AND the shale oil rout continues unabated…….

16 11 2017

Republished from SRS Rocco Report….  for those of you who don’t know it exists!

U.S. SHALE OIL PRODUCTION UPDATE: Financial Carnage Continues To Gut Industry

As the Mainstream media reports about the next phase of the glorious U.S. Shale Oil Revolution, the financial carnage continues to gut the industry deep down inside the entrails of its horizontal laterals.  The stench of fracking fluid must be driving shale oil advocates utterly insane as they are no longer able to see financial wreckage taking place in these companies quarterly reports.

This weekend, one of my readers sent me the following Bloomberg 45 minute TV special titled, The Next Shale Revolution.  If you are in need of a good laugh, I highly recommend watching part of the video.  At the beginning of the video, it starts off with President Trump stating that the U.S. has become an energy exporter for the first time ever.  Trump goes on to say, “that powered by new innovation and technology, we are now on the cusp of a new energy revolution.”  While I have to applaud Trump’s efforts for putting out some positive and reassuring news, I wonder who is providing him with terribly inaccurate energy information.

I would kindly like to remind the reader; the United States is still a NET IMPORTER of oil.  We still import nearly six million barrels of oil per day, but we export some finished products and a percentage of our shale oil production.  Thus, we still import a net of approximately three million barrels per day of oil.

A few minutes into the Bloomberg video, both Pioneer Resources Chairman, Scott Sheffield, and Continental Resources CEO, Harold Hamm, explain how advanced technology will revolutionize the shale oil industry and bring down costs.  I find that statement quite hilarious as Continental Resources and Pioneer continue to spend more money drilling for oil and gas then they make from their operations.  As I stated in a previous article, Continental Resources long-term debt ballooned from $165 million in 2007 to $6.5 billion currently.  So, how did advanced technology lower costs when Continental now has accumulated debt up to its eyeballs?

Of course… it didn’t.  Debt increased on Continental Resources balance sheet because shale oil production wasn’t profitable… even at $100 a barrel.  So, now the investor who purchased Continental bonds and debt are the Bag Holders.

Regardless, while U.S. oil production continues to increase at a moderate pace, there are some troubling signs in one of the country’s largest shale oil fields.

Shale Oil Production At the Mighty Eagle Ford Stagnates As Companies’ Financial Losses Mount

It was just a few short years ago that the energy industry was bragging about the tremendous growth of shale oil production at the mighty  Eagle Ford Region in Texas.  At the beginning of 2015, Eagle Ford oil production peaked at a record 1.7 million barrels per day (mbd).  Currently, it is nearly 500,000 barrels per day lower.  According to the EIA – U.S Energy Information Agency’s most recently released Drilling Productivity Report, oil production in the Eagle Ford is forecasted to grow by ZERO barrels in December:

The chart above suggests that the companies drilling and producing oil in the Eagle Ford spent one hell of a lot of money, just to keep production flat.  Even though the shale oil producers were able to bring on 88,000 barrels per day of new oil, the field lost 88,000 barrels per day due to legacy declines.  We need not take out a calculator to understand production growth at the Eagle Ford is a BIG PHAT ZERO.

Here are the five largest shale oil and gas producers in the Eagle Ford where:

  1. EOG Resources
  2. ConocoPhillips
  3. BHP Billiton
  4. Chesapeake Energy
  5. Marathon Oil

The company that doesn’t quite fit in the energy group above is BHP Billiton.  BHP Billiton is one of the largest base metal mining companies in the world.  Unfortunately for BHP Billiton, the company decided to get into U.S. Shale at the worst possible time.  BHP Billiton bought shale oil properties when prices were high and eventually had to liquidate when prices were low.  A Rookie mistake made by supposed professionals.  I wrote about this in my article; DOMINOES BEGIN TO FALL: BHP Chairman Says $20 Billion Shale Investment “MISTAKE.”

I decided to take a look at the current financial reports published by the five companies listed above.  The largest player in the Eagle Ford is EOG Resources.  I went to YahooFinance and created the following Cash Flow table for EOG:

In the latest quarter (Q3 2017), EOG reported $961 million in cash from operations.  However, the company spent $1,094 million on capital (CAPEX) expenditures and another $96 million in shareholder dividends.  Applying simple arithmetic, EOG spent $229 million more on CAPEX and dividends than it made from its operations.  Maybe someone can tell me how advanced technology is bringing down the cost for EOG.

The next largest player in the Eagle Ford is ConocoPhillips.  If we look at ConocoPhillips net income at its different business segments, we can see that the company isn’t making any money producing oil and gas in the lower 48 states:

While ConocoPhillips enjoyed a $103 million profit in Alaska, it suffered a $97 million loss in the lower 48 states.  Thus, the third largest oil company in the U.S. isn’t making any money producing oil and gas in the majority of the country.  According to the data, ConocoPhillips produced twice as much oil and gas in the lower 48 states then what they reported in Alaska, but the company still lost $97 million.

The third largest company producing oil in the Eagle Ford is BHP Billiton.  Instead of providing financial results, I thought this chart on BHP Billiton’s Return On Capital Employed was a better indicator of how bad their U.S. Shale assets were performing.  If we look at the right-hand side of the chart, BHP Billiton’s shale oil resources have become one hell of a drag on the company’s asset portfolio:

While BHP Billiton is enjoying a healthy positive Return On Capital Employed on most of its assets, shale oil resources are showing a negative return.  Furthermore, the company makes a note to above stating, “Detailed plans to improve, optimize or EXIT.”  I would bet my bottom Silver Dollar that their decision will end up “EXITING” the wonderful world of shale energy, with the sale of their assets for pennies on the dollar.

Moving down the list to the next shale company, we come to Chesapeake.  While Chesapeake is the country’s second-largest natural gas producer, the company has been losing money for more than a decade.  Unfortunately, the situation hasn’t improved for Chesapeake as its current financial statement reveals the company continues to burn through cash to produce its oil and gas:

Chesapeake’s net cash provided by its operating activities equaled $273 million for the first three-quarters of 2017.  However, the company spent a whopping $1,597 million on drilling and completion costs (CAPEX).  Thus, Chesapeake spent $1.3 billion more on producing its oil and natural gas Q1-Q3 2017 than it made from its operations.  Again, how is advanced technology making shale oil and gas more profitable?

If it weren’t for the asset sale of $1,193 million, Chesapeake would have needed to borrow that money to make up the difference.  Regrettably, selling assets to fortify one’s balance sheet isn’t a long-term viable business model.  There are only so many assets one can sell, and at some point, in the future, the market will realize those assets will have turned into worthless liabilities.

Okay, we finally come to the fifth largest player in the Eagle Ford…. Marathon Oil.  The situation at Marathon isn’t any better than the other companies drilling and producing oil in the Eagle Ford.  According to the companies third-quarter report, Marathon suffered a $600 million net income loss:

Again, we have another example of an energy company losing a lot of money producing shale oil and gas.  You will notice how high Marathon’s Depreciation, depletion, and amortization are in both the third-quarter and nine months ending on Sept 30th.  While some may believe this is just a tax write off for the company… it isn’t.  Due to the massive decline rate in producing shale oil and gas, PLEASE SEE the FIRST CHART ABOVE on the EAGLE FORD GROWTH OF ZERO, these companies have to write off these assets as it represents the BURNING of CASH.

For example, Marathon reported cash from operations of $1,487 million for Q3 2017.  However, it spent $1,305 million on CAPEX and $128 million on dividends for a total of $1,433 million.  Thus, Marathon actually enjoyed a small $53 million in positive free cash flow once dividends were deducted.  But, that is only part of the story.  If we go back to 2005 when the oil price as about the same as it is today, Marathon was reporting quarterly profits, not losses.

In the first quarter of 2005, Marathon earned a positive $324 million in net income.  It also reported a $258 million net income gain in 2004, even at a much lower oil price of $38 a barrel versus the $48-$50 during Q3 2017.  So, the Falling EROI – Energy Returned On Invested is killing the profitability of shale oil and gas companies today, whereas they were making profits just a decade ago.

Now, I didn’t provide any data on the other shale oil fields in the U.S., but production continues to increase in several regions, especially in the Permian.  However, one of the largest players in the Permian, Pioneer Resources, isn’t making any money either.  If we look at their financials, we can see that Pioneer continues to spend more money on CAPEX than they are receiving from cash from operations:

In all three quarters in 2017, Pioneer spent more money on capital expenditures than it made from its operating activities.  Pioneer spent $400 million more on CAPEX spending than from its operations for the first nine months of 2017 ending on Sept 30th.  So, here is just another example of a U.S. shale oil producer who partly responsible for the rising production in the Permian, but it still isn’t making any money.

Now, some investors or readers on my blog would say that the situation will get better when the oil price continues towards $60, $70 and then $80 a barrel.  Well, that would be nice, but I believe we are heading towards one hell of a market crash.  Even though some economic indicators are looking rosy, this market is being propped up by a massive amount of debt and the largest SHORT VIX trade in history.  When the markets start to go south as the massive VIX TRADE reverses… well, watch out below.

Thus, as the markets crash, the oil price will head down with it.  Unfortunately, this will be the final blow to the U.S. Shale Oil Ponzi Scheme and with it… the notion of Energy Independence forever.

Advertisements




Three Things We Don’t Understand About Climate Change

3 09 2017

ANOTHER great article from Ahmed Nafeez’ new Medium website…….  Please support his magnificent efforts.

This is the most honest item on Climate Change I hace seen in quite a while. It almost goes as far as saying what I’ve now concluded, we must de-industrialise. Almost.

Go to the profile of Aarne Granlund
Aarne GranlundFollow

 

 

Thinking about climate change is not something that comes natural to humans — or ‘consumers’ as we have been called for decades. It is not only emotionally unpleasant, but analytically extremely challenging.

I argue that most of us do not grasp how immediate this situation has become, how fast it is progressing and what the scale of change needed is to reach the stabilisation targets of the Paris Agreement.

I also argue that after individuals, nations and corporations understand the urgency and the rate, they should be honest about the scale of action needed in order to avoid collapse of the biosphere and thus civilisation.

North America on 29th of August 2017. Tundra and forest fires in the Arctic + British Columbia and Hurricane Harvey off the coast of South Texas (Terra / MODIS @ Nasa WorldView).

Human society is deeply and permanently coupled to the Earth System. In the geological epoch we have entered called the Anthropocene, that system is undergoing immediate, massive disruption. The previous epoch of Holocene gave us agriculture and settled living arrangements.

Since the onset of industrial production at an accelerating rate and scale, human society has had deep and far ranging influence on natural processes which it depends on. Climate change is only one of the manifestations — there are multiple large-scale indicators of our presence on this planet from erosion to nitrogen runoff, species extinction to uncontrolled population growth.

1. Urgency

The first misunderstanding about climate change is related to how we perceive its impacts in the temporal space. It is not (only) a future issue, not a polar bear issue and certainly not an issue which only affects a few remote parts of the world.

Situation has become dangerous during the last three years of 2014, 2015, 2016 and now continuing into 2017. Certain parts of the world see less immediate danger but systematic changes affect us all.

NASA GISS dataset on land and ocean temperature anomalies (2017).

How is it possible that the Earth System has taken up our presence on the surface so lightly even when we have changed the chemistry of the atmosphere and the ocean with our carbon pollution?

Ocean heat uptake has doubled since 1997 (Gleckler et al, 2016).

Most of the energy (heat) human carbon pollution creates ends up warming the world ocean, some 93% of our pyromania ends up there. Every passing year we pump 41 gigatons (that is a very big number) of carbon dioxide into the Earth System, where roughly half of it is absorbed by natural sink capabilities of the ocean and the land biosphere. Rest of it ends up in the atmosphere with all the other gases we put up, including aerosols and certain novel entities that have never occured in the natural state of the Earth System.

The fact that increasing greenhouse gas loading from human sources in the carbon cycle is cumulative makes this an extremely vicious political, economic and social problem. The increment which ends up in the atmosphere can only be drawn down by the natural climate system on time scales extending to tens or hundreds of thousands of years.

The Global Carbon Budget from GCP, 2017.

One component of urgency is that when surface temperatures increase after being buffered by the ocean — without the world ocean we would already be 36°C hotter on the surface of continents from the increased atmospheric forcing — they can do so in a non-linear fashion.

This creates immediate impacts. Single exceptional extreme weather events are not caused by climate change but happen in a distinctively new climate. Hotter atmosphere holds more moisture which increases precipitation. Extreme heatwaves become more common. Ice in all its forms melts.

Right now there are multiple imminent disasters occuring in various parts of the planet. Global fire situation has been exceptional in Siberia, Greenland, Canada and in other parts of North America. Tundra burns, forests burn, people suffer. Europe has been under severe heat waves and there have been mass casualties from forest fires in Portugal.

There is extreme flooding in South Asia, impacting multiple cities and the country of Bangladesh of which one third is currently under water. Hurricane Harvey just hit South Texas at Category 4 strength and produced record precipitation totals for many locations, including but not limited to the City of Houston. Tens of millions suffer from these impacts — right now.

Arctic climate change is proceeding at fast pace (AMAP SWIPA, 2017 http://www.amap.no/swipa2017).

2. Rate and Scale of Change

The Arctic, area located on the top of the planet from 66°N north, is a prime example of systematic exponential change. It is warming at least twice as fast as the rest of the planet. There is less inertia in the Arctic than there is in the general climate system.

But even the general climate system is being pushed in ways which have no previous analogue in natural climate changes going back tens of millions of years. It is about the rate of carbon dioxide and other greenhouse gases added. There have been periods in the deep geological past of Earth when greenhouse gas concentrations have been much, much higher than they are today but increases have never occured this rapidly.

Proxy measurements of carbon dioxide from ice cores (NOAA @ NASA Climate Change https://climate.nasa.gov/vital-signs/carbon-dioxide/).

Earth is a fluid, non-linear system capable of abrupt and total change. Earth System has been in a hothouse state and for a while was mostly covered by ice. At current pathways we are literally going to lose very large portions of both continental polar ice sheets, possibly in their entirety. This will take centuries but when we commit, the result will be permanent. Permafrost is thawing, threathening both the carbon cycle and our settled living arrangements in the Arctic.

When climate scientists project future climate change up to and beyond 2050 and 2100 they refer to scenarios. They are used in policy making to set stabilisation targets.

Tipping elements in the climate system (Schellnhuber et al, 2015).

What is worrying is that humanity is currently putting in place an atmospheric forcing comparable to something between the RCP4.5 and 8.5 (watts per square meter) end results. The choice between the Paris Agreement ‘well below 2°C’ framing and higher, 3–4°C level of warming is the choice of having a civilisation with global governance capability or losing it.

At any pathway we choose to follow, in order for the climate to stabilise at a higher level of change, emissions need to be zero. If new carbon pollution enters the climate system, temperatures will go up. This also applies to 2.5°C emissions budgets as well as 3°C budgets.

3. Stabilisation

What is to be done? Multiple actions are under way. Our energy system is changing with global energy demand growth continuing to rise due to industrialisation of developing nations, but new added electricity capacity in the form of solar and wind power only appear to offset some of the added growth. Electricity is only a portion of our energy use profile.

The massive use of fossil fuels is the prime driver of human-caused climate change. The fraction of low-carbon energy is the same now that it was a few decades ago. Fossil fuels absolutely dominate our energy system at >80% share in total final energy consumption. Deforestation and other land-use change also contribute significantly, but our profligate use of fossil energy commits us to possibly catastrophic breakdowns of the climate system.

For a reasonable chance of keeping warming under 2℃ we can emit a further 865 billion tonnes of carbon dioxide (CO2). The climate commitments to reduce greenhouse gas emissions to 2030 are a first step, but recent analyses show they are not enough (Canadell and Smith, 2017 http://bit.ly/2jRNjIK).

The trouble with negative emissions (Peters and Anderson, 2016 http://science.sciencemag.org/content/354/6309/182).

The carbon budget framing might seem like a radical socio-political construct but it is in fact the best depiction of the physical reality of climate change. Cumulative emissions dictate the mitigation outcome — there is absolutely no doubt about this as the Intergovernmental Panel on Climate Change has shown.

The relationship between temperature change and cumulative CO2 emissions (in GtCO2) from 1870 to the year 2100. (IPCC 2014 Synthesis Report).

It is indeed the fact that many applications of fossil energy are growing exponentially that is the problem for climate stabilisationAir travel, road freight, shipping. Exponential global growth. Based on sound understanding of the physical reality, their fossil carbon use should be declining exponentially.

Three years to safeguard our climate (Figueres at al, 2017 http://go.nature.com/2t1gwUD).

All of this is sadly true and supremely distressing. Emissions from fossil fuels and land use change are 60% higher than they were in 1990 when scientists established most of what has been shown above with high certainty. Only the resolution of understanding has increased along with worsening climate impacts.

F/ Honesty

Finding out the reality of this situation is a profound experience. It is a state shift in human cognition, comparable to expansion of internet and global connectivity.

What I argue as citizen is to stop lying to ourselves. We have to obey the ancient laws of nature. No amount of economic growth, green shift, denial or activism can negotiate with physical constraints of the Earth System.

Our energy system will never be able to transform fast enough to meet the Paris Agreement stabilisation target without mad assumptions of building a carbon draw down device on this planet three times the size of the current oil industry, capable of sequestering greenhouse gases from ambient air on the order of what the natural sinks like the world ocean and the land biosphere are currently doing.

Roughly 10% of us generate almost as much greenhouse gas emissions from our lifestyle as the rest of the people on this planet. Finnish household consumption added to territorial emissions at >15 tons CO2 equivalent per capita will breach the global carbon budget for lower stabilisation targets within a decade. This is a pragmatic, but also a moral issue. Nobody can escape it, no matter how much one tries.

Finnish emissions reductions and negative emissions to meet Paris Agreement framing (Climate Analytics, 2016.)

We have to transform our diets, mobility systems, energy production and conspicuous consumption within a decade to limit risks of profound magnitude. The first decade should cut all of our carbon pollution in half. The next one should halve the portion left and so on. We have to put in policies which enchance natural sinks and research artificial new sinks.

This is not an obligation just to protect future generations, poor people or animals anymore. It is a threat to huge amounts of people living in the present moment on this finite planet in our vast universe.

We have to push through this mentally, keeping focus on what there is to be done with resolute purpose against nearly impossible odds. We have to be honest to ourselves, respectful of others and lead by example in everything we do.

Everybody can enter this space with relatively little sacrifice. It might be very painful in the beginning but truth is, after all, one of the most precious things this world has to offer.

Do what comes naturally, but always remember three things: how immediate this is, what kind of rates it is progressing at and what the scale of change needed must be in order to limit risk.





2017: The Year When the World Economy Starts Coming Apart

20 01 2017

Conclusion

The situation is indeed very concerning. Many things could set off a crisis:

  • Rising energy prices of any kind (hurting energy importers), or energy prices that don’t rise (leading to financial problems or collapse of exporters)
  • Rising interest rates.
  • Defaulting debt, indirectly the result of slow/negative economic growth and rising interest rates.
  • International organizations with less and less influence, or that fall apart completely.
  • Fast changes in relativities of currencies, leading to defaults on derivatives.
  • Collapsing banks, as debt defaults rise.
  • Falling asset prices (homes, farms, commercial buildings, stocks and bonds) as interest rates rise, leading to many debt defaults.

FOLLOWING ON from my last post exposing HSBC’s forecast of a peak oil caused economic collapse, along comes this piece from Gail Tverberg predicting it may all start this year…….

Most of this article is a rehash of things she’s said before all consolidated in one lengthy essay, and some of them were published here before. It’s becoming increasingly difficult to not recognise all our ducks are lining up on the wall…….

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Some people would argue that 2016 was the year that the world economy started to come apart, with the passage of Brexit and the election of Donald Trump. Whether or not the “coming apart” process started in 2016, in my opinion we are going to see many more steps in this direction in 2017. Let me explain a few of the things I see.

[1] Many economies have collapsed in the past. The world economy is very close to the turning point where collapse starts in earnest.  

Figure 1

The history of previous civilizations rising and eventually collapsing is well documented.(See, for example, Secular Cycles.)

To start a new cycle, a group of people would find a new way of doing things that allowed more food and energy production (for instance, they might add irrigation, or cut down trees for more land for agriculture). For a while, the economy would expand, but eventually a mismatch would arise between resources and population. Either resources would fall too low (perhaps because of erosion or salt deposits in the soil), or population would rise too high relative to resources, or both.

Even as resources per capita began falling, economies would continue to have overhead expenses, such as the need to pay high-level officials and to fund armies. These overhead costs could not easily be reduced, and might, in fact, grow as the government attempted to work around problems. Collapse occurred because, as resources per capita fell (for example, farms shrank in size), theearnings of workers tended to fall. At the same time, the need for taxes to cover what I am calling overhead expenses tended to grow. Tax rates became too high for workers to earn an adequate living, net of taxes. In some cases, workers succumbed to epidemics because of poor diets. Or governments would collapse, from lack of adequate tax revenue to support them.

Our current economy seems to be following a similar pattern. We first used fossil fuels to allow the population to expand, starting about 1800. Things went fairly well until the 1970s, when oil prices started to spike. Several workarounds (globalization, lower interest rates, and more use of debt) allowed the economy to continue to grow. The period since 1970 might be considered a period of “stagflation.” Now the world economy is growing especially slowly. At the same time, we find ourselves with “overhead” that continues to grow (for example, payments to retirees, and repayment of debt with interest). The pattern of past civilizations suggests that our civilization could also collapse.

Historically, economies have taken many years to collapse; I show a range of 20 to 50 years in Figure 1. We really don’t know if collapse would take that long now. Today, we are dependent on an international financial system, an international trade system, electricity, and the availability of oil to make our vehicles operate. It would seem as if this time collapse could come much more quickly.

With the world economy this close to collapse, some individual countries are even closer to collapse. This is why we can expect to see sharp downturns in the fortunes of some countries. If contagion is not too much of a problem, other countries may continue to do fairly well, even as individual small countries fail.

[2] Figures to be released in 2017 and future years are likely to show that the peak in world coal consumption occurred in 2014. This is important, because it means that countries that depend heavily on coal, such as China and India, can expect to see much slower economic growth, and more financial difficulties.

While reports of international coal production for 2016 are not yet available, news articles and individual country data strongly suggest that world coal production is past its peak. The IEA also reports a substantial drop in coal production for 2016.

Figure 2. World coal consumption. Information through 2015 based on BP 2016 Statistical Review of World Energy data. Estimates for China, US, and India are based on partial year data and news reports. 2016 amount for "other" estimated based on recent trends.

The reason why coal production is dropping is because of low prices, low profitability for producers, and gluts indicating oversupply. Also, comparisons of coal prices with natural gas prices are inducing switching from coal to natural gas. The problem, as we will see later, is that natural gas prices are also artificially low, compared to the cost of production, So the switch is being made to a different type of fossil fuel, also with an unsustainably low price.

Prices for coal in China have recently risen again, thanks to the closing of a large number of unprofitable coal mines, and a mandatory reduction in hours for other coal mines. Even though prices have risen, production may not rise to match the new prices. One article reports:

. . . coal companies are reportedly reluctant to increase output as a majority of the country’s mines are still losing money and it will take time to recoup losses incurred in recent years.

Also, a person can imagine that it might be difficult to obtain financing, if coal prices have only “sort of” recovered.

I wrote last year about the possibility that coal production was peaking. This is one chart I showed, with data through 2015. Coal is the second most utilized fuel in the world. If its production begins declining, it will be difficult to offset the loss of its use with increased use of other types of fuels.

Figure 3. World per capita energy consumption by fuel, based on BP 2016 SRWE.

[3] If we assume that coal supplies will continue to shrink, and other production will grow moderately, we can expect total energy consumption to be approximately flat in 2017. 

Figure 5. World energy consumption forecast, based on BP Statistical Review of World Energy data through 2015, and author's estimates for 2016 and 2017.

In a way, this is an optimistic assessment, because we know that efforts are underway to reduce oil production, in order to prop up prices. We are, in effect, assuming either that (a) oil prices won’t really rise, so that oil consumption will grow at a rate similar to that in the recent past or (b) while oil prices will rise significantly to help producers, consumers won’t cut back on their consumption in response to the higher prices.

[4] Because world population is rising, the forecast in Figure 4 suggests that per capita energy consumption is likely to shrink. Shrinking energy consumption per capita puts the world (or individual countries in the world) at the risk of recession.

Figure 5 shows indicated per capita energy consumption, based on Figure 4. It is clear that energy consumption per capita has already started shrinking, and is expected to shrink further. The last time that happened was in the Great Recession of 2007-2009.

Figure 5. World energy consumption per capita based on energy consumption estimates in Figure 4 and UN 2015 Medium Population Growth Forecast.

There tends to be a strong correlation between world economic growth and world energy consumption, because energy is required to transform materials into new forms, and to transport goods from one place to another.

In the recent past, the growth in GDP has tended to be a little higher than the growth in the use of energy products. One reason why GDP growth has been a percentage point or two higher than energy consumption growth is because, as economies become richer, citizens can afford to add more services to the mix of goods and services that they purchase (fancier hair cuts and more piano lessons, for example). Production of services tends to use proportionately less energy than creating goods does; as a result, a shift toward a heavier mix of services tends to lead to GDP growth rates that are somewhat higher than the growth in energy consumption.

A second reason why GDP growth has tended to be a little higher than growth in energy consumption is because devices (such as cars, trucks, air conditioners, furnaces, factory machinery) are becoming more efficient. Growth in efficiency occurs if consumers replace old inefficient devices with new more efficient devices. If consumers become less wealthy, they are likely to replace devices less frequently, leading to slower growth in efficiency. Also, as we will discuss later in this  post, recently there has been a tendency for fossil fuel prices to remain artificially low. With low prices, there is little financial incentive to replace an old inefficient device with a new, more efficient device. As a result, new purchases may be bigger, offsetting the benefit of efficiency gains (purchasing an SUV to replace a car, for example).

Thus, we cannot expect that the past pattern of GDP growing a little faster than energy consumption will continue. In fact, it is even possible that the leveraging effect will start working the “wrong” way, as low fossil fuel prices induce more fuel use, not less. Perhaps the safest assumption we can make is that GDP growth and energy consumption growth will be equal. In other words, if world energy consumption growth is 0% (as in Figure 4), world GDP growth will also be 0%. This is not something that world leaders would like at all.

The situation we are encountering today seems to be very similar to the falling resources per capita problem that seemed to push early economies toward collapse in [1]. Figure 5 above suggests that, on average, the paychecks of workers in 2017 will tend to purchase fewer goods and services than they did in 2016 and 2015. If governments need higher taxes to fund rising retiree costs and rising subsidies for “renewables,” the loss in the after-tax purchasing power of workers will be even greater than Figure 5 suggests.

[5] Because many countries are in this precarious position of falling resources per capita, we should expect to see a rise in protectionism, and the addition of new tariffs.

Clearly, governments do not want the problem of falling wages (or rather, falling goods that wages can buy) impacting their countries. So the new game becomes, “Push the problem elsewhere.”

In economic language, the world economy is becoming a “Zero-sum” game. Any gain in the production of goods and services by one country is a loss to another country. Thus, it is in each country’s interest to look out for itself. This is a major change from the shift toward globalization we have experienced in recent years. China, as a major exporter of goods, can expect to be especially affected by this changing view.

[6] China can no longer be expected to pull the world economy forward.

China’s economic growth rate is likely to be lower, for many reasons. One reason is the financial problems of coal mines, and the tendency of coal production to continue to shrink, once it starts shrinking. This happens for many reasons, one of them being the difficulty in obtaining loans for expansion, when prices still seem to be somewhat low, and the outlook for the further increases does not appear to be very good.

Another reason why China’s economic growth rate can be expected to fall is the current overbuilt situation with respect to apartment buildings, shopping malls, factories, and coal mines. As a result, there seems to be little need for new buildings and operations of these types. Another reason for slower economic growth is the growing protectionist stance of trade partners. A fourth reason is the fact that many potential buyers of the goods that China is producing are not doing very well economically (with the US being a major exception). These buyers cannot afford to increase their purchases of imports from China.

With these growing headwinds, it is quite possible that China’s total energy consumption in 2017 will shrink. If this happens, there will be downward pressure on world fossil fuel prices. Oil prices may fall, despite production cuts by OPEC and other countries.

China’s slowing economic growth is likely to make its debt problem harder to solve. We should not be too surprised if debt defaults become a more significant problem, or if the yuan falls relative to other currencies.

India, with its recent recall of high denomination currency, as well as its problems with low coal demand, is not likely to be a great deal of help aiding the world economy to grow, either. India is also a much smaller economy than China.

[7] While Item [2] talked about peak coal, there is a very significant chance that we will be hitting peak oil and peak natural gas in 2017 or 2018, as well.  

If we look at historical prices, we see that the prices of oil, coal and natural gas tend to rise and fall together.

Figure 6. Prices of oil, call and natural gas tend to rise and fall together. Prices based on 2016 Statistical Review of World Energy data.

The reason that fossil fuel prices tend to rise and fall together is because these prices are tied to “demand” for goods and services in general, such as for new homes, cars, and factories. If wages are rising rapidly, and debt is rising rapidly, it becomes easier for consumers to buy goods such as homes and cars. When this happens, there is more “demand” for the commodities used to make and operate homes and cars. Prices for commodities of many types, including fossil fuels, tend to rise, to enable more production of these items.

Of course, the reverse happens as well. If workers become poorer, or debt levels shrink, it becomes harder to buy homes and cars. In this case, commodity prices, including fossil fuel prices, tend to fall.  Thus, the problem we saw above in [2] for coal would be likely to happen for oil and natural gas, as well, because the prices of all of the fossil fuels tend to move together. In fact, we know that current oil prices are too low for oil producers. This is the reason why OPEC and other oil producers have cut back on production. Thus, the problem with overproduction for oil seems to be similar to the overproduction problem for coal, just a bit delayed in timing.

In fact, we also know that US natural gas prices have been very low for several years, suggesting another similar problem. The United States is the single largest producer of natural gas in the world. Its natural gas production hit a peak in mid 2015, and production has since begun to decline. The decline comes as a response to chronically low prices, which make it unprofitable to extract natural gas. This response sounds similar to China’s attempted solution to low coal prices.

Figure 7. US Natural Gas production based on EIA data.

The problem is fundamentally the fact that consumers cannot afford goods made using fossil fuels of any type, if prices actually rise to the level producers need, which tends to be at least five times the 1999 price level. (Note peak price levels compared to 1999 level on Figure 6.) Wages have not risen by a factor of five since 1999, so paying the prices that fossil fuel producers need for profitability and growing production is out of the question. No amount of added debt can hide this problem. (While this reference is to 1999 prices, the issue really goes back much farther, to prices before the price spikes of the 1970s.)

US natural gas producers also have plans to export natural gas to Europe and elsewhere, as liquefied natural gas (LNG). The hope, of course, is that a large amount of exports will raise US natural gas prices. Also, the hope is that Europeans will be able to afford the high-priced natural gas shipped to them. Unless someone can raise the wages of both Europeans and Americans, I would not count on LNG prices actually rising to the level needed for profitability, and staying at such a high level. Instead, they are likely to bounce up, and quickly drop back again.

[8] Unless oil prices rise very substantially, oil exporters will find themselves exhausting their financial reserves in a very short time (perhaps a year or two). Unfortunately, oil importerscannot withstand higher prices, without going into recession. 

We have a no win situation, no matter what happens. This is true with all fossil fuels, but especially with oil, because of its high cost and thus necessarily high price. If oil prices stay at the same level or go down, oil exporters cannot get enough tax revenue, and oil companies in general cannot obtain enough funds to finance the development of new wells and payment of dividends to shareholders. If oil prices do rise by a very large amount for very long, we are likely headed into another major recession, with many debt defaults.

[9] US interest rates are likely to rise in the next year or two, whether or not this result is intended by the Federal reserve.

This issue here is somewhat obscure. The issue has to do with whether the United States can find foreign buyers for its debt, often called US Treasuries, and the interest rates that the US needs to pay on this debt. If buyers are very plentiful, the interest rates paid by he US government can be quite low; if few buyers are available, interest rates must be higher.

Back when Saudi Arabia and other oil exporters were doing well financially, they often bought US Treasuries, as a way to retain the benefit of their new-found wealth, which they did not want to spend immediately. Similarly, when China was doing well as an exporter, it often bought US Treasuries, as a way retaining the wealth it gained from exports, but didn’t yet need for purchases.

When these countries bought US Treasuries, there were several beneficial results:

  • Interest rates on US Treasuries tended to stay artificially low, because there was a ready market for its debt.
  • The US could afford to import high-priced oil, because the additional debt needed to buy the oil could easily be sold (to Saudi Arabia and other oil producing nations, no less).
  • The US dollar tended to stay lower relative to other currencies, making oil more affordable to other countries than it otherwise might be.
  • Investment in countries outside the US was encouraged, because debt issued by these other countries tended to bear higher interest rates than US debt. Also, relatively low oil prices in these countries (because of the low level of the dollar) tended to make investment profitable in these countries.

The effect of these changes was somewhat similar to the US having its own special Quantitative Easing (QE) program, paid for by some of the counties with trade surpluses, instead of by its central bank. This QE substitute tended to encourage world economic growth, for the reasons mentioned above.

Once the fortunes of the countries that used to buy US Treasuries changes, the pattern of buying of US Treasuries tends to change to selling of US Treasuries. Even not purchasing the same quantity of US Treasuries as in the past becomes an adverse change, if the US has a need to keep issuing US Treasuries as in the past, or if it wants to keep rates low.

Unfortunately, losing this QE substitute tends to reverse the favorable effects noted above. One effect is that the dollar tends to ride higher relative to other currencies, making the US look richer, and other countries poorer. The “catch” is that as the other countries become poorer, it becomes harder for them to repay the debt that they took out earlier, which was denominated in US dollars.

Another problem, as this strange type of QE disappears, is that the interest rates that the US government needs to pay in order to issue new debt start rising. These higher rates tend to affect other rates as well, such as mortgage rates. These higher interest rates act as a drag on the economy, tending to push it toward recession.

Higher interest rates also tend to decrease the value of assets, such as homes, farms, outstanding bonds, and shares of stock. This occurs because fewer buyers can afford to buy these goods, with the new higher interest rates. As a result, stock prices can be expected to fall. Prices of homes and of commercial buildings can also be expected to fall. The value of bonds held by insurance companies and banks becomes lower, if they choose to sell these securities before maturity.

Of course, as interest rates fell after 1981, we received the benefit of falling interest rates, in the form of rising asset prices. No one ever stopped to think about how much of the gains in share prices and property values came from falling interest rates.

Figure 8. Ten year treasury interest rates, based on St. Louis Fed data.

Now, as interest rates rise, we can expect asset prices of many types to start falling, because of lower affordability when monthly payments are based on higher interest rates. This situation presents another “drag” on the economy.

In Conclusion

The situation is indeed very concerning. Many things could set off a crisis:

  • Rising energy prices of any kind (hurting energy importers), or energy prices that don’t rise (leading to financial problems or collapse of exporters)
  • Rising interest rates.
  • Defaulting debt, indirectly the result of slow/negative economic growth and rising interest rates.
  • International organizations with less and less influence, or that fall apart completely.
  • Fast changes in relativities of currencies, leading to defaults on derivatives.
  • Collapsing banks, as debt defaults rise.
  • Falling asset prices (homes, farms, commercial buildings, stocks and bonds) as interest rates rise, leading to many debt defaults.

Things don’t look too bad right now, but the underlying problems are sufficiently severe that we seem to be headed for a crisis far worse than 2008. The timing is not clear. Things could start falling apart badly in 2017, or alternatively, major problems may be delayed until 2018 or 2019. I hope political leaders can find ways to keep problems away as long as possible, perhaps with more rounds of QE. Our fundamental problem is the fact that neither high nor low energy prices are now able to keep the world economy operating as we would like it to operate. Increased debt can’t seem to fix the problem either.

The laws of physics seem to be behind economic growth. From a physics point of view, our economy is a dissipative structure. Such structures form in “open systems.” In such systems, flows of energy allow structures to temporarily self-organize and grow. Other examples of dissipative structures include ecosystems, all plants and animals, stars, and hurricanes. All of these structures constantly “dissipate” energy. They have finite life spans, before they eventually collapse. Often, new dissipative systems form, to replace previous ones that have collapsed.





INDUSTRY IN A LOW ENERGY FUTURE: TURNING TO NETWORK THEORY FOR SOLUTIONS

15 03 2016

This is Simon Michaux’s follow up to his article on the Implications of Peak Energy

Simon Michaux

SIMON MICHAUX

Dr Simon Michaux has a Bach App Sc in Physics and Geology and a PhD in mining engineering. He has worked in the mining industry for 18 years in various capacities. He has worked in industry funded mining research, coal exploration and in the commercial sector in an engineering company as a consultant. Areas of technical interest have been: Geometallurgy; mineral processing in comminution, flotation and leaching; blasting; mining geology; geophysics; feasibility studies; mining investment; and industrial sustainability.

There is a macro-scale pattern unfolding under all of us. Every non-renewable natural resource we depend upon is now depleting to the point of peak extraction, or will soon. Industrial systems that are heavily dependent on energy reserves and metal resources are now at serious risk of collapse as production of those raw materials will soon not be able to meet demand, since easy to access reserves will be exhausted, leaving low-grade stocks that are expensive or technically challenging to extract. All living systems on the planet are under stress and are also heavily degrading. Natural systems of all kinds are being depleted in the name of economic development, and the planet’s climate is also undergoing change.

Our culture’s fundamental belief that there are no limits and growth is good, is related to the belief that all resources are infinite. Humans, like all animals on the planet, are biologically driven to consume and expand – it’s a built-in survival mechanism. Yet, as this is a finite planet and our exploitation of these natural resources is exponential in form, there will come a point where severe volatility and resource scarcity will become a reality.

Energy is the rate determining step, which facilitates the continued application of technology with economies of scale. As studies have shown, total world fossil fuel supply is close to peak, driven by peak of oil production. What’s more, putting all energy sources together gives a snapshot of our industrial capability and suggests that peak total energy is projected to be approximately in the year 2017.

energy sources

The industrial systems vital for our society to function are supported by each of these energy sources in quite different ways, and they are not interchangeable easily. A compelling case can be made that that our society and its industrial sector energy supply faces a fundamental problem, that is systemic in nature.

Our industrial requirements will have to be met with a fundamentally different approach to anything we have achieved before. We need to stop depending on non-renewable natural resources and stop the material requirements of the human societal footprint growing exponentially. Mining will continue but according to a radically different business model, and with a very different mandate.

NETWORK SYSTEMS THEORY

Network theory and systems thinking has some insights to what the required new system of industrialisation could look like. Our human society, its economic and social interactions could be modelled as a system, where each activity could be a connection, for example the transport of goods, or the consumption of electricity. Nodes are where many connections intersect. For example, most activities involve a finance transfer thus will engage the services of a bank. The bank is a node, where many connections are able to function through. Not all nodes are equal though in regard to the number of connections they facilitate. The node of a car manufacturing business, for instance, will have many fewer connections than, say, the European Union Bank.

Image: NASA / Flickr CC BY NC 2.0
Image: NASA / Flickr CC BY NC 2.0

If connections are broken due to circumstance (using a city example, heavy storms and flooding could temporarily interrupt power supply to an individual neighbourhood) then the network is smaller in size but it still functions (power is still being supplied to other parts of the power grid). But if that same storm causes the power station used for electricity generation (a node) to shut down, then every consumer attached to that power station will lose power. The whole grid will crash.

The complexity of a network is supported by and defined by the energy inputs that support it. Our current complex system is supported by cheap abundant high density energy – oil. Complex system networks are not made ‘in situ’, but are grown over time from simple system networks.

What does all this mean for the current industrial grid? Peak total energy means the node of energy supply is about to be disrupted. All links in the network system supported by energy will be logistically traumatized. As it stands, any replacement energy is less dense per unit volume than oil, and requires extensive infrastructure to be built. Think of the amount of energy invested in the creation of our current system over time – without plentiful, easy to access energy, the replacement network system will need to be less complex than the current one, once fully operational. It will also take time for the network to reach full complexity.

The old system cannot function because input energy is sourced from non-renewable natural resources, all of which are depleting or soon will. As energy is the master resource, it defines what happens with all other resource systems. Any replacement system that is a practical option will have to have certain signatures.

PROGNOSIS

Due to energy constraints, all industrial output would have to be sourced from a geographically local area. This would affect everything from raw material consumption, water consumption to waste disposal. Product delivery to market would also be changed. All of this would have to become as close to net zero footprint in terms of source material and waste disposal. Industrial output would have to be simpler. Technology cannot be as complex as it is now. This implies that manufacturing goods will require more effort on our part, which means that we would have to value ‘stuff’ differently. All waste products will also require greater effort to dispose of, meaning that if they could be recycled, reused or repurposed, there would be less strain on the system to function. Maintaining QA/QC material standards and equipment maintenance would all have to be done within a relatively local geographic region. These challenging statements represent practical limits of a low energy future. As this represents quite a paradigm shift from our current state of exponential consumption based on whim, the most difficult but significant task in front of us is a revolution in perception and a restructuring of governance.

Political systems like capitalism, socialism, communism, fascism, etc. are all built in the context of unlimited natural resources. Whatever the new system looks like, it won’t be anything like what has been seen before. We can call it what we like. Planning will have to be projected over 50 to 60 years into the future but be flexible to evolve organically to its environs. The current system is very centralised, whereas the new system would have to be very decentralised due to energy constraints. The flow of information will become very important.

The Great Acceleration indicators, published by IGBP in collaboration with the Stockholm Resilience Centre
The Great Acceleration indicators, published by IGBP in collaboration with the Stockholm Resilience Centre

From a civilisation network systems footprint viewpoint, we must ask ourselves how we can develop an economy that offers enough for everyone, forever. Real world systems and their inputs must reflect this, and the familiar exponential curves of today’s economy must move to flat line or sinusoidal wave functions. We also need to ask what profile human civilisation has amongst the natural environment. Dynamic natural systems must be able to operate unhindered, where natural capital and biodiversity is allowed to recover. The new economic framework must appreciate that inputs and outputs to all systems must be stable over time.

There are two related conceptual ideas which could be a starting point to help us develop the above requirements: the circular economy and the steady state economy. In a future in which peak energy has dramatically changed the rules of the game, these concepts are required to maintain our industrial capacity. It is not a question of choice, as our natural resources are being depleted at an exponential rate. The timing is now. The next 100 years will be very different to the last 100 years.





THE IMPLICATIONS OF PEAK ENERGY

13 03 2016

SIMON MICHAUX

Dr Simon Michaux has a Bach App Sc in Physics and Geology and a PhD in mining engineering. He has worked in the mining industry for 18 years in various capacities. He has worked in industry funded mining research, coal exploration and in the commercial sector in an engineering company as a consultant. Areas of technical interest have been: Geometallurgy; mineral processing in comminution, flotation and leaching; blasting; mining geology; geophysics; feasibility studies; mining investment; and industrial sustainability.

Our current society is one based on whim. Whatever we want can be had if we have the money. Not only can we have what we want any time we want it, it’s the done thing to throw it away and buy something else when it breaks or the latest upgrade comes out. We are conditioned to believe there are no limits within the current framework, and growth is our reason to be. The ‘how’ we can have all this fantastic stuff is considered someone else’s problem. But with a growing middle class population, for how long will it be possible to utilise finite, non-renewable resources in this linear fashion?

To date, our civilisation has been built on non-renewable natural resources.  What has facilitated all this is our sources of energy – the master resource.  Oil, coal and gas has accounted for the vast amount of industrial development over the last 160 years.

Untitled
World population, per capita-, and total energy consumption by fuel as a percentage of 2011 consumption, 1850-2011

Currently, we are a petroleum based society, where petroleum products and petrochemicals derived from oil provide goods and services for most of the vital requirements of our industrial civilisation. Everything from food production to plastics manufacture is dependent on oil in some form (there are some synthetic alternatives but they are costly and not as effective as natural crude oil as a raw feed product). World growth in GDP, energy consumption and oil consumption all correlate to demonstrate this basic concept.  The world economy is dependant not just on oil but high quality and high net energy oil.

afewfe

But all is not well with the oil sector.  Between 2000 and 2012, $2.6 Trillion USD was invested in oil infrastructure CAPEX, with no gain in oil production (this data includes shale oil production in USA).¹  Global crude and condensate production has plateaued since approximately 2005. The problem with this is world population is 13.8% larger now than in 2005 (7.4 billion people 5/2/2016 vs 6.5 billion in 2005). Increasingly unconventional sources of oil are being used to meet demand, where these sources are expensive to extract and struggle to meet the desired quantities.

Increasingly, conventional sources of crude oil have been difficult to discover and exploit. The picture below shows the pattern of oil discovery, listing all of the major plays that have dominated oil production.

eeeweergergereg

There will come a point where total oil production will peak and decline, the question is just when this will happen. Conventional crude oil production peaked in 2006, something now recognised by the International Energy Agency (Source: IEA World Energy Outlook 2010). Unconventional sources like tight oil (also known as shale oil) in the US have come on line to meet demand requirements, which have for some discredited previous predictions around peak oil.

However, The global combination of conventional crude oil production and unconventional oil production is predicted to peak and decline very soon, according to various studies. A sophisticated analysis on oil production has been conducted by retired actuary Gail Tverberg, where total oil production is predicted to have peaked in the year 2015. Others have suggested that we are in fact past peak, such as the report released by the Energy Watch Group (EWG), which claims that peak oil production (conventional and unconventional) happened around the year 2012.

conventional and unconv
Source: Zittel, W. et al, Fossil and Nuclear Fuels – the supply outlook Energy Watch Group March 2013

Gas as a commodity is important to our industrialisation. As industrial sites require large quantities of power, a gas fired power station is often installed. Acquiring data for gas production has been difficult but it is believed that conventional production of natural gas peaked in the year 2011 (data is spotty). To meet industrial demand, unconventional sources of gas like fracking and Coal Seam Gas (CSG) have been developed. Unconventional gas supply was believed to replace conventional sources of gas, and is in the process of doing so.

gas production
Gas supply scenario projections until 2030. Source: Zittel, W. et al, Fossil and Nuclear Fuels – the supply outlook Energy Watch Group March 2013

Coal is another energy resource that our industrial grid depends on to generate its electricity requirements. It is also often the case that the domestic power grid that supplies electricity is dependent on coal. The EWG report has a peak in coal production at approximately the year 2020. Four years away. Even if this estimate is imprecise, as it now takes about five years to build an industrial power station, it would behove us all to consider a replacement energy source.

geography
Global coal production. Source: Zittel, W. et al, Fossil and Nuclear Fuels – the supply outlook Energy Watch Group March 2013

Each energy source often serves different purposes, so one resource cannot necessarily directly replace another.  For the purposes of comparison though, all energy sources discussed have been put onto one graph:

 

energy sourcespeak energy reference

(Another good estimate has been provided by G. Tverberg  in “A Forecast of Our Energy Future; Why Common Solutions Don’t Work”)

Peak total energy is projected to be approximately in the year 2017. This means that industrialisation in a global context, based on the current rules of the game, will soon tip into contracting economies – the end of growth based economics. As this challenges would have taken 20 years to meet with an engineered alternative (once a viable one has been presented) (Hirsch 2005), the implications of the above charts are quite serious. Even if the projection was incorrect by 10 years, our industrial society would still be faced with an unprecedented challenge.

To examine the usefulness of a replacement energy source, the Energy Return On Energy Invested ratio (EROEI) is used, which is the ratio of the amount of usable energy acquired from a particular energy resource to the amount of energy expended to obtain that energy resource.

Oil when it was originally discovered was very good and returned about 100 units of energy for every one invested.  Now it’s around 12-18:1.  Most alternative energy sources are much lower than what oil currently delivers.  To put this in perspective, the European medieval society EROEI was Approximately 1.5:1.  For our industrial society to function, an EROEI ratio of 10:1 is required.

eroei
Energy Return On Energy Invested (EROEI ratio)

What this means is we have no replacement energy source that is as calorically dense as oil. It is simply not practical to replace oil as an energy source and maintain current energy demands. Colloquially, oil is butter-fried-steak wrapped in bacon and alternative energy is lettuce. This is why peak oil is so relevant and is the rate determining issue amongst the network of problems facing society at this time. With the possibility of peak energy on the horizon, the solution may lie in a fundamental upgrade to the operating system for our economy.

Notes

  1. Data collection stopped at 2012 because since then, there has been a non linear pattern unfolding in the form of global economic stagnation.  Currently the Baltic Dry Index is at a historic low (currently 332), where it was about 600 during the worst of the global correction of 2008.  This means global trade is at a historically low level.  More time is required to determine the true nature what is happening now.