William E. Rees: Don’t Call Me a Pessimist on Climate Change. I Am a Realist

2 02 2020

Posted on February 1, 2020 by energyskeptic

Preface. William E. Rees is professor emeritus of human ecology and ecological economics at the University of British Columbia. He’s one of my favorite ecological writers and has written about energy, limits to growth, sustainability and other ecological topics for many years.

Alice Friedemann   www.energyskeptic.com  author of “When Trucks Stop Running: Energy and the Future of Transportation”, 2015, Springer, Barriers to Making Algal Biofuels, and “Crunch! Whole Grain Artisan Chips and Crackers”. Podcasts: Derrick JensenPractical PreppingKunstlerCast 253KunstlerCast278Peak Prosperity , XX2 report

***

William E. Rees. 2019. Don’t Call Me a Pessimist on Climate Change. I Am a Realist To see our fate clearly, we must face these hard facts about energy, growth and governance. Part one of two. thetyee.ca

No one wants to be the downer at the party, and some would say that I am an unreformed pessimist. But consider this — pessimism and optimism are mere states of mind that may or may not be anchored in reality. I would prefer to be labeled a realist, someone who sees things as they are, who has a healthy respect for good data and solid analysis (or at least credible theory).

Why is this important? Well, if Greta Thunberg and followers are to inspire more than emotional release about climate change, the world needs to face some hard facts that suggest we are headed toward catastrophe. At the same time, skepticism is the hallmark of good science; realists too must be open to the challenge posed by new facts.

So, today, and in a piece to follow, I present an unpopular but fact-based argument in the form of two “Am I wrong?” queries. If you accept my facts, you will see the massive challenge we face in transforming human assumptions and ways of living on Earth.

I welcome being told what crucial facts I might be missing. Even a realist — perhaps especially a realist in present circumstances — occasionally wants to be proved incorrect.

Question 1: The modern world is deeply addicted to fossil fuels and green energy is no substitute. Am I wrong? The Tyee is supported by readers like you Join us and grow independent media in Canada

We can probably agree that techno-industrial societies are utterly dependent on abundant cheap energy just to maintain themselves — and even more energy to grow. The simple fact is that 84 per cent of the world’s primary energy today is derived from fossil fuels.

It should be no surprise, then, that carbon dioxide from burning fossil fuels is the greatest metabolic waste by weight produced by industrial economies. Climate change is a waste management problem!

Cheap fossil energy enabled the world to urbanize, and this process is continuing. The UN expects the urban population to rise to 6.7 billion — 68 per cent of humanity — by 2050. There will be 43 mega-cities with more than 10 million inhabitants each as early as 2030, mostly in China and other Asian countries.

Building out these and hundreds more large cities will require much of the remaining allowable carbon budget. Moreover, the current and future inhabitants of every modern city depend absolutely on the fossil-fuelled productivity of distant hinterlands and on fossil-fuelled transportation for their daily supplies of all essential resources, including water and food.

Fact: Urban civilization cannot exist without prodigious quantities of dependable energy.

All of which generates a genuine emergency. By 2018, the combustion of fossil fuel alone was pumping37.1 billion tonnes of carbon dioxide into the atmosphere. Add to this the net carbon emissions from land clearing (soil oxidation) and more vigorous forest fires, and we can see why atmospheric carbon dioxide concentrations reached an all-time high of 415 parts per Million in early 2019. This is 48% above pre-industrial levels and concentrations are rising exponentially.

And, of course, everyone with an active brain cell is aware that CO2 is the main human-related driver of global warming and associated climate change.

Cue the techno-optimists’ chorus: “Not to worry, all we have to do is transition to green renewable energy!”

In fact, there is plenty of superficial support for the notion that green tech is our saviour. We are told repeatedly that the costs of providing renewable energy have fallen so low that it will soon be practically free. Australian professors Andrew Blakers and Matthew Stocks say “Solar photovoltaic and wind power are rapidly getting cheaper and more abundant — so much so that they are on track to entirely supplant fossil fuels worldwide within two decades.” Luckily, the transition won’t even take up much space: UC Berkeley professor Mehran Moalem argues that “an area of the Earth 335 kilometres by 335 kilometres with solar panels… will provide more than 17.4 TW power…. That means 1.2 per cent of the Sahara desert is sufficient to cover all of the energy needs of the world in solar energy.” (Someone should remind Prof. Moalem that, even if such an engineering feat were possible, a single sandstorm would bury the world’s entire energy supply.)

The first problem with such claims is that despite rapid growth in wind and solar generation, the green energy transition is not really happening. The chart below shows that in most recent years (except 2009, following the 2008 global financial crisis), the uptick in global demand for electrical energy exceeded the total output of the world’s entire 30-year accumulation of solar power installations. Between 2017 and 2018, the demand increase outpaced total solar supply by 60 per cent; two years’ demand increase absorbs the entire output of solar and wind power combined.

582px version of EnergyDemandChart.png
The annual increase in demand for electricity exceeds the entire output of photovoltaic electricity installations. Graph courtesy of Pedro Prieto, with permission.

As long as the growth in demand exceeds additions to supply from renewables, the latter cannot displace fossil fuels even in electricity generation — and remember, electricity is still less than 20 per cent of total energy consumption, with the rest being supplied mostly by fossil fuels.

Nor is any green transition likely to be cheap. The cost of land is substantial and, while the price of solar panels and wind turbines have declined dramatically, this is independent of the high costs associatedwith transmission, grid stabilization and systems maintenance. Consistently reliable wind and solar electricity requires integrating these sources into the grid using battery or pumped hydro storage, back-up generation sources (e.g., gas turbines, cruise-ship scale internal combustion engines, etc.) and meeting other challenges that make it more expensive.

Also problematic is the fact that wind/solar energy is not really renewable. In practice, the life expectancy of a wind turbine may be less than 15 years. Solar panels may last a few years longer but with declining efficiency, so both turbines and panels have to be replaced regularly at great financial, energy and environmental cost. Consider that building a typical wind turbine requires 817 energy-intensive tonnes of steel, 2,270 tonnes of concrete and 41 tonnes of non-recyclable plastic. Solar power also requires large quantities of cement, steel and glass as well as various rare earth metals.

World demand for rare-earth elements — and Earth-destroying mining and refining — would rise 300 per cent to 1,000 per cent by 2050 just to meet the Paris goals. Ironically, the mining, transportation, refining and manufacturing of material inputs to the green energy solution would be powered mainly by fossil fuels (and we’d still have to replace all the machinery and equipment currently running on oil and gas with their electricity-powered equivalents, also using fossil fuel). In short, even if the energy transition were occurring as advertised, it would not necessarily be reflected in declining CO2 emissions.

If we divide 2018 into energy segments, oil, coal and natural gas powered the globe for 309 out of 365 days, hydro and nuclear energy gave us 41 days, and non-hydro renewables (solar panels, wind turbines, biomass) a mere 15 days. If the race is towards a decarbonized finish line by 2050, we’re still pretty much stalled at the gate.

Fact: Despite the hype about the green energy revolution and enhanced efficiency, the global community in 2019 remains addicted to fossil energy and no real cure is on the horizon.

As I say, please do tell me I’m wrong.





The Collapse of Civilization May Have Already Begun

27 11 2019

Scientists disagree on the timeline of collapse and whether it’s imminent. But can we afford to be wrong? And what comes after?

Another long, but as always very well researched post by Nafeez Ahmed
Nov 23 2019

“It is now too late to stop a future collapse of our societies because of climate change.”

These are not the words of a tinfoil hat-donning survivalist. This is from a paper delivered by a senior sustainability academic at a leading business school to the European Commission in Brussels, earlier this year. Before that, he delivered a similar message to a UN conference: “Climate change is now a planetary emergency posing an existential threat to humanity.”

In the age of climate chaos, the collapse of civilization has moved from being a fringe, taboo issue to a more mainstream concern.

As the world reels under each new outbreak of crisis—record heatwaves across the Western hemisphere, devastating fires across the Amazon rainforest, the slow-moving Hurricane Dorian, severe ice melting at the poles—the question of how bad things might get, and how soon, has become increasingly urgent.

The fear of collapse is evident in the framing of movements such as ‘Extinction Rebellion’ and in resounding warnings that business-as-usual means heading toward an uninhabitable planet.

But a growing number of experts not only point at the looming possibility that human civilization itself is at risk; some believe that the science shows it is already too late to prevent collapse. The outcome of the debate on this is obviously critical: it throws light on whether and how societies should adjust to this uncertain landscape.

Yet this is not just a scientific debate. It also raises difficult moral questions about what kind of action is warranted to prepare for, or attempt to avoid, the worst. Scientists may disagree about the timeline of collapse, but many argue that this is entirely beside the point. While scientists and politicians quibble over timelines and half measures, or how bad it’ll all be, we are losing precious time. With the stakes being total collapse, some scientists are increasingly arguing that we should fundamentally change the structure of society just to be safe.

Jem Bendell, a former consultant to the United Nations and longtime Professor of Sustainability Leadership at the University of Cumbria’s Department of Business, delivered a paper in May 2019 explaining how people and communities might “adapt to climate-induced disruption.”

Bendell’s thesis is not only that societal collapse due to climate change is on its way, but that it is, in effect, already here. “Climate change will disrupt your way of life in your lifetimes,” he told the audience at a climate change conference organized by the European Commission.

Devastating consequences, like “the cascading effects of widespread and repeated harvest failures” are now unavoidable, Bendell’s paper says.

He argues this is not so much a doom-and-gloom scenario as a case of waking up to reality, so that we can do as much as we can to save as many lives as possible. His recommended response is what he calls “Deep Adaptation,” which requires going beyond “mere adjustments to our existing economic system and infrastructure, in order to prepare us for the breakdown or collapse of normal societal functions.”

Bendell’s message has since gained a mass following and high-level attention. It is partly responsible for inspiring the new wave of climate protests reverberating around the world.

In March, he launched the Deep Adaptation Forum to connect and support people who, in the face of “inevitable” societal collapse, want to explore how they can “reduce suffering, while saving more of society and the natural world.” Over the last six months, the Forum has gathered more than 10,000 participants. More than 600,000 people have downloaded Bendell’s paper, called Deep Adaptation: A Map for Navigating our Climate Tragedy, published by the University of Cumbria’s Institute of Leadership and Sustainability (IFALS). And many of the key organizers behind the Extinction Rebellion (XR) campaign joined the protest movement after reading it.

“There will be a near-term collapse in society with serious ramifications for the lives of readers,” concludes that paper, released in 2017.

Catastrophe is “probable,” it adds, and extinction “is possible.” Over coming decades, we will see the escalating impacts of the fossil fuel pollution we have already pumped into the atmosphere and oceans. Even if we ceased emissions tomorrow, Bendell argues, the latest climate science shows that “we are now in a climate emergency, which will increasingly disrupt our way of life… a societal collapse is now inevitable within the lifetimes of readers of this paper.”

Bendell puts a rough timeline on this. Collapse will happen within 10 years and inflict disruptions across nations, involving “increased levels of malnutrition, starvation, disease, civil conflict, and war.”

Yet this diagnosis opens up far more questions than it answers. I was left wondering: Which societies are at risk of collapsing due to climate change, and when? Some societies or all societies? Simultaneously or sequentially? Why some rather than others? And how long will the collapse process take? Where will it start, and in what sector? How will that impact others sectors? Or will it take down all sectors of societies in one fell swoop? And what does any of this imply for whether, or how, we might prepare for collapse?

In attempting to answer these questions, I spoke to a wide-range of scientists and experts, and took a deep dive into the obscure but emerging science of how societies and civilizations collapse. I wanted to understand not just whether Bendell’s forecast was right, but to find out what a range experts from climate scientists to risk analysts were unearthing about the possibility of our societies collapsing in coming years and decades.

The emerging science of collapse is still, unfortunately, a nascent field. That’s because it’s an interdisciplinary science that encompasses not only the incredibly complex, interconnected natural systems that comprise the Earth System, but also has to make sense of how those systems interact with the complex, interconnected social, political, economic, and cultural systems of the Human System.

What I discovered provoked a wide range of emotions. I was at times surprised and shocked, often frightened, sometimes relieved. Mostly, I was unsettled. Many scientists exposed flaws in Bendell’s argument. Most rejected the idea of inevitable near-term collapse outright. But to figure out whether a near-term collapse scenario of some kind was likely led me far beyond Bendell. A number of world leading experts told me that such a scenario might, in fact, be far more plausible than conventionally presumed.

Science, gut, or a bit of both?

According to Penn State professor Michael Mann, one of the world’s most renowned climate scientists, Bendell’s grasp of the climate science is deeply flawed.

“To me, this paper is a perfect storm of misguidedness and wrongheadedness,” he told me.

Bendell’s original paper had been rejected for publication by the peer-reviewed Sustainability Accounting, Management and Policy Journal. According to Bendell, the changes that editorial reviewers said were necessary to make the article fit for publication made no sense. But among them, one referee questioned whether Bendell’s presentation of climate data actually supported his conclusion: “I am not sure that the extensive presentation of climate data supports the core argument of the paper in a meaningful way.”

In his response, sent in the form of a letter to the journal’s chief editor, Bendell wrote: “Yet the summary of science is the core of the paper as everything then flows from the conclusion of that analysis. Note that the science I summarise is about what is happening right now, rather than models or theories of complex adaptive systems which the reviewer would have preferred.”

But in Mann’s view, the paper’s failure to pass peer review was not simply because it didn’t fit outmoded academic etiquette, but for the far more serious reason that it lacks scientific rigor. Bendell, he said, is simply “wrong on the science and impacts: There is no credible evidence that we face ‘inevitable near-term collapse.’”

Dr. Gavin Schmidt, head of NASA’s Goddard Institute for Space Studies, who is also world-famous, was even more scathing.

“There are both valid points and unjustified statements throughout,” he told me about Bendell’s paper. “Model projections have not underestimated temperature changes, not everything that is non-linear is therefore ‘out of control.’ Blaming ‘increased volatility from more energy in the atmosphere’ for anything is silly. The evidence for ‘inevitable societal collapse’ is very weak to non-existent.”

Schmidt did not rule out that we are likely to see more instances of local collapse events. “Obviously we have seen such collapses in specific locations associated with extreme storm impacts,” he said. He listed off a number of examples—Puerto RicoBarbudaHaiti, and New Orleans—explaining that while local collapses in certain regions could be possible, it’s a “much harder case to make” at a global level. “And this paper doesn’t make it. I’m not particularly sanguine about what is going to happen, but this is not based on anything real.”

Jeremy Lent, systems theorist and author of The Patterning Instinct: A Cultural History of Humanity’s Search for Meaningargues that throughout Bendell’s paper he frequently slips between the terms “inevitable,” “probably,” and “likely.”

“If he chooses to go with his gut instinct and conclude collapse is inevitable, he has every right to do so,” Lent said, “but I believe it’s irresponsible to package this as a scientifically valid conclusion, and thereby criticize those who interpret the data otherwise as being in denial.”

When I pressed Bendell on this issue, he pushed back against the idea that he was putting forward a hard, scientifically-valid forecast, describing it as a “guess”: “I say in the original paper that I am only guessing at when social collapse will occur. I have said or written that every time I mention that time horizon.”

But why offer this guess at all? “The problem I have with the argument that I should not give a time horizon like 10 years is that not deciding on a time horizon acts as a psychological escape from facing our predicament. If we can push this problem out into 2040 or 2050, it somehow feels less pressing. Yet, look around. Already harvests are failing because of weather made worse by climate change.”

Bendell points out that such impacts are already damaging more vulnerable, poorer societies than our own. He says it is only a matter of time before they damage the normal functioning of “most countries in the world.”

Global food system failure

According to Dr. Wolfgang Knorr, Principal Investigator at Lund University’s Biodiversity and Ecosystem Services in a Changing Climate Program, the risk of near-term collapse should be taken far more seriously by climate scientists, given the fact that so much is unknown about climate tipping points: “I am not saying that Bendell is right or wrong. But the criticism of Bendell’s points focuses too much on the detail and in that way studiously tries to avoid the bigger picture. The available data points to the fact that some catastrophic climate change is inevitable.”

Bendell argues that the main trigger for some sort of collapse—which he defines as “an uneven ending of our normal modes of sustenance, security, pleasure, identity, meaning, and hope”—will come from accelerating failures in the global food system.

We know that it is a distinct possibility that so-called multi-breadbasket failures (when major yield reductions take place simultaneously across agricultural areas producing staple crops like rice, wheat, or maize) can be triggered by climate change—and have already happened.

As shown by American physicist Dr. Yaneer Ban Yam and his team at the New England Complex Systems Institute, in the years preceding 2011, global food price spikes linked to climate breakdown played a role in triggering the ‘Arab Spring’ uprisings. And according to hydroclimatologist Dr. Peter Gleick, climate-induced drought amplified the impact of socio-political and economic mismanagement, inflicting agricultural failures in Syria. These drove mass migrations within the country, in turn laying the groundwork for sectarian tensions that spilled over into a protracted conflict.

In my own work, I found that the Syrian conflict was not just triggered by climate change, but a range of intersecting factors—Syria’s domestic crude oil production had peaked in the mid-90s, leading state revenues to hemorrhage as oil production and exports declined. When global climate chaos triggered food price spikes, the state had begun slashing domestic fuel and food subsidies, already reeling from the impact of economic mismanagement and corruption resulting in massive debt levels. And so, a large young population overwhelmed with unemployment and emboldened by decades of political repression took to the streets when they could not afford basic bread. Syria has since collapsed into ceaseless civil war.

This is a case of what Professor Thomas-Homer Dixon, University Research Chair in the University of Waterloo’s Faculty of Environment, describes as “synchronous failure”—when multiple, interconnected stressors amplify over time before triggering self-reinforcing feedback loops which result in them all failing at the same time. In his book, The Upside of DownCatastrophe, Creativity and the Renewal of Civilization, he explains how the resulting convergence of crises overwhelms disparate political, economic and administrative functions, which are not designed for such complex events.

From this lens, climate-induced collapse has already happened, though it is exacerbated by and amplifies the failure of myriad human systems. Is Syria a case-study of what is in store for the world? And is it inevitable within the next decade?

In a major report released in August, the UN’s Intergovernmental Panel on Climate Change (IPCC) warned that hunger has already been rising worldwide due to climate impacts. A senior NASA scientist, Cynthia Rosenzweig, was a lead author of the study, which warned that the continued rise in carbon emissions would drive a rise in global average temperatures of 2°C in turn triggering a “very high” risk to food supplies toward mid-century. Food shortages would hit vulnerable, poorer regions, but affluent nations may also be in the firing line. As a new study from the UK Parliamentary Environment Audit Committee concludes, fruit and vegetable imports to countries like Britain might be cut short if a crisis breaks out.

When exactly such a crisis might happen is not clear. Neither reports suggest it would result in the collapse of civilization, or even most countries, within 10 years. And the UN also emphasizes that it is not too late to avert these risks through a shift to organic and agro-ecological methods.

NASA’s Gavin Schmidt acknowledged “increasing impacts from climate change on global food production,” but said that a collapse “is not predicted and certainly not inevitable.”

The catastrophic ‘do-nothing’ scenario

A few years ago, though, I discovered first-hand that a catastrophic collapse of the global food system is possible in coming decades if we don’t change course. At the time I was a visiting research fellow at Anglia Ruskin University’s Global Sustainability Institute, and I had been invited to a steering committee meeting for the Institute’s Global Research Observatory (GRO), a research program developing new models of global crisis.

One particular model, the Dawe Global Security Model, was focused on the risk of another global food crisis, similar to what triggered the Arab Spring.

“We ran the model forward to the year 2040, along a business-as-usual trajectory based on ‘do-nothing’ trends—that is, without any feedback loops that would change the underlying trend,” said institute director Aled Jones to the group of stakeholders in the room, which included UK government officials. “The results show that based on plausible climate trends, and a total failure to change course, the global food supply system would face catastrophic losses, and an unprecedented epidemic of food riots. In this scenario, global society essentially collapses as food production falls permanently short of consumption.”

Jones was at pains to clarify that this model-run could not be taken as a forecast, particularly as mitigation policies are already emerging in response to concern about such an outcome: “This scenario is based on simply running the model forward,” he said. “The model is a short-term model. It’s not designed to run this long, as in the real world trends are always likely to change, whether for better or worse.”

Someone asked, “Okay, but what you’re saying is that if there is no change in current trends, then this is the outcome?”

“Yes,” Jones replied quietly.

The Dawe Global Security Model put this potential crisis two decades from now. Is it implausible that the scenario might happen much earlier? And if so why aren’t we preparing for this risk?

When I asked UN disaster risk advisor Scott Williams about a near-term global food crisis scenario, he pointed out that this year’s UN flagship global disaster risk assessment was very much aware of the danger of another global “multiple breadbasket failure.”

“A projected increase in extreme climate events and an increasingly interdependent food supply system pose a threat to global food security,” warned the UN Global Assessment Report on Disaster Risk Reduction released in May. “For instance, local shocks can have far-reaching effects on global agricultural markets.”

Climate models we’ve been using are not too alarmist; they are consistently too conservative, and we have only recently understood how bad the situation really is.

Current agricultural modelling, the UN report said, does not sufficiently account for these complex interconnections. The report warns that “climate shocks and consequent crop failure in one of the global cereal breadbaskets might have knock-on effects on the global agricultural market. The turbulences are exacerbated if more than one of the main crop-producing regions suffers from losses simultaneously.”

Williams, who was a coordinating lead author of the UN global disaster risk assessment, put it more bluntly: “In a nutshell, Bendell is closer to the mark than his critics.”

He pointed me to the second chapter of the UN report which, he said, expressed the imminent risk to global civilization in a “necessarily politically desensitized” form. The chapter is “close to stating that ‘collapse is inevitable’ and that the methods that we—scientists, modellers, researchers, etc—are using are wholly inadequate to understand that nature of complex, uncertain ‘transitions,’ in other words, collapses.”

Williams fell short of saying that such a collapse scenario was definitely unavoidable, and the UN report—while setting out an alarming level of risk—did not do so either. What they did make clear is that a major global food crisis could erupt unexpectedly, with climate change as a key trigger.

Climate tipping points

A new study by a team of scientists at Oxford, Bristol, and Austria concludes that our current carbon emissions trajectory hugely increases this risk. Published in October in the journal Agricultural Systems, the study warns that the rise in global average temperatures is increasing the likelihood of “production shocks” affecting an increasingly interconnected global food system.

Surpassing the 1.5 °C threshold could potentially trigger major “production losses” of millions of tonnes of maize, wheat and soybean.

Right now, carbon dioxide emissions are on track to dramatically increase this risk of multi-breadbasket failures. Last year, the IPCC found that unless we reduce our emissions levels by five times their current amount, we could hit 1.5°C as early as 2030, and no later than mid-century. This would dramatically increase the risk of simultaneous crop failures, food production shocks and other devastating climate impacts.

In April this year, the European Commission’s European Strategy and Policy Analysis System published its second major report to EU policymakers, Global Trends to 2030: Challenges and Choices for Europe. The report, which explores incoming national security, geopolitical and socio-economic risks, concluded: “An increase of 1.5 degrees is the maximum the planet can tolerate; should temperatures increase further beyond 2030, we will face even more droughts, floods, extreme heat and poverty for hundreds of millions of people; the likely demise of the most vulnerable populations—and at worst, the extinction of humankind altogether.”

But the IPCC’s newer models suggest that the situation is even worse than previously thought. Based on increased supercomputing power and sharper representations of weather systems, those new climate models—presented at a press conference in Paris in late September—reveal the latest findings of the IPCC’s sixth assessment report now underway.

The models now show that we are heading for 7°C by the end of the century if carbon emissions continue unabated, two degrees higher than last year’s models. This means the earth is far more sensitive to atmospheric carbon than previously believed.

This suggests that the climate models we’ve been using are not too alarmist; they are consistently too conservative, and we have only recently understood how bad the situation really is.

I spoke to Dr. Joelle Gergis, a lead author on the IPCC’s sixth assessment report, about the new climate models. Gergis admitted that at least eight of the new models being produced for the IPCC by scientists in the US, UK, Canada and France suggest a much higher climate sensitivity than older models of 5°C or warmer. But she pushed back against the idea that these findings prove the inevitability of collapse, which she criticized as outside the domain of climate science. Rather, the potential implications of the new evidence are not yet known.

“Yes, we are facing alarming rates of change and this raises the likelihood of abrupt, non-linear changes in the climate system that may cause tipping points in the Earth’s safe operating space,” she said. “But we honestly don’t know how far away we are from that just yet. It may also be the case that we can only detect that we’ve crossed such a threshold after the fact.”

In an article published in August in the Australian magazine The Monthly, Dr. Gergis wrote: “When these results were first released at a climate modelling workshop in March this year, a flurry of panicked emails from my IPCC colleagues flooded my inbox. What if the models are right? Has the Earth already crossed some kind of tipping point? Are we experiencing abrupt climate change right now?”

Half the Great Barrier Reef’s coral system has been wiped out at current global average temperatures which are now hovering around 1°C higher than pre-industrial levels. Gergis describes this as “catastrophic ecosystem collapse of the largest living organism on the planet.” At 1.5°C, between 70 and 90 percent of reef-building corals are projected to be destroyed, and at 2°C, some 99 percent may disappear: “An entire component of the Earth’s biosphere—our planetary life support system—would be eliminated. The knock-on effects on the 25 percent of all marine life that depends on coral reefs would be profound and immeasurable… The very foundation of human civilization is at stake.”

But Gergis told me that despite the gravity of the new models, they do not prove conclusively that past emissions will definitely induce collapse within the next decade.

“While we are undeniably observing rapid and widespread climate change across the planet, there is no concrete evidence that suggests we are facing ‘an inevitable, near term society collapse due to climate change,’” she said. “Yes, we are absolutely hurtling towards conditions that will create major instabilities in the climate system, and time is running out, but I don’t believe it is a done deal just yet.”

Yet it is precisely the ongoing absence of strong global policy that poses the fatal threat. According to Lund University climate scientist Wolfgang Knorr, the new climate models mean that practically implementing the Paris Accords target of keeping temperatures at 1.5 degrees is now extremely difficult. He referred me to his new analysis of the challenge published on the University of Cumbria’s ILFAS blog, suggesting that the remaining emissions budget given by the IPCC “will be exhausted at the beginning of 2025.” He also noted that past investment in fossil-fuel and energy infrastructure alone will put us well over that budget.

The scale of the needed decarbonization is so great and so rapid, according to Tim Garrett, professor of atmospheric sciences at the University of Utah, that civilization would need to effectively “collapse” its energy consumption to avoid collapsing due to climate catastrophe. In a 2012 paper in Earth System Dynamics, he concluded therefore that “civilization may be in a double-bind.”

“We still have time to try and avert the scale of the disaster, but we must respond as we would in an emergency”

In a previous paper in Climatic Change, Garrett calculated that the world would need to switch to non-carbon renewable energy sources at a rate of about 2.1 percent a year just to stabilize emissions. “That comes out [equivalent] to almost one new nuclear power plant per day,” Garrett said. Although he sees this as fundamentally unrealistic, he concedes that a crash transition programme might help: “If society invests sufficient resources into alternative and new, non-carbon energy supplies, then perhaps it can continue growing without increasing global warming.”

Gergis goes further, insisting that it is not yet too late: “We still have time to try and avert the scale of the disaster, but we must respond as we would in an emergency. The question is, can we muster the best of our humanity in time?”

There is no straightforward answer to this question. To get there, we need to understand not just climate science, but the nature, dynamics, and causes of civilizational collapse.

Limits to Growth

One of the most famous scientific forecasts of collapse was conducted nearly 50 years ago by a team of scientists at MIT. Their “Limits to Growth” (LTG) model, known as “World3,” captured the interplay between exponential population and economic growth, and the consumption of raw materials and natural resources. Climate change is an implicit feature of the model.

LTG implied that business-as-usual would lead to civilizational breakdown, sometime between the second decade and middle of the 21st century, due to overconsumption of natural resources far beyond their rate of renewal. This would escalate costs, diminish returns, and accelerate environmental waste, ecosystem damage, and global heating. With more capital diverted to the cost of extracting resources, less is left to invest in industry and other social goods, driving long-term economic decline and political unrest.

The forecast was widely derided when first published, and its core predictions were often wildly misrepresented by commentators who claimed it had incorrectly forecast the end of the world by the year 2000 (it didn’t).

Systems scientist Dennis Meadows had headed up the MIT team which developed the ‘World3’ model. Seven years ago, he updated the original model in light of new data with co-author Jorgen Randers, another original World3 team-member.

“For those who respect numbers, we can report that the highly aggregated scenarios of World3 still appear… to be surprisingly accurate,” they wrote in Limits to Growth: the 30 year update. “The world is evolving along a path that is consistent with the main features of the scenarios in LTG.”

One might be forgiven for suspecting that the old MIT team were just blowing their own horn. But a range of independent scientific reviews, some with the backing of various governments, have repeatedly confirmed that the LTG ‘base scenario’ of overshoot and collapse has continued to fit new data. This includes studies by Professor Tim Jackson of the University of Surrey, an economics advisor to the British government and Ministry of Defense; Australia’s federal government scientific research agency CSIRO; Melbourne University’s Sustainable Society Institute; and the Institute and Faculty of Actuaries in London.

“Collapse is not a very precise term. It is possible that there would be a general, drastic, uncontrolled decline in population, material use, and energy consumption by 2030 from climate change,” Meadows told me when I asked him whether the LTG model shines any light on the risk of imminent collapse. “But I do not consider it to be a high probability event,” he said. Climate change would, however, “certainly suffice to alter our industrial society drastically by 2100.” It could take centuries or millennia for ecosystems to recover.

But there is a crucial implication of the LTG model that is often overlooked: what happens during collapse. During an actual breakdown, new and unexpected social dynamics might come into play which either worsen or even lessen collapse.

Those dynamics all depend on human choices. They could involve positive changes through reform in political leadership or negative changes such as regional or global wars.

That’s why modelling what happens during the onset of collapse is especially tricky, because the very process of collapse alters the dynamics of change.

Growth, complexity and resource crisis

What if, then, collapse is not necessarily the end? That’s the view of Ugo Bardi, of the University of Florence, who has developed perhaps the most intriguing new scientific framework for understanding collapse.

Earlier this year, Bardi and his team co-wrote a paper in the journal BioPhysical Economics and Resource Quality, drawing on the work of anthropologist Joseph Tainter at Utah State University’s Department of Environment and Society. Tainter’s seminal book, The Collapse of Complex Societies, concluded that societies collapse when their investments in social complexity reach a point of diminishing marginal returns.

Tainter studied the fall of the Western Roman empire, Mayan civilization, and Chaco civilization. As societies develop more complex and specialized bureaucracies to solve emerging problems, these new layers of problem-solving infrastructure generate new orders of problems. Further infrastructure is then developed to solve those problems, and the spiral of growth escalates.

As each new layer also requires a new ‘energy’ subsidy (greater consumption of resources), it eventually cannot produce enough resources to both sustain itself and resolve the problems generated. The result is that society collapses to a new equilibrium by shedding layers of complex infrastructure amassed in previous centuries. This descent takes between decades and centuries.

In his recent paper, Bardi used computer models to test how Tainter’s framework stood-up. He found that diminishing returns from complexity were not the main driver of a system’s decline; rather the decline in complexity of the system is due to diminishing returns from exploiting natural resources.

In other words, collapse is a result of a form of endless growth premised on the unsustainable consumption of resources, and the new order of increasingly unresolvable crises this generates.

In my view, we are already entering a perfect storm feedback loop of complex problems that existing systems are too brittle to solve. The collapse of Syria, triggered and amplified partly by climate crisis, did not end in Syria. Its reverberations have not only helped destabilize the wider Middle East, but contributed to the destabilization of Western democracies.

In January, a study in Global Environment Change found that the impact of “climatic conditions” on “drought severity” across the Middle East and North Africa amplified the “likelihood of armed conflict.” The study concluded that climate change therefore played a pivotal role in driving the mass asylum seeking between 2011 and 2015—including the million or so refugees who arrived in Europe in 2015 alone, nearly 50 percent of whom were Syrian. The upsurge of people fleeing the devastation of their homes was a gift to the far-right, exploited by British, French and other nationalists campaigning for the break-up of the European Union, as well as playing a role in Donald Trump’s political campaigning around The Wall.

To use my own terminology, Earth System Disruption (ESD) is driving Human System Destabilization (HSD). Preoccupied with the resulting political chaos, the Human System becomes even more vulnerable and incapable of ameliorating ESD. As ESD thus accelerates, it generates more HSD. The self-reinforcing cycle continues, and we find ourselves in an amplifying feedback loop of disruption and destabilization.

Beyond collapse

Is there a way out of this self-destructive amplifying feedback loop? Bardi’s work suggests there might be—that collapse can pave the way for a new, more viable form of civilization, whether or not countries and regions experience collapses, crises, droughts, famine, violence, and war as a result of ongoing climate chaos.

Bardi’s analysis of Tainter’s work extends the argument he first explored in his 2017 peer-reviewed studyThe Seneca Effect: When Growth is Slow but Collapse is Rapid. The book is named after the Roman philosopher Lucius Annaeus Seneca, who once said that “fortune is of sluggish growth, but ruin is rapid.”

Bardi examines a wide-range of collapse cases across human societies (from the fall of past empires, to financial crises and large-scale famines), in nature (avalanches) and through artificial structures (cracks in metal objects). His verdict is that collapse is not a “bug,” but a “varied and ubiquitous phenomena” with multiple causes, unfolding differently, sometimes dangerously, sometimes not. Collapse also often paves the way for the emergence of new, evolutionary structures.

In an unpublished manuscript titled Before the Collapse: A Guide to the Other Side of Growth, due to be published by science publisher Springer-Nature next year, Bardi’s examination of the collapse and growth of human civilizations reveals that after collapse, a “Seneca Rebound” often takes place in which new societies grow, often at a rate faster than preceding growth rates.

This is because collapse eliminates outmoded, obsolete structures, paving the way for new structures to emerge which often thrive from the remnants of the old and in the new spaces that emerge.

He thus explains the Seneca Rebound as “as an engine that propels civilizations forward in bursts. If this is the case, can we expect a rebound if the world’s civilization goes through a new Seneca Collapse in the coming decades?”

Bardi recognizes that the odds are on a knife-edge. A Seneca Rebound after a coming collapse would probably have different features to what we have seen after past civilizational collapses and might still involve considerable violence, as past new civilizations often did—or may not happen at all.

“Very little if anything is being done to stop emissions and the general destruction of the ecosystem”

On our current trajectory, he said, “the effects of the destruction we are wreaking on the ecosystem could cause humans to go extinct, the ultimate Seneca Collapse.” But if we change course, even if we do not avoid serious crises, we might lessen the blow of a potential collapse. In this scenario, “the coming collapse will be just one more of the series of previous collapses that affected human civilizations: it might lead to a new rebound.”

It is in this possibility that Bardi sees the seeds of a new, different kind of civilization within the collapse of civilization-as-we-know-it.

I asked Bardi how soon he thought this collapse would happen. Although emphasizing that collapse is not yet inevitable, he said that a collapse of some kind within the next decade could be “very likely” if business-as-usual continues.

“Very little if anything is being done to stop emissions and the general destruction of the ecosystem,” Bardi said. “So, an ecosystemic collapse is not impossible within 10 years.”

Yet he was also careful to point out that the worst might be avoided: “On the other hand, there are many elements interacting that may change things a little, a lot, or drastically. We don’t know how the system may react… maybe the system would react in a way that could postpone the worst.”

Release and renewal

The lesson is that even if collapse is imminent, all may not be lost. Systems theorist Jeremy Lent, author of The Patterning Instinct, draws on the work of the late University of Florida ecologist C. S. Holling, whose detailed study of natural ecosystems led him to formulate a general theory of social change known as the adaptive cycle.

Complex systems, whether in nature or in human societies, pass through four phases in their life cycle, writes Lent. First is a rapid growth phase of innovation and opportunity for new structures; second is a phase of stability and consolidation, during which these structures become brittle and resistant to change; third is a release phase consisting of breakdown, generating chaos and uncertainty; the fourth is reorganization, opening up the possibility that small, seemingly insignificant forces might drastically change the future of the forthcoming new cycle.

It is here, in the last two phases, that the possibility of triggering and shaping a Seneca Rebound becomes apparent. The increasing chaos of global politics, Lent suggests, is evidence that we are “entering the chaotic release phase,” where the old order begins to unravel. At this point, the system could either regress, or it could reorganize in a way that enables a new civilizational rebound. “This is a crucially important moment in the system’s life cycle for those who wish to change the predominant order.”

So as alarming as the mounting evidence of the risk of collapse is, it also indicates that we are moving into a genuinely new and indeterminate phase in the life cycle of our current civilization, during which we have a radical opportunity to mobilize the spread of new ideas that can transform societies.

I have been tracking the risks of collapse throughout my career as a journalist and systems theorist. I could not find any decisive confirmation that climate change will inevitably produce near-term societal collapse.

But the science does not rule this out as a possibility. Therefore, dismissing the risk of some sort of collapse—whether by end of century, mid-century, or within the next 10 years—contravenes the implications of the most robust scientific models we have.

All the scientific data available suggests that if we continue on our current course of resource exploitation, human civilization could begin experiencing collapse within coming decades. Exactly where and how such a collapse process might take off is not certain; and whether it is already locked in is as yet unknown. And as NASA’s Gavin Schmidt told me, local collapses are already underway.

From Syria to Brexit, the destabilizing socio-political impacts of ecosystemic collapse are becoming increasingly profound, far-reaching and intractable. In that sense, debating whether or not near-term collapse is inevitable overlooks the stark reality that we are already witnessing climate collapse.

And yet, there remains an almost total absence of meaningful conversation and action around this predicament, despite it being perhaps the most important issue of our times.

The upshot is that we don’t know for sure what is round the corner, and we need better conversations about how to respond to the range of possibilities. Preparation for worst-case scenarios does not require us to believe them inevitable, but vindicates the adoption of a rational, risk-based approach designed to proactively pursue the admirable goal for Deep Adaptation: safeguarding as much of society as possible.

Jem Bendell’s Deep Adaptation approach, he told me, is not meant to provide decisive answers about collapse, but to catalyze conversation and action.

“For the Deep Adaptation groups that I am involved with, we ask people to agree that societal collapse is either likely, inevitable or already unfolding, so that we can have meaningful engagement upon that premise,” he said. “Deep Adaptation has become an international movement now, with people mobilizing to share their grief, discuss what to commit to going forward, become activists, start growing food, all kinds of things.”

Confronting the specter of collapse, he insisted is not grounds to give-up, but to do more. Not later, but right now, because we are already out of time in terms of the harm already inflicted on the planet: “My active and radical hope is that we will do all kinds of amazing things to reduce harm, buy time and save what we can,” he said. “Adaptation and mitigation are part of that agenda. I also know that many people will act in ways that create more suffering.”

Most of all, the emerging science of collapse suggests that civilization in its current form, premised on endless growth and massive inequalities, is unlikely to survive this century. It will either evolve into or be succeeded by a new configuration, perhaps an “ecological civilization”, premised on a fundamentally new relationship with the Earth and all its inhabitants—or it will, whether slowly or more abruptly, regress and contract.

What happens next is still up to us. Our choices today will not merely write our own futures, they determine who we are, and what our descendants will be capable of becoming. As we look ahead, this strange new science hints to us at a momentous opportunity to become agents of change for an emerging paradigm of life and society that embraces, not exploits, the Earth. Because doing so is now a matter of survival.





Problems, Predicaments, and Technology

27 11 2019

ERIK MICHAELS·FRIDAY, NOVEMBER 22, 2019·

We often see people bring out certain ideas that they claim are some sort of “solution” or that “they work” and I want to try to explain why (once again) these ideas are nothing more than ideas and not “solutions” of any sort. One of the things I most would like to get others to see is the bigger picture. Many people focus on reductionist ideas such as non-renewable “renewable” energy, or alternative energy ideas such as hydrogen, or technological ideas, but fail to see how those ideas don’t really change anything and only allow for continued environmental destruction (and consolidate capital in the hands of the elite) instead.

Before I go any further, I should make it clear that climate change (and most of the topics in our files) is a predicament. A predicament has an outcome, not a solution or answer. Solutions and answers are reserved for PROBLEMS. Many people get these two mixed up and tend to see predicaments as problems. Wikipedia calls a predicament a “wicked problem” but this doesn’t change the simple fact that predicaments or dilemmas do not have solutions (https://en.wikipedia.org/wiki/Wicked_problem).

One of the first things I constantly harp about is technology. Technology has been great for those of us who can afford to use it, but it came at a huge cost to the environment AND to us over the long haul. It is our use of technology which CONTINUES the exponential expansion of the predicaments we face and it is our insistence upon not only using existing technology but on developing NEW technology to “solve” the predicaments technology caused to begin with that is itself one of the biggest parts of our predicaments.

Technology REQUIRES three things: mining (extraction), energy use (fossil fuel burning in most cases), and industrial civilization (the entire system we are embedded within and live within). Because these three things (along with technology use itself) are unsustainable and are killing all life on this planet, it is technology use which itself is unsustainable. This makes ANYTHING requiring technology under today’s conditions only capable of further destruction of our biosphere. Technology includes the wheel, fire, and agriculture and modern agriculture combines all three of these. Some folks have brought up regenerative agriculture as one of these so-called “solutions” that they believe will help. Regenerative agriculture can indeed “work” to do things like sequestering small amounts of carbon in soil, but what these folks have forgotten is that it does nothing to stop industrial civilization upon which agriculture is the bedrock of to begin with. As long as industrial civilization continues, so too does the continuing worsening of the biosphere upon which we depend. This makes agriculture of ALL types guilty of allowing the continuation of the very system destroying us. In addition, as the climate changes and extreme weather events worsen, ALL agriculture will suffer as a result.

This is where the fault of logic is – it is similar to the smoker who decides to treat his addiction to nicotine with more nicotine in a different form (such as a “patch” or “lozenge” or e-cigarette or chewing tobacco). The same thing can be said of utilizing different energy sources to “replace” fossil fuels. We are simply treating our addiction to energy with more energy in a never-ending vicious circle. As long as we don’t recognize our addiction, we wind up continuing the hamster wheel in a slightly different form while continuing to cause yet more damage.

Don’t get me wrong, this isn’t to throw the baby out with the bathwater and claim that none of these ideas have any redeeming qualities, as many of them do. Provided the right conditions are met with regenerative ag, it CAN sequester carbon in the soil. In the nicotine example, reducing nicotine intake by utilizing other sources and then reducing the amount of nicotine gradually CAN help a smoker quit permanently. Ocean fertilization CAN help promote phytoplankton growth if several other conditions are met at the same time. But none of them stop industrial civilization, so the ongoing damage to the environment continues unabated.

Not until society realizes that technology itself is part of the predicaments in and of itself will people come to realize that technology can never solve what it has caused – it can only make conditions worse.

Techno-fix futures will only accelerate climate chaos—don’t believe the hype:

https://phys.org/news/2019-10-techno-fix-futures-climate-chaosdont-hype.html





Why Climate Change Isn’t Our Biggest Environmental Problem, and Why Technology Won’t Save Us

27 11 2019

Richard Heinberg

August 17, 2017


Our core ecological problem is not climate change. It is overshoot, of which global warming is a symptom. Overshoot is a systemic issue. Over the past century-and-a-half, enormous amounts of cheap energy from fossil fuels enabled the rapid growth of resource extraction, manufacturing, and consumption; and these in turn led to population increase, pollution, and loss of natural habitat and hence biodiversity. The human system expanded dramatically, overshooting Earth’s long-term carrying capacity for humans while upsetting the ecological systems we depend on for our survival. Until we understand and address this systemic imbalance, symptomatic treatment (doing what we can to reverse pollution dilemmas like climate change, trying to save threatened species, and hoping to feed a burgeoning population with genetically modified crops) will constitute an endlessly frustrating round of stopgap measures that are ultimately destined to fail.

The ecology movement in the 1970s benefitted from a strong infusion of systems thinking, which was in vogue at the time (ecology—the study of the relationships between organisms and their environments—is an inherently systemic discipline, as opposed to studies like chemistry that focus on reducing complex phenomena to their components). As a result, many of the best environmental writers of the era framed the modern human predicament in terms that revealed the deep linkages between environmental symptoms and the way human society operates. Limits to Growth (1972), an outgrowth of the systems research of Jay Forrester, investigated the interactions between population growth, industrial production, food production, resource depletion, and pollution. Overshoot (1982), by William Catton, named our systemic problem and described its origins and development in a style any literate person could appreciate. Many more excellent books from the era could be cited.

However, in recent decades, as climate change has come to dominate environmental concerns, there has been a significant shift in the discussion. Today, most environmental reporting is focused laser-like on climate change, and systemic links between it and other worsening ecological dilemmas (such as overpopulation, species extinctions, water and air pollution, and loss of topsoil and fresh water) are seldom highlighted. It’s not that climate change isn’t a big deal. As a symptom, it’s a real doozy. There’s never been anything quite like it, and climate scientists and climate-response advocacy groups are right to ring the loudest of alarm bells. But our failure to see climate change in context may be our undoing.

Why have environmental writers and advocacy organizations succumbed to tunnel vision? Perhaps it’s simply that they assume systems thinking is beyond the capacity of policy makers. It’s true: if climate scientists were to approach world leaders with the message, “We have to change everything, including our entire economic system—and fast,” they might be shown the door rather rudely. A more acceptable message is, “We have identified a serious pollution problem, for which there are technical solutions.” Perhaps many of the scientists who did recognize the systemic nature of our ecological crisis concluded that if we can successfully address this one make-or-break environmental crisis, we’ll be able to buy time to deal with others waiting in the wings (overpopulation, species extinctions, resource depletion, and on and on).

If climate change can be framed as an isolated problem for which there is a technological solution, the minds of economists and policy makers can continue to graze in familiar pastures. Technology—in this case, solar, wind, and nuclear power generators, as well as batteries, electric cars, heat pumps, and, if all else fails, solar radiation management via atmospheric aerosols—centers our thinking on subjects like financial investment and industrial production. Discussion participants don’t have to develop the ability to think systemically, nor do they need to understand the Earth system and how human systems fit into it. All they need trouble themselves with is the prospect of shifting some investments, setting tasks for engineers, and managing the resulting industrial-economic transformation so as to ensure that new jobs in green industries compensate for jobs lost in coal mines.

The strategy of buying time with a techno-fix presumes either that we will be able to institute systemic change at some unspecified point in the future even though we can’t do it just now (a weak argument on its face), or that climate change and all of our other symptomatic crises will in fact be amenable to technological fixes. The latter thought-path is again a comfortable one for managers and investors. After all, everybody loves technology. It already does nearly everything for us. During the last century it solved a host of problems: it cured diseases, expanded food production, sped up transportation, and provided us with information and entertainment in quantities and varieties no one could previously have imagined. Why shouldn’t it be able to solve climate change and all the rest of our problems?

Of course, ignoring the systemic nature of our dilemma just means that as soon as we get one symptom corralled, another is likely to break loose. But, crucially, is climate change, taken as an isolated problem, fully treatable with technology? Color me doubtful. I say this having spent many months poring over the relevant data with David Fridley of the energy analysis program at Lawrence Berkeley National Laboratory. Our resulting book, Our Renewable Future, concluded that nuclear power is too expensive and risky; meanwhile, solar and wind power both suffer from intermittency, which (once these sources begin to provide a large percentage of total electrical power) will require a combination of three strategies on a grand scale: energy storage, redundant production capacity, and demand adaptation. At the same time, we in industrial nations will have to adapt most of our current energy usage (which occurs in industrial processes, building heating, and transportation) to electricity. Altogether, the energy transition promises to be an enormous undertaking, unprecedented in its requirements for investment and substitution. When David and I stepped back to assess the enormity of the task, we could see no way to maintain current quantities of global energy production during the transition, much less to increase energy supplies so as to power ongoing economic growth. The biggest transitional hurdle is scale: the world uses an enormous amount of energy currently; only if that quantity can be reduced significantly, especially in industrial nations, could we imagine a credible pathway toward a post-carbon future.

Downsizing the world’s energy supplies would, effectively, also downsize industrial processes of resource extraction, manufacturing, transportation, and waste management. That’s a systemic intervention, of exactly the kind called for by the ecologists of the 1970s who coined the mantra, “Reduce, reuse, and recycle.” It gets to the heart of the overshoot dilemma—as does population stabilization and reduction, another necessary strategy. But it’s also a notion to which technocrats, industrialists, and investors are virulently allergic.

The ecological argument is, at its core, a moral one—as I explain in more detail in a just-released manifesto replete with sidebars and graphics (“There’s No App for That: Technology and Morality in the Age of Climate Change, Overpopulation, and Biodiversity Loss”).  Any systems thinker who understands overshoot and prescribes powerdown as a treatment is effectively engaging in an intervention with an addictive behavior. Society is addicted to growth, and that’s having terrible consequences for the planet and, increasingly, for us as well. We have to change our collective and individual behavior and give up something we depend on—power over our environment. We must restrain ourselves, like an alcoholic foreswearing booze. That requires honesty and soul-searching.

In its early years the environmental movement made that moral argument, and it worked up to a point. Concern over rapid population growth led to family planning efforts around the world. Concern over biodiversity declines led to habitat protection. Concern over air and water pollution led to a slew of regulations. These efforts weren’t sufficient, but they showed that framing our systemic problem in moral terms could get at least some traction.

Why didn’t the environmental movement fully succeed? Some theorists now calling themselves “bright greens” or “eco-modernists” have abandoned the moral fight altogether. Their justification for doing so is that people want a vision of the future that’s cheery and that doesn’t require sacrifice. Now, they say, only a technological fix offers any hope. The essential point of this essay (and my manifesto) is simply that, even if the moral argument fails, a techno-fix won’t work either. A gargantuan investment in technology (whether next-generation nuclear power or solar radiation geo-engineering) is being billed as our last hope. But in reality it’s no hope at all.

The reason for the failure thus far of the environmental movement wasn’t that it appealed to humanity’s moral sentiments—that was in fact the movement’s great strength. The effort fell short because it wasn’t able to alter industrial society’s central organizing principle, which is also its fatal flaw: its dogged pursuit of growth at all cost. Now we’re at the point where we must finally either succeed in overcoming growthism or face the failure not just of the environmental movement, but of civilization itself.

The good news is that systemic change is fractal in nature: it implies, indeed it requires, action at every level of society. We can start with our own individual choices and behavior; we can work within our communities. We needn’t wait for a cathartic global or national sea change. And even if our efforts cannot “save” consumerist industrial civilization, they could still succeed in planting the seeds of a regenerative human culture worthy of survival.

There’s more good news: once we humans choose to restrain our numbers and our rates of consumption, technology can assist our efforts. Machines can help us monitor our progress, and there are relatively simple technologies that can help deliver needed services with less energy usage and environmental damage. Some ways of deploying technology could even help us clean up the atmosphere and restore ecosystems.

But machines won’t make the key choices that will set us on a sustainable path. Systemic change driven by moral awakening: it’s not just our last hope; it’s the only real hope we’ve ever had.





WHO wants change………??

14 08 2019

Hot on the heels of David Attenborough’s climate show, along comes this great article by Tim Watkins……..


Goldsmiths kebab

We learned yesterday that a British university had made a small contribution to addressing a climate emergency that its spokespeople argue is going to kill us all just 12 years from now.  As Katherine Sellgren at the BBC reports:

“A university is banning the sale of [beef] burgers to try to fight global warming.

“Goldsmiths, University of London, is removing all beef products from sale – and charging a 10p levy on bottled water and single-use plastic cups.

“It plans to install more solar panels across its New Cross campus, in south-east London, and switch to a 100% clean energy supplier as soon as possible.

“It will spend money on its allotment and identify other areas where planting could help to absorb carbon dioxide.”

Banning beef burgers and deploying a handful of solar panels (made in China in coal-powered factories and shipped to the UK on oil-powered ships; where their addition to the Grid will increase the risk of power cuts) is little more than a gesture which, in any case, involves no real sacrifice for those making the decision.  Indeed, this was called out by an interviewer on the BBC Radio4 Today programme, who pointed out that the meaningful changes suggested by the IPCC, such as refurbishing buildings to make them energy efficient would make a much bigger impact than a burger ban.  And so a Student Union representative was asked whether they would support such a major refurbishment… even if it meant that students at the college might have to pay additional tuition fees.  The predictable response was, “Oh no.  Students want free education.”

This, of course, gets to the nub of the problem with addressing the growing environmental catastrophe.  Three-quarters of us (outside the USA) accept the science.  Two-thirds of us agree that “something must be done.”  Less than half of us are prepared to vote for anyone who promises to do something.  And less than ten percent of us are prepared to make meaningful sacrifices to lower our carbon footprints – and those who are, are seldom those who can most afford to do so.  As John Michael Greer points out:

“For years now, since that brief period when I was a very minor star in the peak oil movement, I’ve noted a curious dynamic in the climate change-centered end of environmentalism. Almost always, the people I met at peak oil events who were concerned about peak oil and the fate of industrial society more generally, rather than climate change or such other mediacentric causes as the plight of large cute animals, were ready and willing to make extensive changes in their own lives, in addition to whatever political activism they might engage in. Almost always, the people I met who were exclusively concerned with anthropogenic climate change were not.

“I can be even more precise. With vanishingly few exceptions, the people I met who were solely concerned with anthropogenic climate change insisted loudly that what needed to happen was that someone else, somewhere else, had to stop using so much carbon.”

The predictable result is that a host of climate change media stars with carbon footprints the size of small countries descend upon conferences around the planet – most recently the Google event on Sicily – to lecture the rest of us on why we must change our lifestyles to combat climate change; just before they leap back on board their carbon-belching private jets and luxury yachts to be whisked away to the next jolly.

The difference today, however, is that the people aren’t buying it any more.  In part, this is due to the hypocrisy of these media stars.  In large part, however, the people have wised up to the fact that while all of the costs of combatting climate change always seem to land on the shoulders of the poor; all of the benefits go to the same elite that the climate change media stars belong to.  As Greer notes:

“Some of what else is going on came to the surface a few years ago in Washington State when a group of environmental activists launched an initiative that would have slapped a fee on carbon. As such things go, it was a well-designed initiative, and one of the best things about it was that it was revenue-neutral:  that is, the money taken in by the carbon fee flowed right back out through direct payments to citizens, so that rising energy prices due to the carbon fee wouldn’t clobber the economy or hurt the poor.

“That, in turn, made it unacceptable to the Democratic Party in Washington State, and they refused to back the initiative, dooming it to defeat. Shortly thereafter they floated their own carbon fee initiative, which was anything but revenue neutral.  Rather, it was set up to funnel all the money from the carbon fee into a slush fund managed by a board the public wouldn’t get to elect, which would hand out the funds to support an assortment of social justice causes that were also helpfully sheltered from public oversight. Unsurprisingly, the second initiative also lost heavily—few Washington State voters were willing to trust their breathtakingly corrupt political establishment with yet another massive source of graft at public expense.”

This is the same phenomenon that caused what should have been a relatively simple increase in the tax on diesel fuel in France to erupt into widespread protest on a scale not seen since the heady days of 1968.  It is also why an Australian Labor Party manifesto that promised radical action on the environment, and that was apparently supported by the majority of Australians, resulted in a “miracle victory” for the pro-fossil fuel Liberal/National coalition at last May’s general election.

In the grossly unequal economies that we have spent the best part of forty years creating, unless the response to the environmental crisis begins at the very top, it isn’t going to begin at all.  And while this may cast ordinary people in the role of Luddites standing in the way of the progress that we supposedly need; the people may actually have a better understanding of the problem than the media celebrities. 

A new documentary Planet of the Humans by Michael Moore and Jeff Gibbs – hardly right-wing climate change deniers – set out to understand how fossil fuel lobbyists and corrupt politicians had thwarted the increasingly urgent transition to a carbon neutral future.  What they found, however – and what the documentary details – is an equally corrupt “green energy” lobby that has no real solutions to the predicament we are in.  As Michael Donnelly at Counterpunch explains:

“The basic conclusion is that we have been following corporate foundation-financed, Democratic Party-tied misleadership and that is why we are where we are.

“The bottom line is that there are: Too many Clever Apes; consuming too much; too rapidly. And ALL efforts on addressing the climate costs are reduced to illusions/delusions designed to keep our over-sized human footprint and out-of-control consumption chugging along without any consumer sacrifices or loss of consumption-based profits…

“Forget all you have heard about how ‘Renewable Energy’ is our salvation. It is all a myth that is very lucrative for some. Feel-good stuff like electric cars, etc. Such vehicles are actually powered by coal, natural gas… or dead salmon in the Northwest.”

Donnelly goes on to list some of the documentary’s “inconvenient truths” such as that the top beneficiaries of solar energy subsidies in the USA turn out to be every leftist’s favourite cartoon villains the Koch Brothers…

“None of these technologies existed, nor could they exist, without fossil fuels. The grid cannot even operate without fossil fuel-derived steam-generated baseloads – in the spring when hydro is surging, the Bonneville Power Administration (BPA) cuts off wind power (and still has to pay its providers after a lawsuit), yet has to keep the Boardman Coal plant (Oregon’s top carbon polluter) running in order to balance the baseload. Even eCon Musk’s famed battery plant in Nevada is powered by…fracked natural gas. The huge bird and desert-destroying Ivanpah Solar array in California also has fracked natural gas as an essential ingredient.”

Worse still, the documentary catches leading stars of the bright green movement admitting in Clintonesque fashion that they have one message for the plebs and an entirely different one for the people who matter:

Planet examines a range of policy influencers/professional environmentalists/opportunists, etc. and even lets them hang themselves. It not only takes on the obvious bad guys like the Kochs, it lets folks like McKibben, Al Gore, Richard Branson, Robert Kennedy, Jr, who are ostensibly on ‘our’ side, hang themselves by showing clips of them speaking to environmentalists and then clips of them speaking to industry about all the profits to be made.

“McKibben is shown twice praising Biomass (they gave him every chance to condemn it), interspersed with a scene of a mountaintop removal operation in his home state of Vermont – for a wind farm!

“Robert Kennedy, Jr. informs his fellow millionaires of all the profits to be made on ‘green’ energy. Al Gore basically admits it’s all about diversion and profits. Branson, like eCon Musk, of course, is solely in it for the money.

“Fellow billionaire Michael Bloomberg got down to it and basically bought the Sierra Club with tens of millions in donations tied to the Club promoting one of his cash cows, Fracked Natural Gas, as the ‘Bridge Fuel to a Green Energy future!’”

None of this comes as a surprise to those of us who regard climate change as merely one element of a broader three E’s – Energy, Environment, Economy – predicament that is itself driven by having roughly 6.5 billion too many humans on Planet Earth.  What is different, however, is that the realisation that the green techno-utopian celebrity crowd are con artists has begun to seep into the consciousness of the leftward end of the body politic in recent months.  As Donnelly notes, despite Moore and Gibbs fearing the reaction of people in the broader environmental movement:

“’Planet of the Humans’ premiered at the gloriously community-restored State Theatre July 31st at the 15th Traverse City, MI Film Festival with three sold-out/standing ovation showings followed by Q & A’s with the creators.”

Greer observes a similar shift at the leftward end of the US media:

“What sets this year’s conference apart from earlier examples of the same sorry type is that this time, the other end of the political spectrum has finally decided to start calling out absurd climate change hypocrisy for what it is. Here’s the redoubtable Rex Murphy of the National Post, for example, giving the Sicily conference and its brightly burnished celebrity attendees a good sound thrashing. You can find other examples easily enough if you step out of the airtight bubble of mainstream popular culture—and these days, the bubble is not quite as airtight as it once was and some of the criticism is starting to slip through.”

Ironically, the green energy snake oil salesmen have probably brought this reaction down upon their own heads.  By backing increasingly urgent messages about our imminent extinction to sell us billions of dollars’ worth of non-renewable renewable energy-harvesting devices; they have caused people to ask serious questions about why – if the emergency is so urgent – these people are not adopting lifestyles in line with their warnings; and why – if green energy technologies are the solution – governments around the planet have failed to adopt them in meaningful quantities.

The issue here is not with the seriousness of the crisis, but with the way just one solution is on offer; and it just happens to be the one that makes the rich even richer and the poor even poorer.  As Greer puts it:

“It’s as though your house was on fire and someone pounded on your door, insisting that you had to sign a contract giving him your property so he could fight the fire. You shouldn’t sign the contract, and the reasons he brandishes to try to talk you into signing it are bogus, but that doesn’t change the fact that your house really is on fire.”

The BBC too, seemingly, is beginning to grasp some of this cultural shift; and thus is prepared to kebab the “feel good” Goldsmiths story as little more than a futile gesture at someone else’s expense.  Gone are the joyous days of spring, when climate campaigners had the support of most of the media.  From here on in, even those outlets on “our” side are going to be casting a critical eye over environmental policies that will very likely be found wanting.

The stark reality, of course, is that as we slide ever further along the downslope of the industrial age, and as our ability to repair the damage wrought by the global weirding of our climate, higher education itself will be going away.  The lifestyles we are going to be living – whether we choose to adopt them ourselves or whether mother nature forces them upon us – are going to be far less consumptive, far more localised, and far more focused on the production of basic necessities… like food.  And in the near future, those Goldsmiths folk may well find themselves pining for one of those burgers they just banned.





THE WAKING UP SYNDROME

2 08 2019

By Sarah Anne Edwards PhDLinda Buzzell, originally published by Hopedance May 1, 2008

“Humankind cannot bear very much reality.” — T. S. Eliot

Just dealing with our daily lives keeps most of us too busy to worry about whether or not the sky is falling. We focus on getting to and from work, paying our bills, doing our errands, and, if our time-stressed schedules allow, enjoying a little time to relax with friends and family.
 
But we’re deluged of late with dire pronouncements from high-profile newscasts, documentaries, and scientific reports about global warming, melting ice caps, dwindling oil supplies, and a looming imminent economic collapse. Closer to home, we’ve experienced climate-related disasters: floods, wildfires, hurricanes, wildfires, and severe droughts.

While the sky may not be falling, this day-after-day onslaught of alarming news is making it more difficult simply to overlook the triple threat of environmental, climatic and economic concerns. It’s leaving many of us feeling like Alice in Wonderland, being sucked down a Rabbit Hole into some frighteningly grotesque and unfamiliar world that’s anything but wonderful.

Few of us are eager to contemplate, let alone truly face, these looming changes. Just the threat of losing chunks of the comfortable way of life we’re accustomed to (or aspiring to) is a frightening-enough prospect. But there’s no avoiding the current facts and trends of the human and planetary situation. And as the edges of our familiar reality begin to ravel, more and more people are reacting psychologically. A noticeable pattern of behavior is emerging.

We call this pattern the Waking Up Syndrome, and it unfolds in six stages, though not necessarily in any particular order.

Stage 1 – Denial. 
When we first get an inkling of the shifting environmental reality and its potential impact on both the national economy and our daily lives, most people begin by denying it. We slip into one of four common ways to discount things we’d rather not deal with:

“I don’t believe it.”  
We simply deny the existence of any such concerns and refuse to consider them. This might include latching eagerly onto any few remaining naysayers for confirmation and comfort. But as the number of reputable naysayers dwindles, more people are forced to face the fact that “something” is happening.

“It’s not a problem.”  
We may admit there’s a change taking place, but deny that it’s significant, seeing such things as climate change and economic fluctuations as part of a normal pattern that is nothing to concern ourselves with. Or we may incorporate the changes we see happening into our spiritual and religious beliefs, regarding them not as a problem, but a test of faith, a sign of a global spiritual awakening, or evidence of a long-awaited Apocalypse. Some may believe focusing on such problems makes them worse and that we should instead visualize, meditate, or pray for the world to be as we want it to be.

“Someone will fix it.”  
We may admit major problematic changes are underway but conclude that there’s nothing we personally can do about them and we needn’t worry because technology, scientists, the government, or some expert authority will come up with a solution in time to save us.

“It’s useless.”  
We may believe there’s nothing anyone can do about macro-problems, so why do anything, except perhaps eat, drink and be merry. What will be, will be.

Stage 2 – Semi-consciousness.  
In spite of the various ways we may try to discount what’s happening to our environment (and consequently to our economy and whole way of life), as evidence mounts around us and the news coverage escalates, we may begin to feel a vague sense of eco-anxiety. Some express this as virulent anger at all this discussion about global warming. Others dissociate from their growing concern and misdirect their feelings toward other things in their lives, perhaps blaming family members or jobs for their undefined discomfort.

Stage 3 – The moment of realization.  
At some point we may encounter something that breaks through our defenses and brings the inevitability and severity of the implications of our collective problems into full consciousness. We might read a particularly compelling article, learn more about the aftermath of Katrina, hear a news broadcast about polar bear deaths or rampant fires and flooding, see a documentary like “An Inconvenient Truth” or “The End of Suburbia.” Or — most dramatically – we might experience a natural disaster ourselves with all its personal and economic costs.

At such moments, suddenly we realize no matter how we try to explain away the changes that are happening, they are and will be accompanied by huge challenges to life as we know it and cause considerable pain and suffering for many, including ourselves and those we love.

Even if we believe all these disruptions are leading to a global spiritual awakening or a long awaited Apocalypse— even if we think some helpful new technology is going to emerge (hopefully soon)— we nonetheless begin to understand on a visceral level that the changes taking place will have dramatically unpleasant implications beyond anything we’ve faced in our lifetimes. In fact, we realize many of these uncomfortable changes are already underway and will be growing in coming months and years, affecting most of the things we love and cherish.

But like the character Neo in the 1999 movie The Matrix, even at this point we still have a choice. We can choose to swallow the metaphorical red pill and find out just how deep this rabbit hole goes and where it leads. Or we can take the soothing metaphorical blue pill and choose to “escape” from the nightmarish Wonderland of the rabbit hole we’ve fallen into by slipping back into the comfort of our favorite form of assuring ourselves that all is well.

But if, like Neo, we take “the red pill,” we wake up to the reality of our individual and collective situation. We get that the triple threat challenge facing us is a real Medusa monster. Once we’re awake, the problem is full-blown in our consciousness. It’s right in our face. It won’t let us turn away, and the force of it makes “waking up” incredibly painful.
 
The moment we realize — even briefly — that we’re slipping into a dangerously threatening new world that no longer makes sense according what we’ve always believed, our genetic wiring kicks in with predictable physiological and emotional threat responses that can take many forms.

Some of us become obsessive newswatchers, documentary filmgoers, internet compulsives or book readers, wanting to know more and more about what’s really happening. Loved ones may think we’ve gone nuts. Spouses may consider divorce; kids may decide mom and dad are hopeless cranks. 

The more fragile or vulnerable among us may get depressed or experience panic attacks. If something about this current eco-trauma retriggers earlier traumas in our lives, we may have a Post-Traumatic Stress Disorder (PTSD) reaction. Even the more resilient may throw themselves obsessively into save-the-planet and other activities, soon to become exhausted and weary from trying to do what no one person can.

Others, once they realize what’s happening, see it as a new business or political opportunity. These green business ventures can sometimes be helpful and productive, but at other times can actively circumvent or sabotage the efforts of those who are trying to solve the problems.
 
Stage 4 – A Point of No Return.
Once awakened, especially as economic and environmental changes intensify, most of us find there is no turning back. We find ourselves traveling deeper and deeper down the rabbit hole. Whatever methods we’ve used to avoid facing the coming changes is no longer successful to quell our personal concerns. We can no longer help but notice the continuing rapid progress of the bad trends – more expensive energy, higher costs of living, a weaker economy, more species in trouble, rising temperatures, more devastating severe weather events, increasing political, economic and military competition (wars) over remaining resources, etc.  It all starts to make a dreadful sort of sense as we let in the enormity of the situation.

One of the most difficult aspects of this stage is the profound but unavoidable sense of isolation and disconnection we may feel when living in a different world from most of those around us, a world we can no longer escape from, but one few others seem to notice. The result is a bizarre sense of surrealism. Interaction and communication can become a challenge. How do we relate to a world that’s no longer real to us, but is business as usual to most? Do we try to reach out to others about the ugly new reality and endure their defenses? Is it better to indulge those who don’t yet see the reality we’ve stumbled into and act “as if” nothing has changed just to get along? Or might it be easier to withdraw from life as we’ve known it and turn into a hermit? 

5. Despair, guilt, hopelessness, powerlessness. 
The realization sets in that one person or even one group or community can’t stop the effects of such things as climate change and peak oil and their economic consequences from impacting millions of people around the planet and at home. We see this thing spiraling out of control and realize that our species, and even we individually, are responsible for much of what’s happening!  As the mayor of Memphis said to the Los Angeles Times when a major heat-wave hit his city and most of the Midwest and South last summer, “This is pretty akin to a seismic event in the sense that there is no solution that we here in this room can come up with that will take care of everybody.”
   
Some have suggested that this stage is similar to the traditional grief process, and indeed, this is a time of grieving. But there is a significant difference between this awakening and the normal experience of grief. Grief that occurs after a loss usually ends with acceptance of what’s been lost and then one adjusts and goes on. But this is more like the process of accepting a degenerative illness.  It’s not a one-time loss one can accommodate and simply move on. It is a chronic, on-going, permanent situation that will not only not improve, but actually continue to worsen and become more uncomfortable in the foreseeable future, probably for the entire lifetime of most people living today.  This is what author James Howard Kunstler calls “The Long Emergency.”

Our grief and sorrow are also amplified by having to bear the pain of upbeat acquaintances who go merrily along in their denial, discounting their own uneasiness about what’s happening and wondering why we’re so “negative.”

Stage 6 – Acceptance, empowerment, action. 
As we come to accept the limits of our general powerlessness, we also find the parameters of the power we do have in this strange new situation. We discover we no longer need to resist our current and emerging reality. We don’t need to feel compelled to save the entire world or to hold onto a world that no longer makes sense. We are freed, instead, to pursue what James Kunstler calls “the intelligent response, ” seeking and taking whatever creative, constructive action will best sustain those aspects of life that are truly most important to us in the context of the changes unfolding around us.  At this point our curiosity and creativity kick in and we can begin following our natural instincts to find what is both feasible and rewarding to safeguard ourselves, our families, our communities and the planet.

 And indeed, growing numbers of people are beginning to respond with a plethora of creative, socially and personally responsible actions along four paths that are similar to those identified by Joanna Macy in her book World as Lover, World as Self: Courage for Global Justice and Ecological Renewal and Richard Heinberg in Peak Everything: Waking up to the Century of Declines. We are finding individual and collective ways to:

Resist making matters worse. 
What’s going on may or may not be inevitable, but we don’t have to speed it along. We can do at least one thing to ease or lessen the negative impact of these changes. We can join an environmental action group, plant a tree, bike to work, help with a protest march or write letters to our congressperson. Just doing our little bit to limit the damage eases the psychological distress we’re feeling, even if we’re not “saving the whole world.”  Taking even a small stand for what Macy calls “the life-sustaining society” (as opposed to the life-destroying one) gives us back our dignity and sense of agency.

Raise our level of consciousness so we can maintain some serenity and not burn out in the midst of all this change. We might adopt a spiritual practice of some kind, take up meditation, expand our understanding of ecology or history, or spend time reconnecting with nature, learning to live our lives in harmony with the rest of the earth.

Build a lifeboat for ourselves and our loved ones. 
Many people are already taking steps to create a richer yet more sustainable way of life better suited to weathering the new economic and environmental realities. Some are moving to less vulnerable or expensive locales. Others are simplifying their lives, starting to lower their energy use, or creating personal and community permaculture gardens. Still others are changing into more sustainable careers, joining relocalization efforts to safeguard their local economy, or adopting alternative ways to exchange needed goods and services. Learning more about these positive possibilities is vital. Until we can see that there are options, there’s no way out of despair except to return to dissociating or denying, which only makes us more vulnerable to the difficulties around us.

Join with others in small communities 
for support and understanding. Don’t try to cope with this enormous challenge alone!  Find others who share your concerns and views. Some people have formed reading or study groups around books like David Korten’s The Great Turning: From Empire to Earth Community, Richard Heinberg’s Powerdown: Options and Actions for a Post-Carbon World, Cecile Andrews’ Circle of Simplicity: Return to the Good Life, or Middle Class Life Boat by Paul and Sarah Edwards. Others are becoming active in relocalization efforts like those described on www.relocalize.net . Still others are joining together to turn their neighborhood into a sustainable “eco-hood” or exploring options for co-housing or eco-villages.

Taking some action in each of these four areas prevents us from getting stuck in panic and paralysis. It energizes us and re-establishes a sense of confidence and security in life. Does it mean we will no longer be plagued with concerns, doubts or even fear at times? No. The threat of what we face is huge and relentless. There’s never been anything like it in human history.  All who awaken to the enormity of the challenges before us still slip and slide somewhere along this continuum at times. One day we may feel encouraged with our forward action, the next we may be back to despairing. Or we many need to take a mental holiday altogether for a few days or weeks so we can come back refreshed and reinvigorated, ready to work again on the survivable future we’re creating for ourselves and our loved ones.

When asked in an interview with The Turning Wheel if there are times when she ever thinks “Oh, no! This is impossible,” even Joanna Macy, who has been a leader in championing ways to address these changes, replied, “Every day.” But she goes on to explain that while she does think this at times, such times pass because she can’t think of anything more engaging and enjoyable than addressing the most pressing issues of our time.
 
Such wisdom seems to be the secret to living positively while navigating the painfully difficult stages of awakening until we get to the point where we can enjoy the daily challenges our dismaying situation presents to our imagination, our creativity and our deep and abiding love for the most valuable aspects of life.

 
To Learn More

Books

Circle of Simplicity: Return to the Good Life by Cecile Andrews.

World as Lover, World as Self: Courage for Global Justice and Ecological Renewal by Joanna Macy.

The Great Turning: From Empire to Earth Community by David Korten.

The Long Emergency: Surviving the End of Oil, Climate Change and other Converging Catastrophes of the Twenty-first Century by James Howard Kunstler.

Middle-Class Life Boat, Careers and Life Choices for Staying Afloat in an Uncertain Economyby Paul and Sarah Edwards.

Permaculture: Principles & Pathways Beyond Sustainability by David Holmgren

Peak Everything: Waking up to the Century of Decline by Richard Heinberg.

Powerdown: Options and Actions for a Post-Carbon World by Richard Heinberg.

Reconnecting with Nature by Michael J. Cohen.

Documentary DVDs

The End of Suburbia: Oil Depletion and the Collapse of the American Dreamwww.endofsuburbia.com/previews.htm

Escape From Suburbia: Beyond the American Dream

The Power of Community: How Cuba Survived Peak Oil

What a Way to Go: Life at the End of the Empire. www.whatawaytogomovie.com/

Crude Impact

Organizations

The Post-Carbon Institute www.postcarbon.org

Sarah Anne Edwards, Ph.D., LCSW, is an ecopsychologist, author, and advocate for sustainable lifestyles. She is founder of the Pine Mountain Institute (www.PineMountainInstitute.com ), a continuing education provider for professionals seeking to empower their clients to respond to today’s challenging economic and environmental realities.

Linda Buzzell, M.A., M.F.T. is a psychotherapist and career counselor in private practice in Santa Barbara and Los Angeles, California.  She is the founder of the International Association for Ecotherapy (http://thoughtoffering.blogs.com/ecotherapy ) and the co-editor of Ecotherapy: Psyche and Nature in a Circle of Healing (in press, Sierra Club Books).





Not so good news

16 04 2019

This is Tim Watkins at his best I think….. I wish I had time to write well researched articles like this, but I have a flailing mower arriving today, the double glazed windows at the end of the month, and the front wall to build in preparation of this event. Never a dull moment around here.

Put simply, if you cannot turn on your lights, operate your business or recharge your electric car, because there is no electricity, it is little comfort to learn that on a good day the grid is capable of supplying more electricity than you might need.

From the truly amazing Consciousness of Sheep website…

Protesters today intend bringing central London to a standstill by blockading several major arterial roads into the capital.  For once, this has nothing to do with Brexit.  Instead, it concerns the increasingly urgent call for government to “do something” about climate change.  Exactly what that “something” is that must be done is a little less clear, since current environmental concerns are almost always pared down to concern about the carbon dioxide emitted by cars and power stations.  Although how exactly this relates to the mass die-off of species resulting from industrial agriculture and deforestation, or growing oceanic dead zones and plastic islands, is far from clear.

Protesting environmental concerns involves a high degree of denial and self-deception; as it is based on two gross errors.  The first is the irrational belief that governments have the means to respond to the predicament we find ourselves in.  As a corrective to this, just look at the dog’s breakfast that the current British government has managed to make out of what is a simple (by comparison) trade negotiation.  Anyone who seriously thinks these clowns are going to do anything positive (save for by accident) for the environment is displaying almost clinical levels of delusion.   The second error is in believing the often unspoken conspiracy theory that insists that the only thing standing between us and the promised zero-carbon future is corrupt politicians and their corporate backers, who insist on putting the needs of the fossil fuel industry ahead of life on planet earth.

To maintain these deceits, a large volume of propaganda must be put out in order to prove that the zero-carbon future is possible if only the politicians would act in the way the people want.  So it is that we are treated to a barrage of media stories claiming that this town, city, country or industry runs entirely on “green” energy (don’t mention carbon offsetting).  Indeed, left to their own devices, we are told, the green energy industry is already well on the way to building the zero-carbon future we asked for; we just need the politicians to pull their fingers out and we could easily get there in just a few years’ time.  For example, Joshua S Hill at Green Technica tells us that:

“Renewable energy sources now account for around a third of all global power capacity, according to new figures published this week by the International Renewable Energy Agency, which revealed 171 gigawatts (GW) of new renewable capacity was installed in 2018…

“This brings total renewable energy generation capacity up to a whopping 2,351 GW as of the end of 2018, accounting for around a third of the globe’s total installed electricity capacity. Hydropower remains the largest renewable energy source based on installed capacity, with 1,172 GW, followed by wind energy with 564 GW and solar power with 480 GW.”

Stories like these play into the fantasy that we are well on our way to reversing climate change, and that all we need now is some “green new deal” mobilisation to replace the final two-thirds of our energy capacity with non-renewable renewable energy-harvesting technologies to finish the job.  If only it was that simple.

Notice the apparently innocuous word “capacity.”  This is perhaps the least important information about electricity.  Far more important is the amount that is actually generated.  The US Energy Information Administration explains the difference:

Electricity generation capacity is the maximum electric output an electricity generator can produce under specific conditions. Nameplate generator capacity is determined by the generator’s manufacturer and indicates the maximum output of electricity a generator can produce without exceeding design thermal limits….

Electricity generation is the amount of electricity a generator produces over a specific period of time. For example, a generator with 1 megawatt (MW) capacity that operates at that capacity consistently for one hour will produce 1 megawatthour (MWh) of electricity. If the generator operates at only half that capacity for one hour, it will produce 0.5 MWh of electricity…

Capacity factor of electricity generation is a measure (expressed as a percent) of how often an electricity generator operates during a specific period of time using a ratio of the actual output to the maximum possible output during that time period.”

In terms of understanding where we are and where we are heading, “electricity generation” is far more important than “capacity”; which only tells us how wind, wave, tide and solar technologies would perform if it were possible (it isn’t) for them to generate electricity all day (and night) every day.  Put simply, if you cannot turn on your lights, operate your business or recharge your electric car, because there is no electricity, it is little comfort to learn that on a good day the grid is capable of supplying more electricity than you might need.  From a planning point of view, knowing the capacity factor for various generating technologies matters because it gives an insight into how efficient they are.  A nuclear or fossil fuel power plant that runs more or less continuously for more than 60 years is likely to require far fewer inputs and far less land area than, say, vast solar farms (which have to be replaced every 10-20 years) that can only generate electricity when the sun is shining.

So where do non-renewable renewable energy-harvesting technologies stand when it comes to electricity generation?  According to the latest BP Statistical Review of World Energy, in 2017 human civilisation generated 25551.3 Terawatt hours (TW/h) of electricity.  Of this:

  • Non-renewable renewable energy-harvesting technologies provided 2151.5 TW/h (8.4%)
  • Nuclear provided 2635.6 TW/h (10.3%)
  • Hydroelectric dams provided 4059.9 TW/h (15.9%)
  • Fossil fuels provided 16521.7 TW/h (64.7%).

What this tells us is that far more non-renewable renewable energy-harvesting capacity has to be installed than the electricity that it can actually generate – it has a low capacity factor.  Indeed, Hill’s “around a third” figure includes the much larger capacity of hydroelectric dams (which have environmental issues of their own) for which there is little scope for further installation.  Only by adding in nuclear power can we get to a third of electricity generation from low-carbon sources.

Even this, however, misleads us when it comes to environmental impacts.  The implicit assumption is that non-renewable renewable energy-harvesting technologies are still valuable despite their inefficiency because they are replacing fossil fuels.  But this is not why countries like the UK, Saudi Arabia and (for insane reasons) Germany have been deploying them.  In the first two cases, the deployment of non-renewable renewable energy-harvesting technologies is primarily to maximise the amount of fossil fuels available for export.  In Germany’s case, renewables that might otherwise have weaned the economy off coal were deployed instead as a replacement for nuclear; leaving the economy overly-dependent upon often dirty (lignite) brown coal; and forcing them to turn to Russian gas as a future substitute for coal.  These states are not, however, where most of the world’s largely fossil fuelled industrial processes take place.  Asia accounts for the majority of global industry, and Asian economies use non-renewable renewable energy-harvesting technologies to supplement fossil fuels rather than to replace them; although Hill does not clarify this when he tells us that:

“Specifically, solar energy dominated in 2018, installing an impressive 94 GW… Asia continued to lead the way with 64 GW — accounting for around 70% of the global expansion last year — thanks to dominant performances from China, India, Japan, and South Korea.”

While, of course, electricity generated from wind, wave, sunlight and tide is energy that might otherwise have come from fossil fuels, the impact should not be exaggerated.  According to the 2019 edition of the BP Energy Outlook, in 2017:

  • Non-renewable renewable energy-harvesting technologies provided 4 percent of global primary energy
  • Nuclear provided 4 percent
  • Hydroelectric 7 percent
  • Gas 23 percent
  • Coal 28 percent
  • Oil 34 percent.

Just our additional energy demand since 2015 has been sufficient to account for all of the non-renewable renewable energy-harvesting technologies deployed to date.  That is, if we had simply accepted 2015 levels of consumption, we need not have deployed these technologies at all.  And, of course, if we had stabilized our energy consumption a couple of decades ago we could have left the bulk of the fossil fuels we now consume in the ground:

World Energy Consumption 2017
Source: Global carbon emissions 2007-17

What is really at issue here is that – to quote the late George H.W. Bush – “The American way of life is not up for negotiation.”  That is, we can have any energy transformation we like, so long as it does not involve any limitation on our continued exploitation and consumption of the planet we live on.  The too-big-too-fail banks must havepermanent economic growth and that, in turn, means that we have no choice other than to keep growing our energy consumption.

The trouble is that infinite growth on a finite planet is impossible.  Worse still, as the energy return on investment (aka Net Energy) declines, the increased energy and monetary cost of energy production causes the energy and monetary value available to the wider (non-energy) economy to decline.  In the first two decades of the century, this has caused an intractable financial crisis coupled to a massive decline in prosperity across the developed economy (resulting in the collapse in consumption of the “retail apocalypse”) which is beginning to generate political instability.  In the 2020s the crisis is set to worsen as the energy cost of producing a whole range of mineral resources raises their market price above that which can be sustained in the developed states (where most of the consumption occurs).  The result – whether we like it or not – is that we face a more or less sharp drop in consumption in the next couple of decades.

This raises questions about the purpose to which we deploy non-renewable renewable-energy harvesting technologies.  For several decades, people in the green movement have engaged in private arguments about whether they should spell out the likely localised and de-materialised economies that giving up or running out of accessible fossil fuels necessarily entails.  Since this would be politically toxic, most have chosen to promote the lie that humanity can simply replace coal, gas and oil with some combination of wind, wave, tide and sunlight without economic growth even needing to pause for breath.  This, in turn, has allowed our young people to believe that intransigence is the only thing preventing our political leaders from de-carbonising our economies.

Exactly what our politicians are told about our predicament is a matter of conjecture.  Most, I suspect, are as clueless as the population at large.  Nevertheless the permanent civil services across the planet have produced a raft of reports into the full spectrum of the catastrophe facing us, from the damage we are doing to the environment to the rapidly depleting stocks of key mineral resources and productive agricultural land, and the more imminent collapse in the global financial system.  And the more they become aware of this predicament, the more they realise just exactly what the word “unsustainable” actually means.  One way or another, six out of every seven humans alive today is going to have to go – either by a planned de-growth or via a more or less rapid collapse of our (largely fossil-fuelled) interconnected global life support systems.

With this in mind, there is something truly immoral about perpetuating the myth that we can maintain business as usual simply by swapping non-renewable renewable-energy harvesting technologies for fossil fuels.  This is because maintaining the myth results in precisely the kind of misallocation that we already witnessed in those states that are using renewable electricity to bolster fossil fuel production and consumption.  The more we keep doing this, the harder the crash is going to be when one or other critical component (finance, energy or resources) is no longer widely available.

There is a place for renewable energy in our future; just not the one we were promised.  As we are forced to re-localise and de-grow both our economies and our total population, the use of non-renewable renewable-energy harvesting technologies to maintain critical infrastructure such as health systems, water treatment and sewage disposal, and some key agricultural and industrial processes would make the transition less deadly.  More likely, however, is that we will find the technologies we need to prevent the combination of war, famine and pestilence that otherwise awaits us will have been squandered on powering oil wells, coal mines, electric car chargers, computer datacentres and cryptocurrencies (none of which are edible by the way).

At this stage, all one can say to the climate protestors and to the “green” media that encourage them is, “be careful what you wish for… it might just come true!”