by the unaccountability of the mining giant burned a third of its trucks and one of its buildings, causing between $20 and $30 million in damages. The mining companies extracting nickel and cobalt in the Philippines have shown so little regard for the health of the local people, that the public outcry induced the Duterte administration to recently announce that it will prohibit all open pit mining of nickel. If this pronouncement is enforced, the operations of 28 of the 41 companies mining nickel/cobalt in the country will be shut down and the global supply of nickel will be reduced between 8% and 10%.

Most refining of laterite ores in the world is done with dirty energy, which is problematic because these ores require so much more energy than sulfide ores. Much of the copper/cobalt from the DRC and Zambia and the nickel/cobalt from the Philippines is shipped to China where it is refined with coal. The largest nickel/cobalt laterite mine and refinery in the world is the Ambatovy Project in Madagascar. Although the majority of the electricity on the island comes from hydroelectric dams, the supply is so limited that Ambatovy constructed three 30 MW coal-powered generators, plus 30 MW diesel powered generators.

It is highly likely that many of the LCA studies of lithium-ion batteries have underestimated the energy and greenhouse gas emissions to produce their metals, because they assume that the lithium comes from brine operations and the copper, nickel and cobalt come from sulfide ores with high metal concentrations. As lithium extraction increasingly shifts to spodumene mining and nickel and cobalt mining shifts to laterite ores, the greenhouse gas emissions to produce these metals will dramatically increase.

As the global production of lithium-ion batteries ramps up, the most concentrated ores for these metals will become exhausted, so that mining will move to less-concentrated sources, which require more energy and resources in the extraction and processing.  In 1910, copper ore in the US contained 1.9% copper. By 1950, this percentage had fallen to 0.9% copper, and by 1980 it was at 0.5% copper. As the concentration of copper in the ore has fallen, the environmental impact of extraction has risen. In a study of the smelting and refining of copper and nickel, Norgate and Rankin (2000) found that the energy consumption, greenhouse gas emissions and sulfur dioxide emissions per kg of metal rose gradually when changing from ore with 3% or 2% metal to 1% metal, but below 1% the environmental impacts increased dramatically. MJ/kg, CO2/kg and SO2/kg doubled when moving from ore with 1% metal to ore with 0.5% metal, and they doubled again when moving to 0.25% metal. Producing a kilo of copper today in the US has double the environmental impact of a kg of copper half a century ago and it will probably have 4 times the impact in the future.

The enormous demand for metals by battery manufacturers will force the mining companies to switch to less and less concentrated ores and consume more energy in their extraction. If the Nevada Gigafactory produces 150 GWh of batteries per year, then it will dramatically reduce the current global reserves listed by the US Geological survey. The Nevada Gigafatory will cut the current global lithium reserves from 400 to 270 years, assuming that current global consumption in other sectors does not change (which is highly unlikely). If the Gigafactory consumes metals whose recycled content is the US average recycling rate, then the current global copper reserves will be reduced from 37.1 to 36.9 years, the nickel reserves from 34.7 to 33.9 years, and the cobalt reserves from 56.9 to 52.5 years.

Recycling at the Gigafactory will not dramatically reduce its demand for metals. If we assume that 80% of the metal consumed by the Gigafactory will come from recycled content starting in 15 years when batteries start to be returned for recycling, then current global reserves will be extended 0.04 years for copper, 0.09 years for nickel, 0.9 years for cobalt. Only in the case of lithium will recycling make a dramatic difference, extending the current reserves 82 years for lithium.

The prospects for global shortages of these metals will become even more dire if the 95.0 million vehicles that the world produced in 2016 were all long-range electrics as Elon Musk advocates for “sustainable transport.” If the average vehicle (including all trucks and buses) has a 50 kWh battery, then the world would need to produce 4750 GWh of batteries per year just for electric vehicles. With energy storage for the electrical grid, that total will probably double, so 64 Gigafactories will be needed. Even that might not enough. In Leonardo de Caprio’s documentary Before the Flood, Elon Musk states, “We actually did the calculations to figure out what it would take to transition the whole world to sustainable energy… and you’d need 100 Gigafactories.”

Lithium-ion batteries will get more energy dense in the future, but they are unlikely to reach the high energy density of the NCA cells produced in the Gigafactory, if using the LMO or LFP chemistries. For that kind of energy density, they will probably need either an NCA or an altered NMC chemistry which is 70%-80% nickel, so the proportion of lithium, nickel, cobalt and copper in most future EV batteries is likely to be similar to the Gigafactory’s NCA cells. If 4750 GWh of these batteries are produced every year at an energy density of 263 Wh/kg, then the current global reserves will be used up in 24.5 years for lithium, 31.2 years for copper, 20.2 years for nickel, and 15.4 years for cobalt. Even if those batteries are produced with 80% recycled metals, starting in 15 years time, the current global lithium reserves would be extended 6.6 years, or 7.4 years if all sectors switch to using 80% recycled lithium. Using 80% recycled metal in the batteries would extend current copper, nickel and cobalt reserves by 0.7, 0.5 and 0.1 years, respectively. An 80% recycling rate in all sectors would make a difference for copper, extending its reserves by 11.5 years, but only 2.8 years for nickel and 0.2 years for cobalt. In other words, recycling will not significantly reduce the enormous stresses that lithium-ion batteries will place on global metal supplies, because they represent so much new demand for metals.

As the demand for these metals increases, the prices will increase and new sources of these metals will be found, but they will either be in places like the DRC with ethical challenges or in places with lower quality ores which require more energy and resources to extract and refine. We can expect more energy-intensive mining of spodumene and  more strip mining of laterite ores which cause more ecological disruption. The ocean floor has enormous quantities of manganese, nickel, copper and cobalt, but the energy and resources to scrap the bottom of the ocean will dramatically increase the economic and ecological costs. If battery manufacturing dramatically raises the prices of lithium, nickel, cobalt, copper (and manganese for NMC cells), then it will be doubly difficult to transition to a sustainable civilization in other areas. For example, nickel and cobalt are essential to making carbide blades, tool dies and high-temperature turbine blades and copper is a vital for wiring, electronics and electrical motors. It is hard to imagine how the whole world will transition to a low-carbon economy if these metals are made prohibitively expensive by manufacturing over a billion lithium-ion batteries for EVs.

Future batteries will probably be able to halve their weight by switching to a solid electrolyte and using an anode made of lithium metal, lithiated silicon or carbon nanotubes (graphene), but that will only eliminate the copper, while doing little to reduce the demand for the other metals. Switching the anode to spongy silicon or graphene will allow batteries to hold more charge per kilogram, but those materials also dramatically increase the cost and the energy and resources that are consumed in battery manufacturing.

In the near future, lithium-ion batteries are likely to continue to follow their historical trend of using 7% less materials each year to hold the same amount of charge. That rate of improvement, however, is unlikely to last. An NCA cathode currently holds a maximum of 200 mAh of energy per gram, but its theoretical maximum is 279 mAh/g. It has already achieved 72% of what is theoretically possible, so there is little scope to keep improving. NMC at 170 mAh/g is currently farther from its theoretical limit of 280 mAh/g, but the rate of improvement is likely to slow as these battery chemistries bump against their theoretical limits.

Clearly the planet doesn’t have the resources to build 95 million long-range electric vehicles each year that run on lithium-ion batteries. Possibly a new type of battery will be invented that only uses common materials, such as aluminum, zinc, sodium and sulfur, but all the batteries that have been conceived with these sorts of material still have significant drawbacks. Maybe a new type of battery will be invented that is suitable for vehicles or the membranes in fuel cells will become cheap enough to make hydrogen a viable competitor, but at this point, lithium-ion batteries appear likely to dominate electric vehicles for the foreseeable future. The only way EVs based on lithium-ion can become a sustainable solution for transport is if the world learns to live with far fewer vehicles.

Currently 3% more vehicles are being built each year, and there is huge demand for vehicles in the developing world. While demand for cars has plateaued in the developed world, vehicle manufacturing since 1999 has grown 17.4% and 10.5% per year in China and India, respectively. If the developing world follows the unsustainable model of vehicle ownership found in the developed world, then the transition to electrified transport will cause severe metal shortages. Based on current trends, Navigant Research predicts that 129.9 million vehicles will be built in the year 2035, when there will be 2 billion vehicles on the road.

GlobalAutoProduction

On the other hand, James Arbib and Tony Seba believe that autonomous vehicles and Transport as a Service (TaaS) such as Uber and Lyft will dramatically reduce demand for vehicles, lowering the number of passenger vehicles on American roads from 247 to 44 million by 2030. If 95% of passenger miles are autonomous TaaS by 2030 and the lifespan of electric vehicles grows to 500,000 miles as Arbib and Seba predict, then far fewer vehicles will be needed. Manufacturing fewer electric vehicles reduces the pressure to extract metals from laterite ores, pegmatites, the ocean floor, and lower-grade ores in general with higher ecological costs.

Ellingsen et al (2016) estimate that the energy consumed by battery factories per kWh of batteries has halved since 2012, however, that has to be balanced by the growing use lithium from spodumene and nickel and cobalt from laterite ores, and ores with lower metal concentrations that require more energy and produce more pollution. Given the increased energy efficiency in battery manufacturing plants and the growing efficiencies of scale, I would guesstimate that lithium-ion battery emissions are currently at roughly 150 kg  CO2-eq per kWh of battery and that the Gigafactory will lower those emissions by a third to roughly 100 kg  CO2-eq / kWh. If the Model 3, uses a 55 kWh battery, then its battery emissions would be roughly 5500 kg  CO2-eq.

Manufacturing a medium-sized EV without the battery emits 6.5 tonnes of  CO2-eq according to Ellingsen et al (2016). Electric cars don’t have the huge engine block of an ICE car, but they have large amounts of copper in the motor’s rotor and the windings and the Model 3 will have far more electronics than a standard EV. The Model S has 23 kg of electronics and I would guesstimate that the Model 3 will have roughly 15 lbs of electronics if it contains nVidia’s Drive PX or a custom processor based on the K-1 graphics processor. If the GHG emissions are roughly 150 kg  CO2-eq per kg of electronics, we can guesstimate that 2.2 tonnes of  CO2-eq will be emitted to manufacture the electronics in the Model 3. Given the large amount of copper, electronics and sensors in the Model 3, add an additional tonne, plus 5.5 tonnes for its 50 kWh battery, so a total of 13 tonnes of  CO2-eq will be emitted to manufacture the entire car.

Manufacturing a medium-sized ICE car emits between 5 and 6 tonnes, so there is roughly a 7.5 tonne difference in GHG emissions between manufacturing the Model 3 and a comparable ICE car. A new ICE car the size of the Model 3 will get roughly 30 mpg. In the US, a gallon of gasoline emits 19.64 lbs of CO2, but it emits 24.3 lbs of  CO2e when the methane and nitrous oxide are included, plus the emissions from extraction, refining and transportation, according to the Argonne National Laboratory. Therefore, we will need to burn 680 gallons of gasoline or drive 20,413 miles at 30 mpg to equal those 7.5 extra tonnes in manufacturing the Model 3.

At this point, the decision whether the Model 3 makes ecological sense depends on where the electricity is coming from. Let’s assume that the Model 3 will consume 0.30 kWh of electricity per mile, which is what the EPA estimates the Nissan Leaf to consume. The Model S will be a smaller and more aerodynamic car than the Leaf, but it will also weigh significantly more due to its larger battery. If we also include the US national average of 4.7% transmission losses in the grid, then the Model 3 will consume 0.315 kWh per mile. After driving the Model 3 100,000 miles, the total greenhouse gas emissions (including the production emissions) will range between 14.1 and 45.3 tonnes, depending on its energy source to charge the battery.

VehicleEmissions100000miles

In comparison, driving a 30 mpg ICE car (with 5.5 tonnes in production emissions) will emit 42.2 tonnes of  CO2-eq after 100,000 miles. If we guesstimate that manufacturing a Toyota Prius will emit 7 tonnes, then driving it 100,000 miles at 52 mpg will emit 28.2 tonnes. Only in places like Kentucky which get almost all their electricity from coal is an ICE car the better environmental choice. The Model 3, however, will have worse emissions than most of its competitors in the green car market, if it is running on average US electricity, which emits 528 grams of CO2-eq per kWh. It will emit slightly more than a plugin hybrid like the Chevy Volt and an efficient hybrid like the Toyota Prius and substantially more than a short-range electric, like the Nissan Leaf.

Most previous comparisons between electric cars and ICE cars were based on short-range electrics with smaller batteries, such as the Nissan Leaf, which is why environmental advocates are so enthusiastic about EVs. However, comparing the Model S and Model 3 to the Nissan Leaf, Chevy Volt and Toyota Prius hybrid shows that the environmental benefits of long-range EVs are questionable when compared to short-range EVs, plugin hybrids and hybrids. Only when running the Model 3 on cleaner sources of electricity does it emit less greenhouse gases than hybrids and plugin hybrids, but in the majority of the United States it will emit slightly more. Many of the early adopters of EVs also owned solar panels, so buying a Model 3 will reduce their carbon footprint, but the proportion of EV owners with solar panels on their roofs is falling. According to CleanTechnica’s PlugInsights annual survey, 25% of EV buyers before 2012 had solar panels on their roofs, compared to just 12% in 2014-2015. Most people who own solar panels do not have a home battery system so they can not use their clean energy all day, and most EV charging will happen at night using dirtier grid electricity.

Another factor to consider is the effect of methane leakage in the extraction and transport of natural gas. There is a raging scientific debate about what percentage of natural gas leaks into the atmosphere without being burned. A number of studies have concluded that the leakage of methane causes electricity from natural gas to have GHG emissions similar to coal, but there is still no consensus on the matter.  If the leakage rate is as high as some researchers believe, then EVs will emit more greenhouse gases than hybrids and efficient ICE cars in places like California which burn large amounts of natural gas.

On the other hand, many people believe that EVs will last 300,000 miles or even 500,000 miles since they have so few moving parts, so their high emissions in manufacturing will be justified. However, the EV battery will probably have to be replaced, and the manufacturing emissions for a long range EV battery can be as high as building a whole new ICE car. Another factor that could inhibit the long life of Telsa’s cars is the fact that the company builds cars described as “computers on wheels,” which are extremely difficult for third parties to fix and upgrade over time. Telsa only sells its parts to authorized repair shops and much of the functionality of car is locked up with proprietary code and secret security measures, as many do-it-yourselfers have discovered to their chagrin. When Tesla cars are damaged and sold as salvage, Tesla remotely disables its cars, so that they will no longer work even if repaired. The $600 inspection fee to reactivate the car plus the towing fees discourage Teslas from being fixed by third parties. These policies make it less likely that old Teslas will be fixed and their lifespans extended to counterbalance the high environmental costs of producing the cars.

Although the Model 3 has high greenhouse gas emissions in its production and driving it is also problematic in parts of the world that currently use dirty energy, those emissions could be significantly reduced in the future if they are accompanied by a shift to renewable energy, more recycling and the electrification of mining equipment, refining and transport. The car’s ecological benefits will increase if the emissions can be decreased in producing battery materials and the greater energy density of batteries is used to decrease the total materials in batteries rather than keep extending the range of EVs. Producing millions of Model 3s will strain the supply of vital metals and shift extraction to reserves which have higher ecological costs. However, the Model 3 could become a more sustainable option if millions of them are deployed in autonomous Transport as a Service fleets, which Arbib and Seba predict will be widespread by 2030, since TaaS will cost a tenth of the price of owning a private vehicle. If the Model 3 and future autonomous EVs become a means to drop the global demand for private vehicles and that helps reduce the demand for lithium, nickel, cobalt and copper down to sustainable levels, then the high environmental costs of manufacturing the Model 3 would be justified.

Nonetheless, the Model 3 and the NCA 2170 batteries currently being produced by Tesla offer few of those possible future ecological benefits. Most of the metal and graphite in the battery is being produced with energy from fossil fuels. In the short term at least, Telsa batteries will keep growing in capacity to offer more range, rather than reducing the total consumption of metals per battery. The extra sensors, processing power and electronics in the current Model 3 will increase its ecological costs without providing the Level 4 or 5 autonomy that would make it possible to convince people to give up their private vehicles. In the here and now, the Model 3 is generally not the best ecological choice, but it might become a better choice in the future.

The Model 3 promises to transform the market not only for EVs, but cars in general. If the unprecedented 500,000 pre-orders for the Model 3 are any indication of future demand, then long-range electrics with some degree of autonomous driving like the Model 3 will capture most of the EV market. Telsa’s stunning success will induce the rest of auto-makers to also start making long-range EVs with large batteries, advanced sensors, powerful image processors, advanced AI, cellular networking, driving data collection and large multimedia touchscreens. These features will dramatically increase the environmental costs of car manufacturing. Whether these features will be balanced by other factors which reduce their environmental costs remains to be seen.

Much of this analysis is guess work, so it should be taken with a grain of salt, but it points out the problems with automatically assuming that EVs are always better for the environment. If we consider sulfate emissions, EVs are significantly worse for the environment. Also, when we consider the depletion of critical metal reserves, EVs are significantly worse than ICE vehicles.

The conclusion should be that switching to long-range EVs with large batteries and advanced electronics bears significant environmental challenges. The high manufacturing emissions of these types of EVs make their ecological benefits questionable for private vehicles which are only used on average 4% of the time. However, they are a very good option for vehicles which are used a higher percentage of the time such as taxis, buses and heavy trucks, because they will be driven many miles to counterbalance their high manufacturing emissions. Companies such as BYD and Proterra provide a model of the kinds of electric vehicles that Tesla should be designing to promote “sustainable transport.” Tesla has a few ideas on the drawing board that are promising from an ecological perspective, such as its long-haul semi, the renting out of Teslas to an autonomous TaaS fleet, and a new vehicle that sounds like a crossover between a sedan and a minibus for public transport. The current Model 3, however, is still a vehicle which promotes private vehicle ownership and bears the high ecological costs of long-range lithium batteries and contributes to the growing shortage of critical metals.

Clearly, EVs alone are not enough to reduce greenhouse gas emissions or attain sustainable transport in general. The first step is to work on switching the electric grid to cleaner renewable energy and installing more residential solar, so that driving an EV emits less CO2. However, another important step is redesigning cities and changing policies so that people aren’t induced to drive so many private vehicles. Instead of millions of private vehicles on the road, we should be aiming for walkable cities and millions of bikes and electric buses, which are far better not only for human health, but also for the environment.

A further step where future Model 3s may help is in providing autonomous TaaS that helps convince people to give up their private vehicles. However, autonomous EVs need to be matched by public policies that disincentivize the kind of needless driving that will likely occur in the future. The total number of miles will likely increase in the future due to autonomous electric cars driving around looking for passengers to pick up and people who spend more time in the car because they can surf the web, watch movies, and enjoy the scenery without doing the steering. Plus, the cost of the electricity to charge the battery is so cheap compared to burning gasoline that people will be induced to drive more, not less.





Commodity Prices Are Cliff-Diving

31 12 2014

headshot

David Stockman

Submitted by David Stockman via Contra Corner blog,

Crude oil is not the only commodity that is crashing. Iron ore is on a similar trajectory and for a common reason. Namely, the two-decade-long economic boom fuelled by the money printing rampage of the world’s central banks is beginning to cool rapidly. What the old-time Austrians called “malinvestment” and what Warren Buffet once referred to as the “naked swimmers” exposed by a receding tide is now becoming all too apparent.

This cooling phase is graphically evident in the cliff-diving movement of most industrial commodities. But it is important to recognize that these are not indicative of some timeless and repetitive cycle—–or an example merely of the old adage that high prices are their own best cure.

Instead, today’s plunging commodity prices represent something new under the sun. That is, they are the product of a fracturing monetary supernova that was a unique and never before experienced aberration caused by the 1990s rise, and then the subsequent lunatic expansion after the 2008 crisis, of a cancerous regime of Keynesian central banking.

Stated differently, the worldwide economic and industrial boom since the early 1990s was not indicative of sublime human progress or the break-out of a newly energetic market capitalism on a global basis. Instead, the approximate $50 trillion gain in the reported global GDP over the past two decades was an unhealthy and unsustainable economic deformation financed by a vast outpouring of fiat credit and false prices in the capital markets.

For that reason, the radical swings in commodity prices during the last two decades mark the path of a central bank generated macro-economic bubble, not merely the unique local supply and demand factors which pertain to crude oil, copper, iron ore, or the rest.  Accordingly, the chart below which shows that iron ore prices have plunged from $150 per ton in early 2013 to about $65 per ton at present only captures the tail end of the cycle.

Iron Ore- Click to enlarge

What really happened is that the central bank instigated global macro-economic bubble ripped commodity pricing cycles out of their historical moorings, resulting in a one time eruption of price levels that had no relationship to sustainable supply and demand factors in the mines and petroleum patch. What materialized, instead, was an unprecedented one-time mismatch of commodity production and use that caused pricing abnormalities of gargantuan proportions.

Thus, the true free market benchmark for iron ore is the pre-1994 price of about $20-25 per ton. This represented the long-time equilibrium between advancing mining technology and diminishing ore grades available to steel mills in the DM economies.

But as shown below, after Mr. Deng institutionalized export mercantilism and printing press prosperity in the form of China’s red capitalism in the early 1990s, iron ore prices broke orbit and soared to $100 per ton in the second half of the decade and then went parabolic from there. After peaking at $140 per ton on the eve of the financial crisis,China’s mad cap “infrastructure” stimulus boom after 2008 drove the price to a peak of $180 per ton in 2011-2012. To wit, iron ore prices peaked at nearly 9X their historic range.

Post 1994 Commodity Bubble - Click to enlarge

The crucial point is that there was nothing normal, sustainable or economic about the $180 per ton peak. It was a pure deformation of central bank credit expansion and the accompanying false pricing of debt and other forms of long-term capital.

Needless to say, the same thing is true of copper. Its historical benchmarks were in the 60 cents to 100 cents per pound range. Yet after 1994, the global bubble—again led by the enormous credit explosion and currency exchange rate suppression in China and its BRIC satellites—carried the price to  $4 per pound in the eve of the financial crisis, and then to nearly $5 during the peak of China’s post-crisis credit explosion.

Indeed, in the case of copper, not only was the cycle driven by unsustainable construction demand; it was also powered by dodgy forms of financial engineering that turned copper inventories into financing collateral that was sometimes re-hypothecated many times over.

The exact same considerations apply most especially to crude oil. China’s GDP grew from $1 trillion to $9 trillion during the 13 years after the turn of the century. Growth of such enormous proportions is not remotely possible in an honest economy based on productivity, savings, investment and sound money. Likewise, China’s call on the global oil supply system—-which soared by 4X from 3 million bbls/day to nearly 12 million—–is also a drastic aberration; it is a product of runaway credit creation that financed false “demand”.

And that was only the beginning of the aberration. The China engine pulled additional false petroleum demand into the world market equation due to the boom among its suppliers—such as Brazil, Canada and Australia for raw materials and South Korea and Taiwan for  components and parts. Output levels and petroleum consumption in Germany and the US were also goosed by China’s voracious demand for German capital goods and Caterpillar’s heavy machinery, for example.

Accordingly, the crude oil price path shown below reflects the same global monetary supernova. The $20 price in place during the 1990s was no higher in inflation adjusted terms than it had been one century earlier when the mighty Spindletop gusher was discovered in East Texas in 1901. By contrast, the 5X eruption to north of $100 per barrel during this century represents the impact of fiat credit and false capital market prices deforming the entire warp and woof of the global economy.

 

fredgraph

Self-evidently, we are now in the cliff-diving phase, but unlike the bounce after the September 2008 financial crisis, there will be no rebound this time around. That is owing to two reasons.

First, most of the world is at “peak debt”. That is, the ratio of total credit market debt to current national income ranges between 350% and 500% in every major economy; and that is the limit of what can be serviced even at today’s aberrantly low interest rates.

As Milton Friedman famously observed, markets are ultimately not fooled by the money illusion. In this case, the illusion is that today’s sub-economic interest rates will last forever and that debt carrying capacity has been elevated accordingly.

Not true. Short-term interest rates may be temporarily and artificially pegged at the zero bound by central bankers, but at the end of the day debt carrying capacity is tethered by real economics and normalized costs of money and debt.

Accordingly, the central banks are now pushing on a string.  The credit channel of monetary transmission is over and done. The only remaining effect of the residual level of money printing still underway is that ZIRP enables carry trade gamblers to drive financial asset prices ever higher, thereby setting up another thundering collapse of the financial bubbles being generated for the third time this century by the world’s central banks.

The second reason for no commodity price rebound is the monumental overhang of the malinvestments which have been made, especially since the 2008 crisis. That is obviously what is now pummelling the petroleum sector.

The huge expansion of high cost crude oil capacity—–in the shale patch, tar sands and deep off-shore—-was due to the aberrationally high price of oil and the inordinately cheap cost of capital which were generated during the last two decades by the global central banks. The above price chart for the WTI marker price of crude, for example, is what explains the eruption of shale oil production from 1 million bbls/day prior to the financial crisis to more than 4 million at present., not an alleged technological miracle called “fracking”.

However, the iron ore capacity expansion story is no less cogent. On the eve of the financial crisis, the Big Three miners—-Vale, BHP and Rio—had already doubled their mining capacity from 250 million tons annually at the turn of the century, to 195 million tons per quarter or 780 million tons annually.

Q production

But when prices soared to $180/ton in 2012, investment levels were drastically scaled-up even further. Currently, the Big Three have combined capacity of more than 1.1 billion tons annually that is not only in the investment pipeline, but is actually so far advanced that completion makes more sense than abandonment.  Accordingly, not withstanding the massive over-supply already in the market, several hundred million more tons will compound the surplus and drive prices even closer to the out-of-pocket cash cost of production in the years immediately ahead.

Curent n planned capacity

The above depicted capacity expansion is a quintessential reflection of the manner in which false prices in the capital markets drive excessive and wasteful investment, and cause the crash following the credit driven boom to be all the more destructive. So the cliff-diving price action here is not just another commodity cycle, but instead is a proxy for the fracturing global credit bubble, led by China department.

During the course of its mad scramble to become the world’s export factory and then its greatest infrastructure construction site, China’s expansion of domestic credit broke every historical record and has ultimately landed in the zone of pure financial madness. To wit, during the 14 years since the turn of the century China’s total debt outstanding–including its vast, opaque, wild west shadow banking system—soared from $1 trillion to $25 trillion, and from 1X GDP to upwards of 3X.

But these “leverage ratios” are actually far more dangerous and unstable than the pure numbers suggest because the denominator—national income or GDP—-has been erected on an unsustainable frenzy of fixed asset investment. Accordingly, China’s so-called GDP of $9 trillion contains a huge component of one-time spending that will disappear in the years ahead, but which will leave behind enormous economic waste and monumental over-investment that will result in sub-economic returns and write-offs for years to come. Stated differently, China’s true total debt ratio is much higher than 3X currently reported due to the unsustainable bloat in its reported national income.

Nearly every year since 2008, in fact, fixed asset investment in public infrastructure, housing and domestic industry has amounted to nearly 50% of GDP. But that’s not just a case of extreme of growth enthusiasm, as the Wall Street bulls would have you believe. It’s actually indicative of an economy of 1.3 billion people who have gone mad digging, building, borrowing and speculating.

Nowhere is this more evident than in China’s vastly overbuilt steel industry, where capacity has soared from about 100 million tons in 1995 to upwards of 1.2 billion tons today. Again, this 12X growth in less than two decades is not just red capitalism getting rambunctious; its actually an economically cancerous deformation that will eventually dislocate the entire global economy.  Stated differently, the 1 billion ton growth of China’s steel industry since 1995 represents 2X the entire capacity of the global steel industry at the time; 7X the size of Japan’s then world champion steel industry; and 10X the then size of the US industry.

Already, the evidence of a thundering break-down of China’s steel industry is gathering momentum. Capacity utilization has fallen from 95% in 2001 to 75% last year, and will eventually plunge toward 60%, resulting in upwards of a half billion tons of excess capacity. Likewise, even the manipulated and massaged financial results from China big steel companies have begin to sharply deteriorate. Profits have dropped from $80-100 billion RMB annually to 20 billion in 2013, and are now in the red; and the reported aggregate leverage ratio of the industry has soared to in excess of 70%.

But these are just mild intimations of what is coming. The hidden truth of the matter is that China would be lucky to have even 500 million tons of annual “sell-through” demand for steel to be used in production of cars, appliances, industrial machinery and for normal replacement cycles of long-lived capital assets like office towers, ships, shopping malls, highways, airports and rails.  Stated differently, upwards of 50% of the 800 million tons of steel produced by China in 2013 likely went into one-time demand from the frenzy in infrastructure spending.

Indeed, the deformations are so extreme that on the margin China’s steel industry has been chasing its own tail like some stumbling, fevered dragon. Thus, demand for plate steel to build dry bulk carriers has soared, but the underlying demand for new bulk carrier capacity was, ironically, driven by bloated demand for the iron ore needed to make the steel to build China’s empty apartments and office towers and unused airports, highways and rails.

In short, when the credit and building frenzy stops, China will be drowning in excess steel capacity and will try to export its way out— flooding the world with cheap steel. A trade crisis will soon ensue, and we will shortly have the kind of globalized import quota system that was imposed on Japan in the early 1980s. Needless to say, the latter may stabilize steel prices at levels far below current quotes, but it will also mean a drastic cutback in global steel production and iron ore demand.

And that gets to the core component of the deformation arising from central bank fueled credit expansion and the drastic worldwide repression of interest rates and cost of capital. The 12X expansion of China’s steel industry was accompanied by an even more fantastic expansion of iron ore production, processing, transportation, port and ocean shipping capacity.

On the one hand, capacity could not grow at the breakneck speed of China’s initial ramp in steel production—so prices soared. And again, not just in the range of traditional cyclical amplitudes. As indicated above, prices rose from $20 per ton in the early 1990s to $180 per ton by 2012—meaning that vast windfall rents were earned on the difference between low cash costs on existing or recently constructed iron ore capacity and the soaring prices in spot and contract markets.

The reality of truly obscene current profits and the propaganda about endless growth in the miracle of red capitalism, combined with the cheap debt available in global capital markets, resulted in an explosion of iron ore mining capacity like the world has never before witnessed in any mineral industry.

Stated differently, the Big Three miners would never have expanded their capacity from 250 million tons to 1.1 billion tons in an honest free market. Nor would they have posted such egregious financial trends as have occurred over the past decade. To wit, even as the global iron ore (and also copper) boom gather steam in the run-up to the financial crisis, the three miners spent $55 billion on CapEx during the four years ending in 2007.

By contrast, during the four most recent years they spent 3.2X more or $175 billion. Not surprisingly, the residue on their balance sheets is unmistakable. Their combined debt went from about $12 billion in 2004 to more than $90 billion at present.

But now, prices will be driven down to the lowest marginal cost of supply, meaning that Big Three EBITDA will violently collapse, causing leverage ratios to soar and new CapEx to be drastically downsized. In turn, Caterpillar’s order book will take a giant hit, and so will its supply chain running all the way back to Peoria.

 

So the collapse of the mother of all commodity bubbles is virtually baked into the cake. As one industry CEO recently acknowledged, his company’s truly variable, cash cost of production is about $20 per ton and he will not hesitate to keep producing for positive variable profit. That means iron ore prices will also plunge far below the current $66 per ton quote now extant in the market.

In short, when the classical Austrians talked about “malinvestment” the pending disasters in the global steel and iron ore industries (and also mining equipment and other supplier industries) are what they had in mind. Except none of them could have imagined the fevered and irrational magnitudes of the deformations that have resulted from the actions of the mad money printers who now run the world’s central banks.





The False Solutions of Green Energy

13 10 2014

Max Wilbert & Cameron Foley expose the fallacies of “green” technology by tracing the process of industrial production for these technologies and exposing the destruction they cause.

I suggest you download the pdf file that has the slides in it, and watch that while you listen to the youtube video…….

Powerpoint slides available at https://dl.dropboxusercontent.com/u/123254/Long%20Term%20Shares/PIELC%20Talk.pdf





More on Renewables fantasy

10 10 2014

As debate continues to rage over at The Conversation I have now mentioned several times regarding future Carbon emissions, I continually come across people who misunderstand our energy conundrums.  It gives me satisfaction to be able to rattle their collective cages, and introduce them to notions like the energy cliff, and the utterly essential continuation of oil production for mining the resources we need to keep business as usual operating.

Interestingly, some of the commentators there introduce me to things I knew nothing about.  Which is good; because it makes me think further about why their solutions will not save the day, and forces me to do some more research and keep the old brain cells alive and ticking.  For instance, when I pointed the conversation towards Simon Michaux’s Peak Mining presentation available on this blog, and that I thought mining without diesel would be impossible, along comes this person who points me to mining trucks powered by overhead electricity, much like an electric train.  This is readily feasible of course, because all those big Tonka Trucks are already running on electric motors, powered by a huge diesel enegine that spins an equally huge generator to produce the electricity for the motors….. very much like a diesel electric locomotive.  My first reaction, however, was ‘how can they move the overhead lines constantly as the bottom of the mine expands and keeps changing shape’?

Here is a video of how they operate……

Now, this video makes claims such as ‘saving energy’, which I suggest it clearly does not.  While running in ‘trolley mode’, diesel consumption may fall from 360L/hr to 45L/hr, but now it’s burning electricity instead, and it’s STILL burning diesel!  On top of that, this video claims that by using electric lines, they can increase the speed of the truck from 8km/hr to 24km/hr….  hello, don’t they realise there is no free lunch?  Going faster requires more energy, especially uphill!  Instead of reducing energy consumption, I think this would actually increase it.  I would like to see total energy consumption in MJ/km rather than merely saying the trucks use less diesel.  You’ll notice that the overhead lines are only used in the uphill sections.

This then got me thinking about why they would go to this trouble.  After all, spending capital to electrify the lifting of ores from the bottom of a mine pit just as the price of these commodities is falling, seems counter intuitive to me.  Until that is, you put two and two together and realise that as the ore concentrations fall off a cliff, more and more ore has to be brought up for processing, and faster and faster to boot, just to keep up with production of the final resource, in this case Copper.  But wait, there’s more…  research shows Zambia produces 200 barrels of oil a day.  NOT 200,000……  two hundred!  On top of that, Zambia gets 100% of its electricity from hydro.  So of course, what else would they do?

Further down The Conversation, someone else makes the comment “Solar thermal is a very new technology, do you think ERoEI values estimated now will apply for all time? ”  Well no…….  thermodynamics dictates that ERoEI will always fall!

“”To maintain a society like ours requires an overall ERoEI of about 12:1″. Perhaps, but perhaps not, that’s a fairly bold assertion, I’m not sure of the weight of evidence behind it. One would also assume that as the easily accessible fossil fuels are increasingly depleted, the ERoEI of fossil fuels would be decreasing (unlike that of renewables which is increasing).”

This is classic.  People who want to believe in a renewables powered future apparently also believe that renewables’ ERoEI can magically rise, just as the fossil fuels’ ERoEI, the very energy sources used to make the renewables, falls.  Talk about white man’s magic….

IF we require to build more and more robots, just build more and more robots, to make more and more PVs to power the robots, and make more robots to build more Tonka Tucks, to dig more and more mineral ores, just so we can build more factories to house more robots to….  well, you get the message.  We are sinking alarmingly increasing amounts of energy and non renewable resources into a black hole, and for what…?

Making someone already rich even richer.  Game over.

By the way, an alarmingly high number of people are predicting a looming financial correction of epic proportion, maybe even this month (October 2014).  I’m not qualified to comment on this, except as just another passenger, but I found this quite concerning.  A bit long at 34 minutes, and the interviewer keeps interrupting annoyingly, but what does everyone else think?