February’s global temperature spike is a wake-up call

17 03 2016

Steve Sherwood, UNSW Australia and Stefan Rahmstorf, Potsdam Institute for Climate Impact Research

Global temperatures for February showed a disturbing and unprecedented upward spike. It was 1.35℃ warmer than the average February during the usual baseline period of 1951-1980, according to NASA data.

This is the largest warm anomaly of any month since records began in 1880. It far exceeds the records set in 2014 and again in 2015 (the first year when the 1℃ mark was breached).

In the same month, Arctic sea ice cover reached its lowest February value ever recorded. And last year carbon dioxide concentration in our atmosphere increased by more than 3 parts per million, another record.

What is going on? Are we facing a climate emergency?

February temperatures from 1880 to 2016 from NASA GISS data. Values are deviations from the base period of 1951-1980.
Stefan Rahmstorf

El Niño plus climate change

Two things are combining to produce the record warmth: the well-known global warming trend caused by our greenhouse gas emissions, and an El Niño in the tropical Pacific.

The record shows that global surface warming has always been overlaid by natural climate variability. The biggest single cause of this variability is the natural cycle between El Niño and La Niña conditions. The El Niño in 1998 was a record-breaker, but now we have one that looks even bigger by some measures.

The pattern of warmth in February shows typical signatures of both long-term global warming and El Niño. The latter is very evident in the tropics.

Further north, the pattern looks similar to other Februaries since the year 2000: particularly strong warming in the Arctic, Alaska, Canada and the northern Eurasian continent. Another notable feature is a cold blob in the northern Atlantic, which has been attributed to a slowdown in the Gulf Stream.

The February warming spike brought us at least 1.6℃ above pre-industrial global average temperatures. This means that, for the first time, we have passed the 1.5℃ international aspirational goal agreed in December in Paris. We are coming uncomfortably close to 2℃.

Fortunately, this is temporary: the El Niño is beginning to subside.

Emissions still increasing

Unfortunately, we have done little about the underlying warming. If unchecked, this will cause these breaches to happen more and more often, with a greater than 2℃ breach perhaps only a couple of decades away.

The greenhouse gases slowly heating the Earth are still increasing in concentration. The 12-month average surpassed 400 parts per million roughly a year ago – the highest level for at least a million years. The average rose even faster in 2015 than previous years (probably also due to the El Niño, as this tends to bring drought to many parts of the globe, meaning less carbon is stored in plant growth).

A glimmer of hope is that our carbon dioxide emissions from fossil fuels have, for the first time in decades, stopped increasing. This trend has been evident over the past couple of years, mainly due to a decline of coal use in China, which recently announced the closure of around 1,000 coal mines.

Have we underestimated global warming?

Does the “spike” change our understanding of global warming? In thinking about climate change, it is important to take the long view. A predominant La Niña-like situation over recent years did not mean global warming had “stopped” as a few public figures were (and probably still are) claiming.

Likewise, a hot spike due to a major El Niño event – even though it is surprisingly hot – doesn’t mean global warming was underestimated. In the longer run the global warming trend agrees very well with longstanding predictions. But these predictions nevertheless paint a picture of a very warm future if emissions are not brought down soon.

The situation is similar to that of a serious illness like cancer: the patient usually does not get slightly worse each day, but has weeks when the family thinks he may be recovering, followed by terrible days of relapse. The doctors do not change their diagnosis each time this happens, because they know this is all a part of the disease.

Although the current El-Niño-driven spike is temporary, it will last long enough to have some severe consequences. For example, a massive coral bleaching event now appears likely on the Great Barrier Reef.

Here in Australia we have been breaking heat records in the past few months, including 39 straight days in Sydney above 26℃ (double the previous record). News reports seem to be focusing on the role of El Niño, but El Niño does not explain why oceans to the south of Australia, and in the Arctic, are at record high temperatures.

The other half of the story is global warming. This is boosting each successive El Niño, along with all its other effects on ice sheets and sea level, the global ecosystem and extreme weather events.

This is the true climate emergency: it is getting more difficult with each passing year for humanity to prevent temperatures from rising above 2℃. February should remind us how pressing the situation is.

The Conversation

Steve Sherwood, Director and ARC Laureate Fellow, Climate Change Research Centre, UNSW Australia and Stefan Rahmstorf, Professor of Physics of the Oceans, Potsdam Institute for Climate Impact Research

This article was originally published on The Conversation. Read the original article.





A Monster 2016 Arctic Melt Season May Have Already Begun

23 02 2016

I know, it’s too early to tell what the next Northern Summer will do to the Arctic, but could this year be the one we see with an ice free North Passage?  If it happens, then I for one would call it a tipping point……. lifted from Robert Scribbler’s website.

We have never seen heat like this before in the Arctic. Words whose meaning tends to blur due to the fact that, these days, such events keep happening over and over and over again.

Ever since at least the 1920s, the Arctic has been warming up due to a destructive and irresponsible human greenhouse gas emission. And, over recent years, the Arctic has been warming more and more rapidly as those dangerous emissions continued to build on into the 21st Century. Now the Earth has been shoved by those emissions into realms far outside her typical Holocene context. And it appears that the Winter of 2016, for the Arctic, has been the hottest such year during any period of human-based record-keeping and probably the hottest season the Arctic has experienced in at least 150,000 years.

Extreme Arctic heat February 22

(Climate Reanalyzer hits a stunning 7.06 C above the already hotter than normal 1979 to 2000 baseline for the entire region above the 66 North Latitude Line on February 22nd of 2016. It’s a very extreme temperature departure — one this particular analyst has never seen before in this record. For reference, a 3 C above baseline temperature departure for this region would be considered extraordinarily warm. What we see now is freakish, outlandish, odd, disturbing. Image source:Climate Reanalyzer.)

It’s just the most recent marker on a path toward an ever-worsening polar heat that is becoming all-the-more difficult to ignore or deny. For at current greenhouse gas levels, that polar zone is hurtling toward temperatures not seen in 15 million years. A heat pressure that will push for warming not seen in 20, 30, 50 million years or more, if a nightmarish fossil fuel burning continues.

Nothing in the recent geological past can compare to the danger we are now in the process of bringing to bear upon our world. Not the Great Flood. Not the end of the last ice age. Those were comfortable, normal cataclysms. Human beings and life on this world survived them. But the kind of geophysical changes we — meaning those of us who are forcing the rest of us to keep burning fossil fuels — are inflicting upon the Earth is something entirely new. Something far, far more deadly.

Extreme Arctic Heat Ramps Up Yet Again

At the start of 2016, we find ourselves experiencing a year during which our world is steepening its ramp-up toward this kind of catastrophic global heat. During January of 2016, the Arctic experienced its most extreme temperature departures ever recorded. February, it appears, was at least as bad. Today, daily temperature departures for the Arctic in the Climate Reanalyzer measure were a stunning +7.06 above an already hot 1979-to-2000 baseline (see graphic above).

To put this in perspective, a region larger than 30 million square kilometers or representing fully 6 percent of the Earth’s surface was more than 7 degrees Celsius hotter than average today. That’s an area more than three times larger than the United States including Alaska and Hawaii. A region of the world that includes a vast majority of the remaining frozen Northern Hemisphere land and sea ice. And since an extreme heatwave is typically defined as temperature departures at about 3 C above normal for an extended period of time over a large region — the Arctic appears to be experiencing some ridiculously unseasonable temperatures for this time of year.

80 North Temperature departures February 22 NOAA

(A seemingly unstoppable period of record warmth continues for the High Arctic on February 22nd. Readings for this zone have consistently remained in the warmest 15 percent of readings on up to record warmest readings for each day since January 1, 2016. Image source: NOAA.)

Above the 80 North Latitude line, departures were even more extreme — hitting about 13 C or about 23 F warmer than normal for the entire High Arctic surrounding the North Pole today (see above graphic). Temperatures that are more typical for late April or early May as we enter a time of year when this region of the Arctic is usually experiencing its coldest readings and sea ice extents would normally continue to build.

Unfortunately, today’s extreme heat was just an extension of amazing above average Arctic temperatures experienced there since late December. So what we are seeing is consistently severe Arctic warmth during a season that should be Winter, but that has taken on a character more similar to a typical Arctic Spring. Warmth that is now enough to have already propelled the Arctic into its warmest ever yearly temperatures when considering a count of below freezing degree days.

Arctic Degree Days Below Freezing Anomaly

(Degree Days below Freezing [or Freezing Degree Days, FDD] shows a 670 FDD departure below that seen during a typical year. If the current trend continues, the Arctic may see degree days below freezing lag by between 900 and 1,500 — knocking off about 15 to 25 percent of below freezing days from a typical Arctic year. Note that the departure line steepens rapidly after the first major warm wind event hits the Arctic during late December of 2015 — driving temperatures above freezing at the North Pole for the first time ever so late in the year. Image source: NOAA.)

Freezing degree-days (FDD) or thawing degree-days (TDD) are defined as departures of air temperature from 0 degrees Celsius. The less FDDs during an annual period, the warmer the Arctic has become. Under the current trend, the Arctic is now on track to hit between 15 and 25 percent less FDDs than it experiences during a typical year in 2016.

Looking at the above graph, what we see is an ongoing period in which Winter cold has been hollowed out by a series of warm air invasions rising up from the south. These warm wind events have tended to flow up through weaknesses in the Jet Stream that have recently begun to form over the warming Ocean zones of the Bering, Northeast Pacific, Barents, and Greenland seas. Still more recently, warm wind events have also propagated northward over Baffin Bay and Western Greenland — even shoving warm air into the ocean outlets of a typically frozen Hudson Bay.

Perhaps more starkly, we find a steepening in the rate of Freezing Degree Day loss following the freakish series of storms that drove the North Pole above Freezing during late December of 2015 —the latest during any year on record that the North Pole has experienced temperatures exceeding 0 C.

Arctic Sea Ice Declining Since February 9th

Overall, a rapid heat uptake by the world ocean system appears to be the primary current driver of extreme Arctic warming. Atmospheric heat from greenhouse gas warming swiftly transfers through the ocean surface and on into the depths. During recent decades, the world ocean system has taken in heat at a rate equal to the thermal output of between 4 and 5 Hiroshima-type bombs every second(with some individual years hitting a much higher rate of heat uptake).

Since thousands of meters of warming water insulates better than the land surface and diaphanous atmosphere, this added heat is distributed more evenly across the globe in the world ocean system. As such, ocean warming is a very efficient means of transferring heat to the Northern Hemisphere Pole in particular. The reason is that the Pole itself sits atop the warming and globally inter-connected Arctic Ocean. In addition, the warming surface waters, as noted above, provide pathways for warm, moist air invasions of the Arctic — especially during Winter.

For 2016, these kinds of heat transfers not only resulted in an extreme warming of airs over the Arctic, they have also shoved the Arctic sea ice into never-before-seen record lows for area and extent.

chart

(NSIDC shows Arctic sea ice entering a new record low extent range from February 2 through February 21 of 2016. A peak on February 9 and decline since concordant with record warmth building throughout the Arctic begs the question — did the sea ice melt season start on February 9th? Possible — but too early to call for now. Image source: NSIDC.)

Off and on throughout January, but more consistently since early February of 2016, Arctic sea ice has continued to hit new daily record lows. For Arctic sea ice extent, the record lows entered a streak that has now been unbroken since February 2nd. By the 21st, extent measures had hit 14.165 million square kilometers in the National Snow and Ice Data Center measure. That’s about 200,000 square kilometers below the previous record low extent value for the date set during 2006.

Perhaps more ominously, the current measure appears to have fallen off by about 50,000 square kilometers from a peak set on February 9th. And with such extreme heat driving into the Arctic over recent days, it appears that this departure gap could widen somewhat over the coming week.

Overall, radiation balance conditions for the Arctic are starting to change as well. The long polar night in the Arctic is beginning to recede. Sunlight is beginning to fall at very low angles over the sea ice, providing it with another nudge toward melting. Finally, the greatly withdrawn ice has uncovered more dark ocean surfaces that will, in turn, absorb more sunlight as the Arctic Winter proceeds on toward Spring.

With sea ice declining slightly since February 9, with record warmth already in place in the Arctic, and with the sun slowly beginning to provide its own melt pressure, it appears risks are high that we see a record early start to Arctic melt season. Seven day forecasts do show high Arctic temperature departures receding a bit from today’s peak at around 6-7 C above average to between 4 and 5 C above average by the start of next week. But heat at the ice edge in the Bering, Barents, Greenland Sea and Baffin Bay are all likely to continue to apply strong pressure on sea ice extent and area totals. In addition, recent fracturing within the Beaufort has generated a number of low albedo zones that will face a wave of unseasonable warmth riding up over Alaska during the coming days which will tend to slow rates of refreeze even as Western Alaska’s waters feel the heat pressure of off and on above freezing temperatures.

So it appears we may have already begun, in early February a melt season that will last through mid-to-late September. It’s too early to make the call conclusively, but the Arctic heat and melt trends necessary to set up just such an ominous event do appear to be in place at this time. In other words, “all the devils are here…”

 

Links:

Climate Reanalyzer

No Winter For the Arctic

The Keeling Curve

The Arctic Sea Ice Blog

NOAA: Mean 2 Meter Temperatures North of 80 North Latitude

NOAA: Frequently Asked Questions About the Arctic

Grasping at Uncorrected Straws

The Oceans Warmed by a Rate of 12 Hiroshima Bombs per Second in 2013

The Polar Science Center

Trends in CO2 Emissions

Warm Arctic Storm to Unfreeze the North Pole

Congress Members Call for Investigation of Shell over Climate Change Lies

Could Lawsuit Against Exxon Mobile Force Fossil Fuel Industry to Pay for Lies about Climate Change?

William Shakespeare Quotes

NSIDC

Hat Tip to Planet in Distress





Warm Arctic Storm To Hurl Hurricane Force Winds at UK and Iceland, Push Temps to 22 Degrees C Above Normal at North Pole

28 12 2015

Reblogged from Robert Scribbler….

We’ve probably never seen weather like what’s being predicted for a vast region stretching from the North Atlantic to the North Pole and on into the broader Arctic this coming week. But it’s all in the forecast — an Icelandic low that’s stronger than most hurricanes featuring a wind field stretching over hundreds and hundreds of miles. One that taps warm tropical air and hurls it all the way to the North Pole and beyond during Winter time. And it all just reeks of a human-forced warming of the Earth’s climate…

Freak North Atlantic Storm Featuring Extremely Low Pressures

Today, a powerful, hurricane force low pressure system is in the process of rounding the southern tip of Greenland. This burly 960 mb beast roared out of an increasingly unstable Baffin Bay on Christmas. As it rounded Greenland and entered the North Atlantic, it pulled behind it a thousand-mile-wide gale force wind field even as it lashed the tip of Greenland with Hurricane force gusts. To its east, the storm now links with three other lows. Lows that are, even now, drawing south-to-north winds up from a region just west of Gibraltar, on past the UK, up beyond Iceland, over Svalbard, and into the Arctic Ocean itself.

image

(GFS forecasts predict a storm bombing out between 920 and 930 mb over Iceland by Wednesday. It’s a storm that could rival some of the strongest such systems ever recorded for the North Atlantic. But this storm’s influence is unique in its potential to shove an unprecedented amount of warm air into the Arctic. A warm storm for the Arctic Winter time. Image source: Earth Nullschool.)

Over the next few days these three lows are predicted to combine into a storm the likes of which the far North Atlantic rarely ever sees. This storm is expected to center over Iceland. But it will have far-reaching impacts ranging from the UK and on north to the pole itself. As the lows combine, GFS predicts them to bomb out into an unprecedentedly deep low featuring 920 to 930 mb (and possibly lower) minimum central pressures by this coming Wednesday. These pressures are comparable to the very extreme storm systems that raged through the North Atlantic during the Winter of 2013. Systems that featured minimum pressures in the range of 928 to 930 mb.

It’s worth noting that the lowest pressure ever recorded for the North Atlantic occurred in the much further southward forming Hurricane Wilma at 882 mb. In the far north, a January 11 1993 storm between Iceland and Scotland featured 913-915 mb pressures. It’s worth noting that the GFS model currently puts the predicted storm within striking distance of setting a new record for the far north.Meanwhile, ECMWF models predict a somewhat less extreme low in the range of 940 mb. By comparison, Hurricane Sandy bottomed out at around 940 mb as well.

Regardless of peak strength, the expected storm is predicted to be both very intense and wide-ranging as both model forecasts feature numerous lows linked in chain with a much deeper storm center near Iceland. Among these and further north, two more strong lows in the range of 965 to 975 mb will round out this daisy chain of what is now shaping up to be a truly extreme storm system. The Icelandic coast and near off-shore regions are expected to see heavy precipitation hurled over the island by 90 to 100 mile per hour or stronger winds raging out of 35-40 foot seas. Meanwhile, the UK will find itself in the grips of an extraordinarily strong southerly gale running over the backs of 30 foot swells.

Warm Winds to Force Above Freezing Temperatures For the North Pole

image

(By early Wednesday, temperatures at the North Pole are expected to exceed 1 degree Celsius readings. Such temperatures are in the range of more than 40 degrees Celsius (72 degrees Fahrenheit) above average. Image source: Earth Nullschool.)

All along the eastern side of this storm, powerful warm winds are expected to funnel northward. Originating along the 35 degree North Latitude line west of Spain, these winds will force a train of warm air and moisture pole-ward ahead of our storm. The winds will rush up over a very riled North Sea, they will howl into a far warmer than normal Barents, and they will roar on past Svalbard — finally turning as they pass beyond the North Pole.

These winds will bring with them extraordinarily warm temperatures for the High Arctic region during Winter time. By Wednesday, the North Pole is expected to see temperatures in the range of 1-2 degrees Celsius or 41-42 degrees C above average (73-75 degrees Fahrenheit above the normal daily temperature of -40 F for a typical Winter day). Such an extreme departure would be like seeing a 120 degree (Fahrenheit) December day in my hometown of Gaithersburg, MD. Needless to say, a 1-2 C reading at the North Pole during late December is about as odd as witnessing Hell freezing over. But, in this case, the latest wave of warmth issuing from a human-driven shift toward climatological hell appears to be on schedule to arrive at the North Pole in just a few more days.

Arctic temp anomaly +4 C

(The Arctic region as a whole is expected to experience a [frankly quite insane] temperature anomaly in the range of 4 degrees Celsius above average by January 3rd of 2016. Note the broad regions over Northern Canada, Siberia, and the Arctic Ocean that are predicted to experience temperatures in the range of 20 degrees Celsius above the already hotter than normal 1979 to 2000 baseline readings. For some areas — particularly in Northern Canada — this will mean near or even above freezing temperatures for tundra and permafrost zones in the depths of Winter. A set of conditions that has serious implications for permafrost thaw and related carbon store feedbacks. Image source: Climate Reanalyzer.)

New Freakish Weather Patterns Concordant With Human-Forced Climate Change

The deep, northward-driving synoptic pattern associated with both powerful high Latitude storms and warm winds is only something we’ve begun to see during recent years. The warming polar environment itself generates weaknesses in the Jet Stream which tends to allow these warm air invasions. In addition the warming oceans — which hold heat for longer than land masses — generate pathways for warm air invasions of the Arctic during Winter time. The Barents Sea, for example, has been particularly warm during recent years which has resulted in numerous warm wind invasion events issuing northward over Svalbard and regions eastward during recent years.

A final ingredient to this highly altered weather pattern appears to be a cooling of the sea surface in the North Atlantic just south of Greenland. This cooling has been set off by an increase in fresh water melt outflows from Greenland as glacial melt there has accelerated concordant with human-forced warming. The cool pool of glacial melt water south of Greenland has aided in the generation of a dipole featuring cool air to the west, warm air to the east. This year, warm air has tended to flow northward over Spain, the UK, and along a region between Iceland and Scandinavia. During the Winter of 2015-2016, this warm air slot has also been the breeding ground for very unstable weather and a number of powerful storm systems.

Polar Vortex Ripped in Half Late Dec 2015

(It’s an El Nino year. But despite a climate feature that would typically strengthen the Jet Stream, what we see is another Arctic warm air invasion reminiscent of the recent polar vortex collapse events of Winters 2012 through 2014-2015. Note that the region of coldest air, which would typically tend to center over the North Pole has been driven south toward Greenland and Baffin Bay. A pattern that we’d expect concordant with world ocean warming and Greenland melt as a result of human-forced climate change. Image source: ECMWF.)

Unfortunately, this larger overall pattern marks a progression away from typical North Atlantic weather and toward a much more stormy environment. It’s an environment that is all too likely to be marked by features of warm air invasions moving up through the Barents and into the High Arctic during Winter. Of the Northern Hemisphere storm circulation tending to wrap around Greenland as the center of cold air shifts from the North Pole to the last bastion of dense glacial ice. And of a very unstable storm generating cold water and surface air temperature zone deepening and gaining an ever-stronger hold within the North Atlantic.

These are influences we see now. Ones that are impacting both the current powerful storm over Iceland and the unprecedented surge of warm air that is now preparing to invade the High Arctic. And though El Nino likely also played a part in the shifting of the storm generation zone toward Iceland, the far northward propagation of warm air into the Barents and High Arctic along with the extreme strength of the predicted storm are both likely new features of an overall altered pattern. What we witness here are both climates and weather features changing before our eyes in the form of what to us may seem a freak event — but what is actually part of a dangerous transition period away from the stable climates of the Holocene.

Links:

Earth Nullschool

ECMWF

Climate Reanalyzer

Very Low Minima of North Atlantic Cyclones During Winter of 2013

Warning From Scientists Age of Storms, Rapid Sea Level Rise is Coming Soon

Dr Jennifer Francis on Jet Stream Changes and Increasing Instances of Extreme Weather

NOAA Ocean Prediction Center Atlantic Analysis

Hat Tip to DT Lange

Hat Tip to Colorado Bob (Remember — “Hot seeks Cold.”)