Why I am still anti Lithium and EV

13 04 2017

Originally published at Alice Friedemann’s excellent blog, energyskeptic.com/

[ This is by far the best paper explaining lithium reserves, lithium chemistry, recycling, political implications, and more. I’ve left out the charts, graphs, references, and much of the text, to see them go to the original paper in the link below.

I personally don’t think that electric cars will ever be viable because battery development is too slow, and given that oil can be hundreds of times more energy dense than a battery of the same weight, the laws of physics will prevent them from ever achieving enough energy density — see my post at Who Killed the Electric Car. (and also my more-up-to-date version and utility-scale energy storage batteries in my book When Trains Stop Running: Energy and the Future of Transportation.  Some excerpts from my book about lithium and energy storage:

Li-ion energy storage batteries are more expensive than PbA or NaS, can be charged and discharged only a discrete number of times, can fail or lose capacity if overheated, and the cost of preventing overheating is expensive. Lithium does not grow on trees. The amount of lithium needed for utility-scale storage is likely to deplete known resources (Vazquez, S., et al. 2010. Energy storage systems for transport and grid applications. IEEE Transactions on Industrial Electronics 57(12): 3884).

To provide enough energy for 1 day of storage for the United states, li-ion batteries would cost $11.9 trillion dollars, take up 345 square miles and weigh 74 million tons (DOE/EPRI. 2013. Electricity storage handbook in collaboration with NRECA. USA: Sandia National Laboratories and Electric Power Research Institute) 

Barnhart et al. (2013) looked at how much materials and energy it would take to make batteries that could store up to 12 hours of average daily world power demand, 25.3 TWh. Eighteen months of world-wide primary energy production would be needed to mine and manufacture these batteries, and material production limits were reached for many minerals even when energy storage devices got all of the world’s production (with zinc, sodium, and sulfur being the exceptions). Annual production by mass would have to double for lead, triple for lithium, and go up by a factor of 10 or more for cobalt and vanadium, driving up prices. The best to worst in terms of material availability are: CAES, NaS, ZnBr, PbA, PHS, Li-ion, and VRB (Barnhart, C., et al. 2013. On the importance of reducing the energetic and material demands of electrical energy storage. Energy Environment Science 2013(6): 1083–1092). ]

Vikström, H., Davidsson, S., Höök, M. 2013. Lithium availability and future production outlooks. Applied Energy, 110(10): 252-266. 28 pages



Lithium is a highly interesting metal, in part due to the increasing interest in lithium-ion batteries. Several recent studies have used different methods to estimate whether the lithium production can meet an increasing demand, especially from the transport sector, where lithium-ion batteries are the most likely technology for electric cars. The reserve and resource estimates of lithium vary greatly between different studies and the question whether the annual production rates of lithium can meet a growing demand is seldom adequately explained. This study presents a review and compilation of recent estimates of quantities of lithium available for exploitation and discusses the uncertainty and differences between these estimates. Also, mathematical curve fitting models are used to estimate possible future annual production rates. This estimation of possible production rates are compared to a potential increased demand of lithium if the International Energy Agency’s Blue Map Scenarios are fulfilled regarding electrification of the car fleet. We find that the availability of lithium could in fact be a problem for fulfilling this scenario if lithium-ion batteries are to be used. This indicates that other battery technologies might have to be implemented for enabling an electrification of road transports.


  • Review of reserves, resources and key properties of 112 lithium deposits
  • Discussions of widely diverging results from recent lithium supply estimates
  • Forecasting future lithium production by resource-constrained models
  • Exploring implications for future deployment of electric cars


Global transportation mainly relies on one single fossil resource, namely petroleum, which supplies 95% of the total energy [1]. In fact, about 62% of all world oil consumption takes place in the transport sector [2]. Oil prices have oscillated dramatically over the last few years, and the price of oil reached $100 per barrel in January 2008, before skyrocketing to nearly $150/barrel in July 2008. A dramatic price collapse followed in late 2008, but oil prices have at present time returned to over $100/barrel. Also, peak oil concerns, resulting in imminent oil production limitations, have been voiced by various studies [3–6].

It has been found that continued oil dependence is environmentally, economically and socially unsustainable [7].

The price uncertainty and decreasing supply might result in severe challenges for different transporters. Nygren et al. [8] showed that even the most optimistic oil production forecasts implied pessimistic futures for the aviation industry. Curtis [9] found that globalization may be undermined by peak oil’s effect on transportation costs and reliability of freight.

Barely 2% of the world electricity is used by transportation [2], where most of this is made up by trains, trams, and trolley buses.

A high future demand of Li for battery applications may arise if society choses to employ Li-ion technologies for a decarbonization of the road transport sector.

Batteries are at present time the second most common use, but are increasing rapidly as the use of li-ion batteries for portable electronics [12], as well as electric and hybrid cars, are becoming more frequent. For example, the lithium consumption for batteries in the U.S increased with 194 % from 2005 to 2010 [12]. Relatively few academic studies have focused on the very abundance of raw materials needed to supply a potential increase in Li demand from transport sector [13]. Lithium demand is growing and it is important to investigate whether this could lead to a shortfall in the future.


[My comment: utility scale energy storage batteries in commercial production are lithium, and if this continues, this sector alone would quickly consume all available lithium supplies: see Barnhart, C., et al. 2013. On the importance of reducing the energetic and material demands of electrical energy storage. Energy Environment Science 2013(6): 1083–1092.]

Aim of this study

Recently, a number of studies have investigated future supply prospects for lithium [13–16]. However, these studies reach widely different results in terms of available quantities, possible production trajectories, as well as expected future demand. The most striking difference is perhaps the widely different estimates for available resources and reserves, where different numbers of deposits are included and different types of resources are assessed. It has been suggested that mineral resources will be a future constraint for society [17], but a great deal of this debate is often spent on the concept of geological availability, which can be presented as the size of the tank. What is frequently not reflected upon is that society can only use the quantities that can be extracted at a certain pace and be delivered to consumers by mining operations, which can be described as the tap. The key concept here is that the size of the tank and the size of the tap are two fundamentally different things.

This study attempts to present a comprehensive review of known lithium deposits and their estimated quantities of lithium available for exploitation and discuss the uncertainty and differences among published studies, in order to bring clarity to the subject. The estimated reserves are then used as a constraint in a model of possible future production of lithium and the results of the model are compared to possible future demand from an electrification of the car fleet. The forecasts are based on open, public data and should be used for estimating long term growth and trends. This is not a substitute for economical short-term prognoses, but rather a complementary vision.

Data sources

The United States Geological Survey (USGS) has been particularly useful for obtaining production data series, but also the Swedish Geological Survey (SGU) and the British Geological Survey (BGS) deserves honourable mention for providing useful material. Kushnir and Sandén [18], Tahil [19, 20] along with many other recent lithium works have also been useful. Kesler et al. [21] helped to provide a broad overview of general lithium geology.

Information on individual lithium deposits has been compiled from numerous sources, primarily building on the tables found in [13–16]. In addition, several specialized articles about individual deposits have been used, for instance [22–26]. Public industry reports and annual yearbooks from mining operators and lithium producers, such as SQM [27], Roskill [28] or Talison Lithium [29], also helped to create a holistic data base.

In this study, we collected information on global lithium deposits. Country of occurrence, deposit type, main mineral, and lithium content were gathered as well as published estimates for reserves and resources. Some deposits had detailed data available for all parameters, while others had very little information available. Widely diverging estimates for reserves and resources could sometimes be found for the same deposit, and in such cases the full interval between the minimum and maximum estimates is presented. Deposits without reserve or resource estimates are included in the data set, but do not contribute to the total. Only available data and information that could be found in the public and academic spheres were compiled in this study. It is likely that undisclosed and/or proprietary data could contribute to the world’s lithium volume but due to data availability no conclusions on to which extent could be made.

Geological overview

In order to properly estimate global lithium availability, and a feasible reserve estimate for modelling future production, this section presents an overview of lithium geology. Lithium is named after the Greek word “lithos” meaning “stone”, represented by the symbol Li and has the atomic number 3. Under standard conditions, lithium is the lightest metal and the least dense solid element. Lithium is a soft, silver-white metal that belongs to the alkali group of elements.

As all alkali elements, Li is highly reactive and flammable. For this reason, it never occurs freely in nature and only appears in compounds, usually ionic compounds. The nuclear properties of Li are peculiar since its nuclei verge on instability and two stable isotopes have among the lowest binding energies per nucleon of all stable nuclides. Due to this nuclear instability, lithium is less abundant in the solar system than 25 of the first 32 chemical elements [30].

Resources and reserves

An important frequent shortcoming in the discussion on availability of lithium is the lack of proper terminology and standardized concepts for assessing the available amounts of lithium. Published studies talk about “reserves”, “resources”, “recoverable resources”, “broad-based reserves”, “in-situ resources”, and “reserve base”.

A wide range of reporting systems minerals exist, such as NI 43-101, USGS, Crirsco, SAMREC and the JORC code, and further discussion and references concerning this can be found in Vikström [31]. Definitions and classifications used are often similar, but not always consistent, adding to the confusion when aggregating data. Consistent definitions may be used in individual studies, but frequently figures from different methodologies are combined as there is no universal and standardized framework. In essence, published literature is a jumble of inconsistent figures. If one does not know what the numbers really mean, they are not simply useless – they are worse, since they tend to mislead.

Broadly speaking, resources are generally defined as the geologically assured quantity that is available for exploitation, while reserves are the quantity that is exploitable with current technical and socioeconomic conditions. The reserves are what are important for production, while resources are largely an academic figure with little relevance for real supply. For example, usually less than one tenth of the coal resources are considered economically recoverable [32, 33]. Kesler et al. [21] stress that available resources needs to be converted into reserves before they can be produced and used by society. Still, some analysts seemingly use the terms ‘resources’ and ‘reserves’ synonymously.

It should be noted that the actual reserves are dynamic and vary depending on many factors such as the available technology, economic demand, political issues and social factors. Technological improvements may increase reserves by opening new deposit types for exploitation or by lowering production costs. Deposits that have been mined for some time can increase or decrease their reserves due to difficulties with determining the ore grade and tonnage in advance [34]. Depletion and decreasing concentrations may increase recovery costs, thus lowering reserves. Declining demand and prices may also reduce reserves, while rising prices or demand may increase them. Political decisions, legal issues or environmental policies may prohibit exploitation of certain deposits, despite the fact significant resources may be available.

For lithium, resource/reserve classifications were typically developed for solid ore deposits. However, brine – presently the main lithium source – is a fluid and commonly used definitions can be difficult to apply due to pumping complications and varying concentrations.

Houston et al. [35] describes the problem in detail and suggest a change in NI 43-101 to account for these problems. If better standards were available for brines then estimations could be more reliable and accurate, as discussed in Kushnir and Sandén [18].

Environmental aspects and policy changes can also significantly influence recoverability. Introduction of clean air requirements and public resistance to surface mining in the USA played a major role in the decreasing coal reserves [33].

It is entirely possible that public outcries against surface mining or concerns for the environment in lithium producing will lead to restrictions that affect the reserves. As an example, the water consumption of brine production is very high and Tahil [19] estimates that brine operations consume 65% of the fresh water in the Salar de Atacama region. [ The Atacama only gets 0.6 inches of rain a year ]

Regarding future developments of recoverability, Fasel and Tran [36] monotonously assumes that increasing lithium demand will result in more reserves being found as prices rise. So called cumulative availability curves are sometimes used to estimate how reserves will change with changing prices, displaying the estimated amount of resource against the average unit cost ranked from lowest to highest cost. This method is used by Yaksic and Tilton [14] to address lithium availability. This concept has its merits for describing theoretical availability, but the fact that the concept is based on average cost, not marginal cost, has been described as a major weakness, making cumulative availability curves disregard the real cost structure and has little – if any – relevance for future price and production rate [37].

Production and occurrence of lithium

The high reactivity of lithium makes it geochemistry complex and interesting. Lithium-minerals are generally formed in magmatic processes. The small ionic size makes it difficult for lithium to be included in early stages of mineral crystallization, and resultantly lithium remains in the molten parts where it gets enriched until it can be solidified in the final stages [38].

At present, over 120 lithium-containing minerals are known, but few of them contain high concentrations or are frequently occurring. Lithium can also be found in naturally occurring salt solutions as brines in dry salt lake environments. Compared to the fairly large number of lithium mineral and brine deposits, few of them are of actual or potential commercial value. Many are very small, while others are too low in grade [39]. This chapter will briefly review the properties of those deposits and present a compilation of the known deposits.

Lithium mineral deposits

Lithium extraction from minerals is primarily done with minerals occurring in pegmatite formations. However, pegmatite is rather challenging to exploit due to its hardness in conjunction with generally problematic access to the belt-like deposits they usually occur in. Table 1 describes some typical lithium-bearing minerals and their characteristics. Australia is currently the world’s largest producer of lithium from minerals, mainly from spodumene [39]. Petalite is commonly used for glass manufacture due to its high iron content, while lepidolite was earlier used as a lithium source but presently has lost its importance due to high fluorine content. Exploitation must generally be tailor-made for a certain mineral as they differ quite significantly in chemical composition, hardness and other properties[13]. Table 2 presents some mineral deposits and their properties.

Recovery rates for mining typically range from 60 to 70%, although significant treatment is required for transforming the produced Li into a marketable form. For example, [40, 41] describe how lithium are produced from spodumene. The costs of acid, soda ash, and energy are a very significant part of the total production cost but may be partially alleviated by the market demand for the sodium sulphate by-products.

Lithium brine deposits

Lithium can also be found in salt lake brines that have high concentrations of mineral salts. Such brines can be reachable directly from the surface or deep underground in saline expanses located in very dry regions that allow salts to persist. High concentration lithium brine is mainly found in high altitude locations such as the Andes and south-western China. Chile, the world largest lithium producer, derives most of the production from brines located at the large salt flat of Salar de Atacama.

Lithium has similar ionic properties as magnesium since their ionic size is nearly identical; making is difficult to separate lithium from magnesium. A low Mg/Li ratio in brine means that it is easier, and therefore more economical to extract lithium.

Lithium Market Research SISThe ratio differs significant at currently producing brine deposits and range from less than 1 to over 30 [14]. The lithium concentration in known brine deposits is usually quite low and range from 0.017–0.15% with significant variability among the known deposits in the world (Table 3).

Exploitation of lithium brines starts with the brine being pumped from the ground into evaporation ponds. The actual evaporation is enabled by incoming solar radiation, so it is desirable for the operation to be located in sunny areas with low annual precipitation rate. The net evaporation rate determines the area of the required ponds [42].

It can easily take between one and two years before the final product is ready to be used, and even longer in cold and rainy areas.

The long timescales required for production can make brine deposits ill fit for sudden changes in demand. Table 3. Properties of known brine deposits in the world.

Lithium from sea water

The world’s oceans contain a wide number of metals, such as gold, lithium or uranium, dispersed at low concentrations. The mass of the world’s oceans is approximately 1.35*1012 Mt [47], making vast amounts of theoretical resources seemingly available. Eckhardt [48] and Fasel and Tran [36] announce that more than 2,000,000 Mt lithium is available from the seas, essentially making it an “unlimited” source given its geological abundance. Tahil [20] also notes that oceans have been proclaimed as an unlimited Li-source since the 1970s.

The world’s oceans and some highly saline lakes do in fact contain very large quantities of lithium, but if it will become practical and economical to produce lithium from this source is highly questionable.

For example, consider gold in sea water – in total nearly 7,000,000 Mt. This is an enormous amount compared to the cumulative world production of 0.17 Mt accumulated since the dawn of civilization [49]. There are also several technical options available for gold extraction. However, the average gold concentration range from <0.001 to 0.005 ppb [50]. This means that one km3 of sea water would give only 5.5 kg of gold. The gold is simply too dilute to be viable for commercial extraction and it is not surprising that all attempts to achieve success – including those of the Nobel laureate Fritz Haber – has failed to date.

Average lithium concentration in the oceans has been estimated to 0.17 ppm [14, 36]. Kushnir and Sandén [18] argue that it is theoretically possible to use a wide range of advanced technologies to extract lithium from seawater – just like the case for gold. However, no convincing methods have been demonstrated this far. A small scale Japanese experiment managed to produce 750 g of lithium metal from processing 4,200 m3 water with a recovery efficiency of 19.7% [36]. This approach has been described in more detail by others [51–53].

Grosjean et al. [13] points to the fact that even after decades of improvement, recovery from seawater is still more than 10–30 times more costly than production from pegmatites and brines. It is evident that huge quantities of water would have to be processed to produce any significant amounts of lithium. Bardi [54] presents theoretical calculations on this, stating that a production volume of lithium comparable to present world production (~25 kt annually) would require 1.5*103 TWh of electrical energy for pumping through separation membranes in addition to colossal volumes of seawater. Furthermore, Tahil [20] estimated that a seawater processing flow equivalent to the average discharge of the River Nile – 300,000,000 m3/day or over 22 times the global petroleum industry flow of 85 million barrels per day – would only give 62 tons of lithium per day or roughly 20 kt per year. Furthermore, a significant amount of fresh water and hydrochloric acid will be required to flush out unwanted minerals (Mg, K, etc.) and extract lithium from the adsorption columns [20].

In summary, extraction from seawater appears not feasible and not something that should be considered viable in practice, at least not in the near future.

Estimated lithium availability

From data compilation and analysis of 112 deposits, this study concludes that 15 Mt areImage result for lithium reasonable as a reference case for the global reserves in the near and medium term. 30 Mt is seen as a high case estimate for available lithium reserves and this number is also found in the upper range in literature. These two estimates are used as constraints in the models of future production in this study.

Estimates on world reserves and resources vary significantly among published studies. One main reason for this is likely the fact that different deposits, as well as different number of deposits, are aggregated in different studies. Many studies, such as the ones presented by the USGS, do not give explicitly state the number of deposits included and just presents aggregated figures on a national level. Even when the number and which deposits that have been used are specified, analysts can arrive to wide different estimates (Table 5). It should be noted that a trend towards increasing reserves and resources with time can generally be found, in particularly in USGS assessments. Early reports, such as Evans [56] or USGS [59], excluded several countries from the reserve estimates due to a lack of available information. This was mitigated in USGS [73] when reserves estimates for Argentina, Australia, and Chile have been revised based on new information from governmental and industry sources. However, there are still relatively few assessments on reserves, in particular for Russia, and it is concluded that much future work is required to handle this shortcoming. Gruber et al. [16] noted that 83% of global lithium resources can be found in six brine, two pegmatite and two sedimentary deposits. From our compilation, it can also be found that the distribution of global lithium reserves and resources are very uneven.

Three quarters of everything can typically be found in the ten largest deposits (Figure 1 and 2). USGS [12] pinpoint that 85% of the global reserves are situated in Chile and China (Figure 3) and that Chile and Australia accounted for 70 % of the world production of 28,100 tonnes in 2011 [12]. From Table 2 and 3, one can note a significant spread in estimated reserves and resources for the deposits. This divergence is much smaller for minerals (5.6–8.2 Mt) than for brines (6.5– 29.4 Mt), probably resulting from the difficulty associated with estimating brine accumulations consistently. Evans [75] also points to the problem of using these frameworks on brine deposits, which are fundamentally different from solid ores. Table 5. Comparison of published lithium assessments.


One thing that may or may not have a large implication for future production is recycling. The projections presented in the production model of this study describe production of lithium from virgin materials. The total production of lithium could potentially increase significantly if high rates of recycling were implemented of the used lithium, which is mentioned in many studies.

USGS [12] state that recycling of lithium has been insignificant historically, but that it is increasing as the use of lithium for batteries are growing. However, the recycling of lithium from batteries is still more or less non-existent, with a collection rate of used Li-ion batteries of only about 3% [93]. When the Li-ion batteries are in fact recycled, it is usually not the lithium that is recycled, but other more precious metals such as cobalt [18].

If this will change in the future is uncertain and highly dependent on future metal prices, but it is still commonly argued for and assumed that the recycling of lithium will grow significantly, very soon. Goonan [94] claims that recycling rates will increase from vehicle batteries in vehicles since such recycling systems already exist for lead-acid batteries. Kushnir and Sandén [18] argue that large automotive batteries will be technically easier to recycle than smaller batteries and also claims that economies of scale will emerge when the use for batteries for vehicles increase. According to the IEA [95], full recycling systems are projected to be in place sometime between 2020 and 2030. Similar assumptions are made by more or less all studies dealing with future lithium production and use for electric vehicles and Kushnir and Sandén [18] state that it is commonly assumed that recycling will take place, enabling recycled lithium to make up for a big part of the demand but also conclude that the future recycling rate is highly uncertain.

There are several reasons to question the probability of high recycling shares for Li-ion batteries. Kushnir and Sandén [18] state that lithium recycling economy is currently not good and claims that the economic conditions could decrease even more in the future. Sullivan and Gaines [96] argue that the Li-ion battery chemistry is complex and still evolving, thus making it difficult for the industry to develop profitable pathways. Georgi-Maschler [93] highlight that two established recycling processes exist for recycling Li-ion batteries, but one of them lose most of the lithium in the process of recovering the other valuable metals. Ziemann et al. [97] states that lithium recovery from rechargeable batteries is not efficient at present time, mainly due to the low lithium content of around 2% and the rather low price of lithium.

In this study we choose not to include recycling in the projected future supply for several reasons. In a short perspective, looking towards 2015-2020, it cannot be considered likely that any considerable amount of lithium will be recycled from batteries since it is currently not economical to do so and no proven methods to do it on a large scale industrial level appear to exist. If it becomes economical to recycle lithium from batteries it will take time to build the capacity for the recycling to take place. Also, the battery lifetime is often projected to be 10 years or more, and to expect any significant amounts of lithium to be recycled within this period of time is simply not realistic for that reason either.

The recycling capacity is expected to be far from reaching significant levels before 2025 according to Wanger [92]. It is also important to separate the recycling rates of products to the recycled content in new products. Even if a percentage of the product is recycled at the end of the life cycle, this is no guarantee that the use of recycled content in new products will be as high. The use of Li-ion batteries is projected to grow fast. If the growth happens linearly, and high recycling rates are accomplished, recycling could start constituting a large part of the lithium demand, but if the growth happens exponentially, recycling can never keep up with the growth that has occurred during the 10 years lag during the battery lifetime. In a longer time perspective, the inclusion of recycling could be argued for with expected technological refinement, but certainties regarding technology development are highly uncertain. Still, most studies include recycling as a major part of future lithium production, which can have very large implications on the results and conclusions drawn. Kushnir and Sandén [18] suggest that an 80% lithium recovery rate is achievable over a medium time frame. The scenarios in Gruber et al. [16], assumes recycling participation rates of 90 %, 96% and 100%. In their scenario using the highest assumed recycling, the quantities of lithium needed to be mined are decreased to only about 37% of the demand. Wanger [92] looks at a shorter time perspective and estimates that a 40% or 100% recycling rate would reduce the lithium consumption with 10% or 25% respectively by 2030. Mohr et al. [15] assume that the recycling rate starts at 0%, approaching a limit of 80%, resulting in recycled lithium making up significant parts of production, but only several decades into the future. IEA [95] projects that full recycling systems will be in place around 2020–2030.

The impact of assumed recycling rates can indeed be very significant, and the use of this should be handled with care and be well motivated.

Future demand for lithium

To estimate whether the projected future production levels will be sufficient, it isImage result for lithiuminteresting to compare possible production levels with potential future demand. The use of lithium is currently dominated by use for ceramics and glass closely followed by batteries. The current lithium demand for different markets can be seen in Figure 7. USGS [12] state that the lithium use in batteries have grown significantly in recent years as the use of lithium batteries in portable electronics have become increasingly common. Figure 7 (Ceramics and glass 29%, Batteries 27%, Other uses 16%, Lubrication greases 12%, Continuous casting 5%, Air treatment 4%, Polymers 3%, Primary aluminum production 2%, Pharmaceuticals 2%).

Global lithium demand for different end-use markets. Source: USGS [12] USGS [12] state that the total lithium consumption in 2011 was between 22,500 and 24,500 tonnes. This is often projected to grow, especially as the use of Li-ion batteries for electric cars could potentially increase demand significantly. This study presents a simple example of possible future demand of lithium, assuming a constant demand for other uses and demand for electric cars to grow according to a scenario of future sales of

electric cars. The current car fleet consists of about 600 million passenger cars. The sale of new passenger cars in 2011 was about 60 million cars [98]. This existing vehicle park is almost entirely dependent on fossil fuels, primarily gasoline and diesel, but also natural gas to a smaller extent. Increasing oil prices, concerns about a possible peak in oil production and problems with anthropogenic global warming makes it desirable to move away from fossil energy dependence. As a mitigation and pathway to a fossil-fuel free mobility, cars running partially or totally on electrical energy are commonly proposed. This includes electric vehicles (EVs), hybrid vehicles (HEVs) and PHEVs (plug-in hybrid vehicles), all on the verge of large-scale commercialization and implementation. IEA [99] concluded that a total of 1.5 million hybrid and electric vehicles had been sold worldwide between the year 2000 and 2010.

Both the expected number of cars as well as the amount of lithium required per vehicle is important. As can be seen from Table 9, the estimates of lithium demand for PEHV and EVs differ significantly between studies. Also, some studies do not differentiate between different technical options and only gives a single Li-consumption estimate for an “electric vehicle”, for instance the 3 kg/car found by Mohr et al. [15]. The mean values from Table 9 are found to be 4.9 kg for an EV and 1.9 kg for a PHEV.

As the battery size determines the vehicles range, it is likely that the range will continue to increase in the future, which could increase the lithium demand. On the other hand, it is also reasonable to assume that the technology will improve, thus reducing the lithium requirements. In this study a lithium demand of 160 g Li/kWh is assumed, an assumption discussed in detail by Kushnir and Sandén [18]. It is then assumed that typical batteries capacities will be 9 kWh in a PHEV and 25 kWh in an EV. This gives a resulting lithium requirement of 1.4 kg for a PHEV and 4 kg for an EV, which is used as an estimate in this study. Many current electrified cars have a lower capacity than 24 kWh, but to become more attractive to consumers the range of the vehicles will likely have to increase, creating a need for larger batteries [104]. It should be added that the values used are at the lower end compared to other assessments (Table 9) and should most likely not be seen as overestimates future lithium requirements.

Figure 8 shows the span of the different production forecasts up until 2050 made in this study, together with an estimated demand based on the demand staying constant on the high estimate of 2010– 2011, adding an estimated demand created by the electric car projections done by IEA [101]. This is a very simplistic estimation future demand, but compared to the production projections it indicates that lithium availability should not be automatically disregarded as a potential issue for future electric car production. The amount of electric cars could very well be smaller or larger that this scenario, but the scenario used does not assume a complete electrification of the car fleet by 2050 and such scenarios would mean even larger demand of lithium. It is likely that lithium demand for other uses will also grow in the coming decades, why total demand might increase more that indicated here. This study does not attempt to estimate the evolution of demand for other uses, and the demand estimate for other uses can be considered a conservative one. Figure 8. The total lithium demand of a constant current lithium demand combined with growth of electric vehicles according to IEA’s blue map scenario [101] assuming a demand for 1.4 kg of lithium per PHEV and 4.0 kg per EV. The span of forecasted production levels range from the base case Gompertz model

Concluding discussion

Potential future production of lithium was modeled with three different production curves. In a short perspective, until 2015–2020, the three models do not differ much, but in the longer perspective the Richards and Logistic curves show a growth at a vastly higher pace than the Gompertz curve. The Richards model gives the best fit to the historic data, and lies in between the other two and might be the most likely development. A faster growth than the logistic model cannot be ruled out, but should be considered unlikely, since it usually mimics plausible free market exploitation [89]. Other factors, such as decreased lithium concentration in mined material, economics, political and environmental problems could also limit production.

It can be debated whether this kind of forecasting should be used for short term projections, and the actual production in coming years can very well differ from our models, but it does at least indicate that lithium availability could be a potential problem in the coming decades. In a longer time perspective up to 2050, the projected lithium demand for alternative vehicles far exceeds our most optimistic production prognoses.

If 100 million alternative vehicles, as projected in IEA [101] are produced annually using lithium battery technology, the lithium reserves would be exhausted in just a few years, even if the production could be cranked up faster than the models in this study. This indicates that it is important that other battery technologies should be investigated as well.

It should be added that these projections do not consider potential recycling of the lithium, which is discussed further earlier in this paper. On the other hand, it appears it is highly unlikely that recycling will become common as soon as 2020, while total demand appears to potentially rise over maximum production around that date. If, when, and to what extent recycling will take place is hard to predict, although it appears more likely that high recycling rates will take place in electric cars than other uses.

Much could change before 2050. The spread between the different production curves are much larger and it is hard to estimate what happens with technology over such a long time frame. However, the Blue Map Scenario would in fact create a demand of lithium that is higher than the peak production of the logistic curve for the standard case, and close to the peak production in the high URR case.

Improved efficiency can decrease the lithium demand in the batteries, but as Kushnir and Sandén [18] point out, there is a minimum amount of lithium required tied to the cell voltage and chemistry of the battery.

IEA [95] acknowledges that technologies that are not available today must be developed to reach the Blue Map scenarios and that technology development is uncertain. This does not quite coincide with other studies claiming that lithium availability will not be a problem for production of electric cars in the future.

It is also possible that other uses will raise the demand for lithium even further. One industry that in a longer time perspective could potentially increase the demand for lithium is fusion, where lithium is used to breed tritium in the reactors. If fusion were commercialized, which currently seems highly uncertain, it would demand large volumes of lithium [36].

Further problems with the lithium industry are that the production and reserves are situated in a few countries (USGS [12] in Mt: Chile 7.5, China 3.5, Australia 0.97, Argentina 0.85, Other 0.135]. One can also note that most of the lithium is concentrated to a fairly small amount of deposits, nearly 50% of both reserves and resources can be found in Salar de Atacama alone. Kesler et al. [21] note that Argentina, Bolivia, Chile and China hold 70% of the brine deposits. Grosjean et al. [13] even points to the ABC triangle (i.e. Argentina, Bolivia and Chile) and its control of well over 40% of the world resources and raises concern for resource nationalism and monopolistic behavior. Even though Bolivia has large resources, there are many political and technical problems, such as transportation and limited amount of available fresh water, in need of solutions [18].

Regardless of global resource size, the high concentration of reserves and production to very few countries is not something that bode well for future supplies. The world is currently largely dependent on OPEC for oil, and that creates possibilities of political conflicts. The lithium reserves are situated in mainly two countries. It could be considered problematic for countries like the US to be dependent on Bolivia, Chile and Argentina for political reasons [105]. Abell and Oppenheimer [105] discuss the absurdity in switching from dependence to dependence since resources are finite. Also, Kushnir and Sandén [18] discusses the problems with being dependent on a few producers, if a problem unexpectedly occurs at the production site it may not be possible to continue the production and the demand cannot be satisfied.

Final remarks

Although there are quite a few uncertainties with the projected production of lithium and demand for lithium for electric vehicles, this study indicates that the possible lithium production could be a limiting factor for the number of electric vehicles that can be produced, and how fast they can be produced. If large parts of the car fleet will run on electricity and rely on lithium based batteries in the coming decades, it is possible, and maybe even likely, that lithium availability will be a limiting factor.

To decrease the impact of this, as much lithium as possible must be recycled and possibly other battery technologies not relying on lithium needs to be developed. It is not certain how big the recoverable reserves of lithium are in the world and estimations in different studies differ significantly. Especially the estimations for brine need to be further investigated. Some estimates include production from seawater, making the reserves more or less infinitely large. We suggest that it is very unlikely that seawater or lakes will become a practical and economic source of lithium, mainly due to the high Mg/Li ratio and low concentrations if lithium, meaning that large quantities of water would have to be processed. Until otherwise is proved lithium reserves from seawater and lakes should not be included in the reserve estimations. Although the reserve estimates differ, this appears to have marginal impact on resulting projections of production, especially in a shorter time perspective. What are limiting are not the estimated reserves, but likely maximum annual production, which is often missed in similar studies.

If electric vehicles with li-ion batteries will be used to a very high extent, there are other problems to account for. Instead of being dependent on oil we could become dependent on lithium if li-ion batteries, with lithium reserves mainly located in two countries. It is important to plan for this to avoid bottlenecks or unnecessarily high prices. Lithium is a finite resource and the production cannot be infinitely large due to geological, technical and economical restraints. The concentration of lithium metal appears to be decreasing, which could make it more expensive and difficult to extract the lithium in the future. To enable a transition towards a car fleet based on electrical energy, other types of batteries should also be considered and a continued development of battery types using less lithium and/or other metals are encouraged. High recycling rates should also be aimed for if possible and continued investigations of recoverable resources and possible production of lithium are called for. Acknowledgements We would like to thank Steve Mohr for helpful comments and ideas. Sergey Yachenkov has our sincerest appreciation for providing assistance with translation of Russian material.

Not happy, Jan…….

8 04 2017

If you’ve been following this blog, you will know I’ve been saying for quite some time that out of the ludicrous Lithium battery rush happening right now as a ‘fix it’ for all and sundry energy problems, a lot of disappointed people will surface. Well, one just has, and he’s one of the most high profile person in the sustainability movement.

I met Michael Mobbs almost certainly before 2010, which is the year I went working for the solar industry. He gave a public lecture about sustainability in Pomona at the Rural Futures Network; I wonder how that’s going now..? Mobbs has undertaken converting an old terrace house in Sydney to ‘sustainability’ by disconnecting from the water grid and sewerage. He also went grid tied solar, the whole project is well documented on his website, and you have to give him credit for doing the almost impossible…. in Sydney no less. I for one would never undertake such a project, it’s so much easier to start from scratch in the country! And that’s hard enough, let me tell you….

It now appears, Mobbs decided to also cut himself off from the electricity grid…. and it seems that didn’t go so well….

mobbsbatteriesOn Mobbs’ website, there is an “invitation to install & supply an off-grid solar system” It seems he had one installed in March 2015, but it’s not working as it should, or at least as Mobbs thought it should…..

Firstly, let’s start with what he got……. It’s a bit hard to tell from the photo, apart from the fact it is an Alpha ‘box’. From the blog, I also established that this comes with a 3kW inverter, itself a problem, it appears to be too small. Going to Alpha’s website, I cannot find the system Mobbs appears so proud of in the above photo; and let’s face it, two years is a long time in the world of technology. All the products on display say that the output of these cabinets is 5kW, but nowhere does it say it even features an inverter.  Solarchoice’s website shows a 3kW Storion-S3 cabinet, but not even it looks like what Mobbs has in the photo – it only has one door, the ‘new ones’ have two….. The inverter is called an AEV-3048, and perhaps the A stands for Alpha, and 3048 means 3000W/48V, but it’s all guesswork because finding information is a problem.

So why is a 3kW inverter a problem in a house with a claimed baseload of 86W, very close to what we achieved in Cooran actually…..

Another huge flaw with the Alpha system that I’ve recently become aware of also stems from the fact that all the energy first goes through the batteries: the Alpha system’s output is always limited to 3,000W regardless of the solar size; it can’t deliver above this. This is an extremely important point to understand because it affects the way I live and how I’m able to use my appliances. I’ll break it down in a way that’s practical and simple; prepare yourself to be blown away by this outrageous system limitation.

We’ve already established that the base load of my house is 86W. Let’s say I wake up in the morning, turn on a couple of lights in the kitchen because it’s still dark (20W), turn on the toaster because I’m in the mood for toast with butter for breakfast (1,200W), and my daughter (who happens to be staying with me) turns on her hair dryer while getting ready (1,500W) and she decides she needs to put on a load of laundry before she leaves the house (500W). Doesn’t seem too out of the ordinary, right? Well, we would be in trouble: all of the power would cut off, and the Alpha system would shut down because we would have exceeded its 3,000W limit. Regardless of the size of my solar system, I can NEVER exceed 3,000W of power consumption in my house while using the Alpha system. This was very hard to swallow.

Oh Michael…….  welcome to living off the grid!

Mobbs gives a brief description of how he worked out this baseload….

Step one, determining my total base load, wasn’t as easy as I expected, especially given the fact that I have three different monitoring systems that could provide me with the information. The Efergy and Wattwatchers systems confirmed what I already knew: my house’s base load was about 86W (60W for the aerator and roughly 20W for the fridge occasionally turning on).However, where I ran into problems was with the Alpha ESS reporting system: it was saying my base load was 257W, which is three times larger than the base load reported for the house.At first I thought this difference of 171W was the base load of the Alpha system itself, but their numbers just didn’t add up.

I do have a theory here, he may have got the sums wrong because he used to be grid tied, and maybe, just maybe, his figures did not include what was exported. But I’m only guessing. My main reason for thinking this is that he is running a conventional fridge, while we achieved our low baseload using a freedge which consumes 20% of the energy a conventional fridge does…. make no mistake, a conventional fridge’s ‘baseload’ is half or more of his 86W. He’s claiming 20W for his fridge (480Wh/day, 20W x 24 hrs), but I have never seen any fridge perform that well…. Most fridges today still consume a whole kilowatthour a day. So there could be another error there.

But it gets worse……

Now you see why I said that I probably made a huge mistake by purchasing the Alpha system when going off-grid. The simple truth is that the Alpha system is not designed to be used in an off-grid setting, and they have not implemented the necessary retrofits to make it work in that environment. However, during my recent research, I came across a product that is designed specifically to be used off-grid and shows great promise for high efficiency and effective energy management: the SMA Sunny Island system.

Bad news Michael……  the SMA Sunny Island is not designed for off the grid either, it’s made to work with other SMA grid tied units in a hybrid grid/backup batteries system.

Worse still, he also seems to have storage issues….

For the last few weeks, in the particularly cloudy and rainy weather Sydney has had to endure, Mobbs had to turn off his fridge (bloody fridges, they are a curse…) during the day to ensure that the house, which he shares with two others, has enough power for a “civilised life” at night-time. Worse than that, the system has a bug in it that causes it to trip out every couple of days. It seems flashing digital lights have become part of his life….!

“I’m running short of power,” Mobbs said complaining that the system that he has in place is delivering 1kWh/day less than he expected. “I thought this would be a walk in the park, but I appear to have tripped over.”

I’m seriously starting to think a lot of installers have no idea what they are doing. I recently related the story of my friend Bruce whose inlaws replaced a perfectly good system (because of a fridge no less!), and they were sold a Sunny Island, with I was told over the phone just two days ago, gel cells for storage……… completely not what either Bruce or I would have bought. Solar companies (including this well known one who shall remain nameless) have simply turned into salespeople selling whatever it is they have in stock off catalogues…….

Mobbs then writes……

The main difference between the Alpha and Sunny Island system: Sunny Island can send solar energy directly to the house when it is needed and completely bypasses the system’s batteries. SMA’s Sunny Island system not only extends battery life by not cycling all loads through them, but using solar directly into loads means items can be set to run on timers during the day, (washing, dishwasher etc) to maximise the benefit of an abundant afternoon supply of solar. It also has a larger peak design capacity than Alpha. For example, if you have a 4kW solar system, with the SMA units that would allow a potential delivery of 4kW of solar (in optimum conditions) directly into the house’s load + the 4.6kW of power from the batteries delivered by the Sunny Island controller (they can run in parallel to each other).  That’s a big potential 8.6 kW of continuous capacity to loads.  As I’ve already pointed out, in contrast the Alpha output is always limited to the 3,000W delivery of the battery inverter regardless of the solar size.

More bad news Michael…… this only works that way if you are grid tied with a hybrid system!

Michael also doesn’t seem to understand how off the grid works…

Alpha has an inefficient way of managing my solar energy (by diverting all of it through my batteries first), which decreases my battery life by constantly charging and discharging them…

Errr…..  Michael, that’s how battery storage works! Which is of course exactly why Lithium batteries are not good at this. Mobbs also wrote…:

Like any system that transfers and converts energy from one form to another, there are going to be losses. No system is perfect. However, as I started doing more research, I became aware of a key element of the way the Alpha system operates that may mean my decision to purchase it was a huge mistake: the Alpha system transfers all its incoming solar energy through the batteries before it delivers it to the house. When I learned this, I was devastated. One of the most important figures of merit in a system such as mine are the battery losses. If you put 1kWh into a battery it doesn’t all come out! There are losses associated with both charging and discharging. The higher the charge/discharge rate, the greater proportion of energy is lost and the shorter my battery life becomes. So, I repeat, all my energy is getting charged and discharged through the batteries before I ever even see it in the house. For someone living off-grid, this level of energy loss and battery depreciation is unacceptable, and I was never made aware of it by the installer.

This is why I know there will be a lot of disappointed grid disconnectors. They have swallowed the idea that living off grid is just like living on it hook line and sinker, when it cannot possibly be. How long have I been saying solar has shortcomings?

If you’re going to go off the grid, first, you need to know exactly how much energy you’re consuming. Then you need to know what your peak power demand will be so you can size your inverter. Then, you must size your battery bank so that you can go on living through a series of cloudy days without your batteries falling over. Accurate climate data is really important. And if you ask me, any off the grid system should be tailor made for the household, not all fitted in a box…..

The comments on Mobbs’ blog are interesting, including one from Alpha who obviously can do without the bad publicity and are suggesting entering into consultation….. well if you ask me, the time for consultation is before installation, not after it’s established the gear does not perform as needed….

Furthermore, and this is most important, get batteries that can be flattened and recharged for as many times as you like, almost forever if you go the way of Nickel Iron batteries……

At least Mobbs is aware of what his system is doing, but most consumers don’t. They will buy these cabinets, not understand what the monitors tell them, and the Lithium batteries will be cycled to death, failing early without a doubt, driving incompetent solar companies broke and giving solar power a really bad name. Plus, let’s face it, by the time all these systems die, you won’t be able to get replacement bits in a post collapse world….

There is one more issue…… on his blog Mobbs shows..:

In 1996, I installed 18 solar panels, each with 120-watt capacity. It reduced the amount the house took from the grid by more than 60%. Since then, I have installed 12 additional panels, bringing my home’s total system capacity to just over 3.5kW. mobbs panels

In addition to the roof solar cells, the house uses sunlight to heat water through a standard solar hot-water system. The environmental savings achievable by using solar hot-water heaters are summed up by Gavin Gilchrist in his book, The Big Switch:
“If all the electric water heaters in Australia were replaced with solar ones, greenhouse gas emissions from Australia’s households would be cut by one-fifth.” One fifth is one mighty big saving!

The Bottom Line… I am saving hundreds of dollars every year not paying electricity bills by powering my household appliances using the Sun. 

I totally concur re the solar water heaters. Amazingly, I have friends in Geeveston who have one, and they hardly ever boost, which is astonishing considering how everyone was telling me how poorly solar would work in Tassie.

BUT…… all those original PVs were replaced when Mobbs cut the cord and increased his array size from 2kW to 5kW…… they were only ten years old, and as Prieto pointed out recently, the early retirement/replacement of PVs and balance of system can drive the ERoEI of solar to negative territory….. I can’t find mention of what happened to the obsolete 120W panels for which it might be hard to find compatible equipment.

One last thing……  his baseload of 86W is clearly wrong if a 3.5kW array can’t drive it. Our electricity habit was run for years on just 1.28kW, and I intend to now do it in Tassie with just 2kW. I rest my case.

White man’s magic……

8 10 2016

20160418_163158Now that our power station has been commissioned, is actually powering stuff, and because it’s been an evolutionary thing over many months, I’ve decided to chronicle how our rather unique stand alone power system is built in one post, for the benefit of all mankind…. as it were!

The solar power is generated by eight 260W monocrystaline photovoltaic panels, for a 20161008_131339total of 2080 Watts. They are mounted on a custom made steel frame, installed by the first wwoofer I had working for me here… They are connected in two strings of four with each string producing 1000W at 150V DC maximum. The two pairs of wires are fed underground and through the container’s floor in that orange conduit, to the DC circuit box where two 20 Amp circuit breakers protect the system against short circuits or serious malfunctions. Each circuit breaker is dipole, and simultaneously breaks both the positive and negative circuits.


DC Circuits

From this box, the solar power is fed to the MidNite Classic Maximum Power Point Tracker. This magic black box manipulates the incoming electricity so that it is fed into the batteries at the optimum voltage/amperage combination needed to maximise the amount of energy fed into the batteries to keep them charged. I had never used one of these before, but they are well worth the $900 , because it does all sorts of other tricks, like boost charging, battery equalising, floating, and even monitors the amount of energy fed into the batteries, logging all that information where it can be accessed later…… If I decide to later add a wind turbine, I will get a second one to control its output.

The power going into the batteries (and out of them for powering things with the inverter) go through a fuse box with two 160A slow burn fuses. Batteries are capable of producing spectacular amounts of current (think big sparks and fire!) and in the unlikely event of something seriously bad happening to the batteries, these fuses will burn and save the rest of the system. The fuse box is also designed such that it can be used to disconnect the batteries from everything else in an emergency, or for maintenance. There’s one fuse for the positive cable, and one victronfor the negative……

Once charged, the energy contained within the batteries can be extracted back out (through the aforementioned fusebox) by the Victron inverter, which converts the 48V (nominal) DC from the batteries into 230V AC for powering all the things we take for granted in houses, like lights, fridges, TVs and washing machines etc……

This inverter has now had its settings altered to operate at between 64V and 37.5V. It’s because Victrons can be reprogrammed to do this that I opted for this technology, as the Nickel Iron batteries are able to work safely at an even greater voltage range. The blue digital voltmeter is something I added to the inverter to get an instant readout of the battery bank’s voltage.

Just as there is a series of safety devices on the DC side of the system, the AC sector is also wired up to protect the wiring and the people using the electricity! You will also notice the green/yellow striped earth wires to/from the MidNite Classic and the inverter, all connected to the earth in the AC switchboard, all grounded to the container itself.

acsectorBefore going into the AC circuit box, I wired in an old energy meter I have had for years to monitor how much energy we will be consuming in the house (as well as outside to pump water for the gardens etc…). I used to use it for doing energy audits, and they sure don’t make them like this anymore…!

The 230V output is split into three, with another dipole circuit breaker (one for the active and one for the neutral) taking power to where the house will be built, currently permanently switched off. Another 10A circuit breaker takes current to a power point inside the container for running the freezer and charging cordless tool batteries (so far), while a 15A breaker takes power to an external 15A all weather power point outside the container where I currently plug the new pump in (more about this in a later post).

The two power points are protected with safety switches which are now built into the circuit breakers. It’s amazing how fast technology changes/improves these days….

The battery bank consists of forty 1.2V Nickel Iron cells (to make the nominal 48V). You can read about why I selected this battery chemistry here……


Earth/Ground wire to stake


The container is earthed with a copper stake, and everything involved in this system is also earthed through the steel container, one advantage of having a steel building! The safety switches test just fine, the whole system is very safe. To vent the potentially explosive hydrogen gas that bubbles from the batteries, two whirlybird extractors were put into the container’s roof, and six vents at floor level on the western end of the container were also added. It’s where the wind usually comes from, and it will no doubt assist in keeping everything cool, even in summer….


Floor level air vents


batterybankI’m really stoked at how well it’s all working. Even on really rainy days, the solar array was able to feed 4.7kWh of energy into the battery bank, and even on the very worst day when the sky was inky black and it just poured all day long, 1.7kWh was absorbed by the batteries, almost enough to power our old house for a whole day…. The design electricity consumption for the new house is 2kWh/day, though at this stage it’s still unknown how much energy I will need to pump water for the market garden.

I’m finding adjusting to the NiFe batteries a little tricky. Unlike conventional Lead Acid batteries, these prefer to be worked hard. I’m told by people who run them that the harder you cycle them, the more capacity they build up, and the longer they last between electrolyte replacement. Because I’m (so far) only pulling 0.9kWh/day out of them with the freezer, the batteries haven’t been worked enough. So I recently turned the solar power completely off for eight or nine days, just to ‘flatten’ them. They were fully charged again within two days…. Nickel Iron batteries, unlike the other technologies sold everywhere, can be ‘flattened’ as often as you like….. you just need to always make sure there’s enough left to start the freezer again, or else lose the contents!

Now the container sports a 1000 litre IBC for gravity fed water storage….. but you’ll have to wait for the next installment.


On the Thermodynamic Black Hole…..

23 09 2016

I recently heard Dmitry Orlov speaking to Jim Kunstler regarding the Dunbar Number in which he came up with the term ‘Thermodynamic Trap’. As the ERoEI of every energy source known to humanity starts collapsing over the energy cliff, I thought it was more like a thermodynamic black hole, sucking all the energy into itself at an accelerating pace… and if you ever needed proof of this blackhole, then Alice Friedemann’s latest book, “When the trucks stop running” should do the trick.


Alice Friedemann

Chris Martenson interviewed Alice in August 2016 about the future of the trucking industry in the face of Peak Oil, especially now the giant Bakken shale oil field in the US has peaked, joining the conventional oil sources. This podcast is available for download here.trucks_stop_running

Alice sees no solutions through running trucks with alternative energy sources or fuels. I see an increasing number of stories about electric trucks, but none of them make any sense because the weight of the batteries needed to move such large vehicles, especially the long haul variety, is so great it hardly leaves space for freight.

A semi trailer hauling 40 tonnes 1000km needs 1000L of liquid fuel to achieve the task. That’s 10,000kWh of electric energy equivalent. Just going by the Tesla Wall data sheet, a 6.4kWh battery pack weighs in at 97kg. So at this rate, 10,000kWh would weigh 150 tonnes….. so even to reduce the weight of the battery bank down to the 40 tonne carrying capacity of the truck, efficiency would have to be improved four fold, and you still wouldn’t have space for freight..

There are not enough materials on the entire planet to make enough battery storage to replace oil, except for Sodium Sulfur batteries, a technology I had never heard of before. A quick Google found this…..:

The active materials in a Na/S battery are molten sulfur as the positive electrode and molten sodium as the negative. The electrodes are separated by a solid ceramic, sodium alumina, which also serves as the electrolyte. This ceramic allows only positively charged sodium-ions to pass through. During discharge electrons are stripped off the sodium metal (one negatively charged electron for every sodium atom) leading to formation of the sodium-ions that then move through the electrolyte to the positive electrode compartment. The electrons that are stripped off the sodium metal move through the circuit and then back into the battery at the positive electrode, where they are taken up by the molten sulfur to form polysulfide. The positively charged sodium-ions moving into the positive electrode compartment balance the electron charge flow. During charge this process is reversed. The battery must be kept hot (typically > 300 ºC) to facilitate the process (i.e., independent heaters are part of the battery system). In general Na/S cells are highly efficient (typically 89%).


Na/S battery technology has been demonstrated at over 190 sites in Japan. More than 270 MW of stored energy suitable for 6 hours of daily peak shaving have been installed. The largest Na/S installation is a 34-MW, 245-MWh unit for wind stabilization in Northern Japan. The demand for Na/S batteries as an effective means of stabilizing renewable energy output and providing ancillary services is expanding. U.S. utilities have deployed 9 MW for peak shaving, backup power, firming windcapacity, and other applications. Projections indicate that development of an additional 9 MW is in-progress.

I immediately see a problem with keeping batteries at over 300° in a post fossil fuel era… but there’s more….

Alice has worked out that Na/S battery storage for just one day of US electricity generation would weigh 450 million tons, cover 923 square miles (2390km², or roughly the area of the whole of the Australian Capital Territory!), and cost 41 trillion dollars….. and according to European authorities, 6 to 30 days of storage is what would be required in the real world.

The disruption to the supply lines of our ‘just in time’ world caused by trucks no longer running is too much to even think about.

Empty supermarket shelves, petrol stations with no petrol, even ATMs with no money and pubs with no beer come to mind. I remember seeing signs on the Bruce highway back in Queensland stating “Trucks keep Australia going”.  Well, oil keeps trucks running; for how much longer is the real question.


Patience is a virtue they say…..

28 05 2016

I wish I could say a whole bunch of stuff I’ve started is finished….. but I can’t. Even Matt my neighbour thinks I’ve entered a state of Zen…


Ready for action…

Having now discovered my new batteries take 3.5 litres of Potassium Hydroxide electrolyte each (140L in total – I was originally under the impression they needed 1.2L each, but apparently they’ve improved the design) and being unable to access distilled water anywhere in Tasmania in that sort of quantity, I decided to make a solar still and make my own…….. but if those results are what Tasmania has in store for me with respect to solar power, I will give up.  My still made a cupful of distilled water on one sunny day.  I now wish I had taken the advice of one of my readers and bought a reverse osmosis filter setup, but such is life.  Matt has rescued me once again, and I’m taking 40L batches of his filtered rainwater from his kitchen.  His roof’s brand new, and with Tassie having the cleanest air in the world, I figured I would take the chance, especially after a local told me he’d been doing this for years with no negative repercussions…

Mixing the electrolyte is a slow and tedious process.  You have to add the KOH flakes to the water (and definitely not the other way around…) very slowly.  I stir it with the supplied thermometer, and the liquid quickly heats up to 50 and even 60 degrees.  And if you are too cavalier with this process, the ensuing exothermic reaction can bite you in the butt and start boiling covering the operator with highly caustic stuff!  Which is why I of course wear the supplied rubber apron, heavy duty gloves, and eye protection.  Once or twice, the electrolyte started hissing at me, causing a few steps backwards to occur…… not for the faint hearted, but it’s all fine really.

Using the supplied hydrometer, the specific gravity (SG) of the electrolyte has to be monitored until it’s bang on 1.21.  Put too much KOH in, and you have to add more distilled water, which I had to do once so far.

I’ve just mixed another 40L, and I’ll wait until it cools overnight before filling the next 12 or so cells such a batch will do.  I still don’t have my 100A slow burn fuses anyway, they go in that box (a fused interrupt switch actually) with the blue vertical stripes. I’m definitely going to have to make a list of all these people I’m waiting for, before I forget who they are..!!

All the batteries are now on a custom made stand. The wiring is all but finished, needing20160528_113511 the aforementioned fuses to close the final circuit; once the batteries are full of course. Once the filling process is over, all those battery terminals get covered to make sure it’s impossible to short them.  I’m rather pleased with how it all turned out, looks quite professional……

The pile of timber in the shed has grown, but I haven’t seen the sawmillers in well over a week, I have no idea what’s happening on that front either.  There are seven logs left to mill, and one of them is too large for me to roll towards the mill on my own.

20160528_115613Last weekend, Trev the excavator operator turned up and started scraping topsoil off the base clay, stockpiling it in huge growing mounds…. and also found loads of floaters (rocks to you) which no doubt Glenda will find use for as landscaping material once the house is built.  The machine had only been going for one hour when its bottom radiator hose burst, silencing it for good.  Trev was back today, but must have had the wrong part…. all 12cm of it.  It’s still sitting exactly where it stopped a week ago. Such is life…. all good things come to those who wait.  But a bit more action would be nice…..

Earlier this week, mother nature turned on an amazing frosty show…. coldest morning I’ve seen here yet, -1.5C in the shed, making it hard to get out of bed…..  but out of bed I did get, the sunrise alone was worth putting on four layers and breaking out the down jacket!


View “from the bedroom”


Across the road

How “Green” is Lithium?

17 04 2016

Originally published on the KITCO website in 2014….. interesting how this makes no mention of NiFe batteries, they are simply ‘under the radar’……


The market for battery electric and hybrid vehicles is growing slowly but steadily – from 0.4% in 2012 to 0.6% in 2013 and 0.7% in 2014 (year-to-date) in the United States alone.

Consumers buy these vehicles despite lower gas prices out of a growing conscience and concern for the environment. With this strong attraction to alternative energy, grows the demand for lithium, which is predominantly mined and imported from countries like Bolivia, Chile, China and Argentina.

Within the U.S., only Nevada, future home of Tesla’s new “Gigafactory” for batteries, produces lithium. However, the overall ecological impact of lithium ion batteries remains somewhat unclear, as does the “well-to-wheel” effort and cost to recharge such batteries.

To fully grasp the relevance and environmental impact of lithium it is important to note that lithium ion batteries are also found in most mobile phones, laptop computers, wearable electronics and almost anything else powered by rechargeable batteries.

Dozens of reports are available on the ecological impact of lithium mining. Unfortunately, many of them are influenced by the perspective of the organizations or authors releasing them. Reducing the available information to studies carried out by government bodies and research institutes around the world, a picture emerges nonetheless:

  • Elemental lithium is flammable and very reactive. In nature, lithium occurs in compounded forms such as lithium carbonate requiring chemical processing to be made usable.
  • Lithium is typically found in salt flats in areas where water is scarce. The mining process of lithium uses large amounts of water. Therefore, on top of water contamination as a result of its use, depletion or transportation costs are issues to be dealt with. Depletion results in less available water for local populations, flora and fauna.
  • Toxic chemicals are used for leaching purposes, chemicals requiring waste treatment. There are widespread concerns of improper handling and spills, like in other mining operations around the world.
  • The recovery rate of lithium ion batteries, even in first world countries, is in the single digit percent range. Most batteries end up in landfill.
  • In a 2013 report, the U.S. Environmental Protection Agency (EPA) points out that nickel and cobalt, both also used in the production of lithium ion batteries, represent significant additional environmental risks.

A 2012 study titled “Science for Environment Policy” published by the European Union compares lithium ion batteries to other types of batteries available (lead-acid, nickel-cadmium, nickel-metal-hydride and sodium sulphur). It concludes that lithium ion batteries have the largest impact on metal depletion, suggesting that recycling is complicated. Lithium ion batteries are also, together with nickel-metal-hydride batteries, the most energy consuming technologies using the equivalent of 1.6kg of oil per kg of battery produced. They also ranked the worst in greenhouse gas emissions with up to 12.5kg of CO2 equivalent emitted per kg of battery. The authors do point out that “…for a full understanding of life cycle impacts, further aspects of battery use need to be considered, such as length of usage, performance at different temperatures, and ability to discharge quickly.”

Technology will of course improve, lithium supplies will be sufficient for the foreseeable future, and recycling rates will climb. Other issues like the migration of aging cars and electronic devices to countries with less developed infrastructures will, however, remain. As will the reality of lithium mining and processing. It is therefore conceivable that new battery technologies (sea water batteries or the nano-flowcell, for instance) will gain more importance in years to come, as will hydrogen fuel cells.

We will report about the pros and cons of each of these alternatives in future issues of Tech Metals Insider.

Bodo Albrecht,

Why I chose Nickel Iron Batteries……

13 03 2016

When I first started spruiking the long life capability of Nickel Iron batteries, I quoted an internet source that claimed these had actually lasted 100 years and were still going. Such claims are of course difficult to check, but then, out of the blue, this paper written by Peter J. DeMar from Battery Research and Testing Inc, Oswego, NY, USA turned up on my FaceBook page…..  never belittle FB for anything, it’s how you use it that matters, not how other people do…!

I put the above link to that paper on my last NiFe battery post, but then thought this was so significant, it needed airing properly here.

This all but forgotten technology has a very important place to occupy with users that desire very long life and the ability to suffer abuse in their battery systems, especially in a post collapse world where buying replacement batteries will be nigh impossible.

My son the scientist was so impressed with this, and as he will be in charge of looking after this system after I’m long gone, he googled how to make the Potassium Hydroxide electrolyte, and contacted me to say it was a piece of cake, and, that apple wood is among the best to make lye!

Read on…….


This paper is going to look at real life aged 80+ year old Nickel-Iron cells that are still functional and will explain the simple recovery techniques that were documented in an original Edison Alkaline Storage Battery brochure from the 1920’s. Some of the cells had been charged intermittently, many had sat off charge for many years, and some had sat off charge and all but empty, but all made very substantial recoveries, and when subjected to discharge testing that followed the guidelines of the IEEE 1115 they all were able to pass load tests at their applicable rate.
The aim of this paper is to introduce this very old battery technology, which is over 100 years old, to those that have no idea that such a battery exists, or ever did exist. The majority of us are most familiar with various forms of lead acid, or nickel-cadmium as they were and still are the batteries of choice for most stationary applications, with Lithium Ion (in various forms) and other technologies gaining acceptance in many stationary applications. The cells that are reported on in this paper are real life aged
cells with an average age of 85 years, and the conditions that they were operated in and stored in were less than ideal. They spent the last approximately 60 years in a wooden shed, at a hunting lodge in the Adirondack Mountains, with temperatures from below -18C to above 32C. They were charged intermittently and often sat in a partial or full discharged state for weeks or months or years, at a time. Their function was to provide lighting to the lodge.

Waldemar Jungner of Sweden created the first Nickel-Iron battery in the late 1890’s and has multiple patents on the design. However he found that by substituting Cadmium
instead of Iron that he could improve the performance and efficiency of the cells, and he abandoned the development of the Nickel-Iron cell in favor of Nickel-Cadmium. There are
two patents for the Ni-Fe technology and one for the Ni-Cd technology in his name from 1899.

Thomas Edison believed that Ni-Fe could displace lead acid as the battery of choice and in 1901 obtained both a US and a European patent for his version of the technology. Edison
performed some very extensive testing on his cell designs to verify their hardiness for usage in RR applications, or electric automobiles (which he thought would replace internal
combustion engines), or material handling (tuggers and such). Two of my favorite tests that he created to demonstrate the durability of his Ni-Fe batteries are as follows.
He mounted a battery system on a cart and then the cart was rammed into a brick wall at 15 MPH and the battery had to survive 1,000 such shocks, which it did. My favorite test
though was where he hooked a cell to a motor driven pendulum and the device raised the cell 1⁄2” and dropped the cell onto a wooden platform. The cell survived 1, 776,000 such drops and then following that it passed a load test. (1) The Thomas Edison battery factory in West Orange New Jersey USA produced cells from 1903 to 1972 when it was sold to the Exide Battery Company (name at that time), which continued production until 1975 when the factory was closed.

Presently there are two companies that are still manufacturing Ni-Fe cells and they are Kursk Accumulator in Russia, and ChangHong Battery in China. It is our belief that this very old technology still has a place in the current market, where the user has a need for a very long life battery that can stand frequent cycling and abusive conditions. In America these are being offered for usage in the off grid market due to their long life and ability to withstand the daily repeated cycling, and setting in a partial state of  discharge for extended periods.

It has been stated that Thomas Edison boasted of a 100 year battery with his Nickel-Iron design, but I have not been able to successfully locate those exact words. Now that sounds like a pretty bold marketing statement, sort of like the original marketing words “Maintenance Free” when referring to VRLA cells. However our experience in testing these old Nickel Iron cells convinced us that it may not have been just boldness or
marketing on his part.

picture2As can be seen in the following picture of the three different cell sizes the two on the left are the A4H and the A8H, and the one on the right is an A8 cell. With our gaining access to a substantial number of Thomas Edison Alkaline cells in two different amp hour sizes (150 and 300AH) at the five hour rate, we had an opportunity to find out if there was any validity in a 100 year life statement. Our first task was to locate documentation on these cells, and we turned to the Internet to locate manuals, documents, specifications, etc (1,2). While locating different manuals was easy enough, we could not determine the serial number code that was stamped into the top of each cell, so we did not know the age of any of the cells. Luckily we finally reached out to Ole Vigerstol of Saft who contacted their Railroad Group people, who then provided us with the original Edison Date codes. And yes we did have cells that were all built between 1924 and 1931.

We also utilized installation and maintenance manuals from both Saft (3) and ChangHong (5) as guides or comparison purposes, to see if there were any major differences in their
instructions from the Edison manuals. While there were some differences none of the differences were of any great concern. When we received the cells they were in various conditions of charge, or fill, or just plain cleanliness. It must be understood the majority of these cells had been setting off charge in various states for many years.

picture1This shows the general condition of some of the cells as we received them. These originally were coated with a rubber like paint compound which was named Esbalite which is described in the Edison manuals as a special insulating paint. This coating covered the sides and the bottom, but none was on the top of any cell. However during the cleaning process of the cells, the
coating came off and we have not yet determined what we will use as a coating, so for our experiments we used wood spacers to maintain separation between the cells.picture3

The following picture shows the carbonate build up that we found in some of the cells, which of course has a severe impact on the cells performance.

We randomly took cells of the same AH rating and made up different battery strings, and in some cases we took single cells and with each we boost charged and then float charged at the voltages that were stated in a 1916 Thomas Edison manual and then followed up with load testing at the full published five hour rate. All of the cells or battery strings failed miserably.Our as found individual cell voltages ranged from 0.06 of a volt to 1.36 volts. We attributed this wide of a voltage spread to the fact that some cells had been on charge just prior to our receiving them and some had been off charge for months or
years. Some were filled with electrolyte and some were empty or nearly so. manufactures
Nickel-Cadmium cells, ChangHong manufacturers both Nickel-Cadmium and Nickel-Iron, and of course the Edison cells are all Nickel-Iron. The common denominators are the Nickel and the Potassium Hydroxide electrolyte. We decided to follow Edison’s procedure since the cells were Edison cells.

The following is from one string of A8 cells and is an example of the age of the cells, and the as found open circuit voltages. As can be seen in this battery the age of the cells range from 1926 to 1930 with a voltage spread from 0.005 to 1.356. It is easy to see which cells have been sitting around the longest and which ones were recently on charge. After the electrolyte replacement we placed the cells back on float and then boost charged at 1.65 VPC followed by a return to float at 1.49 volts per cell and then further load tests.

The following shows the same cells as the previous chart, but with the respective float voltages following 100 hours of boost charging, and then being on float charge for about six weeks.

While experimenting with these cells we realized that even though the voltage would rapidly drop off in a matter of minutes when we tried to run a load test at the full published rate of the particular cell or battery, that if we lowered the discharge rate, the battery would hold voltage for a substantially longer amount of time, even though the best string would only support a 10 amp load for 22 minutes to an end voltage of 12.0 volts.

Throughout our testing we followed the instructions in the Edison manuals, and following those instructions we decided to replace the electrolyte. We obtained new electrolyte from
Saft as they are a major supplier of Nickel-Cadmium batteries and the Potassium Hydroxide that they use is the same as what is utilized in the Nickel-Iron batteries. Both Saft and ChangHong also provide instructions that explain that when the capacity drops off and boost charging does not return desirable results, that the electrolyte needs to be replaced.

A discrepancy that we discovered between the three manufacturers (Edison, Saft, and ChangHong) is that during the electrolyte replacement procedures, Edison states to pour out about half of the old electrolyte then to shake the cell vigorously and then to pour out the remaining electrolyte, but to not rinse with any water, and then to fill with new
electrolyte. Changhong says to pour out the old electrolyte and to shake it, and if the electrolyte is dirty in color to rinse it with distilled water two or three times, and then to fill with new electrolyte. Saft says to carefully pour out the old electrolyte and then to fill with new. This was the only real difference that we found between the three manufacturers. Of course Saft manufactures Nickel-Cadmium cells, ChangHong
manufactures both Nickel-Cadmium and Nickel-Iron, and of course the Edison cells are all Nickel-Iron. The common denominators are the Nickel and the Potassium Hydroxide
electrolyte. We decided to follow Edison’s procedure since the cells were Edison cells.








There were three different model cells that we had received and played with. There were models A4H, A8, and A8H cells. The H in any model just means that the cell is the same AH rating but it has more electrolyte reservoir and is approximately 7.6 Centimeters taller than the cells that do not have the H in their model number. The H designated cells were to be used in applications where there longer time periods between maintenance intervals.
With the three battery strings that we are reporting on here, we utilized the five hour rating from the Edison manual, and we used the end voltage of 1.0 VPC, also from the Edison manual.

The published rate for the A4H cells is 30 amps for five hours to an end voltage of 1.0 volt.
The published rate for the A8 and A8H cells is 60 amps for  five hours to 1.0 volt.

We are trying to learn if the Edison Alkaline cells that we had would indeed function at their advanced ages. But there is no existing standard to follow as a guide, so we decided to
utilize the IEEE 1106 (4) since it is for Nickel-Cadmium cells and the only primary difference between the two types is the Cadmium content in place of the Iron, otherwise they are Nickel and Potassium hydroxide.With our main goal being to determine if these cells or batteries would work reliably at their extended ages, and not to prove a specific capacity we decided to utilize the 1% per year aging factor from annex E of the IEEE 1106 .
With cell ages ranging from 80 to 87 years of age and an average of 85 years we decided to be conservative and used an aging factor of 0.2 which would reflect a 1% per year de-rating
factor for an 80 year old cell. With that decision made we made we settled on the following discharge rates. As you will notice we used the same five hour rate for the two different
models, even though one was a 150 AH model and two were 300 AH models. We do not yet understand why the A4H cells performed so much better than the A8 and A8H cells. We are suspecting that it was due to the fact that the A4H string had many more discharge/recharge sequences than either of the other strings, but only time will tell if the A8 and A8H strings continue to improve over time and cycling.
A8 and A8H cells used a 15 amp rate to 1.0 VPC

The following charts show the load test results at various times over the past approximately twelve months on all three of the strings. All of the load tests were run at the five hour rates to 1.0 VPC. As can be seen, the load tests that were run before we replaced the electrolyte were somewhat dismal, however as you will see in the load tests that were run after the electrolyte had been replaced were substantially improved, and then by the last load tests which were all performed in July 2011 there was further improvement.
Run time in minutes of the A4H string at 15 amp load A4H cells used a 15 amp rate to 1.0 VPC, where as if we used a 0.2 aging factor the rate would have been 6 amps. We made up one twelve cell string from the A8 cells, another twelve cell string from the A8H cells and an 18 cell string from the A4H cells. Each was placed upon its own charger. We utilized a varying range of float voltages at different times as part of this experiment. Primarily we kept the voltage between 1.47 and 1.5 but did sometimes go up to 1.57 volts per cell and 1.65 up to 1.85 when we equalized or boost charged. These voltages came out of the Edison manual and the float voltage corresponds to that recommended by both ChangHong and by Saft.
Chart 1. This chart shows the increase in run time with this battery with a 15
amp load.
As can be seen in the following charts, with each battery string there was some amount of run time under load but it was not until we replaced the electrolyte and then ran a number of discharge and recharge scenarios that the run time really returned. While we could not get any strings to recover to a level where they could support their full published rates, it was encouraging that they could support an age related reduced discharge rate for a full five hours. In each chart the left hand column is the original as found run time, with boost and float charging but no electrolyte replacements.

The middle column is after electrolyte replacement and boost charging and from float voltage. The green line is after some number of discharges and boost charges and also is from a float condition. Run time in minutes of the A8 string at 15 amp load
Chart 2. This chart shows the increase in run time with this battery with a 15 amp load.
Chart 3 is the string that is made up of the A8H cells.That these 80+ year old cells are still functional proves without any doubt that Nickel-Iron is a long lived design, now it will just take another 15 years to see if they will still be functioning at 100 years of age as Thomas Edison is supposed  to have declared.

This find of these old Thomas Edison Nickel-Iron cells has been quite an education for us at Battery Research and Testing, as our work for the past 29 years has been primarily
with lead acid and some Nickel-Cadmium, but with nothing of the age of these cells. In fact the oldest lead acid cells that we have load tested and that were still functional were old Exide Manchex strings that were 42 years old, and it appears that the only existing lead acid cells that might be able to be functional at 40 years of age are the Bell developed round cells for Telecom applications.

What we have learned has opened up our minds to explore possibilities for this design long life design cell. It would sure seem that any site that has a requirement for a long life battery that will tolerate abusive conditions would consider the total life costs of these type cells and see which works out to be the most cost effective.

I have approached the IEEE Battery Working Group to have Nickel-Iron included in the IEEE 1106 and IEEE 1115 documents during the recent re-affirmation process, but it was
decided to not include Nickel-Iron in those documents at this time. It would seem that since the IEEE 450 and IEEE 485 documents cover all of the different Vented Lead Acid designs such as Lead Antimony, Lead Selenium, Plante, or Lead Calcium which all use sulfuric Acid, that the IEEE 1106 and IEEE 1115 which covers Nickel-Cadmium cells which also uses Potassium Hydroxide as the electrolyte could easily have been expanded to include the Nickel-Iron cells.

I would like to extend a special thank you to Weston Mitchell of the Fayetteville Hunting Club for providing us a chance to learn about Nickel-Iron cells and these specific pieces of the Thomas Edison history. If it had not been for his environmental consciousness, we would not have our eyes opened to this very durable battery technology that is all but
forgotten here in the US. Also thanks need to go to Bob Howland and Jim Miner of Battery Research for their  assistance and technicians time to perform the various assembly of the strings and testing. And last but not least, thanks to Ole Vigerstol and Jim McDowall from Saft for their assistance and comments, as well as to Sam Zhow from Sichuan Changhong Battery Company for his support.

1. General Information and Instructions for the Operation and Care of the Edison Alkaline Storage Battery. Edison Publication Bulletin 850X.
2. The Edison Alkaline Storage Battery. By the technical staff of the Edison Storage Battery Company. For the National Education Association Joint-Committee Series Monograph
III. Document 804. Copyright 1916. From the University of Michigan Libraries. Digitized by Google.
3. Saft Installation and operating instructions for single cell Ni-Cd, models SCL, SCM, and SCH plastic case cells.
4. IEEE Std. 1106. IEEE Recommended Practice for Installation, Maintenance, Testing, and Replacement of Nickel-Cadmium Batteries for Stationary Applications.
5. ChangHong Battery Performance Data Manual. ChangHong Battery Operation and Maintenance Manual.