Not so renewables

12 05 2018

Lifted from the excellent consciousness of sheep blog…..

For all practical purposes, solar energy (along with the wind, waves and tides that it drives) is unending.  Or, to put it more starkly, the odds of human beings being around to witness the day when solar energy no longer exists are staggeringly low.  The same, of course, cannot be said for the technologies that humans have developed to harvest this energy.  Indeed, the term “renewable” is among the greatest PR confidence tricks ever to be played upon an unsuspecting public, since solar panels and wind (and tidal and wave) turbines are very much a product of and dependent upon the fossil carbon economy.

Until now, this inconvenient truth has not been seen as a problem because our attention has been focussed upon the need to lower our dependency on fossil carbon fuels (coal, gas and oil).  In developed states like Germany, the UK and some of the states within the USA, wind and solar power have reduced the consumption of coal-generated electricity.  However, the impact of so-called renewables on global energy consumption remains negligible; accounting for less than three percent of total energy consumption worldwide.

A bigger problem may, however, be looming as a result of the lack of renewability of the renewable energy technologies themselves.  This is because solar panels and wind turbines do not follow the principles of the emerging “circular economy” model in which products are meant to be largely reusable, if not entirely renewable.

dead turbine

According to proponents of the circular economy model such as the Ellen MacArthur Foundation, the old fossil carbon economy is based on a linear process in which raw materials and energy are used to manufacture goods that are used and then discarded:


This approach may have been acceptable a century ago when there were less than two billion humans on the planet and when consumption was largely limited to food and clothing.  However, as the population increased, mass consumption took off and the impact of our activities on the environment became increasingly obvious, it became clear that there is no “away” where we can dispose of all of our unwanted waste.  The result was the shift to what was optimistically referred to as “recycling.”  However, most of what we call recycling today is actually “down-cycling” – converting relatively high value goods into relatively low value materials:


The problem with this approach is that the cost of separating small volumes of high-value materials (such as the gold in electrical circuits) is far higher than the cost of mining and refining them from scratch.  As a result, most recycling involves the recovery of large volumes of relatively low value materials like aluminium, steel and PET plastic.  The remainder of the waste stream ends up in landfill or, in the case of toxic and hazardous products in special storage facilities.

In a circular economy, products would be designed as far as possible to be reused, bring them closer to what might realistically be called “renewable” – allowing that the second law of thermodynamics traps us into producing some waste irrespective of what we do:


Contrary to the “renewables” label, it turns out that solar panels and wind turbines are anything but.  They are dependent upon raw resources and fossil carbon fuels in their manufacture and, until recently, little thought had been put into how to dispose of them at the end of their working lives.  Since both wind turbines and solar panels contain hazardous materials, they cannot simply be dumped in landfill.  However, their composition makes them – at least for now – unsuited to the down-cycling processes employed by commercial recycling facilities.

While solar panels have more hazardous materials than wind turbines, they may prove to be more amenable to down-cycling, since the process of dismantling a solar panel is at least technically possible.  With wind turbines it is a different matter, as Alex Reichmuth at Basler Zeitung notes:

“The German Wind Energy Association estimates that by 2023 around 14,000 MW of installed capacity will lose production, which is more than a quarter of German wind power capacity on land. How many plants actually go off the grid depends on the future electricity price. If this remains as deep as it is today, more plants could be shut down than newly built.

“However, the dismantling of wind turbines is not without its pitfalls. Today, old plants can still be sold with profit to other parts of the world, such as Eastern Europe, Russia or North Africa, where they will continue to be used. But the supply of well-maintained old facilities is rising and should soon surpass demand. Then only the dismantling of plants remains…

“Although the material of steel parts or copper pipes is very good recyclable. However, one problem is the rotor blades, which consist of a mixture of glass and carbon fibers and are glued with polyester resins.”

According to Reichmuth, even incinerating the rotor blades will cause problems because this will block the filters used in waste incineration plants to prevent toxins being discharged into the atmosphere.  However, the removal of the concrete and steel bases on which the turbines stand may prove to be the bigger economic headache:

“In a large plant, this base can quickly cover more than 3,000 tons of reinforced concrete and often reach more than twenty meters deep into the ground… The complete removal of the concrete base can quickly cost hundreds of thousands of euros.”

It is this economic issue that is likely to scupper attempts to develop a solar panel recycling industry.  In a recent paper in the International Journal of Photoenergy, D’Adamo et. al. conclude that while technically possible, current recycling processes are too expensive to be commercially viable.  As Nate Berg at Ensia explains:

“Part of the problem is that solar panels are complicated to recycle. They’re made of many materials, some hazardous, and assembled with adhesives and sealants that make breaking them apart challenging.

“’The longevity of these panels, the way they’re put together and how they make them make it inherently difficult to, to use a term, de-manufacture,’ says Mark Robards, director of special projects for ECS Refining, one of the largest electronics recyclers in the U.S. The panels are torn apart mechanically and broken down with acids to separate out the crystalline silicon, the semiconducting material used by most photovoltaic manufacturers. Heat systems are used to burn up the adhesives that bind them to their armatures, and acidic hydro-metallurgical systems are used to separate precious metals.

“Robards says nearly 75 percent of the material that gets separated out is glass, which is easy to recycle into new products but also has a very low resale value…”

Ironically, manufacturers’ efforts to drive down the price of solar panels make recycling them even more difficult by reducing the amount of expensive materials like silver and copper for which there is demand in recycling.

In Europe, regulations for the disposal of electrical waste were amended in 2012 to incorporate solar panels.  This means that the cost of disposing used solar panels rests with the manufacturer.  No such legislation exists elsewhere.  Nor is it clear whether those costs will be absorbed by the manufacturer or passed on to consumers.

Since only the oldest solar panels and wind turbines have to be disposed of at present, it might be that someone will figure out how to streamline the down-cycling process.  As far more systems come to the end of their life in the next decade, volume may help drive down costs.  However, we cannot bank on this.  The energy and materials required to dismantle these technologies may well prove more expensive than the value of the recovered materials.  As Kelly Pickerel at Solar Power World concedes:

“System owners recycle their panels in Europe because they are required to. Panel recycling in an unregulated market (like the United States) will only work if there is value in the product. The International Renewable Energy Agency (IRENA) detailed solar panel compositions in a 2016 report and found that c-Si modules contained about 76% glass, 10% polymer (encapsulant and backsheet), 8% aluminum (mostly the frame), 5% silicon, 1% copper and less than 0.1% of silver, tin and lead. As new technologies are adopted, the percentage of glass is expected to increase while aluminum and polymers will decrease, most likely because of dual-glass bifacial designs and frameless models.

“CIGS thin-film modules are composed of 89% glass, 7% aluminum and 4% polymers. The small percentages of semiconductors and other metals include copper, indium, gallium and selenium. CdTe thin-film is about 97% glass and 3% polymer, with other metals including nickel, zinc, tin and cadmium telluride.

“There’s just not a large amount of money-making salvageable parts on any type of solar panel. That’s why regulations have made such a difference in Europe.”

Ultimately, even down-cycling these supposedly “renewable” technologies will require state intervention.  Or, to put it another way, the public – either as consumers or taxpayers – are going to have to pick up the tab in the same way as they are currently subsidising fossil carbon fuels and nuclear.  The question that the proponents of these technologies dare not ask, is how far electorates are prepared to put up with these increasing costs before they turn to politicians out of the Donald Trump/ Malcolm Turnbull stable who promise the cheapest energy irrespective of its environmental impact.


It’s the Consumption, Stupid….

2 05 2018

The 2nd Law of Thermodynamics – The Gaping Hole in the Middle of the Circular Economy

paul mobbsA great article by Paul Mobbs, an independent environmental consultant, investigator, author and lecturer, and maintains the Free Range Activism Website (FRAW).

Why the latest buzz-phrase in consumer sustainability is not only failing to tackle the core problem, but why it is doomed to fail

Listening to Radio 4 this morning I heard the two juxtaposed keywords that I’ve learned to dread over the last couple of the years; ‘circular economy’. It’s a great idea, and I can’t fault the true belief of those promoting it. My problem is that the way they describe it has little to do with the physical realities of the world, and hence it’s really just a “get out of hell free” card for affluent consumers – who are, it would appear, the most vociferous proponents of this idea.

As is so often the case with feel-good eco-stories, the Today programme’s[1] interviewer was all light and fluffy; and obviously flummoxed because they did not have the confidence to ask any basic, challenging questions of the interviewee.

The segment was examining the new research[2] from Portsmouth University. They’ve found a ‘mutant’ enzyme from bacteria they found living on plastic in recycling centres. As with all enzymes[3] – like the things they add to washing powder so you can clean clothes without boiling them – these complex molecules accelerate chemical reactions by working on the chemical bonds which hold things together. In this case, the enzyme breaks down the bonds of the polyethylene terephthalate[4] (PET) molecule.

Great idea; and if shown to be ecologically safe, great chemistry. That’s not the issue here.

Enter ‘the Circular Economy’

The scientist then described the value of this enzyme as part of the ‘circular economy’[5] – a concept proposed in the 1980s, and popularized in recent years by organizations such a the Ellen MacArthur Foundation[6], of moving from a linear to a circular economic process:

  • ‘Linear’ economy – meaning that materials are created, used and disposed as waste, requiring that new resources must be reduced to replace them, which is how the core of the global economy works today;
  • ‘Circular’ economy – meaning that all materials and products are manufactured and sold so that their content can be fully recycled and used in new products once more, obviating the need to produce new resources to replace them.

It is a lovely idea. One which I would whole-heartedly support, but for one slight technical hitch I perceive in this concept; The Laws of Thermodynamics[7] – and my particular favourite, The Second Law of Thermodynamics[8].

The Laws of Thermodynamics arose in parallel with industrialization, having first been used to described the operation of steam engines. Over time science has perfected the principles of these ‘laws’ and now finds that they are universal.

The Second Law deals with irreversible reactions – that is, operations which once undertaken cannot be undone.

What the ‘circular economy’ idea would propose in relation to PET plastic bottles is: Take some natural gas (yes, contrary to the idea that plastics come form oil, most plastics are made from the light by-products of oil refining, but mostly natural gas and gas condensate) and turn it into PET plastic; then make a plastic bottle with a blow-moulding machine; use the bottle; then recycle the bottle, and keep recycling after each use – obviating the need to use more natural gas to create plastic. As a result, the use of the bottle becomes ‘circular’.

Sounds great, doesn’t it?

The thermodynamic restrictions of human hope

Of course, there’s always a big hairy “but” in situations like this.

In this case, the use of plastic represents a ‘reversible’ reaction – you can make plastic, and then recycle the plastic to make more plastic. Sorted!

The energy expended in doing that, however, is an irreversible[9] process. It can’t be recovered.

The Second Law dictates that energy can be used, but in the process the ‘quality’ (for which read ‘usefulness’, or ‘density’, or ‘value’) of that energy is degraded; and once degraded, that ‘quality’ cannot be recovered without using even more energy than was expended when the energy was first used.

For example, water flowing downhill can turn a turbine to make electricity; but it takes more electricity than that was generated to pump that same volume of water back to the top of the hill again.

Now at this point proponents of the circular economy will talk about using renewable energy, thereby avoiding the issue of finite resources being used to power the process. That’s true, up to a point; and that point is, what are those renewable energy system made from? Finite resources.

Limits to renewable energy

Just because renewable energy is ‘renewable’, it doesn’t mean the machines we require to harvest that energy are freed from the finite limits of the Earth’s resources[10].

There are grand schemes to power the world using renewable energy. The difficulty is that no one has bothered to check to see if the resources are available to produce that energy. Recent research suggests that the resources required to produce that level of capacity cannot currently be supplied[11].

The crunch point is that while there might be enough indium, gallium, neodymium and other rare metals to manufacture wind turbines or PV panels for the worlds half-a-billion or so affluent consumers (i.e., the people most likely to be reading this), there is not enough to give everyone on the planet that same level of energy consumption – we’d run out long before then.

For example, the first metal humans smelted[12] about 9,000 years ago was copper. Ever since copper has been a brilliant indicator of human development, with consumption increasing in line with human development ever since. One reason for that is that as industrial use has fallen (e.g., replacing copper pipes with plastic) we’ve used more copper for new technologies (e.g., electronics – roughly 14%[13] of the weight of a mobile phone is copper).

Copper also has one of the best, most mature recycling systems, but even then it’s been estimated that only half of all copper is reused[14].

The problem is, due to its long and intensive global use, we’re approaching ‘peak copper’[15] – the point where the remaining amount of copper in the ground, and more importantly its falling ore quality, reduces the amount which can be economically produced annually. And more significantly, the ecological impact[16] of the falling copper ore quality is that the energy consumed and the greenhouse gases emitted by production increase exponentially.

Now of course we’ll use copper more efficiently. And if we run short, rising prices will increase recycling rates – though it will also increase the disruptive theft[17] of copper in society. The difficulty is that, just last week[18], the copper industry announced that it worried about production after 2020.

Strategy is important, but ‘real’ change is critical

OK, back to the ‘circular economy’.

What really matters here is not so much the material used in production, but the energy density of production. Energy density isn’t just a matter of how much energy it takes to produce an article, but how long that article lasts. That in turn affects the ‘return’ on the energy invested in its production – or EROEI[19].

Let’s say a plastic bottle takes six weeks to be manufactured, filled, bought, consumed, collected and reprocessed to the point of re-manufacture. That’s good because recycling plastic can represent a saving of more than 50%[20] on the energy used to produce it compared to virgin materials.

What determines the long-term sustainability of this though is not just the one-time saving, but the viable fraction that can be reclaimed and reused.

Let’s assume that, at best, we can recover 60% of the content of the bottle over each 6 week cycle. After 1 cycle, 6 weeks, we have 60% of the material left. After 2 cycles, 12 weeks, we have 60% × 60% = 36% left. After three cycles there’s 60% × 36% = 22%. After four cycles, 13%, etc.

By the end of one year (8 or 9 cycles) we’d only have 1% of our plastic left.

The obvious response is, “well, let’s recycle more”. The problem is that achieving a higher recovery rate actually requires expending more energy, reducing the energy saved – and as you get nearer to 100% the amount required is likely to exceed the energy involved in producing new plastic from raw materials.

For example, recycling in densely populated urban areas is easy, because waste management is an essential part of being able to run an urban area. But what about more sparsely populated rural areas and villages? At what point does the energy expended running a collection vehicle exceed the energy saved from materials recovery? (answer – it’s completely dependent upon local circumstance, and so has to be evaluated as part of the planning process rather than generalized in advance).

“It’s consumption, stupid!”

It’s the same as the falling copper ore problem. The more diffuse your source, the more energy you have to expend to recover it. Getting the easy to find plastic, let’s say the first half, will be easy. Getting the next 20% might take as much effort. The 10% after that twice again. And the last 20%? It might produce no saving at all.

Alternatively we could extend the life of the bottle – by refilling instead of recycling. That would have a significant effect, but even then, on each refill cycle a certain number of bottles would be rejected.

Don’t ignore this option though. It is arguable that, in lieu of increasing recycling rates, extending the service life of resources probably has the best energy profile – since it reduces not only the need to re-manufacture resources, but also the need to recycle/replace them. The problem is that reuse often requires far greater change and co-operation by consumers – precisely the thing our ‘liberal’ economy hates doing because it involves dictating the actions of consumers.

Forget Bill Clinton’s line about ‘the economy’; “It’s consumption, stupid!”

More importantly, throughout this whole process, energy is expended[21]; and energy is the one thing we can’t recover. Therefore we have to avoid re-manufacture or recovery in the first place. The difficulty is that no one wants to advocate this – combining multiple reuse, high recycling AND longer service life – as it means the effective elimination of consumerism, fashion, ‘innovation’, and many of the other totemic traits[22] of the modern consumer materialist economy.

Then again, given that a large amount of the world’s wealth is derived from resource exploitation, any change to that pattern is likely to have huge implications for the day-to-day economy[23] that the most affluent consumers rely upon in order to consume.

The ‘Circular Economy’ must accept thermodynamic reality

Arthur Eddington[24] was a British scientist (and Quaker) who advanced physics and astrophysics in the first decades of the 20th Century, and popularized the theories of Albert Einstein – against the then anti-German and anti-Jewish prejudice of the science establishment.

In relation to the Second Law of Thermodynamics, Eddington produced a famous statement:

If someone points out to you that your pet theory of the universe is in disagreement with Maxwell’s equations – then so much the worse for Maxwell’s equations. If it is found to be contradicted by observation – well these experimentalists do bungle things sometimes. But if your theory is found to be against the second law of thermodynamics I can give you no hope; there is nothing for it but to collapse in deepest humiliation.

The ‘circular economy’ is, in my opinion, a ruse to make affluent consumers feel that they can keep consuming without the need to change their habits. Nothing could be further[25] from the truth, and the central reason for that is the necessity for energy to power economic activity[26].

While the ‘circular economy’ concept admittedly has the right ideas, it detracts from the most important aspects of our ecological crisis today[27] – it is consumption that is the issue, not the simply the use of resources. Though the principle could be made to work for a relatively small proportion[28] of the human population, it could never be a mainstream solution for the whole world because of its reliance on renewable energy technologies to make it function – and the over-riding resource limitations on harvesting renewable energy.

In order to reconcile the circular economy with the Second Law we have to apply not only changes to the way we use materials, but how we consume them. Moreover, that implies such a large reduction in resource use[29] by the most affluent, developed consumers, that in no way does the image of the circular economy, portrayed by its proponents, match up to the reality[30] of making it work for the majority of the world’s population.

In the absence of a proposal that meets both the global energy and resource limitations[30] on the human system, including the limits on renewable energy production, the current portrayal of the ‘circular economy’ is not a viable option. Practically then, it is nothing more than a salve for the conscience of affluent consumers who, deep down, are conscious enough to realize that their life of luxury will soon be over as the related ecological and economic crises[31] bite further up the income scale.



  1. BBC Radio 4: ‘Today’, 17th April 2018 –
  2. Guardian Online: ‘Scientists accidentally create mutant enzyme that eats plastic bottles’, 16th April 2018 –
  3. Wikipedia: ‘Enzyme’ –
  4. Wikipedia: ‘Polyethylene terephthalate’ –
  5. Wikipedia: ‘Circular economy’ –
  6. Wikipedia: ‘Ellen MacArthur Foundation’ –
  7. Wikipedia: ‘Laws of thermodynamics’ –
  8. Wikipedia: ‘Second law of thermodynamics’ –
  9. Wikipedia: ‘Irreversible process’ –
  10. BioScience: ‘Energetic Limits to Economic Growth’, vol.61 no.1, January 2011 –
  11. EU Joint Research Committee: ‘Critical Metals in Strategic Energy Technologies – Assessing Rare Metals as Supply-Chain Bottlenecks in Low-Carbon Energy Technologies’, 2011 –
  12. Wikipedia: ‘Chalcolithic’ –
  13. U.S. Geological Survey: ‘Recycled Cell Phones – A Treasure Trove of Valuable Metals’, July 2006 –
  14. Environmental Science and Technology: ‘Dynamic Analysis of Global Copper Flows’, Glöser et al., vol.47 no.12 pp.6564-6572, May 2013 –
  15. Wikipedia: ‘Peak copper’ –
  16. Resource Policy: ‘The Environmental sustainability of mining in Australia: key mega-trends and looming constraints’, Gavin M. Mudd, vol.35 no.2 pp.98-115, June 2010 –
  17. Wikipedia: ‘Metal theft’ –
  18. Mining: ‘Copper supply crunch earlier than predicted – experts’, 10th April 2018 –
  19. Wikipedia: ‘Energy returned on energy invested’ –
  20. Ecological Modelling: ‘Analysis of energy footprints associated with recycling of glass and plastic – case studies for industrial ecology’, vol.174 no.1-2 pp.175-189, May 2004 –
  21. Sustainability: ‘Energy, Economic Growth and Environmental Sustainability: Five Propositions’, vol.2 pp.1784-1809, 18th June 2010 –
  22. Nature: ‘Time to leave GDP behind’, vol.505 pp.283-285, 16th January 2014 –!/menu/main/topColumns/topLeftColumn/pdf/505283a.pdf
  23. International Journal of Transdisciplinary Research: ‘The Need for a New, Biophysical-Based Paradigm in Economics for the Second Half of the Age of Oil’, vol.1 no.1 pp.4-22, 2006 –
  24. Wikipedia: ‘Arthur Eddington’ –
  25. Journal of Cleaner Production: ‘Why are we growth-addicted? The hard way towards degrowth in the involutionary western development path’, vo.18 no.6 pp.590-595, April 2010 –
  26. The Australian National University : ‘The Role of Energy in Economic Growth’, Centre for Climate Economics & Policy, October 2010 –
  27. PNAS: ‘Tracking the ecological overshoot of the human economy’, vol.99 no.14 pp.9266-9271, 9th July 2002 –
  28. The Corner House: ‘Energy Security: For Whom?, For What?’, February 2012 –
  29. Paul Mobbs/MEI: ‘Energy Beyond Oil – Could You Cut Your Energy Use by Sixty Percent?’, June 2005 –
  30. Ecological Economics: ‘Degrowth and the supply of money in an energy-scarce world’, vol.84 pp.187-193, 28th March 2011 –
  31. Proceedings of the Royal Society B: ‘Can a collapse of global civilization be avoided?’, vol.280 no.1754, 7th March 2013 –
  32. Melbourne Sustainable Society Institute: ‘Is Global Collapse Imminent?: An Updated Comparison of The Limits to Growth with Historical Data’, Research Paper No.4, August 2014 –

How an obscure Austrian philosopher saw through our empty rhetoric about ‘sustainability’

5 07 2017

Hot Mess

Marc Hudson, University of Manchester

“Sustainability” is, ironically, a growth industry. Ever since the term “sustainable development” burst onto the scene in 1987 with the release of Our Common Future (also known as the Brundtland report), there has been a dizzying increase in rhetoric about humanity’s relationship with our planet’s resources. Glossy reports – often featuring blonde children in front of solar panels or wind turbines – abound, and are slapped down on desks as proof of responsibility and stewardship.

Every few years a new term is thrown into the mix – usually preceded by adjectives like “participatory” or “community-led”. The fashionability of “resilience” as a mot du jour seems to have peaked, while more recently the “circular economy” has become the trendy term to put on grant applications, conference notices and journal special editions. Over time journals are established, careers are built, and library shelves groan.

Meanwhile, the planetary “overshoot”, to borrow the title of a terrifying 1980 book, goes on – exemplified by rising concentrations of atmospheric carbon dioxide, warmer oceans, Arctic melting, and other signs of the times.

With all this ink being spilled (or, more sustainably, electrons being pressed into service), is there anything new to say about sustainability? My colleagues and I think so.

Three of us (lead author Ulrike Ehgartner,
second author Patrick Gould
and myself) recently published an article called “On the obsolescence of human beings in sustainable development”.

In it we explore the big questions of sustainability, drawing on some of the work of an unjustly obscure Austrian political philosopher called Gunther Anders.

Who was Günther Anders?

He was born Günther Siegmund Stern in 1902. While he was working as a journalist in Berlin, an editor wanted to reduce the number of Jewish-sounding bylines. Stern plumped for “Anders” (meaning “other” or “different”) and used that nom de plume for the rest of his life.

Anders knew lots of the big philosophical names of the day. He studied under Edmund Husserl and Martin Heidegger. He was briefly married to Hannah Arendt, and Walter Benjamin was a cousin.

But despite his stellar list of friends and family, Anders himself was not well known. Harold Marcuse points out that the name “Stern” was pretty apt, writing:

His unsparingly critical pessimism may explain why his pathbreaking works have seldom sparked sustained public discussion.

While Hiroshima and the nuclear threat were the most obvious influences on Anders’ writing, he was also crucially influenced by the events at Auschwitz, the Vietnam War, and his periods in exile in France and the United States. But why should we care, and how can his ideas be applied to modern-day ideas about sustainability?

Space precludes a blow-by-blow account of what my colleagues and I wrote, but two ideas are worth exploring: the “Promethean gap” and “apocalyptic blindness”.

Anders suggested that the societal changes wrought by the industrial age – chief among them the division of labour – opened a gap between individuals’ capability to produce machines, and their capability to imagine and deal with the consequences.

So, riffing on the Greek myth of Prometheus (the chap who stole fire from Mount Olympus and gave it to humans), Anders proposed the existence of a “Promethean gap” which manifests in academic and scientific thinking and leads to the extensive trivialisation of societal issues.

The second idea is that of “apocalyptic blindness” – which is, according to Anders, the mindset of humans in the Age of the Third Industrial Revolution. This, as we write in our paper:

…determines a notion of time and future that renders human beings incapable of facing the possibility of a bad end to their history. The belief in progress, persistently ingrained since the Industrial Revolution, causes the incapability of humans to understand that their existence is threatened, and that this could lead to the end of their history.

Put simply, we don’t want to look an apocalypse in the eye, even if it’s heading straight towards us.

The climate connection

“So what?” you might ask. Why listen to yet another obscure philosopher railing about technology, in the vein of Lewis Mumford and Jacques Ellul? But I think a passing knowledge of Anders and his work reminds us of several important things.

This is nothing new. Recently, the very notion of ‘progress’ has come under renewed assault, with books questioning our assumptions about it. This is not new of course – in a 1967 short story collection about life at the United Nations, Shirley Hazzard had written:

About this development process there appeared to be no half-measures: once a country had admitted its backwardness, it could hope for no quarter in the matter of improvement. It could not accept a box of pills without accepting, in principle, an atomic reactor. Progress was a draught that must be drained to the last bitter drop.

The time – if ever there was one – for tinkering around the edges is over. We need to take stronger action than simply pursuing our feelgood preoccupation with sustainability.

This begs the question of who is supposed to shift us from the current course (or rather, multiple collision courses. That’s a difficult one to answer.

The hope that techno-fixes (including 100% renewable energy) will sort out our problems is a dangerous delusion (please note, I’m not against 100% renewables – I’m just saying that green energy is “necessary but not sufficient” for repairing the planet).

Similarly, the “circular economy” has a rather circular feeling to it – in the sense that we’ve seen all this before. It seems (to me anyway) to be the last gasp of the “ecological modernist” belief that with a bit more efficiency, everything can simply keep on progressing.

The ConversationOur problems go far deeper. We are going to need a rapid and fundamental shift in our values, habits, behaviours, and outlooks. Put in Anders’ terms, we need to stop being blind to the possibility of apocalypse. But then again, people have been saying that for a century or more.

Marc Hudson, PhD Candidate, Sustainable Consumption Institute, University of Manchester

This article was originally published on The Conversation. Read the original article.


15 03 2016

This is Simon Michaux’s follow up to his article on the Implications of Peak Energy

Simon Michaux


Dr Simon Michaux has a Bach App Sc in Physics and Geology and a PhD in mining engineering. He has worked in the mining industry for 18 years in various capacities. He has worked in industry funded mining research, coal exploration and in the commercial sector in an engineering company as a consultant. Areas of technical interest have been: Geometallurgy; mineral processing in comminution, flotation and leaching; blasting; mining geology; geophysics; feasibility studies; mining investment; and industrial sustainability.

There is a macro-scale pattern unfolding under all of us. Every non-renewable natural resource we depend upon is now depleting to the point of peak extraction, or will soon. Industrial systems that are heavily dependent on energy reserves and metal resources are now at serious risk of collapse as production of those raw materials will soon not be able to meet demand, since easy to access reserves will be exhausted, leaving low-grade stocks that are expensive or technically challenging to extract. All living systems on the planet are under stress and are also heavily degrading. Natural systems of all kinds are being depleted in the name of economic development, and the planet’s climate is also undergoing change.

Our culture’s fundamental belief that there are no limits and growth is good, is related to the belief that all resources are infinite. Humans, like all animals on the planet, are biologically driven to consume and expand – it’s a built-in survival mechanism. Yet, as this is a finite planet and our exploitation of these natural resources is exponential in form, there will come a point where severe volatility and resource scarcity will become a reality.

Energy is the rate determining step, which facilitates the continued application of technology with economies of scale. As studies have shown, total world fossil fuel supply is close to peak, driven by peak of oil production. What’s more, putting all energy sources together gives a snapshot of our industrial capability and suggests that peak total energy is projected to be approximately in the year 2017.

energy sources

The industrial systems vital for our society to function are supported by each of these energy sources in quite different ways, and they are not interchangeable easily. A compelling case can be made that that our society and its industrial sector energy supply faces a fundamental problem, that is systemic in nature.

Our industrial requirements will have to be met with a fundamentally different approach to anything we have achieved before. We need to stop depending on non-renewable natural resources and stop the material requirements of the human societal footprint growing exponentially. Mining will continue but according to a radically different business model, and with a very different mandate.


Network theory and systems thinking has some insights to what the required new system of industrialisation could look like. Our human society, its economic and social interactions could be modelled as a system, where each activity could be a connection, for example the transport of goods, or the consumption of electricity. Nodes are where many connections intersect. For example, most activities involve a finance transfer thus will engage the services of a bank. The bank is a node, where many connections are able to function through. Not all nodes are equal though in regard to the number of connections they facilitate. The node of a car manufacturing business, for instance, will have many fewer connections than, say, the European Union Bank.

Image: NASA / Flickr CC BY NC 2.0
Image: NASA / Flickr CC BY NC 2.0

If connections are broken due to circumstance (using a city example, heavy storms and flooding could temporarily interrupt power supply to an individual neighbourhood) then the network is smaller in size but it still functions (power is still being supplied to other parts of the power grid). But if that same storm causes the power station used for electricity generation (a node) to shut down, then every consumer attached to that power station will lose power. The whole grid will crash.

The complexity of a network is supported by and defined by the energy inputs that support it. Our current complex system is supported by cheap abundant high density energy – oil. Complex system networks are not made ‘in situ’, but are grown over time from simple system networks.

What does all this mean for the current industrial grid? Peak total energy means the node of energy supply is about to be disrupted. All links in the network system supported by energy will be logistically traumatized. As it stands, any replacement energy is less dense per unit volume than oil, and requires extensive infrastructure to be built. Think of the amount of energy invested in the creation of our current system over time – without plentiful, easy to access energy, the replacement network system will need to be less complex than the current one, once fully operational. It will also take time for the network to reach full complexity.

The old system cannot function because input energy is sourced from non-renewable natural resources, all of which are depleting or soon will. As energy is the master resource, it defines what happens with all other resource systems. Any replacement system that is a practical option will have to have certain signatures.


Due to energy constraints, all industrial output would have to be sourced from a geographically local area. This would affect everything from raw material consumption, water consumption to waste disposal. Product delivery to market would also be changed. All of this would have to become as close to net zero footprint in terms of source material and waste disposal. Industrial output would have to be simpler. Technology cannot be as complex as it is now. This implies that manufacturing goods will require more effort on our part, which means that we would have to value ‘stuff’ differently. All waste products will also require greater effort to dispose of, meaning that if they could be recycled, reused or repurposed, there would be less strain on the system to function. Maintaining QA/QC material standards and equipment maintenance would all have to be done within a relatively local geographic region. These challenging statements represent practical limits of a low energy future. As this represents quite a paradigm shift from our current state of exponential consumption based on whim, the most difficult but significant task in front of us is a revolution in perception and a restructuring of governance.

Political systems like capitalism, socialism, communism, fascism, etc. are all built in the context of unlimited natural resources. Whatever the new system looks like, it won’t be anything like what has been seen before. We can call it what we like. Planning will have to be projected over 50 to 60 years into the future but be flexible to evolve organically to its environs. The current system is very centralised, whereas the new system would have to be very decentralised due to energy constraints. The flow of information will become very important.

The Great Acceleration indicators, published by IGBP in collaboration with the Stockholm Resilience Centre
The Great Acceleration indicators, published by IGBP in collaboration with the Stockholm Resilience Centre

From a civilisation network systems footprint viewpoint, we must ask ourselves how we can develop an economy that offers enough for everyone, forever. Real world systems and their inputs must reflect this, and the familiar exponential curves of today’s economy must move to flat line or sinusoidal wave functions. We also need to ask what profile human civilisation has amongst the natural environment. Dynamic natural systems must be able to operate unhindered, where natural capital and biodiversity is allowed to recover. The new economic framework must appreciate that inputs and outputs to all systems must be stable over time.

There are two related conceptual ideas which could be a starting point to help us develop the above requirements: the circular economy and the steady state economy. In a future in which peak energy has dramatically changed the rules of the game, these concepts are required to maintain our industrial capacity. It is not a question of choice, as our natural resources are being depleted at an exponential rate. The timing is now. The next 100 years will be very different to the last 100 years.