The End of the Oilocene

19 02 2017

The Oilocene, if that term ever catches on, will have only lasted 150 years. Which must be the quickest blink in terms of geological eras…… This article was lifted from feasta.org but unfortunately I can’t give writing credits as I could not find the author’s name anywhere. The data showing we’ll be quickly out of viable oil is stacking up at an increasing rate.

Steven Kopits from Douglas-Westwood (whose work I published here three years ago almost to the day) said the productivity of new capital spending has fallen by a factor of five since 2000. “The vast majority of public oil and gas companies require oil prices of over $100 to achieve positive free cash flow under current capex and dividend programs. Nearly half of the industry needs more than $120,” he said”.

And if you don’t finish reading this admittedly long article, do not exit this blog without first taking THIS on board…….:

What people do not realise is that it takes oil to extract, refine, produce and deliver oil to the end user. The Hills Group calculates that in 2012, the average energy required by the oil production chain had risen so much that it was then equal to the energy contained in the oil delivered to the economy. In other words “In 2012 the oil industry production chain in total used 50% of all the energy contained in the oil delivered to the consumer”. This is trending rapidly to reach 100% early in the next decade.

So there you go…… as I posted earlier this year, do we have five years left…….?

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

End of the “Oilocene”: The Demise of the Global Oil Industry and of the Global Economic System as we know it.

(A pdf version of this paper is here. Please refer to my presentation for supporting images and comments. )

In 1981 I was sitting on an eroded barren hillside in India, where less than 100 years previously there had been dense forest with tigers. It was now effectively a desert and I was watching villagers scavenging for twigs for fuelwood and pondering their future, thinking about rapidly increasing human population and equally rapid degradation of the global environment. I had recently devoured a copy of The Limits to Growth (LTG) published in 1972, and here it was playing out in front of me. Their Business as Usual (BAU) scenario showed that global economic growth would be over between 2010 -2020; and today 45 years later, that prediction is inexorably becoming true. Since 2008 any semblance of growth has been fuelled by astronomically greater quantities of debt; and all other indicators of overshoot are flashing red.

clarke1

One of the main factors limiting growth was regarded by the authors of LTG as energy; specifically oil. By mid 1970’s surprisingly, enough was known about accessible oil reserves that not a huge amount has since been added to what is known as reserves of conventional oil. Conventional oil is (or was) the high quality, high net energy, low water content, easy to get stuff. Its multi-decade increasing rate in production came to an end around 2005 (as predicted many years earlier by Campbell and Laherre in 1998). The rate of production peaked in 2011 and has since been in decline (IEA 2016).

clarke2

The International Energy Agency (IEA) is the pre-eminent global forecaster of oil production and demand. Recently it admitted that its oil production forecasts were based on economic projections rather than geology or cost; ie on the assumption that supply will always meet projected demand.
In its latest annual forecast however (New Policies Scenario 2016) the IEA has also admitted for the first time a future in which total global “all liquids” oil production could start to fall within the next few years.

clarke3

As Kjell Aklett of Upsala University Global Energy Research Group comments (06-12-16), “In figure 3.16 the IEA shows for the first time what will happen if its unrealistic wishful thinking does not become reality during the next 10 years. Peak Oil will occur even if oil from fracked tight sources, oil sands, and other (unconventional) sources are included”.

In fact – this IEA image clearly shows that the total global rate of production of “all hydrocarbon liquids” could start falling anytime from now on; and this should in itself raise a huge red flag for the Irish Government.

Furthermore, it raises a number of vital questions which are the core subject of this post.
Reserves of conventional “easy” oil have mostly been used up. How likely is it that remaining reserves will be produced at the rate projected? Rapidly diminishing reserves of conventional oil are now increasingly being supplemented by the difficult stuff that Kjell Aklett mentions; including conventional from deep water, polar and other inaccessible regions, very heavy bituminous and high sulphur oil; natural gas liquids and other xtl’s, plus other “unconventional oil” including tar sands and shale oil.

How much will it cost to produce all these various types? How much energy will be required, and crucially how much energy will be left over for use by the economy?

The global industrial economy runs on oil.

Oil is the vital and crucial link in virtually every production chain in the global industrial world economy partly because it supplies over 96% of global transport energy – with no significant non-oil dependent alternative in sight.

clarke4

Our industrial food production system uses over 10 calories of oil energy to plough, plant, fertilise, harvest, transport, refine, package, store/refrigerate, and deliver 1 calorie of food to the consumer; and imagine trying to build infrastructure; roads, schools, hospitals, industrial facilities, cities, railways, airports without oil, let alone maintain them.

Surprisingly perhaps, oil is also crucial to production of all other forms of energy including renewables. We cannot mine and distribute coal or even drill for gas and install pipelines and gas distribution networks without lots of oil; and you certainly cannot make a nuclear power station or build a hydroelectric dam without oil. But even solar panels, wind and biomass energy are also totally dependent on oil to extract and produce the raw materials; oil is directly or indirectly used in their manufacture (steel, glass, copper, fibreglass/GRP, concrete) and finally to distribute the product to the end user, and install and maintain it.

So it’s not surprising that excluding hydro and nuclear (which mostly require phenomenal amounts of oil to implement), renewables still only constitute about 3% of world energy (BP Energy Outlook 2016). This figure speaks entirely for itself. I am a renewable energy consultant and promoter, but I am also a realist; in practice the world runs on oil.

clarke5

The economy, Global GDP and oil are therefore mutually dependent and have enjoyed a tightly linked dance over the decades as shown in the following images. Note the connection between oil, total energy, oil price and GDP (clues for later).

clarke6
Click on image to enlarge

Rising cost of oil production

Since 2005 when the rate of production of conventional oil slowed and peaked, production costs have been rising more rapidly. By 2013, oil industry costs were approaching the level of the global oil price which was more than $100/barrel at that time; and industry insiders were saying that the oil industry was finding it difficult to break even.

clarke7
Click on image to enlarge

A good example of the time was the following article which is worth quoting in full in the light of the price of oil at the time (~$100/bbl), and the average 2016 sustained low oil price of ~$50/bbl.

Oil and gas company debt soars to danger levels to cover shortfall in cash By Ambrose Evans-Pritchard. Telegraph. 11 Aug 2014

“The world’s leading oil and gas companies are taking on debt and selling assets on an unprecedented scale to cover a shortfall in cash, calling into question the long-term viability of large parts of the industry. The US Energy Information Administration (EIA) said a review of 127 companies across the globe found that they had increased net debt by $106bn in the year to March, in order to cover the surging costs of machinery and exploration, while still paying generous dividends at the same time. They also sold off a net $73bn of assets.

The EIA said revenues from oil and gas sales have reached a plateau since 2011, stagnating at $568bn over the last year as oil hovers near $100 a barrel. Yet costs have continued to rise relentlessly. Companies have exhausted the low-hanging fruit and are being forced to explore fields in ever more difficult regions.

The EIA said the shortfall between cash earnings from operations and expenditure — mostly CAPEX and dividends — has widened from $18bn in 2010 to $110bn during the past three years. Companies appear to have been borrowing heavily both to keep dividends steady and to buy back their own shares, spending an average of $39bn on repurchases since 2011”.

In another article (my highlights) he wrote

“The major companies are struggling to find viable reserves, forcing them to take on ever more leverage to explore in marginal basins, often gambling that much higher prices in the future will come to the rescue. Global output of conventional oil peaked in 2005 despite huge investment. The cumulative blitz on exploration and production over the past six years has been $5.4 trillion, yet little has come of it. Not a single large project has come on stream at a break-even cost below $80 a barrel for almost three years.

Steven Kopits from Douglas-Westwood said the productivity of new capital spending has fallen by a factor of five since 2000. “The vast majority of public oil and gas companies require oil prices of over $100 to achieve positive free cash flow under current capex and dividend programmes. Nearly half of the industry needs more than $120,” he said”.

The following images give a good idea of the trend and breakdown in costs of oil production. Getting it out of the ground is just for starters. The images show just how expensive it is becoming to produce – and how far from breakeven the current oil price is.

clarke8
Click on image to enlarge

It is important to note that the “breakeven cost” is much less than the oil price required to sustain the industry into the future (business as usual).

The following images show that the many different types of oil have (obviously) vastly different production costs. Note the relatively small proportion of conventional reserves (much of it already used), and the substantially higher production cost of all other types of oil. Note also the apt title and date of the Deutsche Bank analysis – production costs have risen substantially since then.

clarke9

clarke10

The global oil industry is in deep trouble

You do not need to be an economist to see that the average 2016 price of oil ~ $50/bbl was substantially lower than just the breakeven price of all but a small proportion of global oil reserves. Even before the oil price collapse of 2014-5, the global oil industry was in deep trouble. Debts are rising quickly, and balance sheets are increasingly RED. Earlier this year 2016, Deloitte warned that 35% of oil majors were in danger of bankruptcy, with another 30% to follow in 2017.

clarke11

clarke12
Click on image to enlarge

In addition to the oil majors, shrinking oil revenues in oil-producing countries are playing havoc with national economies. Virtually every oil producing country in the world requires a much higher oil price to balance its budget – some of them vastly so (eg Venezuela). Their economies have been designed around oil, which for many of them is their largest source of income. Even Saudi Arabia, the biggest global oil producer with the biggest conventional oil reserves is quickly using up its sovereign wealth fund.

clarke13

It appears that not a single significant oil-producing country is balancing its budget. Their debts and deficits grow bigger by the day. Everyone is praying for higher oil prices. Who are they kidding? The average BAU oil price going forward for business as usual for the whole global oil industry probably needs to be well over $100/bbl; and the world economy is on its knees even at the present low oil price. Why is this? The indicators all spell huge trouble ahead. Could there be another fundamental oil/energy/financial mechanism operating here?

The Root Cause

The cause is not surprising. All the various new types of oil and a good deal of the conventional stuff that remains require far more energy to produce.

In 2015, The Hills Group (US Oil Engineers) published “Depletion – A Determination of the Worlds Petroleum Reserve”. It is meticulously researched and re-worked with trends double checked against published data. It follows on from the Hills Group 2013 work that accurately predicted the approaching oil price collapse after 2014 (which no-one else did) and calculated that the average oil price of 2016 would be ~$50/bbl. They claim theirs is the most accurate oil price indicator ever produced, with >96% accuracy with published past data. The Hills Group work has somewhat clarified my understanding of the core issues and I will try to summarise two crucial points as follows.

Oil can only be useful as an energy source if the energy contained in the product (ie transport fuel) is greater than the energy required to extract, refine and deliver the fuel to the end user.

If you electrolyse water, the hydrogen gas produced (when mixed with air and ignited), will explode with a bang (be careful doing this at home!). The hydrogen contained in the world’s water is an enormous potential energy source and contains infinitely more energy (as hydrogen) than humans could ever need. The problem is that it takes far more energy to produce a given amount of hydrogen from water than is available by combusting it. Oil is rapidly going the same way. Only a small proportion of what remains of conventional oil resources can provide an energy surplus for use as a fuel. All the other types of oil require more energy to produce and deliver as fuel to the end user (taking into account the whole oil production chain), than is contained in the fuel itself.

What people do not realise is that it takes oil to extract, refine, produce and deliver oil to the end user. The Hills Group calculates that in 2012, the average energy required by the oil production chain had risen so much that it was then equal to the energy contained in the oil delivered to the economy. In other words “In 2012 the oil industry production chain in total used 50% of all the energy contained in the oil delivered to the consumer”. This is trending rapidly to reach 100% early in the next decade.

At this point – no matter how much oil is left (a lot) and in whatever form (many), oil will be of no use as an energy source for transport fuels, since it will on average require more energy to extract, refine and deliver to the end-user, than the oil itself contains.

Because oil reserves are of decreasing quality and oil is getting more difficult and expensive to produce and transform into transport fuels; the amount of energy required by the whole oil production chain (the global oil industry) is rapidly increasing; leaving less and less left over for the rest of the economy.

In this context and relative to the IEA graph shown earlier, there is a big difference between annual gross oil production, and the amount of energy left in the product available for work as fuel. Whilst total global oil (all liquids) production currently appears to be still growing slowly, the energy required by the global oil industry is growing faster, and the net energy available for work by the end user is decreasing rapidly. This is illustrated by the following figure (Louis Arnoux 2016).

clarke14

The price of oil cannot exceed the value of the economic activity generated from the amount of energy available to end-users per barrel.

The rapid decline in oil-energy available to the economy is one of the key reasons for the equally rapid rise in global debt.

The global industrial world economy depends on oil as its prime energy source. Increasing growth of the world economy during the oil age has been exactly matched by oil production and use, but as Louis’ image shows, over the last forty years the amount of net energy delivered by the oil industry to the economy has been decreasing.

As a result, the economic value of a barrel of oil is falling fast. “In 1975 one dollar could have bought, on average, 42,348 BTU; by 2010 a dollar would only have bought 6,946 BTU” (The Hills Group 2015).

clarke15

This has caused a parallel reduction in real economic activity. I say “real” because today the financial world accounts for about 40% of global GDP, and I would like to remind economists and bankers that you cannot eat 0000’s on a computer screen, or use them to put food on the table, heat your house, or make something useful. GDP as an indicator of the global economy is an illusion. If you deduct financial services and account for debt, the real world economy is contracting fast.

To compensate, and continue the fallacy of endless economic growth, we have simply borrowed and borrowed, and borrowed. Huge amounts of additional debt are now required to sustain the “Growth Illusion”.

clarke16

In 2012 the decreasing ability of oil to power the economy intersected with the increasing cost of oil production at a point The Hills Group refers to as the maximum affordable consumer price (just over $100/bbl) and they calculated that the price of oil must fall soon afterwards. In 2014 much to everyone’s surprise (IEA, EIA, World Bank, Wall St Oil futures etc) the price of oil fell to where it is now. This is clearly illustrated by The Hills Group’s petroleum price curve of 2013 which correctly calculated that the 2016 average price of oil would be ~$50/bbl (Depletion – The Fate of the Oil Age 2013).

clarke17

In their detailed 2015 study The Hills Group writes (Depletion – A determination of the world’s petroleum reserve 2015);

“To determine the affordability range it is first observed that the price of a unit of petroleum cannot exceed the value of the economic activity (generated by the net energy) it supplies to the end consumer. (Since 2012) more of the energy from petroleum was being committed to the production of petroleum than was delivered to the consumer. This precipitated the 2014 price decline that reduced prices by 50%. The energy delivered to the end consumer will continue to decline and the end consumer maximum affordability will decline with it.

Dr Louis Arnoux explains this as follows: “In 1900 the Global Industrial World received 61% of the gross energy in a barrel of oil. In 2016 this is down to 7%. The global industrial world is being forced to contract because it is being starved of net energy from oil” (Louis Arnoux 2016).

This is reflected in the slowing down of global economic growth and the huge increase in total global debt.

Without noticing it, in 2012 the world entered “Emergency Red Alert”

In the following image, Dr Arnoux has reworked Hills Group petroleum price curve showing the impending collapse of thermodynamically driven oil prices – and the end of the oil age as we know it. This analysis is more than amply reinforced by the dire financial straits of the global oil industry, and the parlous state of the global economy and financial system.

clarke18

Oil is a finite resource which is subject to the same physical laws as many other commodities. The debate about peak oil has been clouded by the fact that oil consists of many different kinds of hydrocarbons; each of which has its own extraction profile. But conventional oil is the only category of oil that can be extracted with a whole production chain energy surplus. Production of this commodity (conventional oil) has undoubtedly peaked and is now declining. The amount of energy (and cost) required by the global oil industry to produce and deliver much of the remainder of conventional reserves and the many alternative categories of oil to the consumer, is rapidly increasing; and we are equally rapidly heading toward the day when we have used up those reserves of oil which will deliver an energy surplus (taking into account the whole production chain from extraction to delivery of the end product as fuel to the consumer).

The Global Oil Industry is one of the most advanced and efficient in the world and further efficiency gains will be minor compared to the scale of the problem, which is essentially one of oil depletion thermodynamics.

Humans are very good at propping up the unsustainable and this often results in a fast and unexpected collapse (eg Joseph Tainter: The collapse of complex societies). An example of this is the Seneca Curve/Cliff which appears to me to be an often-repeated defining trait of humanity. Our oil/financial system is a perfect illustration.

Debt is being used to extend the unsustainable and it looks as though we are headed for the “Mother of all Seneca Curves” which I have illustrated below:

clarke19

clarke20

Because oil is the primary energy resource upon which all other energy sources depend, it is almost certain that a contraction in oil production would be reflected in a parallel reduction in other energy systems; as illustrated rather dramatically in this image by Gail Tverberg (the timing is slightly premature – but probably not by much).

clarke21

Energy and Money

Fundamental to all energy and economic systems is money. Debt is being used to prop up a contracting oil energy system, and the scale of money created as debt over the last few decades to compensate is truly phenomenal; amounting to hundreds of trillions (excluding “extra-terrestrial” amounts of “financials”), rising exponentially faster. This amount of debt, can never ever be repaid. The on-going contraction of the oil/energy system will exacerbate this trend until the financial system collapses. There is nothing anyone can do about it no matter how much money is printed, NIRP, ZIRP you name it – all the indicators are flashing red. The panacea of indefinite money printing will soon hit the thermodynamic energy wall of reality.

clarke22

The effects we currently observe such as exponential growth in debt (US Debt alone almost doubled from $10 trillion to nearly $20 trillion during Obama’s tenure), and the financial problems of oil majors and oil producing countries, are clear indicators of the imminent contraction in existing global energy and financial systems.

clarke23
.
The coming failure of the global economic system will be a systemic failure. I say “systemic” because for the last 150 years up till now there has always been cheap and abundant oil to power recovery from previous busts. This era is over. Cheap and abundant oil will not be available for recovery from the next crunch, and the world will need to adopt a completely different economic and financial model.

The Economics “profession”

Economists would have us believe it’s just another turn of the credit cycle. This dismal non-science is in the main the lapdog of the establishment, the global financial and corporate interests. They have engineered the “science” to support the myth of perpetual growth to suit the needs of their pay-masters, the financial institutions, corporations and governments (who pay their salaries, fund the universities and research, etc). They have steadfastly ignored all ecological and resource issues and trends and warnings such as LTG, and portrayed themselves as the pre-eminent arbiters of human enterprise. By vehemently supporting the status quo, they of all groups, I hold primarily responsible for the appalling situation the planet faces; the destruction of the natural world, and many other threats to the global environment and its ability to sustain civilisation as we know it.

I have news for the “Economics Profession”. The perpetual growth fantasy financial system based on unlimited cheap energy is now coming to an end. From the planet’s point of view – it simply couldn’t be soon enough. This will mark the end of what I call the “Oilocene”. Human activities are having such an effect on the planet that the present age has been classified by geologists as a new geological era “The Anthropocene”. But although humans had already made a significant impact on natural systems, the Anthropocene has largely been defined by the relatively recent discovery and use of liquid fossil energy reserves amounting to millions of years of stored solar energy. Unlimited cheap oil has fuelled exponential growth in human systems to the point that many of these are now greater than natural planetary ones.
.
This cannot be sustained without huge amounts of cheap net oil energy, so we are inescapably headed for “the great deceleration”. The situation is very like the fate of the Titanic which I have outlined in my presentation. Of the few who had the courage to face the economic wind of perpetual growth, I salute the authors of LTG and the memory of Richard Douthwaite (The Growth Illusion 1992), and all at FEASTA who are working hard to warn a deaf Ireland of what is to come and why – and have very sensibly been preparing for it! We will all need a lot of courage and resilience to face what is coming down the line.

Ireland has a very short time available to prepare for hard times.

There are many things we could do here to soften the impact if the problem was understood for what it is. FEASTA publications such as the Before The Wells Run Dry and Fleeing Vesuvius; and David Korowicz’s works such as The Tipping Point and of course, The Hills Group 2015 publicationDepletion – a determination of the worlds petroleum reserve , and very many other references, provide background material and should be required urgent reading for all policy makers.

The pre-eminent challenge is energy for transport and agriculture. We could switch to use of compressed natural gas (CNG) as the urgent default transport/motive fuel in the short term since petrol and diesel engines can be converted to dual-fuel use with CNG; supplemented rapidly by biogas (since we are lucky enough to have plenty of agricultural land and water compared to many countries).

We could urgently switch to an organic high labour input agriculture concentrating on local self-sufficiency eliminating chemical inputs such as fertilisers pesticides and herbicides (as Cuba did after the fall of the Soviet Union). We could outlaw the use of oil for heating and switch to biomass.

We could penalise high electricity use and aim to massively cut consumption so that electricity can be supplied by completely renewable means – preserving our natural gas for transport fuel and the rapid transition from oil. The Grid could be urgently reconfigured to enable 100% use of renewable electricity within a few years. We could concentrate on local production of food, goods and services to reduce transport needs.

These measures would create a lot of jobs and improve the balance of payments. They have already been proposed in one form or another by FEASTA over the last 15 years.

Ireland has made a start, but it is insignificant compared to the scale and timescale of the challenge ahead as illustrated by the next image (SEAI: Energy in Ireland – Key Statistics 2015). We urgently need to shrink the oil portion to a small fraction of current use.

clarke24

Current fossil energy use is very wasteful. By reducing waste and increasing efficiency we can use less. For instance, a large amount of the energy used as transport fuels and for electricity generation is lost to atmosphere as waste heat. New technological solutions include a global initiative to mount an affordable emergency response called nGeni that is solely based on well-known and proven technology components, integrated in a novel way, with a business and financial model enabling it to tap into over €5 trillion/year of funds currently wasted globally as waste heat. This has potential for Ireland, and will be outlined in a subsequent post.

To finance all the changes we need to implement, quickly (and hopefully before the full impact of the oil/financial catastrophe really kicks in), we could for instance create something like a massive multibillion “National Sustainability and Renewable Energy Bond”. Virtually all renewables provide a better (often substantially better) return on investment compared to bank savings, government bonds, etc; especially in the age of zero and negative interest rate policies ZIRP, NIRP etc.

We may need to think about managing this during a contraction in the economy and financial system which could occur at any time. We certainly could do with a new clever breed of “Ecological Economists” to plan for the end of the old system and its replacement by a sustainable new one. There is no shortage of ideas. The disappearance of trillions of fake money and the shrinking of national and local tax income which currently funds the existing system and its social programmes will be a huge challenge to social stability in Ireland and all over the world.

It’s now “Emergency Red Alert”. If we delay, we won’t have the energy or the money to implement even a portion of what is required. We need to drag our politicians and policy makers kicking and screaming to the table, to make them understand the dire nature of the predicament and challenge them to open their eyes to the increasingly obvious, and to take action. We can thank The Hills Group for elucidating so clearly the root causes of the problem, but the indicators of systemic collapse have for many years been frantically jumping up and down, waving at us and shouting LOOK AT ME! Meanwhile the majority of blinkered clueless economists that advise business and government and who plan our future, look the other way.

In 1972 “The Limits to Growth” warned of the consequences of growing reliance on the finite resource called “oil” and of the suicidal economics mantra of endless growth. The challenge Ireland will soon face is managing a fast economic and energy contraction and implementing sustainability on a massive scale whilst maintaining social cohesion. Whatever the outcome (managed or chaotic contraction), we will soon all have to live with a lot less energy and physical resources. That in itself might not necessarily be such a bad thing provided the burden is shared. “Modern citizens today use more energy and physical resources in a month than our great-grandparents used during their whole lifetime” (John Thackera; “From Oil Age to Soil Age”, Doors to Perception; Dec 2016). Were they less happy than us?

PDF of this article
Powerpoint presentation

Featured image: used motor oil. Source: http://www.freeimages.com/photo/stain-1507366

Advertisements




What is this ‘Crisis’ of Modernity?

22 01 2017

But why is the economy failing to generate prosperity as in earlier decades?  Is it mainly down to Greenspan and Bernanke’s monetary excesses?  Certainly, the latter has contributed to our contemporary stagnation, but perhaps if we look a little deeper, we might find an additional explanation. As I noted in a Comment of 6 January 2017, the golden era of US economic expansion was the ‘50s and ‘60s – but that era had begun to unravel somewhat, already, with the economic turbulence of the 70s. However, it was not so much Reagan’s fiscal or monetary policies that rescued a deteriorating situation in that earlier moment, but rather, it was plain old good fortune. The last giant oil fields with greater than 30-to-one, ‘energy-return’ on ‘energy-cost’ of exploitation, came on line in the 1980s: Alaska’s North Slope, Britain and Norway’s North Sea fields, and Siberia. Those events allowed the USA and the West generally to extend their growth another twenty years.

This week, there has been an avalanche of articles on Limits to Growth, just not titled so……. it’s almost as though the term is getting stuck in people’s throats, and are unable to pronounce them….

acrooke

Alastair Crooke

This article by former British diplomat and MI6 ‘ranking figure’ Alastair Crooke, is an unpublished article I’ve lifted from the Automatic Earth…… as Raul Ilargi succinctly puts it…:

 

His arguments here are very close to much of what the Automatic Earth has been advocating for years [not to mention DTM’s…], both when it comes to our financial crisis and to our energy crisis. Our Primers section is full of articles on these issues written through the years. It’s a good thing other people pick up too on topics like EROEI, and understand you can’t run our modern, complex society on ‘net energy’ as low as what we get from any of our ‘new’ energy sources. It’s just not going to happen.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Alastair Crooke: We have an economic crisis – centred on the persistent elusiveness of real growth, rather than just monetised debt masquerading as ‘growth’ – and a political crisis, in which even ‘Davos man’, it seems, according to their own World Economic Forum polls, is anxious; losing his faith in ‘the system’ itself, and casting around for an explanation for what is occurring, or what exactly to do about it. Klaus Schwab, the founder of the WEF at Davos remarked  before this year’s session, “People have become very emotionalized, this silent fear of what the new world will bring, we have populists here and we want to listen …”.

Dmitry Orlov, a Russian who was taken by his parents to the US at an early age, but who has returned regularly to his birthplace, draws on the Russian experience for his book, The Five Stages of Collapse. Orlov suggests that we are not just entering a transient moment of multiple political discontents, but rather that we are already in the early stages of something rather more profound. From his perspective that fuses his American experience with that of post Cold War Russia, he argues, that the five stages would tend to play out in sequence based on the breaching of particular boundaries of consensual faith and trust that groups of human beings vest in the institutions and systems they depend on for daily life. These boundaries run from the least personal (e.g. trust in banks and governments) to the most personal (faith in your local community, neighbours, and kin). It would be hard to avoid the thought – so evident at Davos – that even the elites now accept that Orlov’s first boundary has been breached.

But what is it? What is the deeper economic root to this malaise? The general thrust of Davos was that it was prosperity spread too unfairly that is at the core of the problem. Of course, causality is seldom unitary, or so simple. And no one answer suffices. In earlier Commentaries, I have suggested that global growth is so maddeningly elusive for the elites because the debt-driven ‘growth’ model (if it deserves the name ‘growth’) simply is not working.  Not only is monetary expansion not working, it is actually aggravating the situation: Printing money simply has diluted down the stock of general purchasing power – through the creation of additional new, ‘empty’ money – with the latter being intermediated (i.e. whisked away) into the financial sector, to pump up asset values.

It is time to put away the Keynesian presumed ‘wealth effect’ of high asset prices. It belonged to an earlier era. In fact, high asset prices do trickle down. It is just that they trickle down into into higher cost of living expenditures (through return on capital dictates) for the majority of the population. A population which has seen no increase in their real incomes since 2005 – but which has witnessed higher rents, higher transport costs, higher education costs, higher medical costs; in short, higher prices for everything that has a capital overhead component. QE is eating into peoples’ discretionary income by inflating asset balloons, and is thus depressing growth – not raising it. And zero, and negative interest rates, may be keeping the huge avalanche overhang of debt on ‘life support’, but it is eviscerating savings income, and will do the same to pensions, unless concluded sharpish.

But beyond the spent force of monetary policy, we have noted that developed economies face separate, but equally formidable ‘headwinds’, of a (non-policy and secular) nature, impeding growth – from aging populations in China and the OECD, the winding down of China’s industrial revolution,  and from technical innovation turning job-destructive, rather than job creative as a whole. Connected with this is shrinking world trade.

But why is the economy failing to generate prosperity as in earlier decades?  Is it mainly down to Greenspan and Bernanke’s monetary excesses?  Certainly, the latter has contributed to our contemporary stagnation, but perhaps if we look a little deeper, we might find an additional explanation. As I noted in a Comment of 6 January 2017, the golden era of US economic expansion was the ‘50s and ‘60s – but that era had begun to unravel somewhat, already, with the economic turbulence of the 70s. However, it was not so much Reagan’s fiscal or monetary policies that rescued a deteriorating situation in that earlier moment, but rather, it was plain old good fortune. The last giant oil fields with greater than 30-to-one, ‘energy-return’ on ‘energy-cost’ of exploitation, came on line in the 1980s: Alaska’s North Slope, Britain and Norway’s North Sea fields, and Siberia. Those events allowed the USA and the West generally to extend their growth another twenty years.

And, as that bounty tapered down around the year 2000, the system wobbled again, “and the viziers of the Fed ramped up their magical operations, led by the Grand Vizier (or “Maestro”) Alan Greenspan.”  Some other key things happened though, at this point: firstly the cost of crude, which had been remarkably stable, in real terms, over many years, suddenly started its inexorable real-terms ascent.  And from 2001, in the wake of the dot.com ‘bust’, government and other debt began to soar in a sharp trajectory upwards (now reaching $20 trillion). Also, around this time the US abandoned the gold standard, and the petro-dollar was born.

 


Source: Get It. Got It. Good, by Grant Williams

Well, the Hill’s Group, who are seasoned US oil industry engineers, led by B.W. Hill, tell us – following their last two years, or so, of research – that for purely thermodynamic reasons net energy delivered to the globalised industrial world (GIW) per barrel, by the oil industry (the IOCs) is rapidly trending to zero. Note that we are talking energy-cost of exploration, extraction and transport for the energy-return at final destination. We are not speaking of dollar costs, and we are speaking in aggregate. So why should this be important at all; and what has this to do with spiraling debt creation by the western Central Banks from around 2001?

The importance? Though we sometimes forget it, for we now are so habituated to it, is that energy is the economy.  All of modernity, from industrial output and transportation, to how we live, derives from energy – and oil remains a key element to it.  What we (the globalized industrial world) experienced in that golden era until the 70s, was economic growth fueled by an unprecedented 321% increase in net energy/head.  The peak of 18GJ/head in around 1973 was actually of the order of some 40GJ/head for those who actually has access to oil at the time, which is to say, the industrialised fraction of the global population. The Hill’s Group research  can be summarized visually as below (recall that these are costs expressed in energy, rather than dollars):

 


Source: http://cassandralegacy.blogspot.it/2016/07/some-reflections-on-twilight-of-oil-age.html

[This study was also covered here on Damnthematrix starting here…]

But as Steve St Angelo in the SRSrocco Reports states, the important thing to understand from these energy return on energy cost ratios or EROI, is that a minimum ratio value for a modern society is 20:1 (i.e. the net energy surplus available for GDP growth should be twenty times its cost of extraction). For citizens of an advanced society to enjoy a prosperous living, the EROI of energy needs to be much higher, closer to the 30:1 ratio. Well, if we look at the chart below, the U.S. oil and gas industry EROI fell below 30:1 some 46 years ago (after 1970):

 


Source: https://srsroccoreport.com/the-coming-breakdown-of-u-s-global-markets-explained-what-most-analysts-missed/

“You will notice two important trends in the chart above. When the U.S. EROI ratio was higher than 30:1, prior to 1970, U.S. public debt did not increase all that much.  However, this changed after 1970, as the EROI continued to decline, public debt increased in an exponential fashion”. (St Angelo).

In short, the question begged by the Hill’s Group research is whether the reason for the explosion of government debt since 1970 is that central bankers (unconsciously), were trying to compensate for the lack of GDP stimulus deriving from the earlier net energy surplus.  In effect, they switched from flagging energy-driven growth, to the new debt-driven growth model.

From a peak net surplus of around 40 GJ  (in 1973), by 2012, the IOCs were beginning to consume more energy per barrel, in their own processes (from oil exploration to transport fuel deliveries at the petrol stations), than that which the barrel would deliver net to the globalized industrial world, in aggregate.  We are now down below 4GJ per head, and dropping fast. (The Hill’s Group)

Is this analysis by the Hill’s Group too reductionist in attributing so much of the era of earlier western material prosperity to the big discoveries of ‘cheap’ oil, and the subsequent elusiveness of growth to the decline in net energy per barrel available for GDP growth?  Are we in deep trouble now that the IOCs use more energy in their own processes, than they are able to deliver net to industrialised world? Maybe so. It is a controversial view, but we can see – in plain dollar terms – some tangible evidence fo rthe Hill’s Groups’ assertions:

 


Source: https://srsroccoreport.com/wp-content/uploads/2016/08/Top-3-U.S.-Oil-Companies-Free-Cash-Flow-Minus-Dividends.png

(The top three U.S. oil companies, ExxonMobil, Chevron and ConocoPhillips: Cash from operations less Capex and dividends)

Briefly, what does this all mean? Well, the business model for the big three US IOCs does not look that great: Energy costs of course, are financial costs, too.  In 2016, according to Yahoo Finance, the U.S. Energy Sector paid 86% of their operating income just to service the interest on the debt (i.e. to pay for those extraction costs). We have not run out of oil. This is not what the Hill’s Group is saying. Quite the reverse. What they are saying is the surplus energy (at a ratio of now less than 10:1) that derives from the oil that we have been using (after the energy-costs expended in retrieving it) – is now at a point that it can barely support our energy-driven ‘modernity’.  Implicit in this analysis, is that our era of plenty was a one time, once off, event.

They are also saying that this implies that as modernity enters on a more severe energy ‘diet’, less surplus calories for their dollars – barely enough to keep the growth engine idling – then global demand for oil will decline, and the price will fall (quite the opposite of mainstream analysis which sees demand for oil growing. It is a vicious circle. If Hills are correct, a key balance has tipped. We may soon be spending more energy on getting the energy that is required to keep the cogs and wheels of modernity turning, than that same energy delivers in terms of calorie-equivalence.  There is not much that either Mr Trump or the Europeans can do about this – other than seize the entire Persian Gulf.  Transiting to renewables now, is perhaps too little, too late.

And America and Europe, no longer have the balance sheet ‘room’, for much further fiscal or monetary stimulus; and, in any event, the efficacy of such measures as drivers of ‘real economy’ growth, is open to question. It may mitigate the problem, but not solve it. No, the headwinds of net energy per barrel trending to zero, plus the other ‘secular’ dynamics mentioned above (demography, China slowing and technology turning job-destructive), form a formidable impediment – and therefore a huge political time bomb.

Back to Davos, and the question of ‘what to do’. Jamie Dimon, the CEO of  JPMorgan Chase, warned  that Europe needs to address disagreements spurring the rise of nationalist leaders. Dimon said he hoped European Union leaders would examine what caused the U.K. to vote to leave and then make changes. That hasn’t happened, and if nationalist politicians including France’s Marine Le Pen rise to power in elections across the region, “the euro zone may not survive”. “The bottom line is the region must become more competitive, Dimon said, which in simple economic terms means accept even lower wages. It also means major political overhauls: “I say this out of respect for the European people, but they’re going to have to change,” he said. “They may be forced by politics, they may be forced by new leadership.”

A race to the bottom in pay levels?  Italy should undercut Romanian salaries?  Maybe Chinese pay scales, too? This is politically naïve, and the globalist Establishment has only itself to blame for their conviction that there are no real options – save to divert more of the diminished prosperity towards the middle classes (Christine Lagarde), and to impose further austerity (Dimon). As we have tried to show, the era of prosperity for all, began to waver in the 70s in America, and started its more serious stall from 2001 onwards. The Establishment approach to this faltering of growth has been to kick the can down the road: ‘extend and pretend’ – monetised debt, zero, or negative, interest rates and the unceasing refrain that ‘recovery’ is around the corner.

It is precisely their ‘kicking the can’ of inflated asset values, reaching into every corner of life, hiking the cost of living, that has contributed to making Europe the leveraged, ‘high cost’, uncompetitive environment, that it now is.  There is no practical way for Italians, for example, to compete with ‘low cost’ East Europe, or  Asia, through a devaluation of the internal Italian price level without provoking major political push-back.  This is the price of ‘extend and pretend’.

It has been claimed at Davos that the much derided ‘populists’ provide no real solutions. But, crucially, they do offer, firstly, the hope for ‘regime change’ – and, who knows, enough Europeans may be willing to take a punt on leaving the Euro, and accepting the consequences, whatever they may be. Would they be worse off? No one really knows. But at least the ‘populists’ can claim, secondly, that such a dramatic act would serve to escape from the suffocation of the status quo. ‘Davos man’ and woman disdain this particular appeal of ‘the populists’ at their peril.





A Market Collapse Is On The Horizon

18 02 2016

The bit that worries me the most is this……:
The many problems of 2016 (including rapid moves in currencies, falling commodity prices, and loan defaults) are likely to cause large payouts of derivatives, potentially leading to the bankruptcies of financial institutions, as they did in 2008. To prevent such bankruptcies, most governments plan to move as much of the losses related to derivatives and debt defaults to private parties as possible. It is possible that this approach will lead to depositors losing what appear to be insured bank deposits.
I better spend that money quick smart.  Just had a quote for $17,000 for the blocks to go into the retaining wall.  By the time I’ve bought the double glazing and the roof, most of my big expenses, apart from the footings and slab, will have gone…..
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
By

tverberg

Gail Tverberg

Posted on Sat, 13 February 2016

What is ahead for 2016? Most people don’t realize how tightly the following are linked:

1. Growth in debt
2. Growth in the economy
3. Growth in cheap-to-extract energy supplies
4. Inflation in the cost of producing commodities
5. Growth in asset prices, such as the price of shares of stock and of farmland
6. Growth in wages of non-elite workers
7. Population growth

It looks to me as though this linkage is about to cause a very substantial disruption to the economy, as oil limits, as well as other energy limits, cause a rapid shift from the benevolent version of the economic supercycle to the portion of the economic supercycle reflecting contraction. Many people have talked about Peak Oil, the Limits to Growth, and the Debt Supercycle without realizing that the underlying problem is really the same–the fact the we are reaching the limits of a finite world.

There are actually a number of different kinds of limits to a finite world, all leading toward the rising cost of commodity production. I will discuss these in more detail later. In the past, the contraction phase of the supercycle seems to have been caused primarily by too high a population relative to resources. This time, depleting fossil fuels–particularly oil–plays a major role. Other limits contributing to the end of the current debt supercycle include rising pollution and depletion of resources other than fossil fuels.

The problem of reaching limits in a finite world manifests itself in an unexpected way: slowing wage growth for non-elite workers. Lower wages mean that these workers become less able to afford the output of the system. These problems first lead to commodity oversupply and very low commodity prices. Eventually these problems lead to falling asset prices and widespread debt defaults. These problems are the opposite of what many expect, namely oil shortages and high prices. This strange situation exists because the economy is a networked system. Feedback loops in a networked system don’t necessarily work in the way people expect.

I expect that the particular problem we are likely to reach in 2016 is limits to oil storage. This may happen at different times for crude oil and the various types of refined products. As storage fills, prices can be expected to drop to a very low level–less than $10 per barrel for crude oil, and correspondingly low prices for the various types of oil products, such as gasoline, diesel, and asphalt. We can then expect to face a problem with debt defaults, failing banks, and failing governments (especially of oil exporters).

The idea of a bounce back to new higher oil prices seems exceedingly unlikely, in part because of the huge overhang of supply in storage, which owners will want to sell, keeping supply high for a long time. Furthermore, the underlying cause of the problem is the failure of wages of non-elite workers to rise rapidly enough to keep up with the rising cost of commodity production, particularly oil production. Because of falling inflation-adjusted wages, non-elite workers are becoming increasingly unable to afford the output of the economic system. As non-elite workers cut back on their purchases of goods, the economy tends to contract rather than expand. Efficiencies of scale are lost, and debt becomes increasingly difficult to repay with interest. The whole system tends to collapse.

How the Economic Growth Supercycle Works, in an Ideal Situation

In an ideal situation, growth in debt tends to stimulate the economy. The availability of debt makes the purchase of high-priced goods such as factories, homes, cars, and trucks more affordable. All of these high-priced goods require the use of commodities, including energy products and metals. Thus, growing debt tends to add to the demand for commodities, and helps keep their prices higher than the cost of production, making it profitable to produce these commodities. The availability of profits encourages the extraction of an ever-greater quantity of energy supplies and other commodities.

The growing quantity of energy supplies made possible by this profitability can be used to leverage human labor to an ever-greater extent, so that workers become increasingly productive. For example, energy supplies help build roads, trucks, and machines used in factories, making workers more productive. As a result, wages tend to rise, reflecting the greater productivity of workers in the context of these new investments. Businesses find that demand for their goods and services grows because of the growing wages of workers, and governments find that they can collect increasing tax revenue. The arrangement of repaying debt with interest tends to work well in this situation. GDP grows sufficiently rapidly that the ratio of debt to GDP stays relatively flat.

Over time, the cost of commodity production tends to rise for several reasons:

1. Population tends to grow over time, so the quantity of agricultural land available per person tends to fall. Higher-priced techniques (such as irrigation, better seeds, fertilizer, pesticides, herbicides) are required to increase production per acre. Similarly, rising population gives rise to a need to produce fresh water using increasingly high-priced techniques, such as desalination.

2. Businesses tend to extract the least expensive fuels such as oil, coal, natural gas, and uranium first. They later move on to more expensive to extract fuels, when the less-expensive fuels are depleted. For example, Figure 1 shows the sharp increase in the cost of oil extraction that took place about 1999.

Figure 1. Figure by Steve Kopits of Westwood Douglas showing the trend in per-barrel capital expenditures for oil exploration and production. CAGR is “Compound Annual Growth Rate.”

3. Pollution tends to become an increasing problem because the least polluting commodity sources are used first. When mitigations such as substituting renewables for fossil fuels are used, they tend to be more expensive than the products they are replacing. The leads to the higher cost of final products.

Related: The Hidden Agenda Behind Saudi Arabia’s Market Share Strategy

4. Overuse of resources other than fuels becomes a problem, leading to problems such as the higher cost of producing metals, deforestation, depleted fish stocks, and eroded topsoil. Some workarounds are available, but these tend to add costs as well.

As long as the cost of commodity production is rising only slowly, its increasing cost is benevolent. This increase in cost adds to inflation in the price of goods and helps inflate away prior debt, so that debt is easier to pay. It also leads to asset inflation, making the use of debt seem to be a worthwhile approach to finance future economic growth, including the growth of energy supplies. The whole system seems to work as an economic growth pump, with the rising wages of non-elite workers pushing the growth pump along.

The Big “Oops” Comes when the Price of Commodities Starts Rising Faster than Wages of Non-Elite Workers

Clearly the wages of non-elite workers need to be rising faster than commodity prices in order to push the economic growth pump along. The economic pump effect is lost when the wages of non-elite workers start falling, relative to the price of commodities. This tends to happen when the cost of commodity production begins rising rapidly, as it did for oil after 1999 (Figure 1).

The loss of the economic pump effect occurs because the rising cost of oil (or electricity, or food, or other energy products) forces workers to cut back on discretionary expenditures. This is what happened in the 2003 to 2008 period as oil prices spiked and other energy prices rose sharply. (See my article Oil Supply Limits and the Continuing Financial Crisis.) Non-elite workers found it increasingly difficult to afford expensive products such as homes, cars, and washing machines. Housing prices dropped. Debt growth slowed, leading to a sharp drop in oil prices and other commodity prices.

Figure 2. World oil supply and prices based on EIA data.

It was somewhat possible to “fix” low oil prices through the use of Quantitative Easing (QE) and the growth of debt at very low interest rates, after 2008. In fact, these very low interest rates are what encouraged the very rapid growth in the production of US crude oil, natural gas liquids, and biofuels.

Now, debt is reaching limits. Both the US and China have (in a sense) “taken their foot off the economic debt accelerator.” It doesn’t seem to make sense to encourage more use of debt, because recent very low interest rates have encouraged unwise investments. In China, more factories and homes have been built than the market can absorb. In the US, oil “liquids” production rose faster than it could be absorbed by the world market when prices were over $100 per barrel. This led to the big price drop. If it were possible to produce the additional oil for a very low price, say $20 per barrel, the world economy could probably absorb it. Such a low selling price doesn’t really “work” because of the high cost of production.

Debt is important because it can help an economy grow, as long as the total amount of debt does not become unmanageable. Thus, for a time, growing debt can offset the adverse impact of the rising cost of energy products. We know that oil prices began to rise sharply in the 1970s, and in fact other energy prices rose as well.

Figure 3. Historical World Energy Price in 2014$, from BP Statistical Review of World History 2015.

Looking at debt growth, we find that it rose rapidly, starting about the time oil prices started spiking. Former Director of the Office of Management and Budget, David Stockman, talks about “The Distastrous 40-Year Debt Supercycle,” which he believes is now ending.

Figure 4. Worldwide average inflation-adjusted annual growth rates in debt and GDP, for selected time periods. See post on debt for explanation of methodology.

In recent years, we have been reaching a situation where commodity prices have been rising faster than the wages of non-elite workers. Jobs that are available tend to be low-paid service jobs. Young people find it necessary to stay in school longer. They also find it necessary to delay marriage and postpone buying a car and home. All of these issues contribute to the falling wages of non-elite workers. Some of these individuals are, in fact, getting zero wages, because they are in school longer. Individuals who retire or voluntarily leave the work force further add to the problem of wages no longer rising sufficiently to afford the output of the system.

The US government has recently decided to raise interest rates. This further reduces the buying power of non-elite workers. We have a situation where the “economic growth pump,” created through the use of a rising quantity of cheap energy products plus rising debt, is disappearing. While homes, cars, and vacation travel are available, an increasing share of the population cannot afford them. This tends to lead to a situation where commodity prices fall below the cost of production for a wide range of types of commodities, making the production of commodities unprofitable. In such a situation, a person expects companies to cut back on production. Many defaults may occur.

China has acted as a major growth pump for the world for the last 15 years, since it joined the World Trade Organization in 2001. China’s growth is now slowing, and can be expected to slow further. Its growth was financed by a huge increase in debt. Paying back this debt is likely to be a problem.

Figure 5. Author’s illustration of problem we are now encountering.

Thus, we seem to be coming to the contraction portion of the debt supercycle. This is frightening, because if debt is contracting, asset prices (such as stock prices and the price of land) are likely to fall. Banks are likely to fail, unless they can transfer their problems to others–owners of the bank or even those with bank deposits. Governments will be affected as well, because it will become more expensive to borrow money, and because it becomes more difficult to obtain revenue through taxation. Many governments may fail as well for that reason.

The U. S. Oil Storage Problem

Oil prices began falling in the middle of 2014, so we might expect oil storage problems to start about that time, but this is not exactly the case. Supplies of US crude oil in storage didn’t start rising until about the end of 2014.

Related: Why Today’s Oil Bust Pales In Comparison To The 80’s

Figure 6. US crude oil in storage, excluding Strategic Petroleum Reserve, based on EIA data.

Cushing, Oklahoma, is the largest storage area for crude oil. According to the EIA, maximum working storage for the facility is 73 million barrels. Oil storage at Cushing since oil prices started declining is shown in Figure 7.

Figure 7. Quantity of crude oil stored at Cushing between June 27, 2014, and June 1, 2016, based on EIA data.

Clearly the same kind of run up in oil storage that occurred between December and April one year ago cannot all be stored at Cushing, if maximum working capacity is only 73 million barrels, and the amount currently in storage is 64 million barrels.

Another way of storing oil is as finished products. Here, the run-up in storage began earlier (starting in mid-2014) and stabilized at about 65 million barrels per day above the prior year, by January 2015. Clearly, if companies can do some pre-planning, they would prefer not to refine products for which there is little market. They would rather store unneeded oil as crude, rather than as refined products.

Figure 8. Total Oil Products in Storage, based on EIA data.

EIA indicates that the total capacity for oil products is 1,549 million barrels. Thus, in theory, the amount of oil products stored can be increased by as much as 700 million barrels, assuming that the products needing to be stored and the locations where storage are available match up exactly. In practice, the amount of additional storage available is probably quite a bit less than 700 million barrels because of mismatch problems.

In theory, if companies can be persuaded to refine more products than they can sell, the amount of products that can be stored can rise significantly. Even in this case, the amount of storage is not unlimited. Even if the full 700 million barrels of storage for crude oil products is available, this corresponds to less than one million barrels a day for two years, or two million barrels a day for one year. Thus, products storage could easily be filled as well, if demand remains low.

At this point, we don’t have the mismatch between oil production and consumption fixed. In fact, both Iraq and Iran would like to increase their production, adding to the production/consumption mismatch. China’s economy seems to be stalling, keeping its oil consumption from rising as quickly as in the past, and further adding to the supply/demand mismatch problem. Figure 9 shows an approximation to our mismatch problem. As far as I can tell, the problem is still getting worse, not better.

Figure 9. Total liquids oil production and consumption, based on a combination of BP and EIA data.

There has been a lot of talk about the United States reducing its production, but the impact so far has been small, based on data from EIA’s International Energy Statistics and its December 2015 Monthly Energy Review.

Figure 10. US quarterly oil liquids production data, based on EIA’s International Energy Statistics and Monthly Energy Review.

Based on information through November from EIA’s Monthly Energy Review, total liquids production for the US for the year 2015 will be about 700,000 barrels per day higher than it was for 2014. This increase is likely greater than the increase in production by either Saudi Arabia or Iraq. Perhaps in 2016, oil production of the US will start decreasing, but so far, increases in biofuels and natural gas liquids are partly offsetting recent reductions in crude oil production. Also, even when companies are forced into bankruptcy, oil production does not necessarily stop because of the potential value of the oil to new owners.

Figure 11 shows that very high stocks of oil were a problem, way back in the 1920s. There were other similarities to today’s problems as well, including a deflating debt bubble and low commodity prices. Thus, we should not be too surprised by high oil stocks now, when oil prices are low.

(Click to enlarge)

Figure 11. US ending stock of crude oil, excluding the strategic petroleum reserve. Figure by EIA.

Many people overlook the problems today because the US economy tends to be doing better than that of the rest of the world. The oil storage problem is really a world problem, however, reflecting a combination of low demand growth (caused by low wage growth and lack of debt growth, as the world economy hits limits) continuing supply growth (related to very low interest rates making all kinds of investment appear profitable and new production from Iraq and, in the near future, Iran). Storage on ships is increasingly being filled up and storage in Western Europe is 97% filled. Thus, the US is quite likely to see a growing need for oil storage in the year ahead, partly because there are few other places to put the oil, and partly because the gap between supply and demand has not yet been fixed.

What is Ahead for 2016?

1. Problems with a slowing world economy are likely to become more pronounced, as China’s growth problems continue, and as other commodity-producing countries such as Brazil, South Africa, and Australia experience recession. There may be rapid shifts in currencies, as countries attempt to devalue their currencies, to try to gain an advantage in world markets. Saudi Arabia may decide to devalue its currency, to get more benefit from the oil it sells.

Related: OPEC-Russia Rumors Persist After Comments From Rosneft Chief

2. Oil storage seems likely to become a problem sometime in 2016. In fact, if the run-up in oil supply is heavily front-ended to the December to April period, similar to what happened a year ago, lack of crude oil storage space could become a problem within the next three months. Oil prices could fall to $10 or below. We know that for natural gas and electricity, prices often fall below zero when the ability of the system to absorb more supply disappears. It is not clear the oil prices can fall below zero, but they can certainly fall very low. Even if we can somehow manage to escape the problem of running out of crude oil storage capacity in 2016, we could encounter storage problems of some type in 2017 or 2018.

3. Falling oil prices are likely to cause numerous problems. One is debt defaults, both for oil companies and for companies making products used by the oil industry. Another is layoffs in the oil industry. Another problem is negative inflation rates, making debt harder to repay. Still another issue is falling asset prices, such as stock prices and prices of land used to produce commodities. Part of the reason for the fall in price has to do with the falling price of the commodities produced. Also, sovereign wealth funds will need to sell securities, to have money to keep their economies going. The sale of these securities will put downward pressure on stock and bond prices.

4. Debt defaults are likely to cause major problems in 2016. As noted in the introduction, we seem to be approaching the unwinding of a debt supercycle. We can expect one company after another to fail because of low commodity prices. The problems of these failing companies can be expected to spread to the economy as a whole. Failing companies will lay off workers, reducing the quantity of wages available to buy goods made with commodities. Debt will not be fully repaid, causing problems for banks, insurance companies, and pension funds. Even electricity companies may be affected, if their suppliers go bankrupt and their customers become less able to pay their bills.
5. Governments of some oil exporters may collapse or be overthrown, if prices fall to a low level. The resulting disruption of oil exports may be welcomed, if storage is becoming an increased problem.

6. It is not clear that the complete unwind will take place in 2016, but a major piece of this unwind could take place in 2016, especially if crude oil storage fills up, pushing oil prices to less than $10 per barrel.

7. Whether or not oil storage fills up, oil prices are likely to remain very low, as the result of rising supply, barely rising demand, and no one willing to take steps to try to fix the problem. Everyone seems to think that someone else (Saudi Arabia?) can or should fix the problem. In fact, the problem is too large for Saudi Arabia to fix. The United States could in theory fix the current oil supply problem by taxing its own oil production at a confiscatory tax rate, but this seems exceedingly unlikely. Closing existing oil production before it is forced to close would guarantee future dependency on oil imports. A more likely approach would be to tax imported oil, to keep the amount imported down to a manageable level. This approach would likely cause the ire of oil exporters.

8. The many problems of 2016 (including rapid moves in currencies, falling commodity prices, and loan defaults) are likely to cause large payouts of derivatives, potentially leading to the bankruptcies of financial institutions, as they did in 2008. To prevent such bankruptcies, most governments plan to move as much of the losses related to derivatives and debt defaults to private parties as possible. It is possible that this approach will lead to depositors losing what appear to be insured bank deposits. At first, any such losses will likely be limited to amounts in excess of FDIC insurance limits. As the crisis spreads, losses could spread to other deposits. Deposits of employers may be affected as well, leading to difficulty in paying employees.

9. All in all, 2016 looks likely to be a much worse year than 2008 from a financial perspective. The problems will look similar to those that might have happened in 2008, but didn’t thanks to government intervention. This time, governments appear to be mostly out of approaches to fix the problems.

10. Two years ago, I put together the chart shown as Figure 12. It shows the production of all energy products declining rapidly after 2015. I see no reason why this forecast should be changed. Once the debt supercycle starts its contraction phase, we can expect a major reduction in both the demand and supply of all kinds of energy products.

Figure 12. Estimate of future energy production by author. Historical data based on BP adjusted to IEA groupings.

Conclusion

We are certainly entering a worrying period. We have not really understood how the economy works, so we have tended to assume we could fix one or another part of the problem. The underlying problem seems to be a problem of physics. The economy is a dissipative structure, a type of self-organizing system that forms in thermodynamically open systems. As such, it requires energy to grow. Ultimately, diminishing returns with respect to human labor–what some of us would call falling inflation-adjusted wages of non-elite workers–tends to bring economies down. Thus all economies have finite lifetimes, just as humans, animals, plants, and hurricanes do. We are in the unfortunate position of observing the end of our economy’s lifetime.

Most energy research to date has focused on the Second Law of Thermodynamics. While this is a contributing problem, this is really not the proximate cause of the impending collapse. The Second Law of Thermodynamics operates in thermodynamically closed systems, which is not precisely the issue here.

We know that historically collapses have tended to take many years. This collapse may take place more rapidly because today’s economy is dependent on international supply chains, electricity, and liquid fuels–things that previous economies were not dependent on.





Gail Tverberg on 2016

10 01 2016

Oil is currently at $33 a barrel. You’d expect that oil companies must by now be losing some $40 a barrel, and yet they keep pumping…… the glut is now so big, some oil is actually put back in the ground! Read on, Gail is one person whose opinion I really respect when it comes to energy.

2016: Oil Limits and the End of the Debt Supercycle

What is ahead for 2016? Most people don’t realize how tightly the following are linked:

  1. Growth in debt
  2. Growth in the economy
  3. Growth in cheap-to-extract energy supplies
  4. Inflation in the cost of producing commodities
  5. Growth in asset prices, such as the price of shares of stock and of farmland
  6. Growth in wages of non-elite workers
  7. Population growth

It looks to me as though this linkage is about to cause a very substantial disruption to the economy, as oil limits, as well as other energy limits, cause a rapid shift from the benevolent version of the economic supercycle to the portion of the economic supercycle reflecting contraction. Many people have talked about Peak Oil, the Limits to Growth, and the Debt Supercycle without realizing that the underlying problem is really the same–the fact the we are reaching the limits of a finite world.

There are actually a number of different kinds of limits to a finite world, all leading toward the rising cost of commodity production. I will discuss these in more detail later. In the past, the contraction phase of the supercycle seems to have been caused primarily by too high population relative to resources. This time, depleting fossil fuels–particularly oil–plays a major role. Other limits contributing to the end of the current debt supercycle include rising pollution and depletion of resources other than fossil fuels.

The problem of reaching limits in a finite world manifests itself in an unexpected way: slowing wage growth for non-elite workers. Lower wages mean that these workers become less able to afford the output of the system. These problems first lead to commodity oversupply and very low commodity prices. Eventually these problems lead to falling asset prices and widespread debt defaults. These problems are the opposite of what many expect, namely oil shortages and high prices. This strange situation exists because the economy is a networked system. Feedback loops in a networked system don’t necessarily work in the way people expect.

I expect that the particular problem we are likely to reach in 2016 is limits to oil storage. This may happen at different times for crude oil and the various types of refined products. As storage fills, prices can be expected to drop to a very low level–less than $10 per barrel for crude oil, and correspondingly low prices for the various types of oil products, such as gasoline, diesel, and asphalt. We can then expect to face a problem with debt defaults, failing banks, and failing governments (especially of oil exporters).

The idea of a bounce back to new higher oil prices seems exceedingly unlikely, in part because of the huge overhang of supply in storage, which owners will want to sell, keeping supply high for a long time. Furthermore, the underlying cause of the problem is the failure of wages of non-elite workers to rise rapidly enough to keep up with the rising cost of commodity production, particularly oil production. Because of falling inflation-adjusted wages, non-elite workers are becoming increasingly unable to afford the output of the economic system. As non-elite workers cut back on their purchases of goods, the economy tends to contract rather than expand. Efficiencies of scale are lost, and debt becomes increasingly difficult to repay with interest.  The whole system tends to collapse.

How the Economic Growth Supercycle Works, in an Ideal Situation

In an ideal situation, growth in debt tends to stimulate the economy. The availability of debt makes the purchase of high-priced goods such as factories, homes, cars, and trucks more affordable. All of these high-priced goods require the use of commodities, including energy products and metals. Thus, growing debt tends to add to the demand for commodities, and helps keep their prices higher than the cost of production, making itprofitable to produce these commodities. The availability of profits encourages the extraction of an ever-greater quantity of energy supplies and other commodities.

The growing quantity of energy supplies made possible by this profitability can be used to leverage human labor to an ever-greater extent, so that workers become increasingly productive. For example, energy supplies help build roads, trucks, and machines used in factories, making workers more productive. As a result, wages tend to rise, reflecting the greater productivity of workers in the context of these new investments. Businesses find that demand for their goods and services grows because of the growing wages of workers, and governments find that they can collect increasing tax revenue. The arrangement of repaying debt with interest tends to work well in this situation. GDP grows sufficiently rapidly that the ratio of debt to GDP stays relatively flat.

Over time, the cost of commodity production tends to rise for several reasons:

  1. Population tends to grow over time, so the quantity of agricultural land available per person tends to fall. Higher-priced techniques (such as irrigation, better seeds, fertilizer, pesticides, herbicides) are required to increase production per acre. Similarly, rising population gives rise to a need to produce fresh water using increasingly high-priced techniques, such as desalination.
  2. Businesses tend to extract the least expensive fuels such as oil, coal, natural gas, and uranium first. They later move on to more expensive to extract fuels, when the less-expensive fuels are depleted. For example, Figure 1 shows the sharp increase in the cost of oil extraction that took place about 1999.Figure 1. Figure by Steve Kopits of Westwood Douglas showing trends in world oil exploration and production costs per barrel. CAGR is "Compound Annual Growth Rate."
  3. Pollution tends to become an increasing problem because the least polluting commodity sources are used first. When mitigations such as substituting renewables for fossil fuels are used, they tend to be more expensive than the products they are replacing. The leads to the higher cost of final products.
  4. Overuse of resources other than fuels becomes a problem, leading to problems such as the higher cost of producing metals, deforestation, depleted fish stocks, and eroded topsoil. Some workarounds are available, but these tend to add costs as well.

As long as the cost of commodity production is rising only slowly, its increasing cost is benevolent. This increase in cost adds to inflation in the price of goods and helps inflate away prior debt, so that debt is easier to pay. It also leads to asset inflation, making the use of debt seem to be a worthwhile approach to finance future economic growth, including the growth of energy supplies. The whole system seems to work as an economic growth pump, with the rising wages of non-elite workers pushing the growth pump along.

The Big “Oops” Comes when the Price of Commodities Starts Rising Faster than Wages of Non-Elite Workers

Clearly the wages of non-elite workers need to be rising faster than commodity prices in order to push the economic growth pump along. The economic pump effect is lost when the wages of non-elite workers start falling, relative to the price of commodities. This tends to happen when the cost of commodity production begins rising rapidly, as it did for oil after 1999 (Figure 1).

The loss of the economic pump effect occurs because the rising cost of oil (or electricity, or food, or other energy products) forces workers to cut back on discretionary expenditures. This is what happened in the 2003 to 2008 period as oil prices spiked and other energy prices rose sharply. (See my article Oil Supply Limits and the Continuing Financial Crisis.) Non-elite workers found it increasingly difficult to afford expensive products such as homes, cars, and washing machines. Housing prices dropped. Debt growth slowed, leading to a sharp drop in oil prices and other commodity prices.

Figure 2. World oil supply and prices based on EIA data.

It was somewhat possible to “fix” low oil prices through the use of Quantitative Easing (QE) and the growth of debt at very low interest rates, after 2008. In fact, these very low interest rates are what encouraged the very rapid growth in the production of US crude oil, natural gas liquids, and biofuels.

Now, debt is reaching limits. Both the US and China have (in a sense) “taken their foot off the economic debt accelerator.” It doesn’t seem to make sense to encourage more use of debt, because recent very low interest rates have encouraged unwise investments. In China, more factories and homes have been built than the market can absorb. In the US, oil “liquids” production rose faster than it could be absorbed by the world market when prices were over $100 per barrel. This led to the big price drop. If it were possible to produce the additional oil for a very low price, say $20 per barrel, the world economy could probably absorb it. Such a low selling price doesn’t really “work” because of the high cost of production.

Debt is important because it can help an economy grow, as long as the total amount of debt does not become unmanageable. Thus, for a time, growing debt can offset the adverse impact of the rising cost of energy products. We know that oil prices began to rise sharply in the 1970s, and in fact other energy prices rose as well.

Figure 4. Historical World Energy Price in 2014$, from BP Statistical Review of World History 2015.

Looking at debt growth, we find that it rose rapidly, starting about the time oil prices started spiking. Former Director of the Office of Management and Budget, David Stockman, talks about “The Distastrous 40-Year Debt Supercycle,” which he believes is now ending.

Figure 4. Worldwide average inflation-adjusted annual growth rates in debt and GDP, for selected time periods. See post on debt for explanation of methodology.

In recent years, we have been reaching a situation where commodity prices have been rising faster than the wages of non-elite workers. Jobs that are available tend to be low-paid service jobs. Young people find it necessary to stay in school longer. They also find it necessary to delay marriage and postpone buying a car and home. All of these issues contribute to the falling wages of non-elite workers. Some of these individuals are, in fact, getting zero wages, because they are in school longer. Individuals who retire or voluntarily leave the work force further add to the problem of wages no longer rising sufficiently to afford the output of the system.

The US government has recently decided to raise interest rates. This further reduces the buying power of non-elite workers. We have a situation where the “economic growth pump,” created through the use of a rising quantity of cheap energy products plus rising debt, is disappearing. While homes, cars, and vacation travel are available, an increasing share of the population cannot afford them. This tends to lead to a situation where commodity prices fall below the cost of production for a wide range of types of commodities, making the production of commodities unprofitable. In such a situation, a person expects companies to cut back on production. Many defaults may occur.

China has acted as a major growth pump for the world for the last 15 years, since it joined the World Trade Organization in 2001. China’s growth is now slowing, and can be expected to slow further. Its growth was financed by a huge increase in debt. Paying back this debt is likely to be a problem.

Figure 5. Author's illustration of problem we are now encountering.

Thus, we seem to be coming to the contraction portion of the debt supercycle. This is frightening, because if debt is contracting, asset prices (such as stock prices and the price of land) are likely to fall. Banks are likely to fail, unless they can transfer their problems to others–owners of the bank or even those with bank deposits. Governments will be affected as well, because it will become more expensive to borrow money, and because it becomes more difficult to obtain revenue through taxation. Many governments may fail as well for that reason.

The U. S. Oil Storage Problem

Oil prices began falling in the middle of 2014, so we might expect oil storage problems to start about that time, but this is not exactly the case. Supplies of US crude oil in storage didn’t start rising until about the end of 2014.

Figure 6. US crude oil in storage, excluding SPR, based on EIA data.

Once crude oil supplies started rising rapidly, they increased by about 90 million barrels between December 2014 and April 2015. After April 2015, supplies dipped again, suggesting that there is some seasonality to the growing crude oil supply. The most “dangerous” time for rapidly rising amounts added to storage would seem to be between December 31 and April 30. According to the EIA, maximum crude oil storage is 551 million barrels of crude oil (considering all storage facilities). Adding another 90 million barrels of oil (similar to the run-up between Dec. 2014 and April 2015) would put the total over the 551 million barrel crude oil capacity.

Cushing, Oklahoma, is the largest storage area for crude oil. According to the EIA, maximum working storage for the facility is 73 million barrels. Oil storage at Cushing since oil prices started declining is shown in Figure 7.

Figure 7. Crude oil stored at Cushing between June 27, 2014, and June 1, 2016. based on EIA data.

Clearly the same kind of run up in oil storage that occurred between December and April one year ago cannot all be stored at Cushing, if maximum working capacity is only 73 million barrels, and the amount currently in storage is 64 million barrels.

Another way of storing oil is as finished products. Here, the run-up in storage began earlier (starting in mid-2014) and stabilized at about 65 million barrels per day above the prior year, by January 2015.  Clearly, if companies can do some pre-planning, they would prefer not to refine products for which there is little market. They would rather store unneeded oil as crude, rather than as refined products.

Figure 7. Total Oil Products in Storage, based on EIA data.

EIA indicates that the total capacity for oil products is 1,549 million barrels. Thus, in theory, the amount of oil products stored can be increased by as much as 700 million barrels, assuming that the products needing to be stored and the locations where storage are available match up exactly. In practice, the amount of additional storage available is probably quite a bit less than 700 million barrels because of mismatch problems.

In theory, if companies can be persuaded to refine more products than they can sell, the amount of products that can be stored can rise significantly. Even in this case, the amount of storage is not unlimited. Even if the full 700 million barrels of storage for crude oil products is available, this corresponds to less than one million barrels a day for two years, or two million barrels a day for one year. Thus, products storage could easily be filled as well, if demand remains low.

At this point, we don’t have the mismatch between oil production and consumption fixed. In fact, both Iraq and Iran would like to increase their production, adding to the production/consumption mismatch. China’s economy seems to be stalling, keeping its oil consumption from rising as quickly as in the past, and further adding to the supply/demand mismatch problem. Figure 9 shows an approximation to our mismatch problem. As far as I can tell, the problem is still getting worse, not better.

Figure 1. Total liquids oil production and consumption, based on a combination of BP and EIA data.

There has been a lot of talk about the United States reducing its production, but the impact so far has been small, based on data from EIA’s International Energy Statistics and its December 2015 Monthly Energy Review.

Figure 10. US quarterly oil liquids production data, based on EIA data.

Based on information through November from EIA’s Monthly Energy Review, total liquids production for the US for the year 2015 will be over 800,000 barrels per day higher than it was for 2014. This increase is likely greater than the increase in production by either Saudi Arabia or Iraq. Perhaps in 2016, oil production of the US will start decreasing, but so far, increases in biofuels and natural gas liquids are partly offsetting recent reductions in crude oil production. Also, even when companies are forced into bankruptcy, oil production does not necessarily stop because of the potential value of the oil to new owners.

Figure 11 shows that very high stocks of oil were a problem, way back in the 1920s. There were other similarities to today’s problems as well, including a deflating debt bubble and low commodity prices. Thus, we should not be too surprised by high oil stocks now, when oil prices are low.

Figure 2. US ending stock of crude oil, excluding the strategic petroleum reserve. Figure produced by EIA. Figure by EIA.

Many people overlook the problems today because the US economy tends to be doing better than that of the rest of the world. The oil storage problem is really a world problem, however, reflecting a combination of low demand growth (caused by low wage growth and lack of debt growth, as the world economy hits limits) continuing supply growth (related to very low interest rates making all kinds of investment appear profitable and new production from Iraq and, in the near future, Iran). Storage on ships is increasingly being filled up and storage in Western Europe is 97% filled. Thus, the US is quite likely to see a growing need for oil storage in the year ahead, partly because there are few other places to put the oil, and partly because the gap between supply and demand has not yet been fixed.

What is Ahead for 2016?

  1. Problems with a slowing world economy are likely to become more pronounced, as China’s growth problems continue, and as other commodity-producing countries such as Brazil, South Africa, and Australia experience recession. There may be rapid shifts in currencies, as countries attempt to devalue their currencies, to try to gain an advantage in world markets. Saudi Arabia may decide to devalue its currency, to get more benefit from the oil it sells.
  2. Oil storage seems likely to become a problem sometime in 2016. In fact, if the run-up in oil supply is heavily front-ended to the December to April period, similar to what happened a year ago, lack of crude oil storage space could become a problem within the next three months. Oil prices could fall to $10 or below. We know that for natural gas and electricity, prices often fall below zero when the ability of the system to absorb more supply disappears. It is not clear the oil prices can fall below zero, but they can certainly fall very low. Even if we can somehow manage to escape the problem of running out of crude oil storage capacity in 2016, we could encounter storage problems of some type in 2017 or 2018.
  3. Falling oil prices are likely to cause numerous problems. One is debt defaults, both for oil companies and for companies making products used by the oil industry. Another is layoffs in the oil industry. Another problem is negative inflation rates, making debt harder to repay. Still another issue is falling asset prices, such as stock prices and prices of land used to produce commodities. Part of the reason for the fall in price has to do with the falling price of the commodities produced. Also, sovereign wealth funds will need to sell securities, to have money to keep their economies going. The sale of these securities will put downward pressure on stock and bond prices.
  4. Debt defaults are likely to cause major problems in 2016. As noted in the introduction, we seem to be approaching the unwinding of a debt supercycle. We can expect one company after another to fail because of low commodity prices. The problems of these failing companies can be expected to spread to the economy as a whole. Failing companies will lay off workers, reducing the quantity of wages available to buy goods made with commodities. Debt will not be fully repaid, causing problems for banks, insurance companies, and pension funds. Even electricity companies may be affected, if their suppliers go bankrupt and their customers become less able to pay their bills.
  5. Governments of some oil exporters may collapse or be overthrown, if prices fall to a low level. The resulting disruption of oil exports may be welcomed, if storage is becoming an increased problem.
  6. It is not clear that the complete unwind will take place in 2016, but a major piece of this unwind could take place in 2016, especially if crude oil storage fills up, pushing oil prices to less than $10 per barrel.
  7. Whether or not oil storage fills up, oil prices are likely to remain very low, as the result of rising supply, barely rising demand, and no one willing to take steps to try to fix the problem. Everyone seems to think that someone else (Saudi Arabia?) can or should fix the problem. In fact, the problem is too large for Saudi Arabia to fix. The United States could in theory fix the current oil supply problem by taxing its own oil production at a confiscatory tax rate, but this seems exceedingly unlikely. Closing existing oil production before it is forced to close would guarantee future dependency on oil imports. A more likely approach would be to tax imported oil, to keep the amount imported down to a manageable level. This approach would likely cause the ire of oil exporters.
  8. The many problems of 2016 (including rapid moves in currencies, falling commodity prices, and loan defaults) are likely to cause large payouts of derivatives, potentially leading to the bankruptcies of financial institutions, as they did in 2008. To prevent such bankruptcies, most governments plan to move as much of the losses related to derivatives and debt defaults to private parties as possible. It is possible that this approach will lead to depositors losing what appear to be insured bank deposits. At first, any such losses will likely be limited to amounts in excess of FDIC insurance limits. As the crisis spreads, losses could spread to other deposits. Deposits of employers may be affected as well, leading to difficulty in paying employees.
  9. All in all, 2016 looks likely to be a much worse year than 2008 from a financial perspective. The problems will look similar to those that might have happened in 2008, but didn’t thanks to government intervention. This time, governments appear to be mostly out of approaches to fix the problems.
  10. Two years ago, I put together the chart shown as Figure 12. It shows the production of all energy products declining rapidly after 2015. I see no reason why this forecast should be changed. Once the debt supercycle starts its contraction phase, we can expect a major reduction in both the demand and supply of all kinds of energy products.

Figure 4. Estimate of future energy production by author. Historical data based on BP adjusted to IEA groupings.

Conclusion

We are certainly entering a worrying period. We have not really understood how the economy works, so we have tended to assume we could fix one or another part of the problem. The underlying problem seems to be a problem of physics. The economy is adissipative structure, a type of self-organizing system that forms in thermodynamically open systems. As such, it requires energy to grow. Ultimately, diminishing returns with respect to human labor–what some of us would call falling inflation-adjusted wages of non-elite workers–tends to bring economies down. Thus all economies have finite lifetimes, just as humans, animals, plants, and hurricanes do. We are in the unfortunate position of observing the end of our economy’s lifetime.

Most energy research to date has focused on the Second Law of Thermodynamics. While this is a contributing problem, this is really not the proximate cause of the impending collapse. The Second Law of Thermodynamics operates in thermodynamically closed systems, which is not precisely the issue here.

We know that historically collapses have tended to take many years. This collapse may take place more rapidly because today’s economy is dependent on international supply chains, electricity, and liquid fuels–things that previous economies were not dependent on.

I have written many articles on related subjects (unfortunately, no book). These are a few of them:

Low Oil Prices – Why Worry?

How Economic Growth Fails

Deflationary Collapse Ahead?

Oops! Low oil prices are related to a debt bubble

Why “supply and demand” doesn’t work for oil

Economic growth: How it works; how it fails; why wealth disparity occurs

We are at Peak Oil now; we need very low-cost energy to fix it





Nine Reasons Why Low Oil Prices May “Morph” Into Something Much Worse

24 07 2015

As oil price collapse to under $50……… by Gail Tverberg, orginally posted here.

Why are commodity prices, including oil prices, lagging? Ultimately, the question comes back to, “Why isn’t the world economy making very many of the end products that use these commodities?” If workers were getting rich enough to buy new homes and cars, demand for these products would be raising the prices of commodities used to build and operate cars, including the price of oil. If governments were rich enough to build an increasing number of roads and more public housing, there would be demand for the commodities used to build roads and public housing.

It looks to me as though we are heading into a deflationary depression, because the prices of commodities are falling below the cost of extraction. We need rapidly rising wages and debt if commodity prices are to rise back to 2011 levels or higher. This isn’t happening. Instead, Janet Yellen is talking about raising interest rates later this year, and  we are seeing commodity prices fall further and further. Let me explain some pieces of what is happening.

1. We have been forcing economic growth upward since 1981 through the use of falling interest rates. Interest rates are now so low that it is hard to force rates down further, in order to encourage further economic growth. 

Falling interest rates are hugely beneficial for the economy. If interest rates stop dropping, or worse yet, begin to rise, we will lose this very beneficial factor affecting the economy. The economy will tend to grow even less quickly, bringing down commodity prices further. The world economy may even start contracting, as it heads into a deflationary depression.

If we look at 10-year US treasury interest rates, there has been a steep fall in rates since 1981.

Figure 1. Chart prepared by St. Louis Fed using data through July 20, 2015.

In fact, almost any kind of interest rates, including interest rates of shorter terms, mortgage interest rates, bank prime loan rates, and Moody’s Seasoned AAA Bonds, show a fairly similar pattern. There is more variability in very short-term interest rates, but the general direction has been down, to the point where interest rates can drop no further.

Declining interest rates stimulate the economy for many reasons:

  • Would-be homeowners find monthly payments are lower, so more people can afford to purchase homes. People already owning homes can afford to “move up” to more expensive homes.
  • Would-be auto owners find monthly payments lower, so more people can afford cars.
  • Employment in the home and auto industries is stimulated, as is employment in home furnishing industries.
  • Employment at colleges and universities grows, as lower interest rates encourage more students to borrow money to attend college.
  • With lower interest rates, businesses can afford to build factories and stores, even when the anticipated rate of return is not very high. The higher demand for autos, homes, home furnishing, and colleges adds to the success of businesses.
  • The low interest rates tend to raise asset prices, including prices of stocks, bonds, homes and farmland, making people feel richer.
  • If housing prices rise sufficiently, homeowners can refinance their mortgages, often at a lower interest rate. With the funds from refinancing, they can remodel, or buy a car, or take a vacation.
  • With low interest rates, the total amount that can be borrowed without interest payments becoming a huge burden rises greatly. This is especially important for governments, since they tend to borrow endlessly, without collateral for their loans.

While this very favorable trend in interest rates has been occurring for years, we don’t know precisely how much impact this stimulus is having on the economy. Instead, the situation is the “new normal.” In some ways, the benefit is like traveling down a hill on a skateboard, and not realizing how much the slope of the hill is affecting the speed of the skateboard. The situation goes on for so long that no one notices the benefit it confers.

If the economy is now moving too slowly, what do we expect to happen when interest rates start rising? Even level interest rates become a problem, if we have become accustomed to the economic boost we get from falling interest rates.

2. The cost of oil extraction tends to rise over time because the cheapest to extract oil is removed first. In fact, this is true for nearly all commodities, including metals. 

If costs always remained the same, we could represent the production of a barrel of oil, or a pound of metal, using the following diagram.

Figure 2

If production is becoming increasingly efficient, then we might represent the situation as follows, where the larger size “box” represents the larger output, using the same inputs.

Figure 3

For oil and for many other commodities, we are experiencing the opposite situation. Instead of becoming increasingly efficient, we are becoming increasingly inefficient (Figure 4). This happens because deeper wells need to be dug, or because we need to use fracking equipment and fracking sand, or because we need to build special refineries to handle the pollution problems of a particular kind of oil. Thus we need more resources to produce the same amount of oil.

Figure 4. Growing inefficiency

Some people might call the situation “diminishing returns,” because the cheap oil has already been extracted, and we need to move on to the more difficult to extract oil. This adds extra steps, and thus extra costs. I have chosen to use the slightly broader term of “increasing inefficiency” because it indicates that the nature of these additional costs is not being restricted.

Very often, new steps need to be added to the process of extraction because wells are deeper, or because refining requires the removal of more pollutants. At times, the higher costs involve changing to a new process that is believed to be more environmentally sound.

Figure 5

The cost of extraction keeps rising, as the cheapest to extract resources become depleted, and as environmental pollution becomes more of a problem.

3. Using more inputs to create the same or smaller output pushes the world economy toward contraction.

Essentially, the problem is that the same quantity of inputs is yielding less and less of the desired final product. For a given quantity of inputs, we are getting more and more intermediate products (such as fracking sand, “scrubbers” for coal-fired power plants, desalination plants for fresh water, and administrators for colleges), but we are not getting as much output in the traditional sense, such as barrels of oil, kilowatts of electricity, gallons of fresh water, or educated young people, ready to join the work force.

We don’t have unlimited inputs. As more and more of our inputs are assigned to creating intermediate products to work around limits we are reaching (including pollution limits), fewer of our resources can go toward producing desired end products. The result is less economic growth. Because of this declining economic growth, there is less demand for commodities. So, prices for commodities tend to drop.

This outcome is to be expected, if increased efficiency is part of what creates economic growth, and what we are experiencing now is the opposite: increased inefficiency.

4. The way workers afford higher commodity costs is primarily through higher wages. At times, higher debt can also be a workaround. If neither of these is available, commodity prices can fall below the cost of production.

If there is a significant increase in the cost of products like houses and cars, this presents a huge challenge to workers. Usually, workers pay for these products using a combination of wages and debt. If costs rise, they either need higher wages, or a debt package that makes the product more affordable–perhaps lower rates, or a longer period for payment.

Commodity costs have been rising very rapidly in the last fifteen years or so. According to a chart prepared by Steven Kopits, some of the major costs of extracting oil began increasing by 10.9% per year, in about 1999.

Figure 6. Figure by Steve Kopits of Westwood Douglas showing trends in world oil exploration and production costs per barrel. CAGR is

In fact, the inflation-adjusted prices of almost all energy and metal products tended to rise rapidly during the period 1999 to 2008 (Figure 7). This was a time period when the amount of mortgage debt was increasing rapidly as lenders began offering home loans with low initial interest rates to almost anyone, including those with low credit scores and irregular income. When debt levels began falling in mid-2008 (related in part to defaulting home loans), commodity prices of all types dropped.

Figure 6. Inflation adjusted prices adjusted to 1999 price = 100, based on World Bank

Prices then began to rise once Quantitative Easing (QE) was initiated (compare Figures 6 and 7). The use of QE brought down medium-term and long-term interest rates, making it easier for customers to afford homes and cars.

Figure 7. World Oil Supply (production including biofuels, natural gas liquids) and Brent monthly average spot prices, based on EIA data.

More recently, prices have fallen again. Thus, we have had two recent times when prices have fallen below the cost of production for many major commodities. Both of these drops occurred after prices had been high, when debt availability was contracting or failing to rise as much as in the past.

5. Part of the problem that we are experiencing is a slow-down in wage growth.

Figure 8 shows that in the United States, growth in per capita wages tends to disappear when oil prices rise above $40 barrel. (Of course, as noted in Point 1, interest rates have been falling since 1981. If it weren’t for this, the cut off for wage growth might even be lower–perhaps even $20 barrel!)

Figure 8. Average wages in 2012$ compared to Brent oil price, also in 2012$. Average wages are total wages based on BEA data adjusted by the CPI-Urban, divided total population. Thus, they reflect changes in the proportion of population employed as well as wage levels.

There is also a logical reason why we should expect that wages would tend to fall as energy costs rise. How does a manufacturer respond to the much higher cost of one or more of its major inputs? If the manufacturer simply passes the higher cost along, many customers will no longer be able to afford the manufacturer’s or service-provider’s products. If businesses can simply reduce some other costs to offset the rise in the cost in energy products and metals, they might be able to keep most of their customers.

A major area where a manufacturer or service provider can cut costs is in wage expense.  (Note the different types of expenses shown in Figure 5. Wages are a major type of expense for most businesses.)

There are several ways employment costs can be cut:

  1. Shift jobs to lower wage countries overseas.
  2. Use automation to shift some human labor to labor provided by electricity.
  3. Pay workers less. Use “contract workers” or “adjunct faculty” or “interns” who will settle for lower wages.

If a manufacturer decides to shift jobs to China or India, this has the additional advantage of cutting energy costs, since these countries use a lot of coal in their energy mix, and coal is an inexpensive fuel.

Figure 9. United States Percentage of Labor Force Employed, in by St. Louis Federal Reserve.

In fact, we see a drop in the US civilian labor force participation rate (Figure 9) starting at approximately the same time when energy costs and metal costs started to rise. Median inflation-adjusted wages have tended to fall as well in this period. Low wages can be a reason for dropping out of the labor force; it can become too expensive to commute to work and pay day care expenses out of meager wages.

Of course, if wages of workers are not growing and in many cases are actually shrinking, it becomes difficult to sell as many homes, cars, boats, and vacation cruises. These big-ticket items create a significant share of commodity “demand.” If workers are unable to purchase as many of these big-ticket items, demand tends to fall below the (now-inflated) cost of producing these big-ticket items, leading to the lower commodity prices we have seen recently.

6. We are headed in slow motion toward major defaults among commodity producers, including oil producers. 

Quite a few people imagine that if oil prices drop, or if other commodity prices drop, there will be an immediate impact on the output of goods and services.

Figure 10.

Instead, what happens is more of a time-lagged effect (Figure 11).

Figure 11.

Part of the difference lies in the futures markets; companies hold contracts that hold sale prices up for a time, but eventually (often, end of 2015) run out. Part of the difference lies in wells that have already been drilled that keep on producing. Part of the difference lies in the need for businesses to maintain cash flow at all costs, if the price problem is only for a short period. Thus, they will keep parts of the business operating if those parts produce positive cash flow on a going-forward basis, even if they are not profitable considering all costs.

With debt, the big concern is that the oil reserves being used as collateral for loans will drop in value, due to the lower price of oil in the world market. The collateral value of reserves works out to be something like (barrels of oil in reserves x some expected price).

As long as oil is being valued at $100 barrel, the value of the collateral stays close to what was assumed when the loan was taken out. The problem comes when low oil prices gradually work their way through the system and bring down the value of the collateral. This may take a year or more from the initial price drop, because prices are averaged over as much as 12 months, to provide stability to the calculation.

Once the value of the collateral drops below the value of the outstanding loan, the borrowers are in big trouble. They may need to sell some of the other assets they own, to help pay down the loan. Or, they may end up in bankruptcy. The borrowers certainly can’t borrow the additional money they need to keep increasing their production.

When bankruptcy occurs, many follow-on effects can be expected. The banks that made the loans may find themselves in financial difficulty. The oil company may lay off large numbers of workers. The former workers’ lack of wages may affect other businesses in the area, such as car dealerships. The value of homes in the area may drop, causing home mortgages to become “underwater.” All of these effects contribute to still lower demand for commodities of all kinds, including oil.

Because of the time lag problem, the bankruptcy problem is hard to reverse. Oil prices need to stay high for an extended period before lenders will be willing to lend to oil companies again. If it takes, say, five years for oil prices to get up to a level high enough to encourage drilling again, it may take seven years before lenders are willing to lend again.

7. Because many “baby boomers” are retiring now, we are at the beginning of a demographic crunch that has the tendency to push demand down further.

Many workers born in the late 1940s and in the 1950s are retiring now. These workers tend to reduce their own spending, and depend on government programs to pay most of their income. Thus, the retirement of these workers tends to drive up governmental costs at the same time it reduces demand for commodities of all kinds.

Someone needs to pay for the goods and services used by the retirees. Government retirement plans are rarely pre-funded, except with the government’s own debt. Because of this, higher pension payments by governments tend to lead to higher taxes. With higher taxes, workers have less money left to buy homes and cars. Even with pensions, the elderly are never a big market for homes and cars. The overall result is that demand for homes and cars tends to stagnate or decline, holding down the demand for commodities.

8. We are running short of options for fixing our low commodity price problem.

The ideal solution to our low commodity price problem would be to find substitutes that are cheap enough, and could increase in quantity rapidly enough, to power the economy to economic growth. “Cheap enough” would probably mean approximately $20 per barrel for a liquid oil substitute. The price would need to be correspondingly inexpensive for other energy products. Cheap and abundant energy products are needed because oil consumption and energy consumption are highly correlated. If prices are not low, consumers cannot afford them. The economy would react as it does to inefficiency. In other words, it would react as if too much of the output is going into intermediate products, and too little is actually acting to expand the economy.

Figure 12. World GDP in 2010$ compared (from USDA) compared to World Consumption of Energy (from BP Statistical Review of World Energy 2014).

These substitutes would also need to be non-polluting, so that pollution workarounds do not add to costs. These substitutes would need to work in existing vehicles and machinery, so that we do not have to deal with the high cost of transition to new equipment.

Clearly, none of the potential substitutes we are looking at today come anywhere close to meeting cost and scalability requirements. Wind and solar PV can only be built on top of our existing fossil fuel system. All evidence is that they raise total costs, adding to our “Increased Inefficiency” problem, rather than fixing it.

Other solutions to our current problems seem to be debt based. If we look at recent past history, the story seems to be something such as the following:

Besides adopting QE starting in 2008, governments also ramped up their spending (and debt) during the 2008-2011 period. This spending included road building, which increased the demand for commodities directly, and unemployment insurance payments, which indirectly increased the demand for commodities by giving jobless people money, which they used for food and transportation. China also ramped up its use of debt in the 2008-2009 period, building more factories and homes. The combination of QE, China’s debt, and government debt together brought oil prices back up by 2011, although not to as high a level as in 2008 (Figure 7).

More recently, governments have slowed their growth in spending (and debt), realizing that they are reaching maximum prudent debt levels. China has slowed its debt growth, as pollution from coal has become an increasing problem, and as the need for new homes and new factories has become saturated. Its debt ratios are also becoming very high.

QE continues to be used by some countries, but its benefit seems to be waning, as interest rates are already as low as they can go, and as central banks buy up an increasing share of debt that might be used for loan collateral. The credit generated by QE has allowed questionable investments since the required rate of return on investments funded by low interest rate debt is so low. Some of this debt simply recirculates within the financial system, propping up stock prices and land prices. Some of it has gone toward stock buy-backs. Virtually none of it has added to commodity demand.

What we really need is more high wage jobs. Unfortunately, these jobs need to be supported by the availability of large amounts of very inexpensive energy. It is the lack of inexpensive energy, to match the $20 per barrel oil and very cheap coal upon which the economy has been built that is causing our problems. We don’t really have a way to fix this.

9. It is doubtful that the prices of energy products and metals can be raised again without causing recession.

We are not talking about simply raising oil prices. If the economy is to grow again, demand for all commodities needs to rise to the point where it makes sense to extract more of them. We use both energy products and metals in making all kinds of goods and services. If the price of these products rises, the cost of making virtually any kind of goods or services rises.

Raising the cost of energy products and metals leads to the problem represented by Growing Inefficiency (Figure 4). As we saw in Point 5, wages tend to go down, rather than up, when other costs of production rise because manufacturers try to find ways to hold total costs down.

Lower wages and higher prices are a huge problem. This is why we are headed back into recession if prices rise enough to enable rising long-term production of commodities, including oil.





Why We Have an Oversupply of Almost Everything (Oil, labor, capital, etc.)

7 05 2015

The Wall Street Journal recently ran an article called, Glut of Capital and Labor Challenge Policy Makers: Global oversupply extends beyond commodities, elevating deflation risk. To me, this is a very serious issue, quite likely signaling that we are reaching what has been called Limits to Growth, a situation modelled in 1972 in a book by that name.

What happens is that economic growth eventually runs into limits. Many people have assumed that these limits would be marked by high prices and excessive demand for goods. In my view, the issue is precisely the opposite one: Limits to growth are instead marked by low prices and inadequate demand. Common workers can no longer afford to buy the goods and services that the economy produces, because of inadequate wage growth. The price of all commodities drops, because of lower demand by workers. Furthermore, investors can no longer find investments that provide an adequate return on capital, because prices for finished goods are pulled down by the low demand of workers with inadequate wages.

Evidence Regarding the Connection Between Energy Consumption and GDP Growth

We can see the close connection between world energy consumption and world GDP using historical data.

Figure 1. World GDP in 2010$ compared (from USDA) compared to World Consumption of Energy (from BP Statistical Review of World Energy 2014).

This chart gives a clue regarding what is wrong with the economy. The slope of the line implies that adding one percentage point of growth in energy usage tends to add less and less GDP growth over time, as I have shown in Figure 2. This means that if we want to have, for example, a constant 4% growth in world GDP for the period 1969 to 2013, we would need to gradually increase the rate of growth in energy consumption from about 1.8% = (4.0% – 2.2%) growth in energy consumption in 1969 to 2.8% = (4.0% – 1.2%) growth in energy consumption in 2013. This need for more and more growth in energy use to produce the same amount of economic growth is taking place despite all of our efforts toward efficiency, and despite all of our efforts toward becoming more of a “service” economy, using less energy products!

Figure 2. Expected change in GDP growth corresponding to 1% growth in total energy, based on Figure 1 fitted line.

To make matters worse, growth in world energy supply is generally trending downward as well. (This is not just oil supply whose growth is trending downward; this is oil plus everything else, including “renewables”.)

Figure 3. Three year average percent change in world energy consumption, based on BP Statistical Review of World Energy 2014 data.

There would be no problem, if economic growth were something that we could simply walk away from with no harmful consequences. Unfortunately, we live in a world where there are only two options–win or lose. We can win in our contest against other species (especially microbes), or we can lose. Winning looks like economic growth; losing looks like financial collapse with huge loss of human population, perhaps to epidemics, because we cannot maintain our current economic system.

The symptoms of losing the game are the symptoms we are seeing today–low commodity prices (temporarily higher, but nowhere nearly high enough to maintain production), not enough good paying jobs for common workers, and lack of investment opportunities, because workers cannot afford the high prices of goods that would be required to provide adequate return on investment.

How We Have Won in Our Contest with Other Species–Early Efforts 

The “secret formula” humans have had for winning in our competition against other species has been the use of supplemental energy, adding to the energy we get from food. There is a physics reason why this approach works: total population by all species is limited by available energy supply. Providing our own external energy supply was (and still is) a great work-around for this limitation. Even in the days of hunter-gatherers, humans used three times as much energy as could be obtained through food alone (Figure 1).

Figure 1

Earliest supplementation of food energy came by burning sticks and other biomass, starting one million years ago. Using this approach, humans were able to gain an advantage over other species in several ways:

  1. We were able to cook some of our food. This made a wider range of plants and animals suitable for food and made the nutrients from these foods more easily available to our bodies.
  2. Because less energy was needed for chewing and digesting, our bodies could put energy into growing a larger brain, thus giving us an advantage over other animals.
  3. The use of cooked food freed up time for such activities as hunting and making clothes, because less time was needed for chewing.
  4. Heat from burning plant material could be used to keep warm in cold areas, thereby extending our range and increasing total human population that could be supported.
  5. Fire could be used to chase off predatory animals and hunt prey animals.

Our bodies are now adapted to the need for supplemental energy. Our teeth are smaller, and our jaws and digestive apparatus have shrunk in size, as our brain has grown. The large population of humans that are alive today could not survive without supplemental energy for many purposes, such as cooking food, heating homes, and fighting illnesses that spread when humans are in as close proximity as they are today.

Our Modern Formula For Winning the Battle Against Other Species

In my view, the formula that has allowed humans to keep winning the battle against other species is the following:

  1. Use increasing amounts of inexpensive supplemental energy to leverage human energy so that finished goods and services produced per worker rises each year.
  2. Pay for this system with debt, because (if supplemental energy costs are cheap enough), it is possible to repay the debt, plus the interest on the debt, with the additional goods and services made possible by the cheap additional energy.
  3. This system gradually becomes more complex to deal with problems that come with rising population and growing use of resources. However, if the output of goods per worker is growing rapidly enough, it should be possible to pay for the costs associated with this increased complexity, in addition to interest costs.
  4. The whole system “works” as long as the total quantity of finished goods and services rises rapidly enough that it can fund all of the following: (a) a rising standard of living for common workers so that they can afford increasing amounts of debt to buy more goods, (b) debt repayment, and interest on the debt of the system, and (c) and an increasing amount of “overhead” in the form of government services, medical care, educational services, and salaries of high paid officials (in business as well as government). This overhead is needed to deal with the increasing complexity that comes with growth.

The formula for a growing economy is now failing. The rate of economic growth is falling, partly because energy supply is slowing (Figure 3), and partly because we need more and more growth of energy supply to produce a given amount of economic growth (Figure 2). With this lowered world economic growth, the amount of goods and services being produced is not rising fast enough to support all of the functions that it needs to cover: interest payments, growing wages of common workers, and growing “overhead” of a more complex society.

Some Reasons the Economic Growth Cycle is Now Failing

Let’s look at a few areas where we are reaching obstacles to this continued growth in final goods and services. An overarching problem is diminishing returns, which is reflected in increasingly higher prices of production.

1. Energy supplies are becoming more expensive to extract.

We extract the easiest to extract energy supplies first, and as these deplete, need to use the more expensive to extract energy supplies. We hear much about “growing efficiency” but, in fact, we are becoming less efficient in the production of energy supplies.

In the US, EIA data shows that we are becoming less efficient at coal production, in terms of coal production per worker hour (Figure 5).

Figure 5. US coal production per worker, on a Btu basis based on EIA data.

With oil, growing inefficiency is shown by the steeply rising cost of oil exploration and production since 1999 (Figure 6).

Figure 6. Figure by Steve Kopits of Westwood Douglas showing trends in world oil exploration and production costs per barrel.

Thus, it is for a fairly recent period, namely the period since about 2000, that we have been encountering rising costs both for US coal and for worldwide oil extraction.

The extra workers and extra costs required for producing the same amount of energy  counteract the tendency toward growth in the rest of the economy. This occurs because the rest of the economy must produce finished products with fewer workers and less resources as a result of the extra demands on these resources by the energy sector.

2. Other materials, besides energy products, are experiencing diminishing returns. 

Other resources, such as metals and other minerals and fresh water, are also becoming increasingly expensive to extract. The issue with mineral ores is similar to that with fossil fuels. We start with a fixed amount of ores in good locations and with high mineral percentages. As we move to less desirable ores, both human labour and more energy products are required, making the extraction process less efficient.

With fresh water, the issue is likely to be a need for desalination or long distance transport, to satisfy the needs of a growing population. Workarounds again involve more human labour and more resource use, making the production of fresh water less efficient.

In both of these cases, growing inefficiency leaves the rest of the economy with less human energy and less energy products to produce the finished goods and services that the economy needs.

3. Growing pollution is taking its toll.

Instead of just producing end products, we are increasingly finding ourselves fighting pollution. While this is a benefit to society, it really is only offsetting what would otherwise be a negative. Thus, it acts like overhead, rather than producing economic growth.

From the point of view of workers having to pay for higher cost energy in order to fight pollution (say, substitution of a higher cost energy source, or paying for more pollution controls), the additional cost acts like a tax. Workers need to cut back on other expenditures to afford the pollution control workarounds. The effect is thus recessionary.

4. The amount of “overhead” to the world economy has been growing rapidly in recent years, for a number of reasons: 

  • The amount of overhead is growing because we are reaching natural barriers. For example, population per acre of arable land is growing, so we need more intensity of development to produce food for a rising population.
  • With greater population density and increased bacterial antibiotic resistance, disease transmission becomes a more of a problem.
  • Increasing education is being encouraged, whether or not there are jobs available that will make use of that education. Education that cannot be used in a productive way to produce more goods and services can be considered overhead for the economy. Educational expenses are frequently financed by debt. Repayment of this debt leads to a decrease in demand for other goods, such as new homes and vehicles.
  • We have more elderly to whom we have promised benefits, because with the benefit of better nutrition and medical care, more people are living longer.

5. We are reaching debt limits.

As economic growth has slowed, we have been adding more and more debt, to try to mitigate the problem. This additional debt becomes a problem in many ways: (a) without cheap energy to leverage human labour, there are not many productive investments that can be made; (b) the addition of more debt leads to a need for more interest payments; and (c) at some point debt ratios become overwhelmingly high.

At least part of the slowdown in economic growth that we are seeing today is coming from a slowdown in the growth of debt. Without debt growth, it is hard to keep commodity prices high enough. Investment in new manufacturing plants is also affected by low growth in debt.

Reasons for Confusion in Understanding Our Current Predicament

1. Not understanding that all of the symptoms we are seeing today are manifestations of the same underlying “illness”. 

Most analysts think that the economy has stubbed its toe and has a headache, rather than recognizing that it has a serious underlying illness.

2. Academia is focused way too narrowly, and tied too closely to what has been written before. 

Academics, because of their need to write papers, focus on what previous papers have said. Unfortunately, previous papers have not understood the nature of our problem. Academics have developed models based on our situation when we were away from limits. The issues we are facing cover such diverse subjects as physics, geology, and finance. It is hard for academics to become knowledgeable in many areas at once.

3. Models that seemed to work before are no longer appropriate.

We take models like the familiar supply and demand model of economists and assume that they represent everlasting truths.

Figure 7. (Source Wikipedia). The price P of a product is determined by a balance between production at each price (supply S) and the desires of those with purchasing power at each price (demand D). The diagram shows a positive shift in demand from D1 to D2, resulting in an increase in price (P) and quantity sold (Q) of the product.

Unfortunately, as we get close to limits, things change. Both wage levels and debt levels have an impact on demand; the quantity goods available is also affected by diminishing returns. The model that worked in the past may be totally inappropriate now.

Even a complex model like the climate change model being used by the IPCC is likely to be affected by financial limits. If near-term financial limits are to be expected, IPCC’s estimate of future carbon from fuels is likely to be too high. At a minimum, the findings of the IPCC need to be framed differently: climate change may be one of a number of problems facing those people who manage to survive a financial crash.

4. Too much wishful thinking.

Everyone would like to present a positive result, especially when grants are being given for academic research will support some favourable finding.

A favourite form of wishful thinking is believing that higher costs of energy products will not be a problem. Higher cost energy products, whether they are renewable or not, are a problem for many reasons:

  • They represent growing inefficiency in the economy. With growing inefficiency, we produce fewer finished goods and services per worker, not more.
  • Countries using more of the higher cost types of energy become less competitive in the world market, and because of this, may develop financial problems. The countries most affected by the Great Recession were countries using a high percentage of oil in their energy mix.
  • The amount workers have available to spend is limited. If a worker has $100 to spend on energy supply, he can buy 100 times as much in energy supplies priced at $1 as he can energy supplies priced at $100. This same principle works even if the cost difference is much lower–say $3.50 gallon vs. $3.00 gallon.

5. Too much faith in, “We pay each other’s wages.”

There is a common belief that growing inefficiency is OK; the wages we pay for unneeded education will work its way through the system as more wages for other workers.

Unfortunately, the real secret to economic growth is not paying each other’s wages; it is growing output of finished products per worker through increased use of cheap energy (and perhaps technology, to make this cheap energy useful).

Increased overhead for the system is not helpful.

6.  An “upside down” peak oil story.

Most people in the peak oil community believe what economists say about supply and demand–namely, that oil prices will rise if there is a supply problem. They have not realized that in a networked economy, wages and prices are tightly linked. The way limits apply is not necessarily the way we expect. Limits may come through a lack of good paying jobs, and because of this lack of jobs, inability to purchase products containing oil.

The connection between energy and jobs is clear. Good jobs require the use of energy, such as electricity and oil; lack of good-paying jobs is likely to be a manifestation of an inadequate supply of cheap energy. Also, high paying jobs are what allow rising buying power, and thus keep demand high. Thus, oil limits may appear as a demand problem, with low oil prices, rather than as a high oil price problem.

In my opinion, what we are seeing now is a manifestation of peak oil. It is just happening in an upside down way relative to what most were expecting.

Conclusion

One way of viewing our problem today is as a crisis of affordability. Young people cannot afford to start families or buy new homes because of a combination of the high cost of higher education (leading to debt), the high cost of fuel-efficient new cars (again leading to debt), the high cost of resale homes, and the relatively low wages paid to young workers. Even older workers often have an affordability problem. Many have found their wages stagnating or falling at the same time that the cost of healthcare, cars, electricity, and (until recently) oil rises. A recent Gallop Survey showed an increasing share of workers categorize themselves as “working class” rather than “middle class.”

It is this affordability crisis that is bringing the system down. Without adequate wages, the amount of debt that can be added to the system lags as well. It becomes impossible to keep prices of commodities up at a high enough level to encourage production of these commodities. Return on investment tends to be low for the same reason. Most researchers have not recognized these problems, because they are narrowly focused and assume that models that worked in the past will continue to work today.





Oil Supply and Demand Forecasting with Steven Kopits

27 02 2014

kopits

Steven Kopits

A huge thank you to Michael Lardelli for pointing me to this hour long presentation by Steven Kopits, Managing Director, Douglas-Westwood, for The Center on Global Energy Policy.  It was recorded February 11, 2014 and is therefore right up to date, for the time being. It’s not short, obviously, includes bucketloads of data and information which I think will require me to view it twice…… so some commitment to ‘the cause’ is required!  But anyone wondering about the cause for Shell’s rout in Australia will be amazed to hear at about 45 minutes that this company actually borrowed money to pay its share dividends…….

Is the oil industry in the poo…?  ABSOLUTELY.  There are several red flags going up in this….  not least China’s apparent decision to slow its involvement in the oil markets.  Maybe it can’t afford to buy more resources at the price it takes to purchase them?

If ever you needed proof that it’s MONEY that lubricates the economy, even the very oil industry itself (the irony is overwhelming…) then watch this…  It is perhaps THE most important video you’ll watch about Peak Oil until the whole shebang falls over in a heap…. it blew MY socks off.