How I came to know that I am a closet climate denier

5 09 2017

File 20170828 17154 1asx2tb
So large are the nation’s daily greenhouse gas emissions that if yours is a typical Australian lifestyle you’re contributing disproportionately to climate change.
Carbon Visuals/flickr, CC BY

Joy Murray, University of Sydney

This article is part of an ongoing series from the Post-Truth Initiative, a Strategic Research Excellence Initiative at the University of Sydney. The series examines today’s post-truth problem in public discourse: the thriving economy of lies, bullshit and propaganda that threatens rational discourse and policy.

The project brings together scholars of media and communications, government and international relations, physics, philosophy, linguistics, and medicine, and is affiliated with the Sydney Social Sciences and Humanities Advanced Research Centre (SSSHARC), the Sydney Environment Institute and the Sydney Democracy Network.


What we believe and how we act don’t always stack up. Recently, in considering what it means to live in a post-truth world, I had cause to examine my understanding of how the world works and my actions on sustainability.

I realised I was, in effect, almost as much a climate denier as those who profess to be. Here’s how.

1.1 A way of understanding how the world works

I take a cybernetic view of the world. For me this means a holistic systems perspective based on circularity and feedback with a biological/evolutionary slant.

As I understand it, we learn and change as we bump up against the milieu we inhabit, which changes as we bump into it.

Our ontogeny – our life history since conception – determines what we contribute to that milieu, and the life histories of others determine what they take from it.

1.2 Sustainability

Now to the messages that we – the Integrated Sustainability Analysis (ISA) group at the University of Sydney – strive to communicate to the world.

Using input-output analysis, we put numbers to trends in emissions. We communicate on environmental and social sustainability through books, journals and conferences, showing how complex supply chains snake around the world.

We suggest that once producers, consumers and global corporations know the damage that is being done they will take action to stop it. Meanwhile, we discuss the motivations of climate deniers and wonder what we can do to change things.

1.3 The big collision

This is where I bump into my understanding of the world. What messages do people take from what we contribute to the milieu? Are they changed by the sustainability messages we try to communicate?

Dan Kahan and colleagues from the Yale Law School suggest that perception of risk from climate change depends on our cultural worldview: we dismiss risk if accepting it would mean social upheaval. Survival within the group, they say, trumps lifestyle change.

This fits with my understanding of how our ontogeny determines our survival needs and how our perception of survival within the group influences our actions. It also fits with my view about how people learn – we pick up from the surrounding milieu what fits with our views and ignore the rest.

I nodded along with Kahan, aligning myself with those trying to tell others of the risk. Until I realised there were two problems in such a position.

Problem one

The first problem is that my behaviour is little different from that of Kahan’s subjects. I live in Australia, which has the fifth-highest gross national income per capita. We also have the highest per-capita emissions in the OECD.

While I minimise waste and do my recycling, it would take a lifestyle upheaval to drop my household emissions to the sustainable share suggested by people like Peter Singer. So, I behave as though the call to act on climate change in an equitable way does not apply to me.

I am not alone in understanding the issues, being concerned about the consequences, and yet failing to act. It’s known as the “knowledge, concern, action paradox”.

Julien Vincent, writing about investors who ostensibly support the Paris Agreement yet fail to act, refers to this as a “much subtler, but no less damaging, form of denial”. He cites a case of Santos investors, aware of the consequences, professing concern, yet choosing to vote against a resolution that would have committed the company to conduct a 2°C scenario analysis.

It would seem that knowing the truth and professing concern about climate change are the easy parts. They cost nothing and allow us to claim the kudos that accrues to taking up such a position.

However, knowing the truth and professing concern without taking action is somewhat disingenuous. At worst it is living a lie, akin to being a closet climate denier.

So, even when recognising this truth/action/denial dilemma, why don’t we act? George Marshall, in his book Don’t Even Think About It, provides an insight. He discusses our evolutionary origins, our perception of threats, including climate change, and our instincts to protect family and tribe.

This resonates with my take on cybernetics, which suggests I live the way I do because I need to survive in my physical, economic, social and cultural environment; and because in a different era it would have given my offspring the best chance of survival.

It doesn’t let me off the hook – I still need to take action to lower my emissions – but it reminds me I shouldn’t be so quick to judge. I’m as much a part of the system as anyone else.

Meanwhile, my cybernetic take on life says that whatever we put into the milieu matters. So even though very few of us living in high-income countries can reduce our emissions to an equitable share, whatever actions we take to reduce them contribute to the world of tomorrow, next week, next year. They change the milieu, which changes the possibilities for change.

Problem two

Putting myself outside the system leads to the second problem, which is contingent on the first and means that if I can’t change my own actions I can’t expect to change those of others.

For while I shout about climate change, hoping others will hear what I say and act on it, in so many ways I communicate that I’m not acting on it myself.

A recent online survey showed that a researcher’s perceived carbon footprint affected her/his credibility and influenced the participants’ intentions to change their energy consumption.

If I know the figures, accept the science and yet continue to lead my rich nation lifestyle, I’m fair game as an excuse, conscious or not, for the deniers to continue their climate-indifferent lifestyles.

This doesn’t mean sharing our research is a waste of time. It provides valuable information about the social, economic and environmental effects of doing business; again, it changes the milieu. But it’s highly unlikely that people will read it and change what they do, which is a far more complex process.

Changing attitudes and action

Much research has been devoted to the question of how, and how not, to influence people’s responses to the threats posed by climate change.

Michael Mann is wary of scare campaigns as a motivating force. Bob Costanza and colleagues suggest that scare campaigns from scientists and activists alike are not the answer to weaning us off our addiction to an unsustainable lifestyle.

There’s research to suggest that enlisting the help of a trusted community member might be an effective alternative. Having an advocate present benefits of a low-carbon lifestyle, framed around community issues like energy security rather than climate change, has had some success.

Such an approach could help provide a way to take action for people who know about the science but whose political affiliations and values position them at the climate denial end of the spectrum, regardless of their knowledge.

However, it may not help those of us whose political affiliations and values are aligned with acting on climate change, yet still find it hard to act.

Probably more pertinent to our case is research showing that our actions on climate change are circumscribed not only by the political and cultural contexts that we inhabit but also by the infrastructure provided by them. That’s because this infrastructure forms the milieu that enfolds our lives.

So, where to from here?

If this is the case, then resolution to my first problem might require a significant change to the web of edifices that support my lifestyle. It would take a climate-friendly government with a narrative that normalises action on climate change to make it easy for me to survive in the group and live a low-carbon lifestyle.

Sweden provides an example of what this could look like. For many countries, though, a shift in the national narrative might seem impossible.

In Sweden, a rare example of a rich nation with low emissions, Hammarby in Stockholm is a model of environmentally friendly city development.
Ola Ericson/imagebank.sweden.se

There are examples of dramatic change to a seemingly inviolable narrative, but they come with a “be careful what you wish for” label.

Recently, we’ve seen Bernie Sanders, Jeremy Corbyn, Nigel Farage and Donald Trump make spectacular changes to the political landscape. They illustrate the power of engaging at the community level, discussing local issues (albeit sometimes with the help of big data), portraying empathy and swearing commitment to local solutions.

These leaders have changed the discourse. A cybernetic take on the process might say that their acts of communication triggered a lifetime of connotations in their hearers. The hearers interpreted the message through the prism of their ontogeny, feeding back into the mix their personal understandings, amplifying the message and influencing others by their own communications.

This is a process that works for good or ill, depending where you stand. So a world leader with climate credentials and sufficient clout to make the low-carbon lifestyle message sound mainstream could change the world’s trajectory.

However, ranged against the wisdom of waiting for such a one is the ominous presence of big data companies with the capacity to help manipulate individuals as well as whole communities; uber-wealthy individuals and groups with the ability to influence leaders and world politics; and the top 10% of global income earners who are responsible for almost as much greenhouse gas emissions as the rest of us together.

All are acting out of their own survival instincts and are unlikely to succumb to any amount of persuasive argument from a climate-conscious leader.

So how else to change the milieu to support more of us in achieving a more sustainable lifestyle? Nobel prize-winning economist Elinor Ostrom’s view is that the planet’s salvation lies with communities everywhere bypassing governments and taking action themselves. In 2012 she wrote:

… evolutionary policymaking is already happening organically. In the absence of effective national and international legislation to curb greenhouse gases, a growing number of city leaders are acting to protect their citizens and economies.

Those mayors defying Trump’s exit from the Paris Agreement come to mind as examples.

Ostrom suggests that supporting distributed leadership is the answer. And, to bring us back to cybernetics, management cybernetics guru Stafford Beer did exactly that.

Beer took Ashby’s law of requisite variety and revolutionised the way business management operated. Ashby’s law tells us that only variety (or complexity) can control variety. That leaves 90% of the global population to bring together the system variety required to influence – Ashby says “control” – the very wealthy high-emissions minority.

So, I’m backing distributed leadership to overcome my own inability to cut my emissions further. Investing in the work of organisations that can act will be my proxy.

This may look like a slow haul to change the milieu so that action on climate change becomes normal life, but I’m counting on the snowballing power of amplification to make it happen sooner rather than later.

The complexity of the 90% will eventually trump that of the 10%, by which time my second problem should be irrelevant.


You can read other pieces in the post-truth series here.

The ConversationThe Democracy Futures series is a joint global initiative between The Conversation and the Sydney Democracy Network. The project aims to stimulate fresh thinking about the many challenges facing democracies in the 21st century.

Joy Murray, Senior Research Fellow in Integrated Sustainability Analysis, School of Physics, Faculty of Science, University of Sydney

This article was originally published on The Conversation. Read the original article.

Advertisements




The Anthropocene: It’s Not All About Us

15 05 2014

heinbergA guest post from my friend Richard Heinberg, originally published as MuseLetter #264 in May 2014.  This is a long but important essay. I recommend a large cup of your favourite poison, and a biscuit or two….  Enjoy!

Download printable PDF version here (PDF, 126 KB)

 

Time to celebrate! Woo-hoo! It’s official: we humans have started a new geological epoch—the Anthropocene. Who’d have thought that just one species among millions might be capable of such an amazing accomplishment?

Let’s wait to stock up on party favours, though. After all, the Anthropocene could be rather bleak. The reason our epoch has acquired a new name is that future geologists will be able to spot a fundamental discontinuity in the rock strata that document our little slice of time in Earth’s multi-billion year pageant. This discontinuity will be traceable to the results of human presence. Think climate change, ocean acidification, and mass extinction.

Welcome to the Anthropocene: a world that may feature little in the way of multi-cellular ocean life other than jellyfish, and one whose continents might be dominated by a few generalist species able to quickly occupy new and temporary niches as habitats degrade (rats, crows, and cockroaches come to mind). We humans have started the Anthropocene, and we’ve proudly named it for ourselves, yet ironically we may not be around to enjoy much of it. The chain of impacts we have initiated could potentially last millions of years, but it’s a tossup whether there will be surviving human geologists to track and comment on it.

To be sure, there are celebrants of the Anthropocene who believe we’re just getting started, and that humans can and will shape this new epoch deliberately, intelligently, and durably. Mark Lynas, author of The God Species, contends the Anthropocene will require us to think and act differently, but that population, consumption, and the economy can continue to grow despite changes to the Earth system. Stewart Brand says we may no longer have a choice as to whether to utterly re-make the natural world; in his words, “We only have a choice of terraforming well. That’s the green project for this century.” In their book Love Your Monsters: Postenvironmentalism and the Anthropocene, Michael Schellenberger and Ted Nordhaus of the Breakthrough Institute say we can create a world where 10 billion humans achieve a standard of living allowing them to pursue their dreams, though this will only be possible if we embrace growth, modernization, and technological innovation. Similarly, Emma Marris (who admits to having spent almost no time in wilderness), argues in Rambunctious Garden: Saving Nature in a Post-Wild World that wilderness is gone forever, that we should all get used to the idea of the environment as human-constructed, and that this is potentially a good thing.

Is the Anthropocene the culmination of human folly or the commencement of human godhood? Will the emerging epoch be depleted and post-apocalyptic, or tastefully appointed by generations of tech-savvy ecosystem engineers? Environmental philosophers are currently engaged in what amounts to a heated debate about the limits of human agency. That discussion is especially engrossing because . . . it’s all about us!

*          *          *

The viability of the “we’re-in-charge-and-loving-it” version of the Anthropocene—let’s call it the Techno-Anthropocene—probably hinges on prospects for nuclear power. A concentrated, reliable energy source will be required for the maintenance and growth of industrial civilization, and just about everybody agrees that—whether or not we’re at the point of “peak oil”—fossil fuels won’t continue energizing civilization for centuries and millennia to come. Solar and wind are more environmentally benign sources, but they are diffuse and intermittent. Of society’s current non-fossil energy sources, only nuclear is concentrated, available on demand, and (arguably) capable of significant expansion. Thus it’s no accident that Techno-Anthropocene boosters such as Mark Lynas, Stewart Brand, Ted Nordhaus, and Michael Schellenberger are also big nuclear proponents.

But the prospects for current nuclear technology are not rosy. The devastating Fukushima meltdowns of 2011 scared off citizens and governments around the globe. Japan will be dealing with the radiation and health impacts for decades if not centuries, and the West Coast of the US is gearing up for an influx of radioactive ocean water and debris. There is still no good solution for storing the radioactive waste produced even when reactors are operating as planned. Nuclear power plants are expensive to build and typically suffer from hefty cost over-runs. The world supply of uranium is limited, and shortages are likely by mid-century even with no major expansion of power plants. And, atomic power plants are tied to nuclear weapons proliferation.

In 2012, The Economist magazine devoted a special issue to a report on nuclear energy; tellingly, the report was titled, “Nuclear Power: The Dream that Failed.” Its conclusion: the nuclear industry may be on the verge of expansion in just a few nations, principally China; elsewhere, it’s on life support.

None of this daunts Techno-Anthropocene proponents, who say new nuclear technology has the potential to fulfill the promises originally made for the current fleet of atomic power plants. The centerpiece of this new technology is the Integral Fast Reactor (IFR).

Unlike light water reactors (which comprise the vast majority of nuclear power plants in service today), IFRs would use sodium as a coolant. The IFR nuclear reaction features fast neutrons, and it more thoroughly consumes radioactive fuel, leaving less waste. Indeed, IFRs could use current radioactive waste as fuel. Also, they are alleged to offer greater operational safety and less risk of weapons proliferation.

These arguments are forcefully made in the 2013 documentary, “Pandora’s Promise,” produced and directed by Robert Stone. The film asserts that IFRs are our best tool to mitigate anthropogenic global warming, and it goes on to claim there has been a deliberate attempt by misguided bureaucrats to sabotage the development of IFR reactors.

However, critics of the film say these claims are overblown and that fast-reactor technology is highly problematic. Earlier versions of the fast breeder reactor (of which IFR is a version) were commercial failures and safety disasters. Proponents of the Integral Fast Reactor, say the critics, overlook its exorbitant development and deployment costs and continued proliferation risks. IFR theoretically “transmutes,” rather than eliminates, radioactive waste. Yet the technology is decades away from widespread implementation, and its use of liquid sodium as a coolant can lead to fires and explosions.

David Biello, writing in Scientific American, concludes that, “To date, fast neutron reactors have consumed six decades and $100 billion of global effort but remain ‘wishful thinking.’”

Even if advocates of IFR reactors are correct, there is one giant practical reason they may not power the Anthropocene: we likely won’t see the benefit from them soon enough to make much of a difference. The challenges of climate change and fossil fuel depletion require action now, not decades hence.

Assuming enough investment capital, and assuming a future in which we have decades in which to improve existing technologies, IFR reactors might indeed show significant advantages over current light water reactors (only many years of experience can tell for sure). But we don’t have the luxury of limitless investment capital, and we don’t have decades in which to work out the bugs and build out this complex, unproven technology.

The Economist’s verdict stands: “[N]uclear power will continue to be a creature of politics not economics, with any growth a function of political will or a side-effect of protecting electrical utilities from open competition. . . . Nuclear power will not go away, but its role may never be more than marginal.”

*          *          *

Defying risk of redundancy, I will hammer home the point: cheap, abundant energy is the prerequisite for the Techno-Anthropocene. We can only deal with the challenges of resource depletion and overpopulation by employing more energy. Running out of fresh water? Just build desalination plants (that use lots of energy). Degrading topsoil in order to produce enough grain to feed ten billion people? Just build millions of hydroponic greenhouses (that need lots of energy for their construction and operation). As we mine deeper deposits of metals and minerals and refine lower-grade ores, we’ll require more energy. Energy efficiency gains may help us do more with each increment of power, but a growing population and rising per-capita consumption rates will more than overcome those gains (as they have consistently done in recent decades). Any way you look at it, if we are to maintain industrial society’s current growth trajectory we will need more energy, we will need it soon, and our energy sources will have to meet certain criteria—for example, they will need to emit no carbon while at the same time being economically viable.

These essential criteria can be boiled down to four words: quantity, quality, price, and timing. Nuclear fusion could theoretically provide energy in large amounts, but not soon. The same is true of cold fusion (even if—and it’s a big if—the process can be confirmed to actually work and can be scaled up). Biofuels offer a very low energy return on the energy invested in producing them (a deal-breaking quality issue). Ocean thermal and wave power may serve coastal cities, but again the technology needs to be proven and scaled up. Coal with carbon capture and storage is economically uncompetitive with other sources of electricity. Solar and wind are getting cheaper, but they’re intermittent and tend to undermine commercial utility companies’ business models. While our list of potential energy sources is long, none of these sources is ready to be plugged quickly into our existing system to provide energy in the quantity, and at the price, that the economy needs in order to continue growing.

This means that humanity’s near future will almost certainly be energy-constrained. And that, in turn, will ensure—rather than engineering nature on an ever-greater scale—we will still be depending on ecosystems that are largely beyond our control.

As a species, we’ve gained an impressive degree of influence over our environment by deliberately simplifying ecosystems so they will support more humans, but fewer other species. Our principal strategy in this project has been agriculture—primarily a form of agriculture that focuses on a few annual grain crops. We’ve commandeered up to 50 percent of the primary biological productivity of our planet, mostly through farming and forestry. Doing this has had overwhelmingly negative impacts on non-domesticated plants and animals. The subsequent loss of biodiversity is increasingly compromising humanity’s prospects, because we depend upon countless ecosystem services (such as pollination and oxygen regeneration)—services we do not organize or control, and for which we do not pay.

The essence of our problem is this: the side effects of our growth binge are compounding rapidly and threaten a crisis in which the artificial support systems we’ve built over past decades (food, transport, and financial systems, among others)—as well as nature’s wild systems, on which we still also depend—could all crash more or less simultaneously.

If we’ve reached a point of diminishing returns and potential crisis with regard to our current strategy of constant population/consumption growth and ecosystem takeover, then it would seem that a change of direction is necessary and inevitable. If we were smart, rather than attempting to dream up ways of further re-engineering natural systems in untested (and probably unaffordable) ways, we would be limiting and ameliorating the environmental impacts of our global industrial system while reducing our population and overall consumption levels.

If we don’t proactively limit population and consumption, nature will eventually do it for us, and likely by very unpleasant means (famine, plague, and perhaps war). Similarly, we can rein in consumption simply by continuing to deplete resources until they become unaffordable.

Governments are probably incapable of leading a strategic retreat in our war on nature, as they are systemically hooked on economic growth. But there may be another path forward. Perhaps citizens and communities can initiate a change of direction. Back in the 1970s, as the first energy shocks hit home and the environmental movement flourished, ecological thinkers began tackling the question: what are the most biologically regenerative, least harmful ways of meeting basic human needs? Two of these thinkers, Australians David Holmgren and Bill Mollison, came up with a system they called Permaculture. According to Mollison, “Permaculture is a philosophy of working with, rather than against nature; of protracted and thoughtful observation rather than protracted and thoughtless labour; and of looking at plants and animals in all their functions, rather than treating any area as a single-product system.”  Today there are thousands of Permaculture practitioners throughout the world, and Permaculture Design courses are frequently on offer in almost every country.

Permaculture principles

Other ecologists didn’t aim to create an overarching system, but merely engaged in piecemeal research on practices that might lead to a more sustainable mode of food production—practices that include intercropping, mulching, and composting. One ambitious agricultural scientist, Wes Jackson of the Land Institute in Salina Kansas, has spent the past four decades breeding perennial grain crops (he points out that our current annual grains are responsible for the vast bulk of soil erosion, to the tune of 25 billion tons per year).

Meanwhile, community resilience efforts have sprung up in thousands of towns and cities around the world—including the Transition Initiatives, which are propelled by a compelling, flexible, grassroots organizing model and a vision of a future in which life is better without fossil fuels.

Population Media Center is working to ensure we don’t get to ten billion humans by enlisting creative artists in countries with high population growth rates (which are usually also among the world’s poorest nations) to produce radio and television soap operas featuring strong female characters who successfully confront issues related to family planning. This strategy has been shown to be the most cost-effective and humane means of reducing high birth rates in these nations.

What else can be done? Substitute labour for fuel. Localize food systems. Capture atmospheric carbon in soil and biomass. Replant forests and restore ecosytems. Recycle and re-use. Manufacture more durable goods. Rethink economics to deliver human satisfaction without endless growth. There are organizations throughout the world working to further each of these goals, usually with little or no government support. Taken together, they could lead us to an entirely different Anthropocene.

Call it the Lean-Green Anthropocene.

*          *          *

The Techno-Anthropocene has an Achilles heel: energy (more specifically, the failings of nuclear power). The Lean-Green Anthropocene has one as well: human nature.

It’s hard to convince people to voluntarily reduce consumption and curb reproduction. That’s not because humans are unusually pushy, greedy creatures; all living organisms tend to maximize their population size and rate of collective energy use. Inject a colony of bacteria into a suitable growth medium in a petri dish and watch what happens. Hummingbirds, mice, leopards, oarfish, redwood trees, or giraffes: in each instance the principle remains inviolate—every species maximizes population and energy consumption within nature’s limits. Systems ecologist Howard T. Odum called this rule the Maximum Power Principle: throughout nature, “system designs develop and prevail that maximize power intake, energy transformation, and those uses that reinforce production and efficiency.”

In addition to our innate propensity to maximize population and consumption, we humans also have difficulty making sacrifices in the present in order to reduce future costs. We’re genetically hardwired to respond to immediate threats with fight-or-flight responses, while distant hazards matter much less to us. It’s not that we don’t think about the future at all; rather, we unconsciously apply a discount rate based on the amount of time likely to elapse before a menace has to be faced.

True, there is some variation in future-anticipating behavior among individual humans. A small percentage of the population may change behavior now to reduce risks to forthcoming generations, while the great majority is less likely to do so. If that small percentage could oversee our collective future planning, we might have much less to worry about. But that’s tough to arrange in democracies, where people, politicians, corporations, and even nonprofit organizations get ahead by promising immediate rewards, usually in the form of more economic growth. If none of these can organize a proactive response to long-range threats like climate change, the actions of a few individuals and communities may not be so effective at mitigating the hazard.

This pessimistic expectation is borne out by experience. The general outlines of the 21st century ecological crisis have been apparent since the 1970s. Yet not much has actually been accomplished through efforts to avert that crisis. It is possible to point to hundreds, thousands, perhaps even millions of imaginative, courageous programs to reduce, recycle, and reuse—yet the overall trajectory of industrial civilization remains relatively unchanged.

*          *          *

Human nature may not permit the Lean-Greens’ message to altogether avert ecological crisis, but that doesn’t mean the message is pointless. To understand how it could have longer-term usefulness despite our tendency toward short-term thinking, it’s helpful to step back and look at how societies’ relationship with the environment tends to evolve.

The emblematic ecological crises of the Anthropocene (runaway climate change and ocean acidification, among others) are recent, but humans have been altering our environment one way or another for a long time. Indeed, there is controversy among geologists over when the Anthropocene began: some say it started with the industrial revolution, others tag it at the beginning of agriculture some 10,000 years ago, while still others tie it to the emergence of modern humans thousands of years earlier.

Humans have become world-changers as a result of two primary advantages: we have dexterous hands that enable us to make and use tools, and we have language, which helps us coordinate our actions over time and space. As soon as both were in place, we started using them to take over ecosystems. Paleoanthropologists can date the arrival of humans to Europe, Asia, Australia, the Pacific Islands, and the Americas by noting the timing of extinctions of large prey species. The list of animals probably eradicated by early humans is long, and includes (in Europe) several species of elephants and rhinos; (in Australia) giant wombats, kangaroos, and lizards; and (in the Americas) horses, mammoths, and giant deer.

People have also been deliberately re-engineering ecosystems for tens of thousands of years, principally by using fire to alter landscapes so they will produce more food for humans. Agriculture was a huge boost to our ability to produce more food on less land, and therefore to grow our population. Farming yielded storable food surpluses, which led to cities—the basis of civilization. It was in these urban social cauldrons that writing, money, and mathematics emerged.

If agriculture nudged the human project forward, fossil-fueled industrialism turbocharged it. In just the past two centuries, population and energy consumption have increased by over 800 percent. Our impact on the biosphere has more than kept pace.

The industrialization of agriculture reduced the need for farm labour. This enabled—or forced—billions to move to cities. As more people came to live in urban centres, they found themselves increasingly cut off from wild nature and ever more completely engaged with words, images, symbols, and tools.

There’s a term for the human tendency to look at the biosphere, maybe even the universe, as though it’s all about us: anthropocentrism. Up to a point, this is an understandable and even inevitable propensity. Every person, after all, is the centre of her own universe, the star of his own movie; why should our species as a whole be less egocentric? Other animals are similarly obsessed with their own kind: regardless of who furnishes the kibbles, dogs are obsessively interested in other dogs. But there are healthy and unhealthy degrees of individual and species self-centeredness. When individual human self-absorption becomes blatantly destructive we call it narcissism. Can a whole species be overly self-absorbed? Hunter-gatherers were certainly interested in their own survival, but many indigenous forager peoples thought of themselves as part of a larger community of life, with a responsibility to maintain the web of existence. Today we think more “pragmatically” (as an economist might put it), as we bulldoze, deforest, overfish, and deplete our way to world domination.

However, history does not portray a steady ramp-up of human hubris and alienation from nature. Periodically humans were slapped down. Famine, resource conflicts, and disease decimated populations that were previously growing. Civilizations rose, then fell. Financial manias led to crashes. Boomtowns became ghost towns.

Ecological slap-downs probably occurred with relatively great frequency in pre-agricultural times, when humans depended more directly on nature’s variable productivity of wild foods. The Aboriginals of Australia and the Native Americans—who are often regarded as exemplar intuitive ecologists due to their traditions and rituals restraining population growth, protecting prey species, and affirming humanity’s place within the larger ecosystem—were probably just applying lessons from bitter experience. It’s only when we humans get slapped down hard a few times that we start to appreciate other species’ importance, restrain our greed, and learn to live in relative harmony with our surroundings.

Which prompts the question: Are the Lean-Green Anthropocene prophets our species’ early warning system whose function is to avert catastrophe—or are they merely ahead of their time, pre-adapting to an ecological slap-down that is foreseeable but not yet fully upon us?

*          *          *

Throughout history, humans appear to have lived under two distinct regimes: boom times and dark ages. Boom times occurred in prehistory whenever people arrived in a new habitat to discover an abundance of large prey animals. Booms were also associated with the exploitation of new energy resources (especially coal and oil) and the expansions of great cities—from Uruk, Mohenjo-daro, Rome, Chang’an, Angkor Wat, Tenochtitlan, Venice, and London, all the way to Miami and Dubai. Boom-time behaviour is risk-seeking, confident to the point of arrogance, expansive, and experimental.

Historians use the term dark ages to refer to times when urban centres lose most of their population. Think Europe in the fifth through the fifteenth centuries, the Near East after the Bronze Age collapse around 1200 BCE, Cambodia between 1450 and 1863 CE, or Central America after the Mayan collapse of 900 CE. Dark-age behaviour is conservative and risk-averse. It has echoes in the attitudes of indigenous peoples who have lived in one place long enough to have confronted environmental limits again and again. Dark-age people haven’t skirted the Maximum Power Principle; they’ve just learned (from necessity) to pursue it with more modest strategies.

Needless to say, dark ages have their (ahem) dark side. In the early phases of such periods large numbers of people typically die from famine, also from war or other forms of violence. Dark ages are times of forgetting, when technologies and cultural achievements are often lost. Writing, money, mathematics, and astronomy can all disappear.

Still, these times are not uniformly gloomy. During the European Dark Ages, slavery nearly disappeared as new farming methods and better breeds of horses and oxen made forced human labour less economic. People who previously would have been bound in slavery became either free workers or, at worst, serfs. The latter couldn’t pick up and move without their lord’s permission, but generally enjoyed far more latitude than slaves. At the same time, the rise of Christianity brought new organized charitable activities and institutions, including hospices, hospitals, and shelters for the poor.

Today nearly everyone in the industrialized world has adopted boom-time behaviour. We are encouraged to do so by ceaseless advertising messages and by governmental cheerleaders of the growth economy. After all, we have just lived through the biggest boom in all human history—why not expect more of the same? The only significant slap-downs in recent cultural memory were the Great Depression and a couple of World Wars; in comparison with ecological bottlenecks in ancient eras these were minor affairs; further, they were relatively brief and played out three or more generations ago. For most of us now, dark-age behaviour seems quaint, pointless, and pessimistic.

It would be perverse to wish for a Great Slap-Down. Only a sociopath would welcome massive, widespread human suffering. At the same time, it is impossible to ignore these twin facts: our species’ population-consumption fiesta is killing the planet, and we’re not likely to end the party voluntarily.

Will we avert or face a Great Slap-Down? We’re already seeing initial signs of trouble ahead in extreme weather events, high oil and food prices, and increasing geopolitical tensions. Sadly, it seems that every effort will be made to keep the party going as long as possible. Even amid unmistakable signs of economic contraction, most people will still require time to adapt behaviourally. Moreover, a slap-down likely won’t be sudden and complete, but may unfold in stages. After each mini-slap we’ll hear claims from boom-time diehards that a techno-utopian takeoff has merely been delayed, and that economic expansion will resume if only we will follow this or that leader or political program.

But if urban centres feel the crunch, and if widespread Techno-utopian expectations are dashed, we can expect to see evidence of profound psychological disruption. Gradually, more and more people will conclude—again, as a result of hard experience—that nature isn’t here just for us. Whether this realization emerges from extreme weather, plagues, or resource scarcity, it will lead an ever-expanding share of the populace grudgingly to pay more attention to forces beyond human control.

Just as humans are now shaping the future of Earth, Earth will shape the future of humanity. Amid rapid environmental and social change, the message of the Lean-Greens will gain more obvious relevance. That message may not save the polar bears (though ecosystem protection programs deserve every kind of support), but it might make the inevitable transition to a new species-wide behavioral mode a lot easier. It may lead to a dark age that’s less dark than it would otherwise be, one in which more of our cultural and scientific achievements are preserved. A great deal may depend on the intensity and success of the efforts of the small proportion of the population who are currently open to Lean-Green thinking—success in acquiring skills, in developing institutions, and in communicating a compelling vision of a desirable and sustainable post-boom society.

In the end, the deepest insight of the Anthropocene will probably be a very simple one: we live in a world of millions of interdependent species with which we have co-evolved. We sunder this web of life at our peril. The Earth’s story is fascinating, rich in detail, and continually self-revealing. And it’s not all about us.